-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
403 lines (325 loc) · 19.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import streamlit as st
from charts import *
from scrapers.data import *
from scrapers.funding_rates import *
from scripts.beta import beta_calculator
from scrapers.lookups import *
from scrapers.orderbooks import *
from streamlit_autorefresh import st_autorefresh
from utils.helpers import *
alt.data_transformers.disable_max_rows()
def main():
st.set_page_config(
layout = "wide",
page_title='Home',
page_icon="random"
)
# Extract the current tab from the URL's query parameters
query_params = st.experimental_get_query_params()
current_tab = query_params.get('tab', ['Home'])[0]
# Define the available tabs
tabs = ["Home","Funding Rates","Spread Data","Solana","Hyperliquid","Tools","Useful Links"]
selected_tab = st.sidebar.radio("Navigate to:", tabs, index=tabs.index(current_tab))
if selected_tab != current_tab:
st.experimental_set_query_params(tab=selected_tab)
colour_scheme = {
"Drift":"#6369D1",
"Vertex-Protocol":"#EDC79B",
"Hyperliquid":"#99F7AB",
"Zeta":"#F75590",
"Mango-Markets-V4":"#FF9F1C"
}
match selected_tab:
case "Home":
st.write("")
refresh = st_autorefresh(300000)
st.markdown("News refreshes every 5 minutes using the News of Alpha feed")
st.write(fetch_news())
protocols = ['Drift','Vertex-Protocol','Hyperliquid','Zeta','Mango-Markets-V4']
sol_dau_data = asyncio.run(fetch_dau_sol())
# Fetch data for the 2nd protocol
df_vertex = fetch_dau_evm(protocols[1].replace('-Protocol', ''))
df_vertex['protocol_name'] = df_vertex['protocol_name'].replace('Vertex', 'Vertex-Protocol')
# Fetch data for the 3rd protocol
df_hyperliquid = fetch_dau_evm(protocols[2].replace('-Protocol', ''))
df = pd.concat([df_hyperliquid,df_vertex,sol_dau_data],ignore_index=True)
chart =create_line_chart(df, 'timestamp', 'dau', title="Daily Active Users (DAU) Over Time", color='protocol_name',color_scheme=colour_scheme)
st.altair_chart(chart,use_container_width=True)
cutoff_date = pd.Timestamp('2023-06-16')
vol_dfs = []
for protocol in protocols:
df_protocol = fetch_vol_hist(protocol)
df_protocol = df_protocol[df_protocol['timestamp'] > cutoff_date]
vol_dfs.append(df_protocol)
combined_df = pd.concat(vol_dfs)
chart = create_line_chart(combined_df, 'timestamp:T', 'volume:Q', title="Protocol Volume Over Time", color='protocol_name',color_scheme=colour_scheme)
st.altair_chart(chart,use_container_width=True)
tvl_dfs = []
for protocol in protocols:
df_protocol = fetch_historic_tvl(protocol)
df_protocol = df_protocol[df_protocol['date'].dt.year >= 2023]
tvl_dfs.append(df_protocol)
combined_dfs = pd.concat(tvl_dfs)
chart = create_line_chart(combined_dfs, 'date:T', 'TVL:Q', title="Total Value locked (TVL) Over Time", color='protocol_name',color_scheme=colour_scheme)
st.altair_chart(chart,use_container_width=True)
refresh
case "Funding Rates":
st.write("")
st.markdown("Live funding rates from multiple exchanges")
def highlight_colors(val):
return color_green(val) if val > 0 else color_red(val)
hl_df = get_hl_funding()
#vertex_df = fetch_vertex_funding()
mango_df = fetch_mango_funding()
aevo_df = asyncio.run(fetch_aevo_funding())
# Concatenate the dataframes vertically
combined_df = pd.concat([hl_df,aevo_df,mango_df])
# Reshape the combined dataframe using pivot_table
final_df = combined_df.pivot_table(index='Token Name', columns='Protocol', values='Funding Rate', aggfunc='first')
final_df = final_df.T
styled_df = final_df.style.applymap(highlight_colors)
st.write(styled_df.to_html(), unsafe_allow_html=True)
st.title("Historic Funding Rates")
st.markdown("Currently only Hyperliquid is supported")
