-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathunireplknet.py
782 lines (691 loc) · 34.6 KB
/
unireplknet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
# UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio, Video, Point Cloud, Time-Series and Image Recognition
# Github source: https://github.com/AILab-CVC/UniRepLKNet
# Licensed under The Apache License 2.0 License [see LICENSE for details]
# Based on RepLKNet, ConvNeXt, timm, DINO and DeiT code bases
# https://github.com/DingXiaoH/RepLKNet-pytorch
# https://github.com/facebookresearch/ConvNeXt
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_, DropPath, to_2tuple
from timm.models.registry import register_model
from functools import partial
import torch.utils.checkpoint as checkpoint
try:
from huggingface_hub import hf_hub_download
except:
hf_hub_download = None # install huggingface_hub if you would like to download models conveniently from huggingface
has_mmdet = False
has_mmseg = False
# =============== for the ease of directly using this file in MMSegmentation and MMDetection.
# =============== ignore the following two segments of code if you do not plan to do so
# =============== delete one of the following two segments if you get a confliction
try:
from mmseg.models.builder import BACKBONES as seg_BACKBONES
from mmseg.utils import get_root_logger
from mmcv.runner import _load_checkpoint
has_mmseg = True
except ImportError:
get_root_logger = None
_load_checkpoint = None
# try:
# from mmdet.models.builder import BACKBONES as det_BACKBONES
# from mmdet.utils import get_root_logger
# from mmcv.runner import _load_checkpoint
# has_mmdet = True
# except ImportError:
# get_root_logger = None
# _load_checkpoint = None
# ===========================================================================================
class GRNwithNHWC(nn.Module):
""" GRN (Global Response Normalization) layer
Originally proposed in ConvNeXt V2 (https://arxiv.org/abs/2301.00808)
This implementation is more efficient than the original (https://github.com/facebookresearch/ConvNeXt-V2)
We assume the inputs to this layer are (N, H, W, C)
"""
def __init__(self, dim, use_bias=True):
super().__init__()
self.use_bias = use_bias
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
if self.use_bias:
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
if self.use_bias:
return (self.gamma * Nx + 1) * x + self.beta
else:
return (self.gamma * Nx + 1) * x
class NCHWtoNHWC(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x.permute(0, 2, 3, 1)
class NHWCtoNCHW(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x.permute(0, 3, 1, 2)
#================== This function decides which conv implementation (the native or iGEMM) to use
# Note that iGEMM large-kernel conv impl will be used if
# - you attempt to do so (attempt_to_use_large_impl=True), and
# - it has been installed (follow https://github.com/AILab-CVC/UniRepLKNet), and
# - the conv layer is depth-wise, stride = 1, non-dilated, kernel_size > 5, and padding == kernel_size // 2
def get_conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias,
attempt_use_lk_impl=True):
kernel_size = to_2tuple(kernel_size)
if padding is None:
padding = (kernel_size[0] // 2, kernel_size[1] // 2)
else:
padding = to_2tuple(padding)
need_large_impl = kernel_size[0] == kernel_size[1] and kernel_size[0] > 5 and padding == (kernel_size[0] // 2, kernel_size[1] // 2)
if attempt_use_lk_impl and need_large_impl:
print('---------------- trying to import iGEMM implementation for large-kernel conv')
try:
from depthwise_conv2d_implicit_gemm import DepthWiseConv2dImplicitGEMM
print('---------------- found iGEMM implementation ')
except:
DepthWiseConv2dImplicitGEMM = None
print('---------------- found no iGEMM. use original conv. follow https://github.com/AILab-CVC/UniRepLKNet to install it.')
