-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
48 lines (40 loc) · 1.3 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from keras.models import load_model
from keras import optimizers
from keras_gradient_noise import add_gradient_noise
noisy = add_gradient_noise(optimizers.RMSprop)
from sklearn.preprocessing import OneHotEncoder
from config import window_size, feature_len
import numpy as np
m = load_model("model", custom_objects={"NoisyRMSprop": noisy})
number_of_notes = 50
rand = np.random.randint(0,feature_len,size=[window_size])
ohe = OneHotEncoder(n_values=feature_len,sparse=False)
music = []
music.extend(list(rand))
for i in range(number_of_notes):
a = np.array(music[i:i+window_size]).reshape([-1,1])
rand = ohe.fit_transform(a)
pred = m.predict(rand.reshape([1,window_size,feature_len]))
music.append(np.argmax(pred))
music = music[window_size:]
with open("classes.txt","r") as f:
classes = f.readlines()
# one hot decode yap
# sonra label decode yap
# karsilik gelen note ve chordlardan stream olustur
# stream'i midi dosyasina yaz
# kaydet
labels = []
for idx in music:
labels.append(classes[idx])
from music21 import stream, note, chord
s = stream.Stream()
for label in labels:
if "Note" in label:
print label
s.append(note.Note(label.split()[1][:-1]))
else:
temp = label[:-2].split()[1:]
print temp
s.append(chord.Chord(temp))
s.write("mid","results")