data = {"type":"meta"}
init_req = httpx.post(url=hl_url,headers=hl_headers,json=data).json()
token_names = [item['name'] for item in init_req['universe']]
options = st.selectbox("Select a Coin",token_names)
df = fetch_hl_historic_funding(option=options)
df_trans = df.T
st.write(df_trans)
case "Spread Data":
st.title("Charts of Spread percentages for tokens over time")
st.markdown("""
[Raw data for these can be found here]("https://github.com/0xsumatt/orderbook_snaps")
""")
asset = st.selectbox("Select a Token",['BTC','ETH','SOL','ARB'])
urls = [f"https://raw.githubusercontent.com/0xsumatt/orderbook_snaps/master/hyperliquid_{asset}_orderbook_snap.csv",f"https://raw.githubusercontent.com/0xsumatt/orderbook_snaps/master/zeta_{asset}_orderbook_snap.csv",f"https://raw.githubusercontent.com/0xsumatt/orderbook_snaps/master/vertex_{asset}_orderbook_snap.csv"] # List of your URLs
results = []
for url in urls:
df = process_data_from_url(url)
results.append(df)
# Concatenate results
final_df = pd.concat(results)
spread_scheme = {
"Hyperliquid":"#99F7AB",
"Vertex":"#EDC79B",
"Zeta Markets":"#F75590"
}
chart = create_line_chart(final_df, 'timestamp', 'spread_percentage', title="Spread Percentage over Time", color='protocol_name',color_scheme=spread_scheme)
st.altair_chart(chart,use_container_width=True)
case "Solana":
st.write("")
st.markdown("TVL data is currently provided by DefiLlama and DAU data provided by VybeNetwork")
sub_tabs = ["All","Zeta"]
current_sub_tab = query_params.get('sub_tab', ['All'])[0]
selected_sub_tab = st.radio("Choose:", sub_tabs, index=sub_tabs.index(current_sub_tab))
match selected_sub_tab:
case "All":
sol_colour_scheme = {
"Phoenix":"#ba181b",
"Openbook":"#dee2ff",
"Zeta":"#F75590",
"Drift":"#6369D1",
"Mango-Markets-V4":"#FF9F1C"
}
include_spot_clobs = st.checkbox('Include Pheonix and Openbook ?')
sol_dau_data = asyncio.run(fetch_dau_sol(include_spot_clobs))
chart = create_line_chart(sol_dau_data, x_column="timestamp", y_column="dau", color="protocol_name",color_scheme=sol_colour_scheme)
st.altair_chart(chart,use_container_width=True)
Sol_protocol_list=['Drift','Zeta','Mango-Markets-V4']
vol_list = []
for protocol in Sol_protocol_list:
sol_vol_data = fetch_vol_hist(protocol)
vol_list.append(sol_vol_data)
comb_df = pd.concat(vol_list)
chart = create_line_chart(comb_df, 'timestamp:T', 'volume:Q', title="Protocol Volume Over Time", color='protocol_name',color_scheme=sol_colour_scheme)
st.altair_chart(chart,use_container_width=True)
case "Zeta":
colour_scheme = {
"ARB":"#3a86ff",
"APT":"#7cb518",
"SOL":"#8338ec",
"BTC":"#fb5607",
"ETH":"#e4ff1a",
}
st.title("Zeta Markets")
col1,col2 = st.columns(2)
oi_data = fetch_zeta_coin_oi()
oi_chart = create_bar_chart(oi_data,'Token', 'Value', title="Open Interest (denominated in tokens)",color_scheme=colour_scheme)
col1.altair_chart(oi_chart)
week_vol_data = fetch_zeta_7d_volume()
weekly_chart = create_bar_chart(week_vol_data,'Token', 'Value', title="7D Volume (denominated in $)",color_scheme=colour_scheme)
col2.altair_chart(weekly_chart)
hist_vol_data = fetch_vol_hist("zeta")
hist_vol_chart = create_line_chart(hist_vol_data, "timestamp", 'volume', title="Volume over time")
col1.altair_chart(hist_vol_chart, use_container_width=True)
dau_data = asyncio.run(fetch_dau_sol(name = "Zeta"))
dau_chart = create_line_chart(dau_data,"timestamp",'dau',title = "DAU over time")
col2.altair_chart(dau_chart,use_container_width=True)
case "Drift":
st.write("Coming Soon")
case "Hyperliquid":
st.title("Hyperliquid")
st.write("Current funding rates")
st.write(get_hl_funding())
c1,c2 = st.columns(2)
vol_data = fetch_vol_hist("hyperliquid")