if DepthWiseConv2dImplicitGEMM is not None and need_large_impl and in_channels == out_channels \
and out_channels == groups and stride == 1 and dilation == 1:
print(f'===== iGEMM Efficient Conv Impl, channels {in_channels}, kernel size {kernel_size} =====')
return DepthWiseConv2dImplicitGEMM(in_channels, kernel_size, bias=bias)
return nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=groups, bias=bias)
def get_bn(dim, use_sync_bn=False):
if use_sync_bn:
return nn.SyncBatchNorm(dim)
else:
return nn.BatchNorm2d(dim)
class SEBlock(nn.Module):
"""
Squeeze-and-Excitation Block proposed in SENet (https://arxiv.org/abs/1709.01507)
We assume the inputs to this layer are (N, C, H, W)
"""
def __init__(self, input_channels, internal_neurons):
super(SEBlock, self).__init__()
self.down = nn.Conv2d(in_channels=input_channels, out_channels=internal_neurons,
kernel_size=1, stride=1, bias=True)
self.up = nn.Conv2d(in_channels=internal_neurons, out_channels=input_channels,
kernel_size=1, stride=1, bias=True)
self.input_channels = input_channels
self.nonlinear = nn.ReLU(inplace=True)
def forward(self, inputs):
x = F.adaptive_avg_pool2d(inputs, output_size=(1, 1))
x = self.down(x)
x = self.nonlinear(x)
x = self.up(x)
x = F.sigmoid(x)
return inputs * x.view(-1, self.input_channels, 1, 1)
def fuse_bn(conv, bn):
conv_bias = 0 if conv.bias is None else conv.bias
std = (bn.running_var + bn.eps).sqrt()
return conv.weight * (bn.weight / std).reshape(-1, 1, 1, 1), bn.bias + (conv_bias - bn.running_mean) * bn.weight / std
def convert_dilated_to_nondilated(kernel, dilate_rate):
identity_kernel = torch.ones((1, 1, 1, 1)).to(kernel.device)
if kernel.size(1) == 1:
# This is a DW kernel
dilated = F.conv_transpose2d(kernel, identity_kernel, stride=dilate_rate)
return dilated
else:
# This is a dense or group-wise (but not DW) kernel
slices = []
for i in range(kernel.size(1)):
dilated = F.conv_transpose2d(kernel[:,i:i+1,:,:], identity_kernel, stride=dilate_rate)
slices.append(dilated)
return torch.cat(slices, dim=1)
def merge_dilated_into_large_kernel(large_kernel, dilated_kernel, dilated_r):
large_k = large_kernel.size(2)
dilated_k = dilated_kernel.size(2)
equivalent_kernel_size = dilated_r * (dilated_k - 1) + 1
equivalent_kernel = convert_dilated_to_nondilated(dilated_kernel, dilated_r)
rows_to_pad = large_k // 2 - equivalent_kernel_size // 2
merged_kernel = large_kernel + F.pad(equivalent_kernel, [rows_to_pad] * 4)
return merged_kernel
class DilatedReparamBlock(nn.Module):
"""
Dilated Reparam Block proposed in UniRepLKNet (https://github.com/AILab-CVC/UniRepLKNet)
We assume the inputs to this block are (N, C, H, W)
"""
def __init__(self, channels, kernel_size, deploy, use_sync_bn=False, attempt_use_lk_impl=True):
super().__init__()
self.lk_origin = get_conv2d(channels, channels, kernel_size, stride=1,
padding=kernel_size//2, dilation=1, groups=channels, bias=deploy,
attempt_use_lk_impl=attempt_use_lk_impl)
