-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain1.py
425 lines (369 loc) · 21.3 KB
/
train1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import sys
# sys.path.append('./Sound2Scene')
import argparse
from torch.autograd import Variable
import logging
import math
import os
from typing import Optional
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
from torch.utils.data import Dataset, DataLoader
import datasets
import diffusers
import transformers
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import DDPMScheduler
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from huggingface_hub import HfFolder, whoami
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
from tqdm.auto import tqdm
from transformers import CLIPTokenizer
from modules.AudioToken.AudioToken import AudioTokenWrapper
from data.dataloader import VGGSound
from Sound2Scene.a2s_dataloader import GetVGGSound
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.12.0")
logger = get_logger(__name__)
def save_progress(model, save_path_prefix):
logger.info("Saving model progress...")
# Save the embedder
embedder_path = f"{save_path_prefix}_embedder.bin"
torch.save(model.embedder.state_dict(), embedder_path)
logger.info(f"Embedder saved to {embedder_path}")
# Save the UNet model
unet_path = f"{save_path_prefix}_unet.bin"
torch.save(model.unet.state_dict(), unet_path)
logger.info(f"UNet model saved to {unet_path}")
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument("--save_steps", type=int, default=1000,
help="Save learned_embeds.bin every X updates steps.")
parser.add_argument("--pretrained_model_name_or_path", type=str, default='stabilityai/stable-diffusion-2',
help="Path to pretrained model or model identifier from huggingface.co/models.")
parser.add_argument("--revision", type=str, default=None, required=False,
help="Revision of pretrained model identifier from huggingface.co/models.")
parser.add_argument("--tokenizer_name", type=str, default=None,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--data_dir", type=str,
help="A folder containing the training data.")
parser.add_argument("--placeholder_token", type=str, default="<*>",
help="A token to use as a placeholder for the concept.")
parser.add_argument("--repeats", type=int, default=1,
help="How many times to repeat the training data.")
parser.add_argument("--output_dir", type=str,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--seed", type=int, default=None,
help="A seed for reproducible training.")
parser.add_argument("--resolution", type=int, default=512,
help="The resolution for input images, all the images in the train/validation dataset will"
" be resized to this resolution")
parser.add_argument("--center_crop", action="store_true",
help="Whether to center crop images before resizing to resolution.")
parser.add_argument("--train_batch_size", type=int, default=4,
help="Batch size (per device) for the training dataloader.")
parser.add_argument("--batch_size", type=int, default=4,
help="Batch size (per device) for the training dataloader.")
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument("--max_train_steps", type=int, default=60000,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", type=float, default=1e-05,
help="Initial learning rate (after the potential warmup period) to use.")
parser.add_argument("--scale_lr", type=bool, default=True,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.")
parser.add_argument("--lr_scheduler", type=str, default="constant",
help='The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts",'
' "polynomial" "constant", "constant_with_warmup"]')
parser.add_argument("--lr_warmup_steps", type=int, default=500,
help="Number of steps for the warmup in the lr scheduler.")
parser.add_argument("--dataloader_num_workers", type=int, default=4,
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded"
" in the main process.")
parser.add_argument("--adam_beta1", type=float, default=0.9,
help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999,
help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2,
help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08,
help="Epsilon value for the Adam optimizer")
parser.add_argument("--logging_dir", type=str, default="logs",
help="[TensorBoard](https://www.tensorflow.org/tensorboard) log directory."
" Will default to *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***.")
parser.add_argument("--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16)."
" Bf16 requires PyTorch >= 1.10. and an Nvidia Ampere GPU.")
parser.add_argument("--allow_tf32", action="store_true",
help="Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training."
" For more information, see https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices")
parser.add_argument( "--report_to", type=str, default="tensorboard",
help='The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.')
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument("--data_set", type=str, default='train', choices=['train', 'test'],
help="Whether use train or test set")
parser.add_argument("--lambda_a", type=float, default=0.01,
help="Regularization lambda - l1")
parser.add_argument("--lambda_b", type=float, default=0,
help="Regularization lambda - l2")
parser.add_argument("--lambda_c", type=float, default=0.01,
help="Regularization lambda - classification loss")
parser.add_argument("--run_name", type=str, default='AudioToken',
help="Insert run name")
parser.add_argument("--cosine_loss", type=bool, default=False,
help="Use classification loss")
parser.add_argument("--filter_frames", type=bool, default=True,
help="Choose whether or not to use previously detected frames as informative frames.",)
parser.add_argument("--filter_unmatch_videos", type=bool, default=True,
help="Choose whether or not to filter videos whose visuals and audio do not match.")
parser.add_argument("--filter_low_quality_imgs", type=bool, default=True,
help="Choose whether or not to filter videos that have been identified"
" in advance as having poor visual quality.")
