We provide a video demo to illustrate the pose tracking results.
Assume that you have already installed mmdet.
python demo/top_down_pose_tracking_demo_with_mmdet.py \
${MMDET_CONFIG_FILE} ${MMDET_CHECKPOINT_FILE} \
${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
--video-path ${VIDEO_PATH} \
--out-video-root ${OUTPUT_VIDEO_ROOT} \
[--show --device ${GPU_ID or CPU}] \
[--bbox-thr ${BBOX_SCORE_THR} --kpt-thr ${KPT_SCORE_THR}] \
[--use-oks-tracking --tracking-thr ${TRACKING_THR} --euro] \
[--use-multi-frames] [--online]
Note that
-
${VIDEO_PATH}
can be the local path or URL link to video file. -
You can turn on the
[--use-multi-frames]
option to use multi frames for inference in the pose estimation stage. -
If the
[--online]
option is set to True, future frame information can not be used when using multi frames for inference in the pose estimation stage.
Examples:
For single-frame inference that do not rely on extra frames to get the final results of the current frame, try this:
python demo/top_down_pose_tracking_demo_with_mmdet.py \
demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py \
https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/res50_coco_256x192.py \
https://download.openmmlab.com/mmpose/top_down/resnet/res50_coco_256x192-ec54d7f3_20200709.pth \
--video-path demo/resources/demo.mp4 \
--out-video-root vis_results
For multi-frame inference that rely on extra frames to get the final results of the current frame, try this:
python demo/top_down_pose_tracking_demo_with_mmdet.py \
demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py \
https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
configs/body/2d_kpt_sview_rgb_vid/posewarper/posetrack18/hrnet_w48_posetrack18_384x288_posewarper_stage2.py \
https://download.openmmlab.com/mmpose/top_down/posewarper/hrnet_w48_posetrack18_384x288_posewarper_stage2-4abf88db_20211130.pth \
--video-path https://user-images.githubusercontent.com/87690686/137440639-fb08603d-9a35-474e-b65f-46b5c06b68d6.mp4 \
--out-video-root vis_results \
--use-multi-frames --online
MMTracking is an open source video perception toolbox based on PyTorch for tracking related tasks. Here we show how to utilize MMTracking and MMPose to achieve human pose tracking.
Assume that you have already installed mmtracking.
python demo/top_down_video_demo_with_mmtracking.py \
${MMTRACKING_CONFIG_FILE} \
${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
--video-path ${VIDEO_PATH} \
--out-video-root ${OUTPUT_VIDEO_ROOT} \
[--show --device ${GPU_ID or CPU}] \
[--bbox-thr ${BBOX_SCORE_THR} --kpt-thr ${KPT_SCORE_THR}] \
[--use-multi-frames] [--online]
Note that
-
${VIDEO_PATH}
can be the local path or URL link to video file. -
You can turn on the
[--use-multi-frames]
option to use multi frames for inference in the pose estimation stage. -
If the
[--online]
option is set to True, future frame information can not be used when using multi frames for inference in the pose estimation stage.
Examples:
For single-frame inference that do not rely on extra frames to get the final results of the current frame, try this:
python demo/top_down_pose_tracking_demo_with_mmtracking.py \
demo/mmtracking_cfg/tracktor_faster-rcnn_r50_fpn_4e_mot17-private.py \
configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/res50_coco_256x192.py \
https://download.openmmlab.com/mmpose/top_down/resnet/res50_coco_256x192-ec54d7f3_20200709.pth \
--video-path demo/resources/demo.mp4 \
--out-video-root vis_results
For multi-frame inference that rely on extra frames to get the final results of the current frame, try this:
python demo/top_down_pose_tracking_demo_with_mmtracking.py \
demo/mmtracking_cfg/tracktor_faster-rcnn_r50_fpn_4e_mot17-private.py \
configs/body/2d_kpt_sview_rgb_vid/posewarper/posetrack18/hrnet_w48_posetrack18_384x288_posewarper_stage2.py \
https://download.openmmlab.com/mmpose/top_down/posewarper/hrnet_w48_posetrack18_384x288_posewarper_stage2-4abf88db_20211130.pth \
--video-path demo/resources/demo.mp4 \
--out-video-root vis_results \
--use-multi-frames --online
We also provide a pose tracking demo with bottom-up pose estimation methods.
python demo/bottom_up_pose_tracking_demo.py \
${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
--video-path ${VIDEO_PATH} \
--out-video-root ${OUTPUT_VIDEO_ROOT} \
[--show --device ${GPU_ID or CPU}] \
[--kpt-thr ${KPT_SCORE_THR} --pose-nms-thr ${POSE_NMS_THR}]
[--use-oks-tracking --tracking-thr ${TRACKING_THR} --euro]
Note that ${VIDEO_PATH}
can be the local path or URL link to video file.
Examples:
python demo/bottom_up_pose_tracking_demo.py \
configs/body/2d_kpt_sview_rgb_img/associative_embedding/coco/hrnet_w32_coco_512x512.py \
https://download.openmmlab.com/mmpose/bottom_up/hrnet_w32_coco_512x512-bcb8c247_20200816.pth \
--video-path demo/resources/demo.mp4 \
--out-video-root vis_results
Some tips to speed up MMPose inference:
For top-down models, try to edit the config file. For example,
- set
flip_test=False
in topdown-res50. - set
post_process='default'
in topdown-res50. - use faster human detector or human tracker, see MMDetection or MMTracking.
For bottom-up models, try to edit the config file. For example,