-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatacollection.py
263 lines (210 loc) · 9.48 KB
/
datacollection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import wandb
import matplotlib.pyplot as plt
import os
import pandas as pd
import re
import tmrl.config.config_constants as cfg
wandb_run_id = cfg.WANDB_RUN_ID # change this by a name of your choice for your run
wandb_project = cfg.TMRL_CONFIG["WANDB_PROJECT"] # name of the wandb project in which your run will appear
wandb_entity = cfg.TMRL_CONFIG["WANDB_ENTITY"] # wandb account
wandb_key = cfg.TMRL_CONFIG["WANDB_KEY"] # wandb API key
os.environ['WANDB_API_KEY'] = wandb_key # this line sets your wandb API key as the active key
def smooth_curve(values, window_size):
"""
Smooths the curve using a simple moving average.
Parameters:
- values: list or array of values to smooth
- window_size: int, the size of the window to use for smoothing
Returns:
- smoothed_values: list of smoothed values
"""
smoothed_values = []
for i in range(len(values)):
start = max(0, i - window_size // 2)
end = min(len(values), i + window_size // 2 + 1)
smoothed_values.append(sum(values[start:end]) / (end - start))
return smoothed_values
def compare_metrics(dir1, dir2, metric_file, smooth_metrics=None, window_size=5, save=False):
"""
Compares the specified metric between two directories by plotting them on the same graph.
Parameters:
- dir1: str, the first directory containing the metric file
- dir2: str, the second directory containing the metric file
- metric_file: str, the name of the metric file to compare (e.g., 'return_train.csv')
- smooth_metrics: list of str, metrics to apply smoothing to
- window_size: int, the window size for smoothing
- save: bool, if True, saves the plot to a directory called \plot\<model_name>
"""
metric_path1 = os.path.join(dir1, metric_file)
metric_path2 = os.path.join(dir2, metric_file)
if not os.path.exists(metric_path1):
print(f"Error: {metric_path1} does not exist.")
return
if not os.path.exists(metric_path2):
print(f"Error: {metric_path2} does not exist.")
return
# Read the CSV files for the given metric
df1 = pd.read_csv(metric_path1)
df2 = pd.read_csv(metric_path2)
plt.figure(figsize=(10, 6))
# Extract base names of directories to use in the legend
label1 = os.path.basename(os.path.normpath(dir1)).split("_")
label2 = os.path.basename(os.path.normpath(dir2)).split("_")
model_name = label1[0]
label1 = label1[0] + " " + label1[-1]
label2 = label2[0] + " " + label2[-1]
# Assume the first column is the iteration or time step, and the second column is the metric value
x1 = df1.iloc[:, 0]
y1 = df1.iloc[:, 1]
x2 = df2.iloc[:, 0]
y2 = df2.iloc[:, 1]
# Apply smoothing if specified
if smooth_metrics and metric_file in smooth_metrics:
y1 = smooth_curve(y1, window_size)
y2 = smooth_curve(y2, window_size)
plt.plot(x1, y1, label=label1)
plt.plot(x2, y2, label=label2)
plt.xlabel('Iteration')
plt.ylabel(metric_file.replace('_', ' ').title().replace('.csv', ''))
plt.title(f"Comparison of {metric_file.replace('_', ' ').title().replace('.csv', '')}")
plt.legend()
plt.grid(True)
# Save the plot if save is True
if save:
plot_dir = os.path.join('plot', model_name)
os.makedirs(plot_dir, exist_ok=True)
plot_path = os.path.join(plot_dir, f"{metric_file.replace('.csv', '')}_comparison.png")
plt.savefig(plot_path)
print(f"Plot saved to {plot_path}")
plt.show()
def return_model_dirs(model_name: str) -> tuple:
"""
Function that selects the two corresponding "pixels" and "LIDAR" directories for a given model name.
:param model_name: model name to search for corresponding pixel and LIDAR directories
:return: tuple of directories (dir1, dir2)
"""
dir1 = None
dir2 = None
for model in os.listdir("data"):
folder = model.split("_")
if folder[0] == model_name:
if model.endswith("Pixels"):
dir1 = f"data/{model}/"
elif model.endswith("LIDAR"):
dir2 = f"data/{model}/"
if dir1 and dir2:
return dir1, dir2
else:
raise ValueError("Could not find corresponding 'pixels' and 'LIDAR' directories for the given model name.")
def parse_run_time(run_time_str):
"""
Parses a run time string in the format '<99h 99m 59s>' and returns the total time in seconds.