self.attempt_use_lk_impl = attempt_use_lk_impl
# Default settings. We did not tune them carefully. Different settings may work better.
if kernel_size == 17:
self.kernel_sizes = [5, 9, 3, 3, 3]
self.dilates = [1, 2, 4, 5, 7]
elif kernel_size == 15:
self.kernel_sizes = [5, 7, 3, 3, 3]
self.dilates = [1, 2, 3, 5, 7]
elif kernel_size == 13:
self.kernel_sizes = [5, 7, 3, 3, 3]
self.dilates = [1, 2, 3, 4, 5]
elif kernel_size == 11:
self.kernel_sizes = [5, 5, 3, 3, 3]
self.dilates = [1, 2, 3, 4, 5]
elif kernel_size == 9:
self.kernel_sizes = [5, 5, 3, 3]
self.dilates = [1, 2, 3, 4]
elif kernel_size == 7:
self.kernel_sizes = [5, 3, 3]
self.dilates = [1, 2, 3]
elif kernel_size == 5:
self.kernel_sizes = [3, 3]
self.dilates = [1, 2]
else:
raise ValueError('Dilated Reparam Block requires kernel_size >= 5')
if not deploy:
self.origin_bn = get_bn(channels, use_sync_bn)
for k, r in zip(self.kernel_sizes, self.dilates):
self.__setattr__('dil_conv_k{}_{}'.format(k, r),
nn.Conv2d(in_channels=channels, out_channels=channels, kernel_size=k, stride=1,
padding=(r * (k - 1) + 1) // 2, dilation=r, groups=channels,
bias=False))
self.__setattr__('dil_bn_k{}_{}'.format(k, r), get_bn(channels, use_sync_bn=use_sync_bn))
def forward(self, x):
if not hasattr(self, 'origin_bn'): # deploy mode
return self.lk_origin(x)
out = self.origin_bn(self.lk_origin(x))
for k, r in zip(self.kernel_sizes, self.dilates):
conv = self.__getattr__('dil_conv_k{}_{}'.format(k, r))
bn = self.__getattr__('dil_bn_k{}_{}'.format(k, r))
out = out + bn(conv(x))
return out
def merge_dilated_branches(self):
if hasattr(self, 'origin_bn'):
origin_k, origin_b = fuse_bn(self.lk_origin, self.origin_bn)
for k, r in zip(self.kernel_sizes, self.dilates):
conv = self.__getattr__('dil_conv_k{}_{}'.format(k, r))
bn = self.__getattr__('dil_bn_k{}_{}'.format(k, r))
branch_k, branch_b = fuse_bn(conv, bn)
origin_k = merge_dilated_into_large_kernel(origin_k, branch_k, r)
origin_b += branch_b
merged_conv = get_conv2d(origin_k.size(0), origin_k.size(0), origin_k.size(2), stride=1,
padding=origin_k.size(2)//2, dilation=1, groups=origin_k.size(0), bias=True,
attempt_use_lk_impl=self.attempt_use_lk_impl)
merged_conv.weight.data = origin_k
merged_conv.bias.data = origin_b
self.lk_origin = merged_conv
self.__delattr__('origin_bn')
for k, r in zip(self.kernel_sizes, self.dilates):
self.__delattr__('dil_conv_k{}_{}'.format(k, r))
self.__delattr__('dil_bn_k{}_{}'.format(k, r))
class UniRepLKNetBlock(nn.Module):
def __init__(self,
dim,
kernel_size,
drop_path=0.,
layer_scale_init_value=1e-6,
deploy=False,
attempt_use_lk_impl=True,
with_cp=False,
use_sync_bn=False,
ffn_factor=4):
super().__init__()
self.with_cp = with_cp
if deploy:
print('------------------------------- Note: deploy mode')
if self.with_cp:
print('****** note with_cp = True, reduce memory consumption but may slow down training ******')
if kernel_size == 0:
self.dwconv = nn.Identity()
elif kernel_size >= 7:
self.dwconv = DilatedReparamBlock(dim, kernel_size, deploy=deploy,
use_sync_bn=use_sync_bn,
attempt_use_lk_impl=attempt_use_lk_impl)
else:
assert kernel_size in [3, 5]
self.dwconv = get_conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=kernel_size // 2,
dilation=1, groups=dim, bias=deploy,
