-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
38 lines (30 loc) · 1.67 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import os
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_data(root_dir,device, batch_size):
# Define appropriate input size based on the model being used
input_size=(224,224)
transform = transforms.Compose([
transforms.Resize(input_size),
transforms.ToTensor(),
#transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
train_dataset = datasets.ImageFolder(os.path.join(root_dir, "train"), transform=transform)
val_dataset = datasets.ImageFolder(os.path.join(root_dir, "val"), transform=transform)
test_dataset = datasets.ImageFolder(os.path.join(root_dir, "test"), transform=transform)
print("Train dataset has", len(train_dataset), "samples")
print("Validation dataset has", len(val_dataset), "samples")
print("Test dataset has", len(test_dataset), "samples")
#print(len(train_dataset), len(val_dataset), len(test_dataset))
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
# for inputs, labels in train_loader:
# inputs, labels = inputs.to(device), labels.to(device)
# for inputs, labels in val_loader:
# inputs, labels = inputs.to(device), labels.to(device)
# for inputs, labels in test_loader:
# inputs, labels = inputs.to(device), labels.to(device)
return train_loader, val_loader, test_loader, train_dataset, test_dataset