forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
executable file
·387 lines (329 loc) · 13.9 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#! /usr/bin/env python
#
# Copyright (C) 2007-2009 Cournapeau David <[email protected]>
# 2010 Fabian Pedregosa <[email protected]>
# License: 3-clause BSD
import sys
import os
import platform
import shutil
# We need to import setuptools before because it monkey-patches distutils
import setuptools # noqa
from distutils.command.clean import clean as Clean
from distutils.command.sdist import sdist
import traceback
import importlib
try:
import builtins
except ImportError:
# Python 2 compat: just to be able to declare that Python >=3.8 is needed.
import __builtin__ as builtins
# This is a bit (!) hackish: we are setting a global variable so that the
# main sklearn __init__ can detect if it is being loaded by the setup
# routine, to avoid attempting to load components that aren't built yet:
# the numpy distutils extensions that are used by scikit-learn to
# recursively build the compiled extensions in sub-packages is based on the
# Python import machinery.
builtins.__SKLEARN_SETUP__ = True
DISTNAME = "scikit-learn"
DESCRIPTION = "A set of python modules for machine learning and data mining"
with open("README.rst") as f:
LONG_DESCRIPTION = f.read()
MAINTAINER = "Andreas Mueller"
MAINTAINER_EMAIL = "[email protected]"
URL = "http://scikit-learn.org"
DOWNLOAD_URL = "https://pypi.org/project/scikit-learn/#files"
LICENSE = "new BSD"
PROJECT_URLS = {
"Bug Tracker": "https://github.com/scikit-learn/scikit-learn/issues",
"Documentation": "https://scikit-learn.org/stable/documentation.html",
"Source Code": "https://github.com/scikit-learn/scikit-learn",
}
# We can actually import a restricted version of sklearn that
# does not need the compiled code
import sklearn # noqa
import sklearn._min_dependencies as min_deps # noqa
from sklearn.externals._packaging.version import parse as parse_version # noqa
VERSION = sklearn.__version__
# See: https://numpy.org/doc/stable/reference/c-api/deprecations.html
DEFINE_MACRO_NUMPY_C_API = (
"NPY_NO_DEPRECATED_API",
"NPY_1_7_API_VERSION",
)
# XXX: add new extensions to this list when they
# are not using the old NumPy C API (i.e. version 1.7)
# TODO: when Cython>=3.0 is used, make sure all Cython extensions
# use the newest NumPy C API by `#defining` `NPY_NO_DEPRECATED_API` to be
# `NPY_1_7_API_VERSION`, and remove this list.
# See: https://github.com/cython/cython/blob/1777f13461f971d064bd1644b02d92b350e6e7d1/docs/src/userguide/migrating_to_cy30.rst#numpy-c-api # noqa
USE_NEWEST_NUMPY_C_API = (
"sklearn.__check_build._check_build",
"sklearn._loss._loss",
"sklearn.cluster._k_means_common",
"sklearn.cluster._k_means_lloyd",
"sklearn.cluster._k_means_elkan",
"sklearn.cluster._k_means_minibatch",
"sklearn.datasets._svmlight_format_fast",
"sklearn.decomposition._cdnmf_fast",
"sklearn.ensemble._hist_gradient_boosting._gradient_boosting",
"sklearn.ensemble._hist_gradient_boosting.histogram",
"sklearn.ensemble._hist_gradient_boosting.splitting",
"sklearn.ensemble._hist_gradient_boosting._binning",
"sklearn.ensemble._hist_gradient_boosting._predictor",
"sklearn.ensemble._hist_gradient_boosting._bitset",
"sklearn.ensemble._hist_gradient_boosting.common",
"sklearn.ensemble._hist_gradient_boosting.utils",
"sklearn.feature_extraction._hashing_fast",
"sklearn.manifold._barnes_hut_tsne",
"sklearn.metrics.cluster._expected_mutual_info_fast",
"sklearn.metrics._pairwise_distances_reduction._datasets_pair",
"sklearn.metrics._pairwise_distances_reduction._gemm_term_computer",
"sklearn.metrics._pairwise_distances_reduction._base",
"sklearn.metrics._pairwise_distances_reduction._argkmin",
"sklearn.metrics._pairwise_distances_reduction._radius_neighbors",
"sklearn.metrics._pairwise_fast",
"sklearn.neighbors._partition_nodes",
"sklearn.tree._splitter",
"sklearn.tree._utils",
"sklearn.utils._cython_blas",
"sklearn.utils._fast_dict",
"sklearn.utils._openmp_helpers",
"sklearn.utils._weight_vector",
"sklearn.utils._random",
"sklearn.utils._logistic_sigmoid",
"sklearn.utils._readonly_array_wrapper",
"sklearn.utils._typedefs",
"sklearn.utils._heap",