attempt_use_lk_impl=attempt_use_lk_impl)
if deploy or kernel_size == 0:
self.norm = nn.Identity()
else:
self.norm = get_bn(dim, use_sync_bn=use_sync_bn)
self.se = SEBlock(dim, dim // 4)
ffn_dim = int(ffn_factor * dim)
self.pwconv1 = nn.Sequential(
NCHWtoNHWC(),
nn.Linear(dim, ffn_dim))
self.act = nn.Sequential(
nn.GELU(),
GRNwithNHWC(ffn_dim, use_bias=not deploy))
if deploy:
self.pwconv2 = nn.Sequential(
nn.Linear(ffn_dim, dim),
NHWCtoNCHW())
else:
self.pwconv2 = nn.Sequential(
nn.Linear(ffn_dim, dim, bias=False),
NHWCtoNCHW(),
get_bn(dim, use_sync_bn=use_sync_bn))
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(dim),
requires_grad=True) if (not deploy) and layer_scale_init_value is not None \
and layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def compute_residual(self, x):
y = self.se(self.norm(self.dwconv(x)))
y = self.pwconv2(self.act(self.pwconv1(y)))
if self.gamma is not None:
y = self.gamma.view(1, -1, 1, 1) * y
return self.drop_path(y)
def forward(self, inputs):
def _f(x):
return x + self.compute_residual(x)
if self.with_cp and inputs.requires_grad:
out = checkpoint.checkpoint(_f, inputs)
else:
out = _f(inputs)
return out
def reparameterize(self):
if hasattr(self.dwconv, 'merge_dilated_branches'):
self.dwconv.merge_dilated_branches()
if hasattr(self.norm, 'running_var'):
std = (self.norm.running_var + self.norm.eps).sqrt()
if hasattr(self.dwconv, 'lk_origin'):
self.dwconv.lk_origin.weight.data *= (self.norm.weight / std).view(-1, 1, 1, 1)
self.dwconv.lk_origin.bias.data = self.norm.bias + (
self.dwconv.lk_origin.bias - self.norm.running_mean) * self.norm.weight / std
else:
conv = nn.Conv2d(self.dwconv.in_channels, self.dwconv.out_channels, self.dwconv.kernel_size,
padding=self.dwconv.padding, groups=self.dwconv.groups, bias=True)
conv.weight.data = self.dwconv.weight * (self.norm.weight / std).view(-1, 1, 1, 1)
conv.bias.data = self.norm.bias - self.norm.running_mean * self.norm.weight / std
self.dwconv = conv
self.norm = nn.Identity()
if self.gamma is not None:
final_scale = self.gamma.data
self.gamma = None
else:
final_scale = 1
if self.act[1].use_bias and len(self.pwconv2) == 3:
grn_bias = self.act[1].beta.data
self.act[1].__delattr__('beta')
self.act[1].use_bias = False
linear = self.pwconv2[0]
grn_bias_projected_bias = (linear.weight.data @ grn_bias.view(-1, 1)).squeeze()
bn = self.pwconv2[2]
std = (bn.running_var + bn.eps).sqrt()
new_linear = nn.Linear(linear.in_features, linear.out_features, bias=True)
new_linear.weight.data = linear.weight * (bn.weight / std * final_scale).view(-1, 1)
linear_bias = 0 if linear.bias is None else linear.bias.data
linear_bias += grn_bias_projected_bias
new_linear.bias.data = (bn.bias + (linear_bias - bn.running_mean) * bn.weight / std) * final_scale
self.pwconv2 = nn.Sequential(new_linear, self.pwconv2[1])
default_UniRepLKNet_A_F_P_kernel_sizes = ((3, 3),
(13, 13),
(13, 13, 13, 13, 13, 13),
(13, 13))
default_UniRepLKNet_N_kernel_sizes = ((3, 3),
(13, 13),
(13, 13, 13, 13, 13, 13, 13, 13),
(13, 13))
default_UniRepLKNet_T_kernel_sizes = ((3, 3, 3),
(13, 13, 13),
(13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3),
(13, 13, 13))
default_UniRepLKNet_S_B_L_XL_kernel_sizes = ((3, 3, 3),
