forked from huiwenzhang/act-plus-plus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompress_data.py
182 lines (145 loc) · 7.27 KB
/
compress_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
"""
Example usage:
$ python3 script/compress_data.py --dataset_dir /scr/lucyshi/dataset/aloha_test
"""
import os
import h5py
import cv2
import numpy as np
import argparse
from tqdm import tqdm
# Constants
DT = 0.02
JOINT_NAMES = ["waist", "shoulder", "elbow", "forearm_roll", "wrist_angle", "wrist_rotate"]
STATE_NAMES = JOINT_NAMES + ["gripper"]
def compress_dataset(input_dataset_path, output_dataset_path):
# Check if output path exists
if os.path.exists(output_dataset_path):
print(f"The file {output_dataset_path} already exists. Exiting...")
return
# Load the uncompressed dataset
with h5py.File(input_dataset_path, 'r') as infile:
# Create the compressed dataset
with h5py.File(output_dataset_path, 'w') as outfile:
outfile.attrs['sim'] = infile.attrs['sim']
outfile.attrs['compress'] = True
# Copy non-image data directly
for key in infile.keys():
if key != 'observations':
outfile.copy(infile[key], key)
obs_group = infile['observations']
# Create observation group in the output
out_obs_group = outfile.create_group('observations')
# Copy non-image data in observations directly
for key in obs_group.keys():
if key != 'images':
out_obs_group.copy(obs_group[key], key)
image_group = obs_group['images']
out_image_group = out_obs_group.create_group('images')
# JPEG compression parameters
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), 50]
compressed_lens = [] # List to store compressed lengths for each camera
for cam_name in image_group.keys():
if "_depth" in cam_name: # Depth images are not compressed
out_image_group.copy(image_group[cam_name], cam_name)
else:
images = image_group[cam_name]
compressed_images = []
cam_compressed_lens = [] # List to store compressed lengths for this camera
# Compress each image
for image in images:
result, encoded_image = cv2.imencode('.jpg', image, encode_param)
compressed_images.append(encoded_image)
cam_compressed_lens.append(len(encoded_image)) # Store the length
compressed_lens.append(cam_compressed_lens)
# Find the maximum length of the compressed images
max_len = max(len(img) for img in compressed_images)
# Create dataset to store compressed images
compressed_dataset = out_image_group.create_dataset(cam_name, (len(compressed_images), max_len), dtype='uint8')
# Store compressed images
for i, img in enumerate(compressed_images):
compressed_dataset[i, :len(img)] = img
# Save the compressed lengths to the HDF5 file
compressed_lens = np.array(compressed_lens)
_ = outfile.create_dataset('compress_len', compressed_lens.shape)
outfile['/compress_len'][...] = compressed_lens
print(f"Compressed dataset saved to {output_dataset_path}")
def save_videos(video, dt, video_path=None):
if isinstance(video, list):
cam_names = list(video[0].keys())
h, w, _ = video[0][cam_names[0]].shape
w = w * len(cam_names)
fps = int(1/dt)
out = cv2.VideoWriter(video_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
# bitrate = 1000000
# out.set(cv2.VIDEOWRITER_PROP_BITRATE, bitrate)
for ts, image_dict in enumerate(video):
images = []
for cam_name in cam_names:
image = image_dict[cam_name]
image = image[:, :, [2, 1, 0]] # swap B and R channel
images.append(image)
images = np.concatenate(images, axis=1)
out.write(images)
out.release()
print(f'Saved video to: {video_path}')
elif isinstance(video, dict):
cam_names = list(video.keys())
# Remove depth images
cam_names = [cam_name for cam_name in cam_names if '_depth' not in cam_name]
all_cam_videos = []
for cam_name in cam_names:
all_cam_videos.append(video[cam_name])
all_cam_videos = np.concatenate(all_cam_videos, axis=2) # width dimension
n_frames, h, w, _ = all_cam_videos.shape
fps = int(1 / dt)
out = cv2.VideoWriter(video_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
for t in range(n_frames):
image = all_cam_videos[t]
image = image[:, :, [2, 1, 0]] # swap B and R channel
out.write(image)
out.release()
print(f'Saved video to: {video_path}')
def load_and_save_first_episode_video(dataset_dir, video_path):
dataset_name = 'episode_0'
_, _, _, _, image_dict = load_hdf5(dataset_dir, dataset_name)
save_videos(image_dict, DT, video_path=video_path)
def load_hdf5(dataset_dir, dataset_name):
dataset_path = os.path.join(dataset_dir, dataset_name + '.hdf5')
if not os.path.isfile(dataset_path):
print(f'Dataset does not exist at \n{dataset_path}\n')
exit()
with h5py.File(dataset_path, 'r') as root:
compressed = root.attrs.get('compress', False)
image_dict = dict()
for cam_name in root[f'/observations/images/'].keys():
image_dict[cam_name] = root[f'/observations/images/{cam_name}'][()]
if compressed:
compress_len = root['/compress_len'][()]
if compressed:
for cam_id, cam_name in enumerate(image_dict.keys()):
padded_compressed_image_list = image_dict[cam_name]
image_list = []
for frame_id, padded_compressed_image in enumerate(padded_compressed_image_list):
image_len = int(compress_len[cam_id, frame_id])
compressed_image = padded_compressed_image
image = cv2.imdecode(compressed_image, 1)
image_list.append(image)
image_dict[cam_name] = image_list
return None, None, None, None, image_dict # Return only the image dict for this application
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Compress all HDF5 datasets in a directory.")
parser.add_argument('--dataset_dir', action='store', type=str, required=True, help='Directory containing the uncompressed datasets.')
args = parser.parse_args()
output_dataset_dir = args.dataset_dir + '_compressed'
os.makedirs(output_dataset_dir, exist_ok=True)
# Iterate over each file in the directory
for filename in tqdm(os.listdir(args.dataset_dir), desc="Compressing data"):
if filename.endswith('.hdf5'):
input_path = os.path.join(args.dataset_dir, filename)
output_path = os.path.join(output_dataset_dir, filename)
compress_dataset(input_path, output_path)
# After processing all datasets, load and save the video for the first episode
print(f'Saving video for episode 0 in {output_dataset_dir}')
video_path = os.path.join(output_dataset_dir, 'episode_0_video.mp4')
load_and_save_first_episode_video(output_dataset_dir, video_path)