-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathGraph.py
419 lines (335 loc) · 18.1 KB
/
Graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
from Nodes.NodeClass import Node
from Edges.EdgeClass import Edge
from NN_Models.CompositeModelClass import CompositeModel
from NN_Models.Losses.loss_fns import compute_attribute_loss,compute_structure_loss
from NN_Models.Losses.kmeans import Clustering
from data_layer.DataModel import DataModel
from convert_outputs import OutputFormatter
from typing import List
import torch
from torch import optim
import time
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
import json
import os
import numpy as np
import sys
import pickle
import argparse
from metric import get_modularity,get_ned,get_coverage,get_structural_modularity
from time import sleep
class Graph(object) :
def __init__(self, data_model : DataModel, model : CompositeModel, config:dict, k:int=9) :
self.data_model = data_model
self.nodes = data_model.get_nodes()
self.edges = data_model.get_edges()
self.model = model
self.create_node_dict()
self.config = config
self.num_clusters = k
if data_model.get_seeds() :
self.node_mapping = self.get_node_mapping()
self.seeds = data_model.get_seeds()
# simple sanity check
assert(len(self.seeds)-1 == self.num_clusters)
self.kmeans = Clustering(seeds=self.get_seed_mapping())
#print("Seeds Found")
#assert(0)
else :
self.seeds = None
self.node_mapping = None
self.kmeans = Clustering(K=k)
#print("No Seeds Found")
#assert(0)
self.traced_graph=False
def get_seed_mapping(self) -> List[List[float]] :
"""Gets the idx mapping of every seed passed in the seed list.
Returns:
List[List[float]]: An array of array of indices that are seeds for each cluster.
"""
#print(self.seeds)
num_clusters = self.seeds["num_clusters"]
seed_list = [[] for ctr in range(num_clusters)]
for idx in range(num_clusters) :
arr = self.seeds[idx]
seed_list[idx].extend([ self.node_mapping[ele][0] for ele in arr if self.node_mapping.get(ele,-1) != -1 ])
#print("Seed List : {}".format(seed_list))
return seed_list
def get_node_mapping(self) :
""" Gets the node mapping from CompositeModel : its format is {node_name : (node_index,node_object)} """
self.model.prepare_mini_batch(self.edges)
old_node_set = []
for node in self.nodes :
old_node_set.append(node.get_id())
old_node_set = set(old_node_set)
new_node_set = set(self.model.node_dict.keys())
#print("Difference : {}".format(old_node_set-new_node_set))
#assert(0)
return self.model.get_node_dictionary()
def create_node_dict(self) :
self.node_dict = {}
for node in self.nodes :
self.node_dict[node.get_id()] = node
def get_node(self,node_id:str) :
return self.node_dict.get(node_id,None)
def get_edge_label_match_accuracy(self,features,reconstructed) :
"""Checks how accuracte the model is about the labels predicted for each edge"""
numerator=0
denominator=0
for feature_ele,recon_ele in zip(features,reconstructed) :
if len(recon_ele) == 4 :
labels = np.around((feature_ele).cpu().data.numpy(),2)
predictions = np.around(torch.sigmoid(recon_ele).cpu().data.numpy(),2)
predictions = np.round_(predictions)
numerator += np.sum(labels==predictions)
denominator += 4
metric = numerator/(denominator+1)
if type(metric) == float :
metric = torch.tensor(metric)
return metric
def get_loss(self,input_node_matrix : List[torch.tensor],output_node_matrix : List[torch.tensor],encoded_state : torch.tensor,adj_matrix : torch.tensor,input_edge_features : List[torch.tensor]=None,output_edge_features : List[torch.tensor]=None,edge_loss_alpha : float = 0.,o_1 : torch.tensor=None,o_2 : torch.tensor=None) :
