-
Notifications
You must be signed in to change notification settings - Fork 27
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
模型缺失权重问题 #10
Comments
从 |
好的,感谢 |
您可以提供一下论文中实验结果的实验参数吗?(ae_dim、se_dim、学习率、训练次数) |
论文中实验结果当时是使用的ae_dim和se_dim都是1000,这是由于当时使用的weight是正态分布初始化的,导致很多dead neuron,后来改成xavier_init以后只需要几百的dim了。可以参考新的代码:https://github.com/1049451037/HIN-Align |
请问这里flags.DEFINE_float('learning_rate', 20, 'Initial learning rate.')的20是表示学习率为0.2吗,本人对tensorflow不太熟悉 |
learning_rate是20,这个变量在models.py里用到了 |
好的,非常感谢 |
在layers.py中GraphConvolution中的_call()函数中:
for i in range(len(self.support)): if 'weights_'+str(i) in self.vars: if not self.featureless: pre_sup = dot(x, self.vars['weights_' + str(i)], sparse=self.sparse_inputs) else: pre_sup = self.vars['weights_' + str(i)] else: pre_sup = x support = dot(self.support[i], pre_sup, sparse=True) supports.append(support)
能解释一下为什么通过if条件执行pre_sup = x,通过运行发现该处操作导致模型第二层GCN没有权重,希望您能尽快回复解释一下这里的用意,感谢!
The text was updated successfully, but these errors were encountered: