forked from mit-han-lab/spvnas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_zoo.py
124 lines (103 loc) · 4.57 KB
/
model_zoo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import json
import os
import sys
from urllib.request import urlretrieve
import torch
from torchpack import distributed as dist
from core.models.semantic_kitti.minkunet import MinkUNet
from core.models.semantic_kitti.spvcnn import SPVCNN
from core.models.semantic_kitti.spvnas import SPVNAS
__all__ = ['spvnas_specialized', 'minkunet', 'spvcnn']
def download_url(url, model_dir='~/.torch/', overwrite=False):
target_dir = url.split('/')[-1]
model_dir = os.path.expanduser(model_dir)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
model_dir = os.path.join(model_dir, target_dir)
cached_file = model_dir
if not os.path.exists(cached_file) or overwrite:
sys.stderr.write(f'Downloading: "{url}" to {cached_file}\n')
urlretrieve(url, cached_file)
return cached_file
def spvnas_specialized(net_id, pretrained=True, **kwargs):
url_base = 'https://hanlab.mit.edu/files/SPVNAS/spvnas_specialized/'
net_config = json.load(
open(
download_url(url_base + net_id + '/net.config',
model_dir='.torch/spvnas_specialized/%s/' % net_id)))
model = SPVNAS(
net_config['num_classes'],
macro_depth_constraint=1,
pres=net_config['pres'],
vres=net_config['vres']).to(
'cuda:%d'
% dist.local_rank() if torch.cuda.is_available() else 'cpu')
model.manual_select(net_config)
model = model.determinize()
if pretrained:
init = torch.load(download_url(url_base + net_id + '/init',
model_dir='.torch/spvnas_specialized/%s/'
% net_id),
map_location='cuda:%d' % dist.local_rank()
if torch.cuda.is_available() else 'cpu')['model']
model.load_state_dict(init)
return model
def spvnas_supernet(net_id, pretrained=True, **kwargs):
url_base = 'https://hanlab.mit.edu/files/SPVNAS/spvnas_supernet/'
net_config = json.load(
open(
download_url(url_base + net_id + '/net.config',
model_dir='.torch/spvnas_supernet/%s/' % net_id)))
model = SPVNAS(
net_config['num_classes'],
macro_depth_constraint=net_config['macro_depth_constraint'],
pres=net_config['pres'],
vres=net_config['vres']).to(
'cuda:%d'
% dist.local_rank() if torch.cuda.is_available() else 'cpu')
if pretrained:
init = torch.load(download_url(url_base + net_id + '/init',
model_dir='.torch/spvnas_supernet/%s/'
% net_id),
map_location='cuda:%d' % dist.local_rank()
if torch.cuda.is_available() else 'cpu')['model']
model.load_state_dict(init)
return model
def minkunet(net_id, pretrained=True, **kwargs):
url_base = 'https://hanlab.mit.edu/files/SPVNAS/minkunet/'
net_config = json.load(
open(
download_url(url_base + net_id + '/net.config',
model_dir='.torch/minkunet/%s/' % net_id)))
model = MinkUNet(
num_classes=net_config['num_classes'], cr=net_config['cr']).to(
'cuda:%d'
% dist.local_rank() if torch.cuda.is_available() else 'cpu')
if pretrained:
init = torch.load(download_url(url_base + net_id + '/init',
model_dir='.torch/minkunet/%s/'
% net_id),
map_location='cuda:%d' % dist.local_rank()
if torch.cuda.is_available() else 'cpu')['model']
model.load_state_dict(init)
return model
def spvcnn(net_id, pretrained=True, **kwargs):
url_base = 'https://hanlab.mit.edu/files/SPVNAS/spvcnn/'
net_config = json.load(
open(
download_url(url_base + net_id + '/net.config',
model_dir='.torch/spvcnn/%s/' % net_id)))
model = SPVCNN(
num_classes=net_config['num_classes'],
cr=net_config['cr'],
pres=net_config['pres'],
vres=net_config['vres']).to(
'cuda:%d'
% dist.local_rank() if torch.cuda.is_available() else 'cpu')
if pretrained:
init = torch.load(download_url(url_base + net_id + '/init',
model_dir='.torch/spvcnn/%s/' % net_id),
map_location='cuda:%d' % dist.local_rank()
if torch.cuda.is_available() else 'cpu')['model']
model.load_state_dict(init)
return model