vol_data_chart = create_line_chart(vol_data,'timestamp','volume',title="Volume over time")
c1.altair_chart(vol_data_chart,use_container_width=True)
dau_data = fetch_dau_evm("hyperliquid")
dau_chart = create_line_chart(dau_data,"timestamp",'dau',title = "Daily Active Users Over Time")
c2.altair_chart(dau_chart,use_container_width=True)
case "Tools":
sub_tabs = ["Beta Calculator","Position Lookups","Historic Trade Visualisations","Backtester","Orderbook Snapshots","Consolidated Orderbook Density"]
current_sub_tab = query_params.get('sub_tab',['Beta Calculator'])[0]
selected_sub_tab = st.radio("Choose:", sub_tabs, index=sub_tabs.index(current_sub_tab))
match selected_sub_tab:
case "Beta Calculator":
st.title("Beta Calculator")
st.markdown('This pulls data from yahoo finance so please enter the tickers exactly how they appear there')
# Input for ticker_1 which can be single or multiple assets
ticker_1 = st.text_input("Enter the asset(s) (comma-separated for multiple assets):").split(',')
# Input for ticker_2 (the benchmark)
ticker_2 = st.text_input("Enter the benchmark asset:")
start_date = st.date_input("Start date")
end_date = st.date_input("End date")
# Check if all inputs are provided
if ticker_1 and ticker_2 and start_date and end_date:
# Remove any whitespace from the ticker names
ticker_1 = [ticker.strip() for ticker in ticker_1]
# Create an instance of the beta_calculator
beta_calc = beta_calculator(ticker_1, ticker_2, start_date.strftime('%Y-%m-%d'), end_date.strftime('%Y-%m-%d'))
# Calculate the beta
beta = beta_calc.calc_beta()
st.write(f"The beta of {', '.join(ticker_1)} against {ticker_2} is: {beta:.2f}")
case "Historic Trade Visualisations":
exchange = st.selectbox("Select an Exchange",['Drift',"Hyperliquid","Zeta"])
symbol = st.selectbox("Select a symbol:", ["BTC", "ETH", "SOL", "ARB","SUI"])
chart_interval = st.selectbox("Select an Interval",["Default","1m","5m","1h","2h","4h","D","W"])
interval_map = {
"1m":1,
"5m":5,
"1h":60,
"4h":240,
"D":"1d",
"W":"1w"
}
address = st.text_input(label ="Enter address", placeholder="0x00")
date = st.date_input("Select a Date(Only month is used)and for Drift Only")
numeric_interval = interval_map.get(chart_interval)
if len(address)>0 :
match exchange :
case 'Zeta' :
if chart_interval == 'Default':
df_oracle_prcing = get_drift_klines(symbol,exchange="Zeta")
else:
df_oracle_prcing = get_drift_klines(symbol,exchange="Zeta",interval=numeric_interval)
df_oracle_prcing['timestamp'] = pd.to_datetime(df_oracle_prcing['timestamp'], unit='ms')
df_zeta = fetch_zeta_trades(address)
df_zeta= df_zeta[df_zeta['symbol'] == symbol]
df_zeta['timestamp'] = pd.to_datetime(df_zeta['timestamp'], unit='s')
chart = create_interactive_chart(df_oracle_prcing, exchange_df=df_zeta, width=1000, height=600)
st.altair_chart(chart)
case 'Drift' :
if chart_interval == 'Default':
df_fill_pricing = get_drift_klines(symbol,exchange="Drift")
else:
df_fill_pricing = get_drift_klines(symbol,exchange="Drift",interval=numeric_interval)
df_fill_pricing['timestamp'] = pd.to_datetime(df_fill_pricing['timestamp'], unit='ms')
selected_month = date.month
df_drift = asyncio.run(fetch_drift_trades(address,selected_month))
df_drift['timestamp'] = pd.to_datetime(df_drift['timestamp'], unit='s')
chart = create_interactive_chart(df_fill_pricing, exchange_df=df_drift, width=1000, height=600)
st.altair_chart(chart)
case "Hyperliquid":
if chart_interval == 'Default':
df_hl_klines = get_hyperliquid_klines(symbol)
else:
df_hl_klines = get_hyperliquid_klines(symbol,interval=chart_interval)
df_hl_klines['timestamp'] = pd.to_datetime(df_hl_klines['timestamp'], unit='ms')
df_hl = fetch_hl_fills(address)
