This repository has been archived by the owner on Oct 6, 2022. It is now read-only.
forked from sebastianstarke/DeepIK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeepik.py
205 lines (177 loc) · 5.92 KB
/
deepik.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
import keras.optimizers as Optimizers
import numpy as np
from random import randint
from sys import argv
import h5py
def print_prediction(prediction):
for i in range(0, len(prediction)):
output = 'Prediction ' + str(i+1) + ': '
for j in range(0, len(prediction[i])):
output += str(prediction[i][j]) + ' '
print(output)
def normalize(value, valueMin, valueMax, resultMin, resultMax):
if valueMax-valueMin == 0:
return 0
else:
return (value-valueMin)/(valueMax-valueMin)*(resultMax-resultMin) + resultMin
def getBounds(arr, dim):
bounds = np.zeros((dim, 2))
for i in range(0, dim):
bounds[i][0] = min(min(x[i:]) for x in arr)
bounds[i][1] = max(max(x[i:]) for x in arr)
return bounds
def normalizeDataWithoutBounds(data, dim, min, max):
data_ = np.copy(data)
bounds = getBounds(data_, dim)
for i in range(0, len(data_)):
for j in range(0, dim):
data_[i][j] = normalize(data_[i][j], bounds[j][0], bounds[j][1], min, max)
return data_
def normalizeDataWithBounds(data, dim, bounds, min, max):
data_ = np.copy(data)
for i in range(0, len(data_)):
for j in range(0, dim):
data_[i][j] = normalize(data_[i][j], bounds[j][0], bounds[j][1], min, max)
return data_
def renormalizeData(data, dim, bounds):
data_ = np.copy(data)
for i in range(0, len(data_)):
for j in range(0, dim):
data_[i][j] = normalize(data_[i][j], -1, 1, bounds[j][0], bounds[j][1])
return data_
def query(count, x, y):
samples = len(x)
for i in range (0, count):
print('---TEST #' + str(i+1) + '---')
index = randint(0, samples)
print('Sample: ' + str(index))
print('Query: ' + str(x[index]))
print('True: ' + str(y[index]))
prediction = model.predict(np.array([x[index]]))[0]
print('Prediction: ' + str(prediction))
def print_structure(weight_file_path):
"""
Prints out the structure of HDF5 file.
Args:
weight_file_path (str) : Path to the file to analyze
"""
f = h5py.File(weight_file_path)
try:
if len(f.attrs.items()):
print("{} contains: ".format(weight_file_path))
print("Root attributes:")
for key, value in f.attrs.items():
print(" {}: {}".format(key, value))
if len(f.items())==0:
return
for layer, g in f.items():
print(" {}".format(layer))
print(" Attributes:")
for key, value in g.attrs.items():
print(" {}: {}".format(key, value))
print(" Dataset:")
for p_name in g.keys():
param = g[p_name]
print(" {}: {}".format(p_name, param.shape))
finally:
f.close()
# Create training data
#data = np.loadtxt('/media/sebastian/7aed0e14-7811-4a26-99bd-11184b14102a/Development/Theano/pa10_1K.csv') # 1000 random IK training
#data = np.loadtxt('pa10_10K.csv') # 10000 random IK training
#dataTrain = np.loadtxt('pa10_1K.csv')
#dataTest = np.loadtxt('pa10_500.csv')
dataTrain = np.loadtxt('pa10_config000_50k.csv')
dataTest = np.loadtxt('pa10_config000_10k.csv')
trainSamples = 1000
testSamples = 500
dimX = 7
dimY = 6
bounds = np.array([
[-170.0, 170.0],
[-60.0, 120.0],
[-100.0, 150.0],
[-150.0, 150.0],
[-95.0, 95.0],
[-150.0, 150.0],
])
bounds *= 3.141592653589793 / 180.0
X = np.zeros((trainSamples,dimX))
Y = np.zeros((trainSamples,dimY))
for i in range(0, trainSamples):
X[i][0] = dataTrain[i][7]
X[i][1] = dataTrain[i][8]
X[i][2] = dataTrain[i][9]
X[i][3] = dataTrain[i][10]
X[i][4] = dataTrain[i][11]
X[i][5] = dataTrain[i][12]
X[i][6] = dataTrain[i][13]
Y[i][0] = dataTrain[i][1]
Y[i][1] = dataTrain[i][2]
Y[i][2] = dataTrain[i][3]
Y[i][3] = dataTrain[i][4]
Y[i][4] = dataTrain[i][5]
Y[i][5] = dataTrain[i][6]
#X = normalizeDataWithoutBounds(X, dimX, -1, 1)
Y = normalizeDataWithBounds(Y, dimY, bounds, -1, 1)
Xtest = np.zeros((testSamples,dimX))
Ytest = np.zeros((testSamples,dimY))
for i in range(0, testSamples):
Xtest[i][0] = dataTest[i][7]
Xtest[i][1] = dataTest[i][8]
Xtest[i][2] = dataTest[i][9]
Xtest[i][3] = dataTest[i][10]
Xtest[i][4] = dataTest[i][11]
Xtest[i][5] = dataTest[i][12]
Xtest[i][6] = dataTest[i][13]
Ytest[i][0] = dataTest[i][1]
Ytest[i][1] = dataTest[i][2]
Ytest[i][2] = dataTest[i][3]
Ytest[i][3] = dataTest[i][4]
Ytest[i][4] = dataTest[i][5]
Ytest[i][5] = dataTest[i][6]
Ytest = normalizeDataWithBounds(Ytest, dimY, bounds, -1, 1)
# Define network
model = Sequential()
model.add(Dense(dimX, use_bias=False))
model.add(Activation('tanh'))
model.add(Dropout(0.05))
model.add(Dense(150, use_bias=False))
model.add(Activation('tanh'))
model.add(Dropout(0.05))
model.add(Dense(75, use_bias=False))
model.add(Activation('tanh'))
model.add(Dropout(0.05))
model.add(Dense(50, use_bias=False))
model.add(Activation('tanh'))
model.add(Dropout(0.05))
model.add(Dense(25, use_bias=False))
model.add(Activation('tanh'))
model.add(Dropout(0.05))
model.add(Dense(10, use_bias=False))
model.add(Activation('tanh'))
model.add(Dropout(0.05))
model.add(Dense(dimY, use_bias=False))
model.add(Activation('tanh'))
# Generate network
opt = Optimizers.RMSprop(learning_rate=0.001, rho=0.9, epsilon=1e-06, decay=0.0)
model.compile(optimizer=opt, loss='mse')
# Train network
epoch = 0
error = 2
# while error > 0.001:
while epoch < 1000:
epoch += 1
error = model.train_on_batch(X, Y)
print('==========')
print('Epoch: ' + str(epoch) + ' Training Error: ' + str(error))
print('==========')
query(10, X, Y)
#model.save_weights("network")
#print_structure("network")
#weights = model.get_weights()[0]
#print(weights)
#file = open("network", 'w')
#file.write("HELLO WORLD")
#file.close()