(13, 13, 13),
(13, 3, 3, 13, 3, 3, 13, 3, 3, 13, 3, 3, 13, 3, 3, 13, 3, 3, 13, 3, 3, 13, 3, 3, 13, 3, 3),
(13, 13, 13))
UniRepLKNet_A_F_P_depths = (2, 2, 6, 2)
UniRepLKNet_N_depths = (2, 2, 8, 2)
UniRepLKNet_T_depths = (3, 3, 18, 3)
UniRepLKNet_S_B_L_XL_depths = (3, 3, 27, 3)
default_depths_to_kernel_sizes = {
UniRepLKNet_A_F_P_depths: default_UniRepLKNet_A_F_P_kernel_sizes,
UniRepLKNet_N_depths: default_UniRepLKNet_N_kernel_sizes,
UniRepLKNet_T_depths: default_UniRepLKNet_T_kernel_sizes,
UniRepLKNet_S_B_L_XL_depths: default_UniRepLKNet_S_B_L_XL_kernel_sizes
}
class UniRepLKNet(nn.Module):
r""" UniRepLKNet
A PyTorch impl of UniRepLKNet
Args:
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
depths (tuple(int)): Number of blocks at each stage. Default: (3, 3, 27, 3)
dims (int): Feature dimension at each stage. Default: (96, 192, 384, 768)
drop_path_rate (float): Stochastic depth rate. Default: 0.
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
kernel_sizes (tuple(tuple(int))): Kernel size for each block. None means using the default settings. Default: None.
deploy (bool): deploy = True means using the inference structure. Default: False
with_cp (bool): with_cp = True means using torch.utils.checkpoint to save GPU memory. Default: False
init_cfg (dict): weights to load. The easiest way to use UniRepLKNet with for OpenMMLab family. Default: None
attempt_use_lk_impl (bool): try to load the efficient iGEMM large-kernel impl. Setting it to False disabling the iGEMM impl. Default: True
use_sync_bn (bool): use_sync_bn = True means using sync BN. Use it if your batch size is small. Default: False
"""
def __init__(self,
in_chans=3,
num_classes=1000,
depths=(3, 3, 27, 3),
dims=(96, 192, 384, 768),
drop_path_rate=0.,
layer_scale_init_value=1e-6,
head_init_scale=1.,
kernel_sizes=None,
deploy=False,
with_cp=False,
init_cfg=None,
attempt_use_lk_impl=True,
use_sync_bn=False,
**kwargs
):
super().__init__()
depths = tuple(depths)
if kernel_sizes is None:
if depths in default_depths_to_kernel_sizes:
print('=========== use default kernel size ')
kernel_sizes = default_depths_to_kernel_sizes[depths]
else:
raise ValueError('no default kernel size settings for the given depths, '
'please specify kernel sizes for each block, e.g., '
'((3, 3), (13, 13), (13, 13, 13, 13, 13, 13), (13, 13))')
print(kernel_sizes)
for i in range(4):
assert len(kernel_sizes[i]) == depths[i], 'kernel sizes do not match the depths'
self.with_cp = with_cp
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
print('=========== drop path rates: ', dp_rates)
self.downsample_layers = nn.ModuleList()
self.downsample_layers.append(nn.Sequential(
nn.Conv2d(in_chans, dims[0] // 2, kernel_size=3, stride=2, padding=1),
LayerNorm(dims[0] // 2, eps=1e-6, data_format="channels_first"),
nn.GELU(),
nn.Conv2d(dims[0] // 2, dims[0], kernel_size=3, stride=2, padding=1),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first")))
for i in range(3):
self.downsample_layers.append(nn.Sequential(
nn.Conv2d(dims[i], dims[i + 1], kernel_size=3, stride=2, padding=1),
LayerNorm(dims[i + 1], eps=1e-6, data_format="channels_first")))
self.stages = nn.ModuleList()
cur = 0
for i in range(4):
main_stage = nn.Sequential(
