-
Notifications
You must be signed in to change notification settings - Fork 264
/
Copy pathemailrag2.py
149 lines (127 loc) · 5.77 KB
/
emailrag2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import ollama
import os
import json
from openai import OpenAI
import argparse
import yaml
# ANSI escape codes for colors
PINK = '\033[95m'
CYAN = '\033[96m'
YELLOW = '\033[93m'
NEON_GREEN = '\033[92m'
RESET_COLOR = '\033[0m'
def load_config(config_file):
print("Loading configuration...")
try:
with open(config_file, 'r') as file:
return yaml.safe_load(file)
except FileNotFoundError:
print(f"Configuration file '{config_file}' not found.")
exit(1)
def open_file(filepath):
print("Opening file...")
try:
with open(filepath, 'r', encoding='utf-8') as infile:
return infile.read()
except FileNotFoundError:
print(f"File '{filepath}' not found.")
return None
def load_or_generate_embeddings(vault_content, embeddings_file):
if os.path.exists(embeddings_file):
print(f"Loading embeddings from '{embeddings_file}'...")
try:
with open(embeddings_file, "r", encoding="utf-8") as file:
return torch.tensor(json.load(file))
except json.JSONDecodeError:
print(f"Invalid JSON format in embeddings file '{embeddings_file}'.")
embeddings = []
else:
print(f"No embeddings found. Generating new embeddings...")
embeddings = generate_embeddings(vault_content)
save_embeddings(embeddings, embeddings_file)
return torch.tensor(embeddings)
def generate_embeddings(vault_content):
print("Generating embeddings...")
embeddings = []
for content in vault_content:
try:
response = ollama.embeddings(model='mxbai-embed-large', prompt=content)
embeddings.append(response["embedding"])
except Exception as e:
print(f"Error generating embeddings: {str(e)}")
return embeddings
def save_embeddings(embeddings, embeddings_file):
print(f"Saving embeddings to '{embeddings_file}'...")
try:
with open(embeddings_file, "w", encoding="utf-8") as file:
json.dump(embeddings, file)
except Exception as e:
print(f"Error saving embeddings: {str(e)}")
def get_relevant_context(rewritten_input, vault_embeddings, vault_content, top_k):
print("Retrieving relevant context...")
if vault_embeddings.nelement() == 0:
return []
try:
input_embedding = ollama.embeddings(model='mxbai-embed-large', prompt=rewritten_input)["embedding"]
cos_scores = torch.cosine_similarity(torch.tensor(input_embedding).unsqueeze(0), vault_embeddings)
top_k = min(top_k, len(cos_scores))
top_indices = torch.topk(cos_scores, k=top_k)[1].tolist()
return [vault_content[idx].strip() for idx in top_indices]
except Exception as e:
print(f"Error getting relevant context: {str(e)}")
return []
def ollama_chat(user_input, system_message, vault_embeddings, vault_content, ollama_model, conversation_history, top_k, client):
relevant_context = get_relevant_context(user_input, vault_embeddings, vault_content, top_k)
if relevant_context:
context_str = "\n".join(relevant_context)
print("Context Pulled from Documents: \n\n" + CYAN + context_str + RESET_COLOR)
else:
print("No relevant context found.")
user_input_with_context = user_input
if relevant_context:
user_input_with_context = context_str + "\n\n" + user_input
conversation_history.append({"role": "user", "content": user_input_with_context})
messages = [{"role": "system", "content": system_message}, *conversation_history]
try:
response = client.chat.completions.create(
model=ollama_model,
messages=messages
)
conversation_history.append({"role": "assistant", "content": response.choices[0].message.content})
return response.choices[0].message.content
except Exception as e:
print(f"Error in Ollama chat: {str(e)}")
return "An error occurred while processing your request."
def main():
parser = argparse.ArgumentParser(description="Ollama Chat")
parser.add_argument("--config", default="config.yaml", help="Path to the configuration file")
parser.add_argument("--clear-cache", action="store_true", help="Clear the embeddings cache")
parser.add_argument("--model", help="Model to use for embeddings and responses")
args = parser.parse_args()
config = load_config(args.config)
if args.clear_cache and os.path.exists(config["embeddings_file"]):
print(f"Clearing embeddings cache at '{config['embeddings_file']}'...")
os.remove(config["embeddings_file"])
if args.model:
config["ollama_model"] = args.model
vault_content = []
if os.path.exists(config["vault_file"]):
print(f"Loading content from vault '{config['vault_file']}'...")
with open(config["vault_file"], "r", encoding='utf-8') as vault_file:
vault_content = vault_file.readlines()
vault_embeddings_tensor = load_or_generate_embeddings(vault_content, config["embeddings_file"])
client = OpenAI(
base_url=config["ollama_api"]["base_url"],
api_key=config["ollama_api"]["api_key"]
)
conversation_history = []
system_message = config["system_message"]
while True:
user_input = input(YELLOW + "Ask a question about your documents (or type 'quit' to exit): " + RESET_COLOR)
if user_input.lower() == 'quit':
break
response = ollama_chat(user_input, system_message, vault_embeddings_tensor, vault_content, config["ollama_model"], conversation_history, config["top_k"], client)
print(NEON_GREEN + "Response: \n\n" + response + RESET_COLOR)
if __name__ == "__main__":
main()