-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulated_annealing.py
70 lines (59 loc) · 4.26 KB
/
simulated_annealing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import numpy as np
import pandas as pd
from tqdm.notebook import tqdm
from base import Pruner
class SimulatedAnnealingPruner(Pruner):
def __init__(
self, baseline, initial_temperature=1.0, iterations=200,
mutation_rate=0.05, loss_to_warmup=1.0, max_loss_penalty=1e8
):
super().__init__(baseline, loss_to_warmup, max_loss_penalty)
self.initial_temperature = initial_temperature
self.iterations = iterations
self.mutation_rate = mutation_rate # The algorithm will calculate its adaptive version to fine-tune solutions over time
self.loss_to_warmup = loss_to_warmup # Warmup the max_loss to the final value for more aggressive pruning at the end
self.display_handle = display('', display_id=True)
def _acceptance_probability(self, deltaE, temperature): # Decide whether to accept or reject a new solution
prob = np.exp(-deltaE / temperature)
''' Since the probability is a function of e^-x:
- If the change in the objective is negative, the function will keep increasing to infinity
- If the change in the objective >= 0, the function will have a range of (0, 1], making it suitable for probability calculation
As I researched this acceptance probability in SA is governed by an optimization rule called Metropolis criterion
'''
if prob > 1: return False
return np.random.uniform(0, 1) < prob # If the probability <= 1, accept the new mask with a certain probability
def prune(self):
for layer_index, layer in enumerate(self.baseline.model.layers):
if len(layer.get_weights()) <= 0 : continue # Skip layers with no weights (e.g., activation layers)
self.max_loss = self.loss_to_warmup * (layer_index + 1) / len(self.baseline.model.layers) # Adaptive max_loss
current_obj_dict = self.calculate_objective() # Calculate initial objective for the current layer
best_obj_dict = current_obj_dict # Initialize best objective for the current layer
for step in tqdm(range(self.iterations), desc=f'[LAYER {layer_index}]'):
# Decrease mutation rate over time to fine-tune solutions
adaptive_mutation_rate = self.mutation_rate * (1 - step / self.iterations)
# Logarithmic annealing schedule to decrease the temperature as the step increases
temperature = self.initial_temperature / (1 + np.log(1 + step))
if temperature <= 0: break
# Randomly flip "adaptive_mutation_rate"% of the mask values
layer_mask = self.masks[layer_index] * ~(np.random.rand(*self.masks[layer_index].shape) < adaptive_mutation_rate)
old_layer_mask = self.get_layer_mask(layer_index) # Save the old mask to revert the changes if the new mask is not accepted
self.apply_layer_mask(layer_index, layer_mask)
new_obj_dict = self.calculate_objective()
deltaE = new_obj_dict['cost'] - current_obj_dict['cost'] # Calculate the change in the objective function, lower is better
# If the new objective is better or the acceptance probability is met, update the current objective and save the history
if deltaE < 0 or self._acceptance_probability(deltaE, temperature):
current_obj_dict = new_obj_dict
self.history.append({
'layer': layer_index, 'temperature': temperature,
'mutation_rate': adaptive_mutation_rate, **current_obj_dict
})
self.display_handle.update(pd.DataFrame(self.history)) # Display the history in a table
if current_obj_dict['cost'] < best_obj_dict['cost']: # Update best solution found so far for the layer
best_masks = [mask.copy() if mask is not None else None for mask in self.masks]
best_obj_dict = current_obj_dict
else:
self.reset_layer_weights(layer_index) # Revert the changes if the new mask is not accepted
self.apply_layer_mask(layer_index, old_layer_mask)
self.masks = best_masks
self.apply_all_masks() # Update best pruning masks for all layers
return best_masks, best_obj_dict