# get the node loss
node_loss = compute_attribute_loss(input_node_matrix,output_node_matrix,o_1,mode="Node")
# get the structure loss
structure_loss = compute_structure_loss(adj_matrix, encoded_state, o_2)
# get the clustering loss
self.kmeans.cluster(encoded_state)
if self.seeds :
clustering_loss = self.kmeans.get_loss(encoded_state)
clustering_loss = clustering_loss - self.kmeans.get_seed_loss(encoded_state)
else :
clustering_loss = self.kmeans.get_loss(encoded_state)
# edge loss
edge_loss = None
if edge_loss_alpha>0 and not(input_edge_features is None) and not(output_edge_features is None) :
# edge_loss = compute_edge_loss(input_edge_features,output_edge_features)
edge_loss = compute_attribute_loss(input_edge_features,output_edge_features,mode="Edge")
edge_metric = self.get_edge_label_match_accuracy(input_edge_features,output_edge_features)
self.edge_metric = edge_metric
return node_loss, structure_loss, clustering_loss, edge_loss
def add_graph(self) :
self.model.add_graph(self.writer)
def perform_loop(self,edge_list : List[Edge],node_loss_alpha:float=0.4,structure_loss_alpha:float=0.4,edge_loss_alpha:float=0.2,clustering_loss_alpha:float=0.,training:bool=True,o_1 : torch.tensor=None,o_2 : torch.tensor=None,use_edge_weights:bool=False) :
input_node_matrix,node_types,node_names,edge_index,input_edge_features,edge_types,adj_matrix,edge_weight = self.model.prepare_mini_batch(edge_list)
if not use_edge_weights :
edge_weight = torch.ones((len(edge_weight)))
output_node_matrix, output_edge_features, encoded_state = self.model(input_node_matrix,node_types,edge_index,input_edge_features,edge_types,training,edge_weight=edge_weight)
# some stuff for updating outliers
self.input_node_matrix = input_node_matrix
self.output_node_matrix = output_node_matrix
self.encoded_state = encoded_state
self.adj_matrix = adj_matrix
if self.model.use_edge_features :
self.input_edge_features = input_edge_features
self.output_edge_features = output_edge_features
else :
self.input_edge_features = None
self.output_edge_features = None
self.node_names = node_names
final_loss = None
clusters= None
if training :
node_loss, structure_loss, clustering_loss, edge_loss = self.get_loss(input_node_matrix,output_node_matrix,encoded_state,adj_matrix,input_edge_features,output_edge_features,edge_loss_alpha=edge_loss_alpha,o_1=o_1,o_2=o_2)
node_loss_component = node_loss_alpha * node_loss
structure_loss_component = structure_loss_alpha * structure_loss
clustering_loss_component = clustering_loss_alpha * clustering_loss
if edge_loss is None :
edge_loss_component = 0
else :
edge_loss_component = edge_loss_alpha * edge_loss
# node loss
self.node_loss_list.append((node_loss_component).item())
#print("Node Loss : {}".format(node_loss_component))
self.writer.add_scalar("Node-Loss",node_loss,global_step=self.epoch)
# structure loss
self.struct_loss_list.append((structure_loss_component).item())
#print("Structure Loss : {}".format(structure_loss_component))
self.writer.add_scalar("Struct-Loss",structure_loss,global_step=self.epoch)
# clustering loss
self.clustering_loss_list.append((clustering_loss_component).item())
#print("Clustering Loss : {}".format(clustering_loss_component))
self.writer.add_scalar("Cluster-Loss",clustering_loss,global_step=self.epoch)
# edge loss
if not (edge_loss is None) :
#self.edge_loss_list.append((edge_loss_component).item())
self.edge_loss_list.append((self.edge_metric).item())
if edge_loss_alpha > 0 :
# print("Edge Metric : {}".format(self.edge_metric))
# print("Edge Loss : {}".format(edge_loss.item()))
pass
self.writer.add_scalar("Edge-Loss",edge_loss,global_step=self.epoch)
else :
edge_loss = torch.tensor([0.])
