-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
189 lines (148 loc) · 6.23 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import inspect
import os
import fire
import torch
import torchvision
import tqdm
from torch.utils.data import DataLoader
from torch.nn import functional as F
from torchnet.meter import AverageValueMeter
from config import ExtDefaultConfig, DefaultConfig
from data import AnimeFaces128Dataset
from models import GeneratorNet, DiscriminatorNet
opt = ExtDefaultConfig()
def train(**kwargs):
"""
训练
:param kwargs:
:return:
"""
opt.parse(**kwargs)
opt.print_attr()
if opt.vis:
from utils import Visualizer
vis = Visualizer(opt.visdom_env)
# 数据
dataset = AnimeFaces128Dataset(opt.image_size, opt.data_path)
# dataset = ImageFolder(opt.data_path, transform=transforms)
dataloader = DataLoader(dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers,
drop_last=True)
# Net
net_g, net_d = _get_model()
# 定义优化器
optimizer_g = torch.optim.Adam(net_g.parameters(), opt.lr_g, betas=(opt.beta1, 0.999))
optimizer_d = torch.optim.Adam(net_d.parameters(), opt.lr_d, betas=(opt.beta1, 0.999))
# 真图片label为1,假图片label为0
# noises为生成网络的输入
# true_labels = torch.ones(opt.batch_size).to(opt.device)
# fake_labels = torch.zeros(opt.batch_size).to(opt.device)
fix_noises = torch.randn(opt.batch_size, opt.nz, 1, 1).to(opt.device)
noises = torch.randn(opt.batch_size, opt.nz, 1, 1).to(opt.device)
error_meter_g = AverageValueMeter()
error_meter_d = AverageValueMeter()
for epoch in range(1, opt.max_epoch + 1):
epoch_flag = f"{epoch}/{opt.max_epoch}"
net_g.train(), net_d.train()
_train_epoch(epoch_flag, net_d, net_g, optimizer_d, optimizer_g, dataloader, error_meter_d, error_meter_g,
fix_noises, noises, vis)
if epoch % opt.save_every == 0:
# 保存图片、模型
fix_fake_imgs = net_g(fix_noises).detach()
if not os.path.exists(opt.train_save_path) or not os.path.isdir(opt.train_save_path):
os.mkdir(opt.train_save_path)
file_path = os.path.join(opt.train_save_path, str(epoch) + ".png")
torchvision.utils.save_image(fix_fake_imgs.data[:64], file_path, normalize=True, value_range=(-1, 1))
net_g.save('GeneratorNet_%s.pth' % epoch)
net_d.save('DiscriminatorNet_%s.pth' % epoch)
error_meter_g.reset()
error_meter_d.reset()
def _train_epoch(epoch_flag, net_d, net_g, optimizer_d, optimizer_g, dataloader, error_meter_d, error_meter_g,
fix_noises, noises, vis):
progress = tqdm.tqdm(dataloader, desc=f"Train... [Epoch {epoch_flag}]")
for i, (img, _) in enumerate(progress, 1):
real_img = img.to(opt.device)
# 训练判别器
if i % opt.d_every == 0:
optimizer_d.zero_grad()
# 尽可能的把真图片判别为正确,尽可能把假图片判别为错误
r_preds = net_d(real_img)
noises.data.copy_(torch.randn(opt.batch_size, opt.nz, 1, 1))
with torch.no_grad():
fake_img = net_g(noises) # 现在不训练生成器
f_preds = net_d(fake_img)
# 计算损失
r_f_diff = (r_preds - f_preds.mean()).clamp(max=1)
f_r_diff = (f_preds - r_preds.mean()).clamp(min=-1)
loss_d = (1 - r_f_diff).mean() + (1 + f_r_diff).mean()
loss_d.backward()
optimizer_d.step()
error_meter_d.add(loss_d.item())
# 训练生成器
if i % opt.g_every == 0:
optimizer_g.zero_grad()
# 尽可能提高生成的图像被判别为真的概率
noises.data.copy_(torch.randn(opt.batch_size, opt.nz, 1, 1))
fake_img = net_g(noises)
f_preds = net_d(fake_img)
r_preds = net_d(real_img)
# 计算损失
r_f_diff = F.relu(r_preds - f_preds.mean())
f_r_diff = F.relu(f_preds - r_preds.mean())
error_g = (1 + r_f_diff).mean() + (1 - f_r_diff).mean()
error_g.backward()
optimizer_g.step()
error_meter_g.add(error_g.item())
if opt.vis and i % opt.plot_every == 0:
# 可视化
fix_fake_imgs = net_g(fix_noises).detach()
vis.images(fix_fake_imgs.cpu().numpy()[:64] * 0.5 + 0.5, win='fixfake')
vis.images(real_img.data.cpu().numpy()[:64] * 0.5 + 0.5, win='real')
vis.plot('error_g', error_meter_g.value()[0])
vis.plot('error_d', error_meter_d.value()[0])
@torch.no_grad()
def generate(**kwargs):
"""
随机生成动漫头像,并根据netd的分数选择较好的
"""
opt.parse(**kwargs)
opt.print_attr()
# Net
net_g, net_d = _get_model()
net_g.eval(), net_d.eval()
noises = torch.randn(opt.gen_search_num, opt.nz, 1, 1).normal_(opt.gen_mean, opt.gen_std).to(opt.device)
# 生成图片,并计算图片在判别器的分数
with torch.no_grad():
fake_img = net_g(noises)
scores = net_d(fake_img)
# 挑选最好的某几张
indexs = scores.topk(opt.gen_num)[1]
result = []
for i in indexs:
result.append(fake_img.data[i])
# 保存图片
torchvision.utils.save_image(torch.stack(result), opt.gen_img, normalize=True, value_range=(-1, 1))
def _get_model():
net_g, net_d = GeneratorNet(opt.ngf, opt.nz), DiscriminatorNet(opt.ndf)
if opt.netg_path:
net_g.load(opt.netg_path)
if opt.netd_path:
net_d.load(opt.netd_path)
return net_g.to(opt.device), net_d.to(opt.device)
def help():
"""
打印帮助信息
:return:
"""
print("""
usage: python {0} <function> [--args=value,]
<function> := train | generate | help
examples:
python {0} train --visdom_env='image-generation' --data-path='dataset/AnimeFaces128' --max-epoch=200
python {0} generate --netg-path='checkpoints/GeneratorNet_200.pth' --netd-path='checkpoints/DiscriminatorNet_200.pth' --gen-num=64
python {0} help
avaiable args:
""".format("main.py"))
source = inspect.getsource(DefaultConfig)
print(source)
if __name__ == '__main__':
fire.Fire()