df_hl = df_hl[df_hl['symbol'] == symbol]
df_hl['timestamp'] = pd.to_datetime(df_hl['timestamp'], unit='ms')
chart = create_interactive_chart(df_hl_klines, df_hl, width=1000, height=600)
st.altair_chart(chart)
case "Position Lookups":
exchange = st.selectbox("Select an Exchange",['Drift',"Hyperliquid"])
address = st.text_input(label = "Enter Address", placeholder = "0x00")
if len(address) >0:
if exchange == "Hyperliquid":
st.write(fetch_hl_positions(lookup=address))
elif exchange == "Drift":
st.write(asyncio.run(drift_pos_lookup(authority=address)))
case "Backtester":
st.title("Coming Soon")
case "Orderbook Snapshots":
exchange = st.selectbox("Select and Exchange", ['Hyperliquid','Vertex','Zeta Markets'])
selected_symbol = st.selectbox("Choose a ticker",['BTC','ETH','SOL'])
def style_dataframe(df):
return df.style.\
applymap(color_green, subset=['bid_price', 'bid_size']).\
applymap(color_red, subset=['ask_price', 'ask_size']).\
to_html()
match exchange :
case "Hyperliquid" :
styled_html = style_dataframe(fetch_hyperliquid_ob_snap(symbol=selected_symbol))
st.write(styled_html, unsafe_allow_html=True)
case "Vertex":
styled_html = style_dataframe(fetch_vertex_ob_snap(symbol=selected_symbol))
st.write(styled_html, unsafe_allow_html=True)
case "Zeta Markets":
styled_html = style_dataframe(fetch_zeta_orderbook_snap(symbol=selected_symbol))
st.write(styled_html, unsafe_allow_html=True)
case "Consolidated Orderbook Density":
st.warning("This is still buggy and regularly only shows bids")
symbol_selection = st.selectbox("Select a token",['SOL',"BTC","ETH","ARB","APT","LTC"])
data = aggregate_orderbooks(symbol=symbol_selection)
df = pd.DataFrame(data)
st.title("Consolidated Order Book Density")
# Define the color scale based on bid/ask
color_scale = alt.Scale(domain=['Bid', 'Ask'], range=['green', 'red'])
# Plot bids
bids_chart = alt.Chart(df).mark_circle().encode(
y=alt.Y('price:Q', title='Price', sort='ascending'),
x=alt.X('total_bid_size:Q', title='Size'),
color=alt.value('green'),
size=alt.Size('total_bid_size:Q', legend=None),
tooltip=['price', 'total_bid_size', 'bid_protocol']
).transform_filter(
alt.datum.total_bid_size > 0 # Filter out zero size bids
)
# Plot asks
asks_chart = alt.Chart(df).mark_circle().encode(
y=alt.Y('price:Q', title=None, sort='ascending'), # Title set to None to avoid duplication
x=alt.X('total_ask_size:Q', title=None), # Title set to None to avoid duplication
color=alt.value('red'),
size=alt.Size('total_ask_size:Q', legend=None),
tooltip=['price', 'total_ask_size', 'ask_protocol']
).transform_filter(
alt.datum.total_ask_size > 0 # Filter out zero size asks
)
# Combine bids and asks chart
combined_chart = (bids_chart + asks_chart).resolve_scale(
x='independent' # Allows bids and asks to have independent x-axes
).interactive()
# Displaying the chart in Streamlit
st.altair_chart(combined_chart)
case "Useful Links":
st.title("Useful Links")
st.markdown("""
- [Vybe Network](https://www.vybenetwork.com/)
- [Defillama](https://defillama.com/)
- [Drift streamlit Dash](https://driftv2.streamlit.app/?tab=Welcome)
- [Dirty Diggler's Dune Dash] (https://dune.com/dirt_diggler/the-great-solana-dashboard)
""")
st.markdown("""
If you want to support the development of this dash and are not a resident of any restricted country, feel free to
use the ref links below. Ref Links are not endorsements ofcourse.
- [Binance](http://binance.com/en/register?ref=TreeOfAlpha)
- [Bybit](http://partner.bybit.com/b/Tree_Of_Alpha)
- [Hyperliquid](https://app.hyperliquid.xyz/join/LIQ)
- [Vertex](https://app.vertexprotocol.com?referral=uzpAPriz8z)
""")
if __name__ == "__main__":
main()