# final loss
if self.seeds :
if clustering_loss_alpha > 0 :
# print("Subtracting the clustering loss")
pass
final_loss = node_loss_component + structure_loss_component + clustering_loss_component + edge_loss_component
else :
final_loss = node_loss_component + structure_loss_component + clustering_loss_component + edge_loss_component
#print("Final Loss : {}\n\n".format(final_loss))
self.final_loss_list.append(final_loss.item())
else :
#print("In Test Mode")
self.kmeans.cluster(encoded_state)
clusters = self.kmeans.M
return final_loss,node_names,clusters
def train(self,epoch_start=0,epoch_end=300,node_loss_alpha:float=0.5,structure_loss_alpha:float=0.5,edge_loss_alpha:float=0.,clustering_loss_alpha:float=0,training:bool=True,lr:float=0.01,use_edge_weights:bool=False) :
self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
for epoch in range(epoch_start,epoch_end):
self.epoch = epoch
print("\tEpoch : {}".format(epoch))
self.model.train_func()
loss,node_names,clusters = self.perform_loop(self.edges,node_loss_alpha,structure_loss_alpha,edge_loss_alpha,clustering_loss_alpha,training,None,None,use_edge_weights)
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
return node_names,clusters
def get_cluster(self, node_names, cluster_names, run_num=None) :
if run_num is None :
run_num = 1
cluster_dict = {}
for cluster,node_ in zip(cluster_names,node_names) :
cluster = str(cluster)
if cluster_dict.get(cluster,-1) == -1:
cluster_dict[cluster] = []
cluster_dict[cluster].append(node_)
#print(cluster_dict)
json_file = "clusters" + self.config["code"] + ".json"
if run_num == 1 :
with open( os.path.join(self.data_model.basepath,json_file), "w") as f:
json.dump(cluster_dict,f,indent=4)
elif run_num > 1 :
with open( os.path.join(self.data_model.basepath,json_file[:-5]+"_{}".format(run_num)+".json"), "w") as f:
json.dump(cluster_dict,f,indent=4)
icu_file = os.path.join(self.data_model.basepath,"temp",self.config["icu_path"])
callgraph_file = os.path.join(self.data_model.basepath,"temp",self.config["callgraph_path"])
service_file = os.path.join(self.data_model.basepath,"temp",self.config["service_path"])
resource_file = os.path.join(self.data_model.basepath,"temp",self.config["db_path"])
output_file = os.path.join(self.data_model.basepath,"clusters" + self.config["code"] + "_cma_format.json")
if run_num > 1 :
# if we are going to train the model multiple times
output_file = output_file[:-5] + "_{}".format(run_num) + ".json"
formatter = OutputFormatter(cluster_dict, icu_file, callgraph_file, service_file, resource_file)
formatter.write_to_file(output_file)
self.metric_calculation(run_num)
return cluster_dict
def metric_calculation(self,run_num=None) :
if run_num is None :
run_num = 1
if run_num == 1 :
result_file = os.path.join(self.data_model.basepath,"clusters" + self.config["code"] + "_cma_format.json")
mod = get_modularity(result_file)
ned = get_ned(result_file)
coverage = get_coverage(result_file)
struct_mod = get_structural_modularity(result_file)
else :
result_file = os.path.join(self.data_model.basepath,"clusters" + self.config["code"] + "_cma_format_{}.json".format(run_num))
mod = get_modularity(result_file)
ned = get_ned(result_file)
coverage = get_coverage(result_file)
struct_mod = get_structural_modularity(result_file)
if run_num == 1 :
# first time
with open(os.path.join(self.data_model.basepath,"metrics.txt"), "w") as f :
f.write("Run No\tMod\tNED\tStruct Mod\tCoverage\n{}\t{}\t{}\t{}\t{}\n".format(run_num,mod,ned,struct_mod,coverage))
else :
with open(os.path.join(self.data_model.basepath,"metrics.txt"), "a") as f :
f.write("{}\t{}\t{}\t{}\t{}\n".format(run_num,mod,ned,struct_mod,coverage))
def test(self,run_num=None) :
with torch.no_grad() :
self.model.eval()
loss,node_names,clusters = self.perform_loop(self.edges,training=False)
ans = self.get_cluster(node_names,clusters,run_num)
return ans
def training_strategy(self,use_edge_weights:bool=False,run_num=None) :
self.node_loss_list = []
self.struct_loss_list = []
self.edge_loss_list = []
self.clustering_loss_list = []
self.final_loss_list = []