*[UniRepLKNetBlock(dim=dims[i], kernel_size=kernel_sizes[i][j], drop_path=dp_rates[cur + j],
layer_scale_init_value=layer_scale_init_value, deploy=deploy,
attempt_use_lk_impl=attempt_use_lk_impl,
with_cp=with_cp, use_sync_bn=use_sync_bn) for j in
range(depths[i])])
self.stages.append(main_stage)
cur += depths[i]
last_channels = dims[-1]
self.for_pretrain = init_cfg is None
self.for_downstream = not self.for_pretrain # there may be some other scenarios
if self.for_downstream:
assert num_classes is None
if self.for_pretrain:
self.init_cfg = None
self.norm = nn.LayerNorm(last_channels, eps=1e-6) # final norm layer
self.head = nn.Linear(last_channels, num_classes)
self.apply(self._init_weights)
self.head.weight.data.mul_(head_init_scale)
self.head.bias.data.mul_(head_init_scale)
self.output_mode = 'logits'
else:
self.init_cfg = init_cfg # OpenMMLab style init
self.init_weights()
self.output_mode = 'features'
norm_layer = partial(LayerNorm, eps=1e-6, data_format="channels_first")
for i_layer in range(4):
layer = norm_layer(dims[i_layer])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
# load pretrained backbone weights in the OpenMMLab style
def init_weights(self):
def load_state_dict(module, state_dict, strict=False, logger=None):
unexpected_keys = []
own_state = module.state_dict()
for name, param in state_dict.items():
if name not in own_state:
unexpected_keys.append(name)
continue
if isinstance(param, torch.nn.Parameter):
# backwards compatibility for serialized parameters
param = param.data
try:
own_state[name].copy_(param)
except Exception:
raise RuntimeError(
'While copying the parameter named {}, '
'whose dimensions in the model are {} and '
'whose dimensions in the checkpoint are {}.'.format(
name, own_state[name].size(), param.size()))
missing_keys = set(own_state.keys()) - set(state_dict.keys())
err_msg = []
if unexpected_keys:
err_msg.append('unexpected key in source state_dict: {}\n'.format(', '.join(unexpected_keys)))
if missing_keys:
err_msg.append('missing keys in source state_dict: {}\n'.format(', '.join(missing_keys)))
err_msg = '\n'.join(err_msg)
if err_msg:
if strict:
raise RuntimeError(err_msg)
elif logger is not None:
logger.warn(err_msg)
else:
print(err_msg)
logger = get_root_logger()
assert self.init_cfg is not None
ckpt_path = self.init_cfg['checkpoint']
if ckpt_path is None:
print('================ Note: init_cfg is provided but I got no init ckpt path, so skip initialization')
else:
ckpt = _load_checkpoint(ckpt_path, logger=logger, map_location='cpu')
if 'state_dict' in ckpt:
_state_dict = ckpt['state_dict']
elif 'model' in ckpt:
_state_dict = ckpt['model']
else:
_state_dict = ckpt
load_state_dict(self, _state_dict, strict=False, logger=logger)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
if self.output_mode == 'logits':
for stage_idx in range(4):
x = self.downsample_layers[stage_idx](x)
x = self.stages[stage_idx](x)
x = self.norm(x.mean([-2, -1]))
x = self.head(x)
return x
elif self.output_mode == 'features':
outs = []
for stage_idx in range(4):
x = self.downsample_layers[stage_idx](x)
x = self.stages[stage_idx](x)
outs.append(self.__getattr__(f'norm{stage_idx}')(x))
return outs
else:
raise ValueError('Defined new output mode?')
