-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
135 lines (125 loc) · 6.72 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
from functools import partial
import numpy as np
import torch
import torchvision
from PIL import Image
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader, Subset, distributed
from tinyimagenet import TrainTinyImageNetDataset, TestTinyImageNetDataset, CorruptTinyImageNetDataset
VALID_SPLIT_SEED=88
NORM_STAT = {
'cifar10': ((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616)),
'cifar100': ((0.5071, 0.4865, 0.4409), (0.2673, 0.2564, 0.2762)),
'vgg_cifar10': ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
'vgg_cifar100': ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
'svhn': ((0.4377, 0.4438, 0.4728), (0.1980, 0.2010, 0.1970)),
'tinyimagenet': ((122.4786, 114.2755, 101.3963), (70.4924, 68.5679, 71.8127))
}
NUM_CLASSES = {
'cifar10': 10, 'cifar100': 100, 'tinyimagenet': 200
}
def get_data_loader(dataset, norm_stat=None, train_bs=64, test_bs=64, validation=False, validation_fraction=0.1, root_dir='data/', test_only=False, train_only=False, augment=True,
num_train_workers=2, num_test_workers=2, shuffle_train=True, drop_last_train=True):
if dataset in ('cifar10', 'cifar100', 'svhn'):
data_cls = getattr(torchvision.datasets, dataset.upper())
if dataset in ('vgg_cifar10', 'vgg_cifar100'):
data_cls = getattr(torchvision.datasets, dataset[4:].upper())
if dataset in ('cifar10', 'cifar100', 'vgg_cifar10', 'vgg_cifar100') :
train_data_cls = partial(data_cls, train=True, root=root_dir, download=True)
test_data_cls = partial(data_cls, train=False, root=root_dir, download=True)
augment_transform = [
torchvision.transforms.RandomCrop(32, padding=4),
torchvision.transforms.RandomHorizontalFlip()
] if augment else []
if dataset == 'svhn':
train_data_cls = partial(data_cls, split='train', root=root_dir, download=True)
test_data_cls = partial(data_cls, split='test', root=root_dir, download=True)
if dataset == 'tinyimagenet':
train_data_cls = TrainTinyImageNetDataset
test_data_cls = TestTinyImageNetDataset
augment_transform = [
torchvision.transforms.RandomCrop(64, padding=4),
torchvision.transforms.RandomHorizontalFlip()
] if augment else []
transform = torchvision.transforms.Compose([
*([torchvision.transforms.ToTensor()] if dataset in ('cifar10', 'cifar100', 'svhn', 'vgg_cifar10', 'vgg_cifar100') else []),
torchvision.transforms.Normalize(*(NORM_STAT[dataset] if norm_stat is None else norm_stat))
])
train_data = train_data_cls(
transform=torchvision.transforms.Compose([
*augment_transform,
transform
]))
if train_only:
train_loader = DataLoader(train_data, batch_size=train_bs, pin_memory=True, shuffle=shuffle_train, drop_last=drop_last_train, num_workers=num_train_workers)
return train_loader
test_data = test_data_cls(transform=transform)
test_loader = DataLoader(test_data, batch_size=test_bs, pin_memory=True, shuffle=False, num_workers=num_test_workers)
if test_only:
return test_loader
if validation:
valid_data = train_data_cls(transform=transform)
train_idx, valid_idx = train_test_split(np.arange(len(train_data.targets)),
test_size=validation_fraction,
shuffle=True, random_state=VALID_SPLIT_SEED,
stratify=train_data.targets)
train_loader = DataLoader(Subset(train_data, train_idx), batch_size=train_bs, pin_memory=True, shuffle=shuffle_train, drop_last=drop_last_train, num_workers=num_train_workers)
valid_loader = DataLoader(Subset(valid_data, valid_idx), batch_size=test_bs, pin_memory=True, shuffle=False, drop_last=False, num_workers=num_test_workers)
return train_loader, valid_loader, test_loader
else:
train_loader = DataLoader(train_data, batch_size=train_bs, pin_memory=True, shuffle=shuffle_train, drop_last=drop_last_train, num_workers=num_train_workers)
return train_loader, test_loader
class CorruptDataset(torch.utils.data.Dataset):
def __init__(self, root, corrupt_types, intensity, transform=None):
self.data = np.concatenate(
[np.load(os.path.join(root, f'{corrupt_type}.npy'))[intensity*10000:(intensity+1)*10000] for corrupt_type in corrupt_types], axis=0
)
self.label = np.concatenate(
[np.load(os.path.join(root, 'labels.npy'))[intensity*10000:(intensity+1)*10000]] * len(corrupt_types), axis=0
)
self.transform = transform
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
sample, label = self.data[idx], int(self.label[idx])
sample = Image.fromarray(sample)
if self.transform:
sample = self.transform(sample)
return sample, label
def get_corrupt_data_loader(dataset, intensity, batch_size=64, root_dir='data/', num_workers=4, norm_stat=None):
corrupt_type = ['saturate',
'shot_noise',
'gaussian_noise',
'zoom_blur',
'glass_blur',
'brightness',
'contrast',
'motion_blur',
'pixelate',
'snow',
'speckle_noise',
'spatter',
'gaussian_blur',
'frost',
'defocus_blur',
'elastic_transform',
'impulse_noise',
'jpeg_compression',
'fog']
transform = torchvision.transforms.Compose([
*([torchvision.transforms.ToTensor()] if dataset in ('cifar10', 'cifar100') else []),
torchvision.transforms.Normalize(*(NORM_STAT[dataset] if norm_stat is None else norm_stat))
])
if dataset == 'cifar10':
test_data = CorruptDataset(os.path.join(root_dir, 'CIFAR-10-C'), corrupt_type, intensity, transform)
test_loader = DataLoader(test_data, batch_size=batch_size, pin_memory=True, shuffle=False, num_workers=num_workers)
return test_loader
if dataset == 'cifar100':
test_data = CorruptDataset(os.path.join(root_dir, 'CIFAR-100-C'), corrupt_type, intensity, transform)
test_loader = DataLoader(test_data, batch_size=batch_size, pin_memory=True, shuffle=False, num_workers=num_workers)
return test_loader
if dataset == 'tinyimagenet':
test_data = CorruptTinyImageNetDataset(intensity+1, transform)
test_loader = DataLoader(test_data, batch_size=batch_size, pin_memory=True, shuffle=False, num_workers=num_workers)
return test_loader