"sklearn.utils._sorting",
"sklearn.utils._vector_sentinel",
"sklearn.utils._isfinite",
"sklearn.svm._newrand",
"sklearn._isotonic",
)
# For some commands, use setuptools
SETUPTOOLS_COMMANDS = {
"develop",
"release",
"bdist_egg",
"bdist_rpm",
"bdist_wininst",
"install_egg_info",
"build_sphinx",
"egg_info",
"easy_install",
"upload",
"bdist_wheel",
"--single-version-externally-managed",
}
if SETUPTOOLS_COMMANDS.intersection(sys.argv):
extra_setuptools_args = dict(
zip_safe=False, # the package can run out of an .egg file
include_package_data=True,
extras_require={
key: min_deps.tag_to_packages[key]
for key in ["examples", "docs", "tests", "benchmark"]
},
)
else:
extra_setuptools_args = dict()
# Custom clean command to remove build artifacts
class CleanCommand(Clean):
description = "Remove build artifacts from the source tree"
def run(self):
Clean.run(self)
# Remove c files if we are not within a sdist package
cwd = os.path.abspath(os.path.dirname(__file__))
remove_c_files = not os.path.exists(os.path.join(cwd, "PKG-INFO"))
if remove_c_files:
print("Will remove generated .c files")
if os.path.exists("build"):
shutil.rmtree("build")
for dirpath, dirnames, filenames in os.walk("sklearn"):
for filename in filenames:
if any(
filename.endswith(suffix)
for suffix in (".so", ".pyd", ".dll", ".pyc")
):
os.unlink(os.path.join(dirpath, filename))
continue
extension = os.path.splitext(filename)[1]
if remove_c_files and extension in [".c", ".cpp"]:
pyx_file = str.replace(filename, extension, ".pyx")
if os.path.exists(os.path.join(dirpath, pyx_file)):
os.unlink(os.path.join(dirpath, filename))
for dirname in dirnames:
if dirname == "__pycache__":
shutil.rmtree(os.path.join(dirpath, dirname))
cmdclass = {"clean": CleanCommand, "sdist": sdist}
# Custom build_ext command to set OpenMP compile flags depending on os and
# compiler. Also makes it possible to set the parallelism level via
# and environment variable (useful for the wheel building CI).
# build_ext has to be imported after setuptools
try:
from numpy.distutils.command.build_ext import build_ext # noqa
class build_ext_subclass(build_ext):
def finalize_options(self):
super().finalize_options()
if self.parallel is None:
# Do not override self.parallel if already defined by
# command-line flag (--parallel or -j)
parallel = os.environ.get("SKLEARN_BUILD_PARALLEL")
if parallel:
self.parallel = int(parallel)
if self.parallel:
print("setting parallel=%d " % self.parallel)
def build_extensions(self):
from sklearn._build_utils.openmp_helpers import get_openmp_flag
for ext in self.extensions:
if ext.name in USE_NEWEST_NUMPY_C_API:
print(f"Using newest NumPy C API for extension {ext.name}")
ext.define_macros.append(DEFINE_MACRO_NUMPY_C_API)
else:
print(
f"Using old NumPy C API (version 1.7) for extension {ext.name}"
)
if sklearn._OPENMP_SUPPORTED:
openmp_flag = get_openmp_flag(self.compiler)
for e in self.extensions:
e.extra_compile_args += openmp_flag
e.extra_link_args += openmp_flag
build_ext.build_extensions(self)
cmdclass["build_ext"] = build_ext_subclass
except ImportError:
# Numpy should not be a dependency just to be able to introspect
# that python 3.8 is required.
pass
def configuration(parent_package="", top_path=None):
if os.path.exists("MANIFEST"):
os.remove("MANIFEST")
from numpy.distutils.misc_util import Configuration
from sklearn._build_utils import _check_cython_version
config = Configuration(None, parent_package, top_path)
# Avoid useless msg:
# "Ignoring attempt to set 'name' (from ... "
config.set_options(
ignore_setup_xxx_py=True,
assume_default_configuration=True,
delegate_options_to_subpackages=True,
quiet=True,
)
# Cython is required by config.add_subpackage for templated extensions
# that need the tempita sub-submodule. So check that we have the correct
# version of Cython so as to be able to raise a more informative error
# message from the start if it's not the case.
_check_cython_version()
config.add_subpackage("sklearn")
return config
def check_package_status(package, min_version):
"""
Returns a dictionary containing a boolean specifying whether given package
is up-to-date, along with the version string (empty string if
not installed).
