-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
453 lines (367 loc) · 17.6 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import numpy as np
import warnings
import random
from maths import split_seq, sigmoid, lennard_jones, cluster_distance, calculate_features
from maths import pair_sorting, relax_structure, minimize_cluster_distance, compute_sizes
from plot_function import plot_structure, plot_clustering
warnings.filterwarnings('error')
class KMeans:
"""
KMeans is a model that clusters data into a number of specified clusters, via an averaging function.
This is an unsupervised machine-learning model, which means the classes given from the clustering, is only relative
to the other clusters.
"""
def __init__(self, features, num_clusters, num_repeats=10, normalizing=True, silent=False):
self.silent = silent
if self.silent is False:
print("Initializing model")
if normalizing is True and np.all(np.max(features, axis=0) != 0):
self.norm_factors = 1/(np.max(features, axis=0)-np.min(features, axis=0))
else:
self.norm_factors = np.ones((1, features.shape[1]))
self.features = features*self.norm_factors
self.num_clusters = num_clusters
self.num_dimensions = self.features.shape[1]
self.num_feature_vectors = self.features.shape[0]
self.old_clusters = np.array([])
self.clusters = np.array([])
self.opt_clusters = np.array([])
centroid_initialize = random.sample(range(0, self.num_feature_vectors), self.num_clusters)
self.norm_centroids = self.features[centroid_initialize, :]
self.opt_centroids = np.array([])
self.dist = []
self.opt_dist = np.array([])
self.repeats_left = num_repeats
self.returning = {}
def run_model(self):
if self.silent is False:
print("Running...")
while self.repeats_left > 0:
KMeans.update_clusters(self)
self.dist = KMeans._centroid_feature_dist(self)
KMeans.loop_run(self)
KMeans.optimize_model(self)
self.repeats_left = self.repeats_left - 1
KMeans.reset_model(self)
if self.silent is False:
print("Runs left: {}".format(self.repeats_left))
if self.silent is False:
print("Done!\n")
return self.opt_centroids, self.opt_clusters
def update_clusters(self):
self.old_clusters = self.clusters.copy()
dist_matrix = np.array([])
for k in range(0, self.num_clusters):
dists = np.sum((self.norm_centroids[k, :] - self.features) ** 2, axis=1) ** (1 / 2)
dist_matrix = np.append(dist_matrix, dists)
dist_matrix = np.reshape(dist_matrix, (self.num_clusters, self.num_feature_vectors)).T
self.clusters = np.argmin(dist_matrix, axis=1)
def update_centroids(self):
for k in range(0, self.num_clusters):
try:
self.norm_centroids[k, :] = np.mean(self.features[np.where(self.clusters == k), :], axis=1)
except RuntimeWarning:
self.norm_centroids[k, :] = np.zeros(self.num_dimensions)
if self.silent is False:
print("A cluster with 0 data-points was found! \n\tCorrecting...")
def convergence_test(self):
if self.old_clusters.shape == self.clusters.shape:
has_converged = (self.old_clusters == self.clusters).all()
else:
has_converged = False
return has_converged
def loop_run(self):
while not KMeans.convergence_test(self):
KMeans.update_centroids(self)
KMeans.update_clusters(self)
def reset_model(self):
self.old_clusters = np.array([])
self.clusters = np.array([])
centroid_initialize = random.sample(range(0, self.num_feature_vectors), self.num_clusters)
self.norm_centroids = self.features[centroid_initialize, :]
def optimize_model(self):
if self.opt_dist.size == 0 or KMeans._centroid_feature_dist(self) < self.opt_dist:
self.opt_clusters = self.clusters.copy()
self.opt_centroids = self.norm_centroids.copy() / self.norm_factors
self.opt_dist = KMeans._centroid_feature_dist(self)
def _centroid_feature_dist(self):
dist_matrix = self.norm_centroids[self.clusters, :] - self.features
dist_vector = np.sum(dist_matrix ** 2, axis=1) ** (1 / 2)
return np.sum(dist_vector)
def add_feature(self, feature):
try:
if feature.ndim == 1:
feature = np.array([feature])
num_features = feature.shape[0]
dist_matrix = np.array([])
for k in range(0, self.num_clusters):
dists = np.sum((self.norm_centroids[k, :] - feature) ** 2, axis=1) ** (1 / 2)
dist_matrix = np.append(dist_matrix, dists)
dist_matrix = np.reshape(dist_matrix, (self.num_clusters, num_features)).T
local_clusters = np.argmin(dist_matrix, axis=1)
return local_clusters
except TypeError:
print("Please use a 1- or 2-dimensional numpy array")
class LinearRegression:
"""
Methods give_regression() and predict() can be used. This gives linear regression from the given matrices and
solutions to the equation f*X=y.
give_regression() gives the best approximations for X, which lowers the errors as much as possible.
predict() gives the opportunity to predict the y, using the approximated X.
If ridge regression is preferred, the regularization constant lambda(here lam) can be defined. If Ridge=True is set,
a default value of lam=0.01 is used.