self.writer = SummaryWriter("./runs/visuals")
### pre-training phase ###
node_names,clusters = self.train(0,100,node_loss_alpha=self.config["pre_train"]["node_loss_alpha"],structure_loss_alpha=self.config["pre_train"]["structure_loss_alpha"],edge_loss_alpha=self.config["pre_train"]["edge_loss_alpha"],clustering_loss_alpha=self.config["pre_train"]["clustering_loss_alpha"],lr=self.config["pre_train"]["lr"],use_edge_weights=use_edge_weights)
#print("\n\n\n")
### training phase ###
node_names,clusters = self.train(100,200,node_loss_alpha=self.config["train"]["node_loss_alpha"],structure_loss_alpha=self.config["train"]["structure_loss_alpha"],edge_loss_alpha=self.config["train"]["edge_loss_alpha"],clustering_loss_alpha=self.config["train"]["clustering_loss_alpha"],lr=self.config["train"]["lr"],use_edge_weights=use_edge_weights)
self.writer.close()
return self.test(run_num)
if __name__ == '__main__' :
import numpy as np
from NN_Models.Node2CommonSpaceClass import Node2CommonSpace
from NN_Models.CommonSpace2NodeClass import CommonSpace2Node
from NN_Models.Edge2CommonSpaceClass import Edge2CommonSpace
from NN_Models.CommonSpace2EdgeClass import CommonSpace2Edge
sys.setrecursionlimit(10**6)
parser = argparse.ArgumentParser()
parser.add_argument("--model",help="model type. ex. AE_EGCN_Separate")
parser.add_argument("--data", help="name of the app. ex. acme")
parser.add_argument("--code",help="one of ['with_edge_loss','without_edge_loss']")
parser.add_argument("--saved_data_model",help="boolean flag to re-use the pre-processed data. One of ['true','false']",default='false')
args = parser.parse_args()
model = args.model
data = args.data
code = args.code
saved_data_model = args.saved_data_model.lower()
if saved_data_model == 'false' :
saved_data_model = False
else :
saved_data_model = True
basepath = os.path.join(os.getcwd(),"data_layer/utilities/data/{}_{}/".format(data,model))
# load the config
with open( os.path.join(basepath,"custom/gcnconfig_" + code + ".json"), "r") as f :
config = json.load(f)
# load the parameters
node_dimension = config["node_dimension"]
num_clusters = config["num_clusters"]
common_space = config["model_config"]["common_space"]
multiple_runs=30
for i in range(1,multiple_runs+1) :
print("************** RUN ", i, " **************")
if saved_data_model :
# re-use the preprocessed data
dm_saving_path = os.path.join(basepath,"data_model.pkl")
with open(dm_saving_path,"rb") as f :
data_model = pickle.load(f)
#print("Re-used the data model")
sleep(5)
else :
# instantiate the data model
data_model = DataModel(basepath,"gcnconfig_" + code + ".json",False)
data_model.compute_features()
data_model.collect_nodes_and_edges()
#assert(0)
# save the data model
if i == 1:
dm_saving_path = os.path.join(data_model.basepath,"data_model.pkl")
else :
dm_saving_path = os.path.join(data_model.basepath,"data_model_{}.pkl".format(i))
with open(dm_saving_path,"wb") as f :
pickle.dump(data_model,f)
#print("Number of nodes : {}".format(len(data_model.nodes)))
#print("Number of edges : {}".format(len(data_model.edges)))
# procedure to create the GNN model and the Graph object
node_type_info = [("program",node_dimension),("resource",node_dimension)]
n_two_cs = Node2CommonSpace(common_space,node_type_info)
cs_two_n = CommonSpace2Node(common_space,node_type_info)
edge_type_info = [("CALLS",2),("CRUD",4)]
e_two_cs = Edge2CommonSpace(common_space,edge_type_info)
cs_two_e = CommonSpace2Edge(common_space,edge_type_info)
#print(data_model.config)
gnn_model = CompositeModel(n_two_cs,e_two_cs,cs_two_n,cs_two_e,model,data_model.config)
#print(gnn_model.parameters)
#print("==========")
graph = Graph(data_model,gnn_model,data_model.config,num_clusters)
# train the gnn
ans = graph.training_strategy(use_edge_weights=False,run_num=i)
# save the gnn
if i > 1 :
saving_path = os.path.join(data_model.basepath,"params_{}.pt".format(i))
torch.save({'gnn_model_state_dict': gnn_model.state_dict()}, saving_path)
else :
saving_path = os.path.join(data_model.basepath,"params.pt")
torch.save({'gnn_model_state_dict': gnn_model.state_dict()}, saving_path)