Parameters:
- run_time_str: str, run time string in the format '<99h 99m 59s>'
Returns:
- total_seconds: int, total run time in minutes
"""
match = re.match(r'(?:(\d+)h\s*)?(?:(\d+)m\s*)?(?:(\d+)s)?', run_time_str)
if match:
hours, minutes, seconds = match.groups()
hours = int(hours) if hours else 0
minutes = int(minutes) if minutes else 0
seconds = int(seconds) if seconds else 0
total_seconds = hours * 60 + minutes + seconds / 60
return total_seconds
else:
raise ValueError(f"Invalid run time format: {run_time_str}")
def process_folder_name(folder_name):
"""
Processes the folder name to only use the first and last word in the string,
split by underscores.
Parameters:
- folder_name: str, the original folder name
Returns:
- processed_name: str, the processed folder name
"""
parts = folder_name.split("_")
if len(parts) > 1:
return f"{parts[0]} {parts[-1]}"
else:
return folder_name
def plot_run_times(data_dir):
"""
Plots a bar graph of the run times for each folder in the data directory.
Parameters:
- data_dir: str, the directory containing the subdirectories with 'run_time.txt' files
"""
run_times = {}
for folder in os.listdir(data_dir):
folder_path = os.path.join(data_dir, folder)
if os.path.isdir(folder_path):
run_time_file = os.path.join(folder_path, 'run_time.txt')
if os.path.exists(run_time_file):
with open(run_time_file, 'r') as file:
run_time_str = file.readline().strip()
try:
total_minutes = parse_run_time(run_time_str)
run_times[folder] = total_minutes
except ValueError as e:
print(e)
# Sort by folder name for consistent bar placement
sorted_folders = sorted(run_times.keys())
sorted_times = [run_times[folder] for folder in sorted_folders]
processed_names = [process_folder_name(folder) for folder in sorted_folders]
plt.figure(figsize=(12, 6))
plt.bar(processed_names, sorted_times, color='orange')
plt.xlabel('Models')
plt.ylabel('Run Time (minutes)')
plt.title('Train Time for Each Model in Minutes')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
if not os.path.exists("plot"):
os.makedirs("plot")
plt.savefig(f"{os.getcwd()}/plot/run_times.png")
plt.show()
# Define a class that interfaces with Weights & Biases to plot data for specifc runs and metrics given a project name
# and entity name
class DataCollection:
def __init__(self, project_name, entity_name):
self.project_name = project_name
self.entity_name = entity_name
def collect_data_for_metric(self, run_id):
api = wandb.Api()
run = api.run(f"{self.entity_name}/{self.project_name}/{run_id}")
_data = run.history()
return _data
if __name__ == "__main__":
# uncomment if you want to fetch all data from W&B directly (sometimes it fetches partial data and you need to get
# the data from the W&B website directly)
# plotter = DataCollection("tmrl", "tmrl")
#
# data = plotter.collect_data_for_metric(run_id=wandb_run_id)
# # if the data directory doesn't exist create it and save the data
# if not os.path.exists("data"):
# os.makedirs("data")
#
# # data is a pandas dataframe, save it as a csv file
# model_dir = "PPO_CSVs_LIDAR"
# if not os.path.exists(f"data/{model_dir}/full_data"):
# os.makedirs(f"data/{model_dir}/full_data/")
#
# data.to_csv(f"data/{model_dir}/full_data/{wandb_run_id}x_data.csv")
# # get all files from the data directory and make a list, add the data directory to the list
# files = [f"data/{f}" for f in os.listdir("data")]
#
# # plot the metric "loss_critic" from the data file, just an example for now. But this is a rough framework on how
# # we can plot metrics from multiple runs/models
# plot_metric("return_train", files)
# use this to plot the data from the csv file using the plot_training_metric function
# data_directory = "data" # Change this to your data directory path
# metric_to_plot = "loss_actor" # Change this to the metric you want to plot
# specific_model = None # Change this to a specific model directory name, or leave as None for all models
# plot_training_metric(data_directory, metric_to_plot, specific_model)
# use this to compare the metrics from two different directories using the compare_metrics function
# metrics = ["return_train.csv", "loss_actor.csv", "loss_critic.csv"]
smooth_metrics = ["return_train.csv", "loss_actor.csv", "loss_critic.csv"]
dir1, dir2 = return_model_dirs("DDPG") # Fetch the directories for the given model name
for metric_file in metrics: # For all metrics, compare the two models with a plot
compare_metrics(dir1, dir2, metric_file, smooth_metrics=smooth_metrics, window_size=10, save=True)
# use this to plot the run times for each folder in the data directory
plot_run_times("data")