"""
def __init__(self, features, solution, lam=0, ridge=False):
if features.shape[0] > features.shape[1]:
self.features = features
else:
self.features = features.T
if lam != 0:
self.lam = lam
elif ridge is True:
self.lam = 0.01
else:
self.lam = 0
self.solution = solution
self.coefs = np.array([])
self.prediction = np.array([])
def give_regression(self):
a = np.matmul(self.features.T, self.features)
b = np.linalg.inv(a + self.lam*np.eye(len(a)))
c = np.matmul(b, self.features.T)
self.coefs = np.dot(c, self.solution)
return self.coefs
def predict(self, feature):
energies = np.dot(feature, self.coefs)
self.prediction = energies
return self.prediction
def give_error(self, solution):
mae = np.mean(np.abs(self.prediction-solution))
return mae
def cross_validation(features, solution, k, lam=0, ridge=False):
"""
k-fold Cross Validation splits the data into k folds, before using regression to predict energies.
As the different folds will give different Mean Absolute Error, the fold that decreases MAE as much as possible
is returned, in the form of coefficients used in regression.
"""
if lam != 0:
lam = lam
elif ridge is True:
lam = 0.01
else:
lam = 0
min_mae = np.array([])
opt_regression = np.array([])
split = split_seq(range(len(solution)), k)
for i in range(len(split)):
test_features = features[split[i], :]
test_solution = solution[split[i]]
testing_features = np.delete(features, split[i], axis=0)
testing_solution = np.delete(solution, split[i], axis=0)
linear = LinearRegression(test_features, test_solution, lam=lam)
regression = linear.give_regression()
linear.predict(testing_features)
mae = linear.give_error(testing_solution)
if min_mae.size > 0:
if mae < min_mae:
min_mae = mae
opt_regression = regression
else:
min_mae = mae
opt_regression = regression
return opt_regression, min_mae
class RolemodelLearning:
"""
A method used for the search for a global minimum of a structure.
This is done by shifting between relaxing the structure according to a potential, and minimizing the total cluster
distance.
The number of rolemodels determine how many of the centroids are used in the minimizing of the cluster distance.
"""
def __init__(
self, structure, num_centroids, num_rolemodels, niter, parameters,
max_iter=1000000, atol=1e-05, silent=False, debug=False
):
self.structure = structure
self.num_centroids = num_centroids
self.num_rolemodels = num_rolemodels
self.niter = niter
self.parameters = parameters.copy()
self.r_min = self.parameters.pop('r_min')
self.epsilon = self.parameters.pop('epsilon')
self.eta = self.parameters.pop('eta')
self.lam = self.parameters.pop('lam')
self.r_center = self.parameters.pop('r_center')
self.r_cutoff = self.parameters.pop('r_cutoff')
if 'upscale' in self.parameters:
self.upscale = self.parameters.pop('upscale')
else:
self.upscale = 1
if 'rattle_factor' in self.parameters:
if self.parameters['rattle_factor'] < 0 or self.parameters['rattle_factor'] > 1:
raise ValueError("rattle_factor should between 0 and 1.")
else:
self.rattle_factor = self.parameters.pop('rattle_factor')
else:
self.rattle_factor = 0
if 'global_minimum' in self.parameters:
self.global_minimum = self.parameters.pop('global_minimum')
self.global_min_iter = 0
else:
self.global_minimum = None
self.global_min_iter = None
if self.parameters:
raise ValueError("Non-used parameters given")
self.max_iter = max_iter
self.atol = atol
self.silent = silent
self.debug = debug
self.grades = np.zeros(self.num_centroids)
self.grade_results = self.grades[np.newaxis].copy()
self.energy_start = lennard_jones(self.structure, self.r_min)
self.energies = [self.energy_start]
self.energy_new = None
self.energy_opt = self.energy_start
self.features = calculate_features(self.structure, self.lam, self.eta, self.r_center, self.r_cutoff)
self.centroids, self.clusters = KMeans(self.features, self.num_centroids, self.num_rolemodels, silent=True
).run_model()
self.cluster_dist_start = cluster_distance(self.features, self.centroids)
self.cluster_distances = [self.cluster_dist_start]
self.cluster_dist_new = None
self.cluster_dist_opt = self.cluster_dist_start
self.structure_relaxed = self.structure.copy()
self.structure_opt = self.structure_relaxed.copy()
self.rolemodel_index = list(range(self.num_centroids))
self.rolemodels = self.centroids[self.rolemodel_index, :]
def run_model(self):
if self.silent is False:
print("Starting energy: {:.3e}".format(self.energy_start))
print("Starting cluster distance: {:.3e}".format(self.cluster_dist_start))
print("Running model ... ")
RolemodelLearning.relax_structure(self)
rolemodel_index = RolemodelLearning.choose_rolemodels(self)
RolemodelLearning.plot_struct_clustering(self, rolemodel_index)
for iteration in range(1, self.niter + 1):
if self.silent is False:
print("\tIteration {}".format(iteration))
RolemodelLearning.rattle_structure(self)
RolemodelLearning.minimize_cluster_distance(self)
rolemodel_index = RolemodelLearning.choose_rolemodels(self)
RolemodelLearning.plot_struct_clustering(self, rolemodel_index)
RolemodelLearning.relax_structure(self)
self.grades[rolemodel_index] += 2*sigmoid(self.energies[-3] - self.energies[-1]) - 1
self.grade_results = np.append(self.grade_results, self.grades[np.newaxis], axis=0)
rolemodel_index = RolemodelLearning.choose_rolemodels(self)
RolemodelLearning.plot_struct_clustering(self, rolemodel_index)
if self.global_minimum is not None and np.isclose(self.energies[-1], self.global_minimum, atol=self.atol):
self.global_min_iter = iteration
break
if self.global_min_iter == 0:
self.global_min_iter = 1.1 * self.niter
if self.silent is False:
print("Done!")
