Skip to content

Latest commit

 

History

History
123 lines (89 loc) · 3.58 KB

File metadata and controls

123 lines (89 loc) · 3.58 KB

TensorFlow 2.0 Object Detection API

logo

  1. 모델 파일을 자동으로 다운로드합니다.
  2. OpenCV를 활용하여 이미지를 입력받습니다.
  3. 검출된 classes, scores, boxes를 반환합니다.
  4. 간단한 시각화를 지원합니다.

Requirements

Python 3.8 TensorFlow 2.3 Protobuf Compiler >= 3.0 OpenCV >= 4.0 tpqm


Installation

Clone the TensorFlow 2.0 Object Detection API repository.

git clone https://github.com/076923/Tensorflow-2.0-Object-Detection-API.git

Using

# Using GPU computing
import tensorflow as tf
physical_device = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(physical_device[0], enable=True)

# Model Prediction
from core.detection import ModelZoo
model = ModelZoo(ModelZoo.SSD_MobileNet_v2_320x320)
img, input_tensor = model.load_image('images/dog.jpg')
classes, scores, boxes = model.predict(input_tensor)
visual = model.visualization(img, classes, scores, boxes, 0.7)

# OpenCV Visualization
import cv2
cv2.imshow("visual", visual)
cv2.waitKey()
src dst
src dst


gpu prediction visualization


Model List

  • ModelZoo.CenterNet_Resnet50_V1_FPN_512x512
  • ModelZoo.CenterNet_Resnet101_V1_FPN_512x512
  • ModelZoo.CenterNet_Resnet50_V2_512x512
  • ModelZoo.CenterNet_MobileNetV2_FPN_512x512
  • ModelZoo.EfficientDet_D0_512x512
  • ModelZoo.EfficientDet_D1_640x640
  • ModelZoo.EfficientDet_D2_768x768
  • ModelZoo.EfficientDet_D3_896x896
  • ModelZoo.EfficientDet_D4_1024x1024
  • ModelZoo.EfficientDet_D5_1280x1280
  • ModelZoo.EfficientDet_D6_1280x1280
  • ModelZoo.EfficientDet_D7_1536x1536
  • ModelZoo.SSD_MobileNet_v2_320x320
  • ModelZoo.SSD_MobileNet_V1_FPN_640x640
  • ModelZoo.SSD_MobileNet_V2_FPNLite_320x320
  • ModelZoo.SSD_ResNet50_V1_FPN_640x640_RetinaNet50
  • ModelZoo.SSD_ResNet50_V1_FPN_1024x1024_RetinaNet50
  • ModelZoo.SSD_ResNet101_V1_FPN_640x640_RetinaNet101
  • ModelZoo.SSD_ResNet101_V1_FPN_1024x1024_RetinaNet101
  • ModelZoo.SSD_ResNet152_V1_FPN_640x640_RetinaNet152
  • ModelZoo.SSD_ResNet152_V1_FPN_1024x1024_RetinaNet152
  • ModelZoo.Faster_RCNN_ResNet50_V1_640x640
  • ModelZoo.Faster_RCNN_ResNet50_V1_1024x1024
  • ModelZoo.Faster_RCNN_ResNet50_V1_800x1333
  • ModelZoo.Faster_RCNN_ResNet101_V1_640x640
  • ModelZoo.Faster_RCNN_ResNet101_V1_1024x1024
  • ModelZoo.Faster_RCNN_ResNet101_V1_800x1333
  • ModelZoo.Faster_RCNN_ResNet152_V1_640x640
  • ModelZoo.Faster_RCNN_ResNet152_V1_1024x1024
  • ModelZoo.Faster_RCNN_ResNet152_V1_800x1333

Test Models

  • ModelZoo.CenterNet_Resnet101_V1_FPN_512x512
  • ModelZoo.SSD_MobileNet_v2_320x320
  • ModelZoo.SSD_ResNet50_V1_FPN_640x640_RetinaNet50

Model Zoo

We provide a large collection of models that are trained on COCO 2017 in the Model Zoo.


Authors

윤대희([email protected])


License

Apache License 2.0