forked from guerreror/pepo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.html
128 lines (117 loc) · 99.4 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<link href="data:text/css;charset=utf-8,%0A%40font%2Dface%20%7B%0Afont%2Dfamily%3A%20octicons%2Dlink%3B%0Asrc%3A%20url%28data%3Afont%2Fwoff%3Bcharset%3Dutf%2D8%3Bbase64%2Cd09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM%2B8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB%2FaFGpk3jaTY6xa8JAGMW%2FO62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v%2Bk%2F0an2i%2BitHDw3v2%2B9%2BDBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3%2FI7AtxEJLtzzuZfI%2BVVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy%2FLt7Kc%2B0vWY%2FgAgIIEqAN9we0pwKXreiMasxvabDQMM4riO%2BqxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw%2Bymhce7vwM9jSqO8JyVd5RH9gyTt2%2BJ%2FyUmYlIR0s04n6%2B7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv%2FocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi%2BW2%2BMjCzMIDApSwvXzC97Z4Ig8N%2FBxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh%2F8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT%2BAEjAwuDFpBmA9KMDEwMCh9i%2Fv8H8sH0%2F4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9%2FlqYwOGZxeUelN2U2R6%2BcArgtCJpauW7UQBqnFkUsjAY%2FkOU1cP%2BDAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl%2BvvmM%2FbyA48e6tWrKArm4ZJlCbdsrxksL1AwWn%2FyBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO%2F%2FsdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd%2F89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF%2B9JOS0nbaaYDCQfwCJ7Au3AHj%2BLO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm%2BEBXuAbHmIMSRMs%2B4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL%2BhD7C1xoaHeLJSEao0FEW14ckxC%2BTU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13%2F%2Blm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl%2B9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O%2FAdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB%2F%2F%2FAA8AAQAAAAAAAAAAAAAAAAABAAAAAA%3D%3D%29%20format%28%27woff%27%29%3B%0A%7D%0Abody%20%7B%0A%2Dwebkit%2Dtext%2Dsize%2Dadjust%3A%20100%25%3B%0Atext%2Dsize%2Dadjust%3A%20100%25%3B%0Acolor%3A%20%23333%3B%0Afont%2Dfamily%3A%20%22Helvetica%20Neue%22%2C%20Helvetica%2C%20%22Segoe%20UI%22%2C%20Arial%2C%20freesans%2C%20sans%2Dserif%2C%20%22Apple%20Color%20Emoji%22%2C%20%22Segoe%20UI%20Emoji%22%2C%20%22Segoe%20UI%20Symbol%22%3B%0Afont%2Dsize%3A%2016px%3B%0Aline%2Dheight%3A%201%2E6%3B%0Aword%2Dwrap%3A%20break%2Dword%3B%0A%7D%0Aa%20%7B%0Abackground%2Dcolor%3A%20transparent%3B%0A%7D%0Aa%3Aactive%2C%0Aa%3Ahover%20%7B%0Aoutline%3A%200%3B%0A%7D%0Astrong%20%7B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0Ah1%20%7B%0Afont%2Dsize%3A%202em%3B%0Amargin%3A%200%2E67em%200%3B%0A%7D%0Aimg%20%7B%0Aborder%3A%200%3B%0A%7D%0Ahr%20%7B%0Abox%2Dsizing%3A%20content%2Dbox%3B%0Aheight%3A%200%3B%0A%7D%0Apre%20%7B%0Aoverflow%3A%20auto%3B%0A%7D%0Acode%2C%0Akbd%2C%0Apre%20%7B%0Afont%2Dfamily%3A%20monospace%2C%20monospace%3B%0Afont%2Dsize%3A%201em%3B%0A%7D%0Ainput%20%7B%0Acolor%3A%20inherit%3B%0Afont%3A%20inherit%3B%0Amargin%3A%200%3B%0A%7D%0Ahtml%20input%5Bdisabled%5D%20%7B%0