parser.add_argument("--input_length", type=int, default=5,
help="Select the number of seconds of audio you want in each training-sample.")
parser.add_argument("--lora", type=bool, default=False,
help="Whether train Lora layers or not")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.data_dir is None:
raise ValueError("You must specify a train data directory.")
return args
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def train():
args = parse_args()
logging_dir = os.path.join(args.output_dir, args.logging_dir)
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_dir=logging_dir,
kwargs_handlers=[kwargs]
)
if accelerator.is_local_main_process:
folder_path = args.output_dir
if not os.path.exists(folder_path):
os.makedirs(folder_path)
folder_path = args.output_dir + 'weights/'
if not os.path.exists(folder_path):
os.makedirs(folder_path)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Load tokenizer
if args.tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
elif args.pretrained_model_name_or_path:
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
# Add the placeholder token in tokenizer
num_added_tokens = tokenizer.add_tokens(args.placeholder_token)
if num_added_tokens == 0:
raise ValueError(
f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different"
" `placeholder_token` that is not already in the tokenizer."
)
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
train_dataset = GetVGGSound(args.data_dir)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
# For mixed precision training we cast the unet and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
model = AudioTokenWrapper(args, accelerator).to(weight_dtype)
params = model.embedder.parameters()
if args.lora:
params = list(model.embedder.parameters()) + list(model.lora_layers.parameters())
optimizer = torch.optim.AdamW(
params,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("wav2img", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
running_loss = 0
# txt_embeddings = accelerator.unwrap_model(model).text_encoder.get_input_embeddings().weight
for epoch in range(first_epoch, args.num_train_epochs):
for step, batch in enumerate(train_dataloader):
#batch:(index, spec, emb_img, orig_img)
with accelerator.accumulate(model):
# Convert images to latent space
latents = accelerator.unwrap_model(model).vae.encode((batch[2].squeeze(1)).to(dtype=weight_dtype)).latent_dist.sample().detach()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
audio_values = Variable(batch[1]).to(accelerator.device).to(dtype=weight_dtype)
_, aud_features = accelerator.unwrap_model(model).aud_encoder(audio_values.unsqueeze(1).float())
print(aud_features.shape)
encoder_hidden_states = accelerator.unwrap_model(model).embedder(aud_features.unsqueeze(1)).unsqueeze(1)
# print(audio_values.shape, aud_features.shape, audio_token.shape)
# Get the text embedding for conditioning
# encoder_hidden_states = accelerator.unwrap_model(model).text_encoder(
# audio_token, input_ids=batch['input_ids'])[0].to(dtype=weight_dtype)
# encoder_hidden_states = aud_features
# Predict the noise residual
model_pred = accelerator.unwrap_model(model).unet(noisy_latents, timesteps, encoder_hidden_states).sample
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
if len(aud_features.shape) > 2:
norm_dim = 2
else:
norm_dim = 1
# add regularization
reg_loss = args.lambda_a * torch.mean(torch.abs(encoder_hidden_states)) + \
args.lambda_b * (torch.norm(encoder_hidden_states, p=2, dim=norm_dim)**2).mean()
print('regloss:',reg_loss)
loss += reg_loss
# if args.cosine_loss:
# input_ids = tokenizer(batch['label']).data['input_ids']
# input_ids = [ids[1:-1] for ids in input_ids]
# target = torch.cat([txt_embeddings[ids].mean(dim=0).view(1, -1) for ids in input_ids])
# if args.multiple_tokens:
# embedds = audio_token[:, -1, :]
# else:
# embedds = audio_token
# cosine_sim = F.cosine_similarity(embedds, target, dim=1).mean()
# cosine_penalty = (1 - cosine_sim) ** 2
# loss += args.lambda_c * cosine_penalty
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
running_loss += loss.detach().item()
if global_step % args.save_steps == 0:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
save_path_prefix = os.path.join(args.output_dir, f"weights/{args.run_name}-{global_step}")
save_progress(model, save_path_prefix)
if args.lora:
save_path = os.path.join(args.output_dir, f"weights/{args.run_name}_lora_layers_learned_embeds-{global_step}.bin")
save_progress(accelerator.unwrap_model(model).lora_layers, save_path)
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
# save the progress
accelerator.wait_for_everyone()
if accelerator.is_main_process:
save_path_embedder = os.path.join(args.output_dir, f"learned_embeds.bin")
save_progress(accelerator.unwrap_model(model).embedder, save_path_embedder)
if args.lora:
save_path_lora = os.path.join(args.output_dir, f"learned_embeds_lora_layers.bin")
save_progress(accelerator.unwrap_model(model).lora_layers, save_path_lora)
accelerator.end_training()
if __name__ == "__main__":
train()