-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_function.py
170 lines (146 loc) · 6.32 KB
/
plot_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import numpy as np
from maths import compute_sizes, cluster_distance
import matplotlib.pyplot as plt
import matplotlib.pylab as pl
import matplotlib.cm as cm
def plot_clustering(
features, centroids, title=None, xlabel=r"$\rho_i^{I}$", ylabel=r"$\rho_i^{II}$",
alpha=0.3, cmarker='*', cs=50, clabel='Centroids', calpha=0.7, fs=15,
figsize=(7, 7), clusters=None, savefig=False, figtitle='clustering.png', linewidth='.3', edgecolor='black',
centroid_emphasis=None, emarker='x', es=70, ecolor='red', elabel='Role-models', legend=True
):
nclusters = centroids.shape[0]
if clusters is None:
cluster_dist = np.zeros([features.shape[0], nclusters])
for i in range(nclusters):
cluster_dist[:, i] = compute_sizes(features - centroids[i, :]).flatten()
clusters = np.argmin(cluster_dist, axis=1)
if centroid_emphasis is None:
centroid_emphasis = []
if title is None:
if len(centroid_emphasis) != 0:
cluster_dist = cluster_distance(features, centroids[centroid_emphasis, :])
title = 'Total role-model cluster distance: {:.2f}'.format(cluster_dist)
else:
cluster_dist = cluster_distance(features, centroids)
title = 'Total cluster distance: {:.2f}'.format(cluster_dist)
colors = cm.rainbow(np.linspace(0, 1, nclusters))
plt.figure(figsize=figsize)
for cluster in np.sort(np.unique(clusters)):
index = np.where(clusters == cluster)
plt.scatter(
features[index, 0], features[index, 1],
color=colors[cluster], label='Cluster '+str(cluster), alpha=alpha, marker='.', s=fs, edgecolor=edgecolor,
linewidth=linewidth
)
if calpha == 0:
clabel = ''
cluster_index = ~np.isin(range(nclusters), centroid_emphasis)
plt.scatter(
centroids[cluster_index, 0], centroids[cluster_index, 1], marker=cmarker, c='blue', alpha=calpha,
edgecolor='black', s=cs, label=clabel
)
if len(centroid_emphasis) != 0:
plt.scatter(
centroids[~cluster_index, 0], centroids[~cluster_index, 1], marker=emarker, c=ecolor, alpha=1,
edgecolor='black', s=es, label=elabel
)
plt.xlabel(xlabel, fontsize=14)
plt.ylabel(ylabel, fontsize=14)
plt.title(title, fontsize=16)
if legend is True:
plt.legend(fontsize=12)
plt.grid()
if savefig is True:
plt.savefig(figtitle)
plt.show()
def plot_structure(
structure, title='', xlabel='x', ylabel='y', figsize=(7, 7), s=400, cmap='copper', edgecolor='black',
savefig=False, figtitle='structure.png', structure2=None, label1="Structure 1", label2="Structure 2"
):
natoms, ndims = structure.shape
plt.figure(figsize=figsize)
if ndims == 3:
structure = structure[np.argsort(structure[:, 2]), :]
plt.scatter(structure[:, 0], structure[:, 1], s=s, c=structure[:, 2], cmap=cmap, edgecolor=edgecolor)
plt.colorbar()
elif ndims == 2:
if structure2 is not None:
plt.scatter(structure[:, 0], structure[:, 1], s=s, cmap=cmap, edgecolor=edgecolor, label=label1)
plt.scatter(structure2[:, 0], structure2[:, 1], s=s, cmap='Blues', edgecolors=edgecolor, label=label2)
else:
plt.scatter(structure[:, 0], structure[:, 1], s=s, cmap=cmap, edgecolor=edgecolor)
else:
raise ValueError("structure-array should be 2- or 3-dimensional")
plt.xlabel(xlabel, fontsize=18)
plt.ylabel(ylabel, fontsize=18)
plt.title(title, fontsize=20)
if structure2 is not None:
plt.legend(loc='best', fontsize=14)
plt.axis('equal')
plt.grid()
if savefig is True:
plt.savefig(figtitle)
plt.show()
def hist_ranges(
distances1, distances2, num_bins=40, bins=None, title='Histogram of all internal bond-lengths',
xlabel='Distances', ylabel='Number of instances', figsize=(10, 7), c1='red', c2='blue', edgecolor1='black',
edgecolor2='black', label1='Structure 1', label2='Structure 2', alpha=0.5
):
bins = bins
num_bins = num_bins
if bins is None:
bins = np.linspace(0, np.max(np.append(distances1, distances2)), num_bins+1)
plt.figure(figsize=figsize)
plt.hist(distances1.flatten(), bins=bins, color=c1, alpha=alpha, edgecolor=edgecolor1, label=label1)
plt.hist(distances2.flatten(), bins=bins, color=c2, alpha=alpha, edgecolor=edgecolor2, label=label2)
plt.legend(loc='best')
plt.xlabel(xlabel, fontsize=12)
plt.ylabel(ylabel, fontsize=12)
plt.xlim(0,bins.max())
plt.title(title, fontsize=14)
plt.show()
def subplots_horizontal(
energies, distances, title, figsize=(10, 5), first_ylabel=r'$y_1$', second_ylabel=r'$y_2$', xlabel='x'
):
plt.figure(figsize=figsize)
plt.subplot(2, 1, 1)
plt.plot(energies)
plt.xlim(0, len(energies) - 1)
plt.ylim(min(energies) - 1, min(max(energies), 100) + 1)
plt.ylabel(first_ylabel)
plt.title(title)
plt.grid()
plt.subplot(2, 1, 2)
plt.plot(distances)
plt.xlim(0, len(distances) - 1)
plt.ylim(min(distances) - 1, max(distances) + 1)
plt.xlabel(xlabel)
plt.ylabel(second_ylabel)
plt.grid()
plt.show()
def density_error(x, y, y_error, figsize=(10, 5), xlabel='', ylabel='', alpha=0.2, edgecolor='none'):
if y_error.size == y.size:
y_error = np.append(y_error, y_error, axis=0).reshape(2, y.size).T
elif y_error.size != y.size * 2:
raise ValueError("y_error should have the same or double the size of y")
plt.figure(figsize=figsize)
for n in range(y.shape[1]):
plt.plot(x, y[:, n])
plt.fill_between(x, y[n] - y_error[:, 0], y[n] + y_error[:, 1], alpha=alpha, edgecolor=edgecolor)
plt.xlim(np.min(x), x[-1])
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.show()
def energy_distance_correlation(
distances, energies, title='', xlabel='', ylabel='', figsize=(10, 5), color='black', fontsize=12
):
plt.figure(figsize=figsize)
plt.plot(distances, energies)
for n in range(len(energies)):
pl.text(distances[n], energies[n], n, color=color, fontsize=fontsize)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.title(title)
plt.grid()
plt.show()