We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
https://1iuke.github.io/2021/03/14/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/%E5%85%B8%E5%9E%8B%E7%9B%B8%E5%85%B3%E5%88%86%E6%9E%90(CCA)/
典型相关分析(Canonical Correction Analysis)是最常用的数据挖掘关联算法之一。 比如我们拿到两组数据,第一组是人身高和体重的数据,第二组是对应的跑步能力和跳远能力的数据。那么我们能不能说这两组数据是相关的呢?CCA可以帮助我们分析这个问题。
The text was updated successfully, but these errors were encountered:
No branches or pull requests
https://1iuke.github.io/2021/03/14/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/%E5%85%B8%E5%9E%8B%E7%9B%B8%E5%85%B3%E5%88%86%E6%9E%90(CCA)/
典型相关分析(Canonical Correction Analysis)是最常用的数据挖掘关联算法之一。
比如我们拿到两组数据,第一组是人身高和体重的数据,第二组是对应的跑步能力和跳远能力的数据。那么我们能不能说这两组数据是相关的呢?CCA可以帮助我们分析这个问题。
The text was updated successfully, but these errors were encountered: