forked from jomjol/neural-network-autotrain-digital-counter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfiguration.py
102 lines (82 loc) · 3.5 KB
/
configuration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import tensorflow as tf
from tensorflow.keras.layers import Dense, InputLayer, Conv2D, MaxPool2D, Flatten, BatchNormalization
from datetime import datetime
DateNow = datetime.today().strftime('%Y%m%d')
TimeNow = datetime.today().strftime('%H%M%S')
#ReportOnly = True # erzeugt nur den Report wenn aktiviert
ReportOnly = False
#LogFile = None
LogFile = "a_output_actual/log.txt"
Input_Raw = 'ziffer_raw'
Output_Resize= 'ziffer_resize'
target_size_x = 20
target_size_y = 32
Input_dir='ziffer_resize'
Training_Percentage = 0.2
### Image Augmentation
Shift_Range = 1
Brightness_Range = 0.3
Rotation_Angle = 5
ZoomRange = 0.2
### Training Settings
Batch_Size = 4
Epoch_Anz = 100
### CNN-Configuration
#configurations = ["dig-s3"]
configurations = ["dig-s0", "dig-s1", "dig-s2", "dig-s3"]
def get_models(_name):
model = None
if (_name == "dig-s0"):
print("Bulilding model")
model = tf.keras.Sequential()
model.add(BatchNormalization(input_shape=(32,20,3)))
model.add(Conv2D(32, (3, 3), padding='same', activation="relu"))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Conv2D(64, (3, 3), padding='same', activation="relu"))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Conv2D(64, (3, 3), padding='same', activation="relu"))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(512,activation="relu"))
model.add(Dense(11, activation = "softmax"))
if (_name == "dig-s1"):
model = tf.keras.Sequential()
model.add(BatchNormalization(input_shape=(32,20,3)))
model.add(Conv2D(32, (3, 3), padding='same', activation="relu"))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Conv2D(64, (3, 3), padding='same', activation="relu"))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Conv2D(64, (3, 3), padding='same', activation="relu"))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(256,activation="relu"))
model.add(Dense(11, activation = "softmax"))
if (_name == "dig-s2"):
model = tf.keras.Sequential()
model.add(BatchNormalization(input_shape=(32,20,3)))
model.add(Conv2D(32, (3, 3), padding='same', activation="relu"))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Conv2D(32, (3, 3), padding='same', activation="relu"))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Conv2D(32, (3, 3), padding='same', activation="relu"))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(256,activation="relu"))
model.add(Dense(11, activation = "softmax"))
if (_name == "dig-s3"):
model = tf.keras.Sequential()
model.add(BatchNormalization(input_shape=(32,20,3)))
model.add(Conv2D(32, (3, 3), padding='same', activation="relu"))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Conv2D(32, (3, 3), padding='same', activation="relu"))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Conv2D(32, (3, 3), padding='same', activation="relu"))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(128,activation="relu"))
model.add(Dense(11, activation = "softmax"))
return model
def compile_model(model):
model.compile(loss= tf.keras.losses.categorical_crossentropy,
optimizer= tf.keras.optimizers.Adadelta(learning_rate=1.0, rho=0.95),
metrics = ["accuracy"])