"""
package_status = {}
try:
module = importlib.import_module(package)
package_version = module.__version__
package_status["up_to_date"] = parse_version(package_version) >= parse_version(
min_version
)
package_status["version"] = package_version
except ImportError:
traceback.print_exc()
package_status["up_to_date"] = False
package_status["version"] = ""
req_str = "scikit-learn requires {} >= {}.\n".format(package, min_version)
instructions = (
"Installation instructions are available on the "
"scikit-learn website: "
"http://scikit-learn.org/stable/install.html\n"
)
if package_status["up_to_date"] is False:
if package_status["version"]:
raise ImportError(
"Your installation of {} {} is out-of-date.\n{}{}".format(
package, package_status["version"], req_str, instructions
)
)
else:
raise ImportError(
"{} is not installed.\n{}{}".format(package, req_str, instructions)
)
def setup_package():
python_requires = ">=3.8"
required_python_version = (3, 8)
metadata = dict(
name=DISTNAME,
maintainer=MAINTAINER,
maintainer_email=MAINTAINER_EMAIL,
description=DESCRIPTION,
license=LICENSE,
url=URL,
download_url=DOWNLOAD_URL,
project_urls=PROJECT_URLS,
version=VERSION,
long_description=LONG_DESCRIPTION,
classifiers=[
"Intended Audience :: Science/Research",
"Intended Audience :: Developers",
"License :: OSI Approved :: BSD License",
"Programming Language :: C",
"Programming Language :: Python",
"Topic :: Software Development",
"Topic :: Scientific/Engineering",
"Development Status :: 5 - Production/Stable",
"Operating System :: Microsoft :: Windows",
"Operating System :: POSIX",
"Operating System :: Unix",
"Operating System :: MacOS",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: Implementation :: CPython",
"Programming Language :: Python :: Implementation :: PyPy",
],
cmdclass=cmdclass,
python_requires=python_requires,
install_requires=min_deps.tag_to_packages["install"],
package_data={"": ["*.pxd"]},
**extra_setuptools_args,
)
commands = [arg for arg in sys.argv[1:] if not arg.startswith("-")]
if all(
command in ("egg_info", "dist_info", "clean", "check") for command in commands
):
# These actions are required to succeed without Numpy for example when
# pip is used to install Scikit-learn when Numpy is not yet present in
# the system.
# These commands use setup from setuptools
from setuptools import setup
metadata["version"] = VERSION
metadata["packages"] = ["sklearn"]
else:
if sys.version_info < required_python_version:
required_version = "%d.%d" % required_python_version
raise RuntimeError(
"Scikit-learn requires Python %s or later. The current"
" Python version is %s installed in %s."
% (required_version, platform.python_version(), sys.executable)
)
check_package_status("numpy", min_deps.NUMPY_MIN_VERSION)
check_package_status("scipy", min_deps.SCIPY_MIN_VERSION)
# These commands require the setup from numpy.distutils because they
# may use numpy.distutils compiler classes.
from numpy.distutils.core import setup
# Monkeypatches CCompiler.spawn to prevent random wheel build errors on Windows
# The build errors on Windows was because msvccompiler spawn was not threadsafe
# This fixed can be removed when we build with numpy >= 1.22.2 on Windows.
# https://github.com/pypa/distutils/issues/5
# https://github.com/scikit-learn/scikit-learn/issues/22310
# https://github.com/numpy/numpy/pull/20640
from numpy.distutils.ccompiler import replace_method
from distutils.ccompiler import CCompiler
from sklearn.externals._numpy_compiler_patch import CCompiler_spawn
replace_method(CCompiler, "spawn", CCompiler_spawn)
metadata["configuration"] = configuration
setup(**metadata)
if __name__ == "__main__":
setup_package()