-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolo-car-counter.py
172 lines (141 loc) · 6.8 KB
/
yolo-car-counter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse
import datetime
import glob
import os
import time
import cv2
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import natsort
import numpy as np
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="path to input image")
ap.add_argument("-y", "--yolo", required=True, help="base path to YOLO directory")
ap.add_argument("-c", "--confidence", type=float, default=0.5, help="minimum probability to filter weak detections")
ap.add_argument("-t", "--threshold", type=float, default=0.3, help="threshold when applying non-maxima suppression")
args = vars(ap.parse_args())
# load the COCO class labels our YOLO model was trained on
labelsPath = os.path.sep.join([args["yolo"], "coco.names"])
LABELS = open(labelsPath).read().strip().split("\n")
# initialize a list of colors to represent each possible class label
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8")
# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"])
configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"])
# load our YOLO object detector trained on COCO dataset (80 classes)
print("[INFO] loading YOLO from disk...")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
# initialize maximum number of vehicles
max_count = 0
# initialize number of vehicles sequence
cars_count = np.array([])
total_time_start = time.time()
img_array = []
print(str(len(glob.glob('F:/Crowd Counter/images/*.jpg'))) + " images found")
for filename in natsort.natsorted(glob.glob('F:/Crowd Counter/images/*.jpg')):
if os.stat(filename).st_size == 0:
cars_count = np.append(cars_count, 0)
break
# load our input image and grab its spatial dimensions
image = cv2.imread(filename)
(H, W) = image.shape[:2]
# determine only the *output* layer names that we need from YOLO
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# construct a blob from the input image and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes and
# associated probabilities
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
end = time.time()
# show timing information on YOLO
print("[INFO] YOLO took {:.6f} seconds for image {}".format(end - start, filename))
# initialize our lists of detected bounding boxes, confidences, and
# class IDs, respectively
boxes = []
confidences = []
classIDs = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability) of
# the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > args["confidence"]:
# scale the bounding box coordinates back relative to the
# size of the image, keeping in mind that YOLO actually
# returns the center (x, y)-coordinates of the bounding
# box followed by the boxes' width and height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top and
# and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates, confidences,
# and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# apply non-maxima suppression to suppress weak, overlapping bounding
# boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, args["confidence"], args["threshold"])
if len(idxs) > max_count:
max_count = len(idxs)
# Append amount of vehicles to plot
cars_count = np.append(cars_count, len(idxs))
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
if LABELS[classIDs[i]] in ("car", "truck", "person"):
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
# draw a bounding box rectangle and label on the image
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i])
cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
car_count_text = "Number of recognized vehicles: {}".format(len(idxs))
cv2.putText(image, car_count_text, (5, H - 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
max_count_text = "Maximum number of vehicles: {}".format(max_count)
cv2.putText(image, max_count_text, (5, H - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
# store image for creating video
cv2.imshow("image", image)
cv2.waitKey(0)
img_array.append(image)
# save output images to video
out = cv2.VideoWriter('F:/Crowd Counter/output/project.avi', cv2.VideoWriter_fourcc(*'DIVX'), 30, (640, 480))
for i in range(len(img_array)):
out.write(img_array[i])
out.release()
# Data for plotting
print(str(len(cars_count)) + " images processed")
total_time_end = time.time()
print("{:.1f} minutes passed".format((total_time_end - total_time_start)/60))
customdate = datetime.datetime(2019, 6, 2, 19, 10)
x = [customdate + datetime.timedelta(minutes=i*5) for i in range(len(cars_count))]
# Write CSV
cars_array = np.asarray(cars_count, dtype=int)
dates_array = np.asarray(x, dtype=np.unicode)
np.savetxt("car-data.csv", np.c_[dates_array, cars_array], delimiter=';', fmt='%s')
# Create plot
fig, ax = plt.subplots()
ax.plot(x, cars_count)
ax.set(xlabel='Time', ylabel='Number of vehicles',
title='Parking lot utilization over time')
ax.grid()
ax.xaxis.set_major_formatter(mdates.DateFormatter('%a, %d.%m.'))
fig.autofmt_xdate()
fig.savefig("car-plot.png")
plt.show()