if self.global_min_iter is not None:
if self.global_min_iter < self.niter + 1:
print("\nThe global minimum was found at iteration number {}!".format(self.global_min_iter))
else:
print("\nThe global minimum was not reached..")
else:
print("\nThe minimum energy is: {:.3e}".format(self.energy_opt))
print("A change in energy is found to be: {:.3e}".format(self.energy_opt - self.energy_start))
print("\nThe cluster distance is: {:.3e}".format(self.cluster_dist_opt))
print("A change in cluster distance is found to be: {:.3e}".format(
self.cluster_dist_opt - self.cluster_dist_start)
)
def rattle_structure(self):
displacement = np.random.normal(size=self.structure_relaxed.shape)
displacement = displacement / np.max(abs(displacement)) * self.rattle_factor * self.r_min
self.structure_relaxed = self.structure_relaxed + displacement
def minimize_cluster_distance(self):
if self.silent is False:
print("\nMinimizing cluster-distance ...")
self.structure_relaxed = minimize_cluster_distance(
self.structure_relaxed, self.rolemodels, lam=self.lam, r_cutoff=self.r_cutoff, r_center=self.r_center,
eta=self.eta, upscale=self.upscale, max_iter=self.max_iter, atol=self.atol, debug=False,
silent=True
)
self.features = calculate_features(
self.structure_relaxed, self.lam, self.eta, self.r_center, self.r_cutoff, upscale=self.upscale
)
RolemodelLearning.add_energy_cluster_dist(self)
def relax_structure(self):
if self.silent is False:
print("\nMinimizing energy ...")
self.structure_relaxed = relax_structure(
self.structure_relaxed, r_min=self.r_min, epsilon=self.epsilon,
max_iter=self.max_iter, atol=self.atol, debug=False, silent=True
)
self.features = calculate_features(
self.structure_relaxed, self.lam, self.eta, self.r_center, self.r_cutoff, upscale=self.upscale
)
RolemodelLearning.add_energy_cluster_dist(self)
def choose_rolemodels(self):
centroids, self.clusters = KMeans(
self.features, self.num_centroids, self.num_rolemodels, silent=True
).run_model()
_, self.centroids = pair_sorting(self.centroids, centroids)
random.shuffle(self.rolemodel_index)
centroid_sizes = compute_sizes(self.centroids).flatten()
not_zero = centroid_sizes > 0.1
num_not_zero = np.sum(not_zero)
num_rolemodels = max([min([num_not_zero, self.num_rolemodels]), 1])
rolemodel_index = np.array(self.rolemodel_index)[not_zero[self.rolemodel_index]]
if len(rolemodel_index) == 0:
rolemodel_index = self.rolemodel_index.copy()
else:
rolemodel_index = rolemodel_index[:num_rolemodels]
self.rolemodels = self.centroids[rolemodel_index, :]
if self.rolemodels.shape[0] == 0:
raise ValueError("0 rolemodels equipped!")
for rm in range(self.rolemodels.shape[0]):
size = np.sqrt(np.sum(self.rolemodels[rm, :]**2))
if size < 0.1:
RolemodelLearning.plot_struct_clustering(self, self.rolemodel_index)
return rolemodel_index
def add_energy_cluster_dist(self):
energy = lennard_jones(self.structure_relaxed, r_min=self.r_min)
distance = cluster_distance(self.features, self.rolemodels)
self.energies.append(energy)
self.cluster_distances.append(distance)
if distance < self.cluster_dist_opt:
self.cluster_dist_opt = distance
if energy < self.energy_opt:
self.energy_opt = energy
self.structure_opt = self.structure_relaxed.copy()
def plot_struct_clustering(self, rolemodel_index):
if self.debug is True:
plot_structure(
self.structure_relaxed, title='Energy: {:.2e}'.format(self.energies[-1])
)
plot_clustering(
self.features, self.centroids, clusters=self.clusters,
figsize=(7, 7), alpha=1, fs=50, centroid_emphasis=rolemodel_index
)
@property
def give_structure(self):
return self.structure_opt
@property
def give_energies(self):
return self.energies
@property
def give_energy(self):
return self.energy_opt
@property
def give_distances(self):
return self.cluster_distances
@property
def give_distance(self):
return self.cluster_dist_opt
@property
def give_grades(self):
return self.grades
@property
def give_grade_results(self):
return self.grade_results
@property
def give_iteration(self):
if self.global_min_iter is not None:
return self.global_min_iter