def reparameterize_unireplknet(self):
for m in self.modules():
if hasattr(m, 'reparameterize'):
m.reparameterize()
class LayerNorm(nn.Module):
r""" LayerNorm implementation used in ConvNeXt
LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last", reshape_last_to_first=False):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape,)
self.reshape_last_to_first = reshape_last_to_first
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
# For easy use as backbone in MMDetection framework. Ignore these lines if you do not use MMDetection
if has_mmdet:
@det_BACKBONES.register_module()
class UniRepLKNetBackbone(UniRepLKNet):
def __init__(self,
depths=(3, 3, 27, 3),
dims=(96, 192, 384, 768),
drop_path_rate=0.,
layer_scale_init_value=1e-6,
kernel_sizes=None,
deploy=False,
with_cp=False,
init_cfg=None,
attempt_use_lk_impl=False):
assert init_cfg is not None
super().__init__(in_chans=3, num_classes=None, depths=depths, dims=dims,
drop_path_rate=drop_path_rate, layer_scale_init_value=layer_scale_init_value,
kernel_sizes=kernel_sizes, deploy=deploy, with_cp=with_cp,
init_cfg=init_cfg, attempt_use_lk_impl=attempt_use_lk_impl, use_sync_bn=True)
# For easy use as backbone in MMSegmentation framework. Ignore these lines if you do not use MMSegmentation
if has_mmseg:
@seg_BACKBONES.register_module()
class UniRepLKNetBackbone(UniRepLKNet):
def __init__(self,
depths=(3, 3, 27, 3),
dims=(96, 192, 384, 768),
drop_path_rate=0.,
layer_scale_init_value=1e-6,
kernel_sizes=None,
deploy=False,
with_cp=False,
init_cfg=None,
attempt_use_lk_impl=False):
assert init_cfg is not None
super().__init__(in_chans=3, num_classes=None, depths=depths, dims=dims,
drop_path_rate=drop_path_rate, layer_scale_init_value=layer_scale_init_value,
kernel_sizes=kernel_sizes, deploy=deploy, with_cp=with_cp,
init_cfg=init_cfg, attempt_use_lk_impl=attempt_use_lk_impl, use_sync_bn=True)
model_urls = {
#TODO: it seems that google drive does not support direct downloading with url? so where to upload the checkpoints other than huggingface? any suggestions?
}
huggingface_file_names = {
"unireplknet_a_1k": "unireplknet_a_in1k_224_acc77.03.pth",
"unireplknet_f_1k": "unireplknet_f_in1k_224_acc78.58.pth",
"unireplknet_p_1k": "unireplknet_p_in1k_224_acc80.23.pth",
"unireplknet_n_1k": "unireplknet_n_in1k_224_acc81.64.pth",
"unireplknet_t_1k": "unireplknet_t_in1k_224_acc83.21.pth",
"unireplknet_s_1k": "unireplknet_s_in1k_224_acc83.91.pth",
"unireplknet_s_22k": "unireplknet_s_in22k_pretrain.pth",
"unireplknet_s_22k_to_1k": "unireplknet_s_in22k_to_in1k_384_acc86.44.pth",
"unireplknet_b_22k": "unireplknet_b_in22k_pretrain.pth",
"unireplknet_b_22k_to_1k": "unireplknet_b_in22k_to_in1k_384_acc87.40.pth",
"unireplknet_l_22k": "unireplknet_l_in22k_pretrain.pth",
"unireplknet_l_22k_to_1k": "unireplknet_l_in22k_to_in1k_384_acc87.88.pth",
"unireplknet_xl_22k": "unireplknet_xl_in22k_pretrain.pth",
"unireplknet_xl_22k_to_1k": "unireplknet_xl_in22k_to_in1k_384_acc87.96.pth"
}
def load_with_key(model, key):
# if huggingface hub is found, download from our huggingface repo
if hf_hub_download is not None:
repo_id = 'DingXiaoH/UniRepLKNet'
cache_file = hf_hub_download(repo_id=repo_id, filename=huggingface_file_names[key])
checkpoint = torch.load(cache_file, map_location='cpu')
else:
checkpoint = torch.hub.load_state_dict_from_url(url=model_urls[key], map_location="cpu", check_hash=True)
if 'model' in checkpoint:
checkpoint = checkpoint['model']
model.load_state_dict(checkpoint)
def initialize_with_pretrained(model, model_name, in_1k_pretrained, in_22k_pretrained, in_22k_to_1k):
if in_1k_pretrained:
key = model_name + '_1k'
elif in_22k_pretrained:
key = model_name + '_22k'
elif in_22k_to_1k:
key = model_name + '_22k_to_1k'
else:
key = None
if key:
load_with_key(model, key)
@register_model
def unireplknet_a(in_1k_pretrained=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_A_F_P_depths, dims=(40, 80, 160, 320), **kwargs)
initialize_with_pretrained(model, 'unireplknet_a', in_1k_pretrained, False, False)
return model
@register_model
def unireplknet_f(in_1k_pretrained=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_A_F_P_depths, dims=(48, 96, 192, 384), **kwargs)
initialize_with_pretrained(model, 'unireplknet_f', in_1k_pretrained, False, False)
return model
@register_model
def unireplknet_p(in_1k_pretrained=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_A_F_P_depths, dims=(64, 128, 256, 512), **kwargs)
initialize_with_pretrained(model, 'unireplknet_p', in_1k_pretrained, False, False)
return model
@register_model
def unireplknet_n(in_1k_pretrained=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_N_depths, dims=(80, 160, 320, 640), **kwargs)
initialize_with_pretrained(model, 'unireplknet_n', in_1k_pretrained, False, False)
return model
@register_model
def unireplknet_t(in_1k_pretrained=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_T_depths, dims=(80, 160, 320, 640), **kwargs)
initialize_with_pretrained(model, 'unireplknet_t', in_1k_pretrained, False, False)
return model
@register_model
def unireplknet_s(in_1k_pretrained=False, in_22k_pretrained=False, in_22k_to_1k=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_S_B_L_XL_depths, dims=(96, 192, 384, 768), **kwargs)
initialize_with_pretrained(model, 'unireplknet_s', in_1k_pretrained, in_22k_pretrained, in_22k_to_1k)
return model
@register_model
def unireplknet_b(in_22k_pretrained=False, in_22k_to_1k=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_S_B_L_XL_depths, dims=(128, 256, 512, 1024), **kwargs)
initialize_with_pretrained(model, 'unireplknet_b', False, in_22k_pretrained, in_22k_to_1k)
return model
@register_model
def unireplknet_l(in_22k_pretrained=False, in_22k_to_1k=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_S_B_L_XL_depths, dims=(192, 384, 768, 1536), **kwargs)
initialize_with_pretrained(model, 'unireplknet_l', False, in_22k_pretrained, in_22k_to_1k)
return model
@register_model
def unireplknet_xl(in_22k_pretrained=False, in_22k_to_1k=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_S_B_L_XL_depths, dims=(256, 512, 1024, 2048), **kwargs)
initialize_with_pretrained(model, 'unireplknet_xl', False, in_22k_pretrained, in_22k_to_1k)
return model
if __name__ == '__main__':
# Test case showing the equivalency of Structural Re-parameterization
x = torch.randn(2, 4, 19, 19)
layer = UniRepLKNetBlock(4, kernel_size=13, attempt_use_lk_impl=False)
for n, p in layer.named_parameters():
if 'beta' in n:
torch.nn.init.ones_(p)
else:
torch.nn.init.normal_(p)
for n, p in layer.named_buffers():
if 'running_var' in n:
print('random init var')
torch.nn.init.uniform_(p)
p.data += 2
elif 'running_mean' in n:
print('random init mean')
torch.nn.init.uniform_(p)
layer.gamma.data += 0.5
layer.eval()
origin_y = layer(x)
layer.reparameterize()
eq_y = layer(x)
print(layer)
print(eq_y - origin_y)
print((eq_y - origin_y).abs().sum() / origin_y.abs().sum())