Acursor%3A%20default%3B%0A%7D%0Ainput%20%7B%0Aline%2Dheight%3A%20normal%3B%0A%7D%0Ainput%5Btype%3D%22checkbox%22%5D%20%7B%0Abox%2Dsizing%3A%20border%2Dbox%3B%0Apadding%3A%200%3B%0A%7D%0Atable%20%7B%0Aborder%2Dcollapse%3A%20collapse%3B%0Aborder%2Dspacing%3A%200%3B%0A%7D%0Atd%2C%0Ath%20%7B%0Apadding%3A%200%3B%0A%7D%0A%2A%20%7B%0Abox%2Dsizing%3A%20border%2Dbox%3B%0A%7D%0Ainput%20%7B%0Afont%3A%2013px%20%2F%201%2E4%20Helvetica%2C%20arial%2C%20nimbussansl%2C%20liberationsans%2C%20freesans%2C%20clean%2C%20sans%2Dserif%2C%20%22Apple%20Color%20Emoji%22%2C%20%22Segoe%20UI%20Emoji%22%2C%20%22Segoe%20UI%20Symbol%22%3B%0A%7D%0Aa%20%7B%0Acolor%3A%20%234078c0%3B%0Atext%2Ddecoration%3A%20none%3B%0A%7D%0Aa%3Ahover%2C%0Aa%3Aactive%20%7B%0Atext%2Ddecoration%3A%20underline%3B%0A%7D%0Ahr%20%7B%0Aheight%3A%200%3B%0Amargin%3A%2015px%200%3B%0Aoverflow%3A%20hidden%3B%0Abackground%3A%20transparent%3B%0Aborder%3A%200%3B%0Aborder%2Dbottom%3A%201px%20solid%20%23ddd%3B%0A%7D%0Ahr%3Abefore%20%7B%0Adisplay%3A%20table%3B%0Acontent%3A%20%22%22%3B%0A%7D%0Ahr%3Aafter%20%7B%0Adisplay%3A%20table%3B%0Aclear%3A%20both%3B%0Acontent%3A%20%22%22%3B%0A%7D%0Ah1%2C%0Ah2%2C%0Ah3%2C%0Ah4%2C%0Ah5%2C%0Ah6%20%7B%0Amargin%2Dtop%3A%2015px%3B%0Amargin%2Dbottom%3A%2015px%3B%0Aline%2Dheight%3A%201%2E1%3B%0A%7D%0Ah1%20%7B%0Afont%2Dsize%3A%2030px%3B%0A%7D%0Ah2%20%7B%0Afont%2Dsize%3A%2021px%3B%0A%7D%0Ah3%20%7B%0Afont%2Dsize%3A%2016px%3B%0A%7D%0Ah4%20%7B%0Afont%2Dsize%3A%2014px%3B%0A%7D%0Ah5%20%7B%0Afont%2Dsize%3A%2012px%3B%0A%7D%0Ah6%20%7B%0Afont%2Dsize%3A%2011px%3B%0A%7D%0Ablockquote%20%7B%0Amargin%3A%200%3B%0A%7D%0Aul%2C%0Aol%20%7B%0Apadding%3A%200%3B%0Amargin%2Dtop%3A%200%3B%0Amargin%2Dbottom%3A%200%3B%0A%7D%0Aol%20ol%2C%0Aul%20ol%20%7B%0Alist%2Dstyle%2Dtype%3A%20lower%2Droman%3B%0A%7D%0Aul%20ul%20ol%2C%0Aul%20ol%20ol%2C%0Aol%20ul%20ol%2C%0Aol%20ol%20ol%20%7B%0Alist%2Dstyle%2Dtype%3A%20lower%2Dalpha%3B%0A%7D%0Add%20%7B%0Amargin%2Dleft%3A%200%3B%0A%7D%0Acode%20%7B%0Afont%2Dfamily%3A%20Consolas%2C%20%22Liberation%20Mono%22%2C%20Menlo%2C%20Courier%2C%20monospace%3B%0Afont%2Dsize%3A%2012px%3B%0A%7D%0Apre%20%7B%0Amargin%2Dtop%3A%200%3B%0Amargin%2Dbottom%3A%200%3B%0Afont%3A%2012px%20Consolas%2C%20%22Liberation%20Mono%22%2C%20Menlo%2C%20Courier%2C%20monospace%3B%0A%7D%0A%2Eselect%3A%3A%2Dms%2Dexpand%20%7B%0Aopacity%3A%200%3B%0A%7D%0A%2Eocticon%20%7B%0Afont%3A%20normal%20normal%20normal%2016px%2F1%20octicons%2Dlink%3B%0Adisplay%3A%20inline%2Dblock%3B%0Atext%2Ddecoration%3A%20none%3B%0Atext%2Drendering%3A%20auto%3B%0A%2Dwebkit%2Dfont%2Dsmoothing%3A%20antialiased%3B%0A%2Dmoz%2Dosx%2Dfont%2Dsmoothing%3A%20grayscale%3B%0A%2Dwebkit%2Duser%2Dselect%3A%20none%3B%0A%2Dmoz%2Duser%2Dselect%3A%20none%3B%0A%2Dms%2Duser%2Dselect%3A%20none%3B%0Auser%2Dselect%3A%20none%3B%0A%7D%0A%2Eocticon%2Dlink%3Abefore%20%7B%0Acontent%3A%20%27%5Cf05c%27%3B%0A%7D%0A%2Emarkdown%2Dbody%3Abefore%20%7B%0Adisplay%3A%20table%3B%0Acontent%3A%20%22%22%3B%0A%7D%0A%2Emarkdown%2Dbody%3Aafter%20%7B%0Adisplay%3A%20table%3B%0Aclear%3A%20both%3B%0Acontent%3A%20%22%22%3B%0A%7D%0A%2Emarkdown%2Dbody%3E%2A%3Afirst%2Dchild%20%7B%0Amargin%2Dtop%3A%200%20%21important%3B%0A%7D%0A%2Emarkdown%2Dbody%3E%2A%3Alast%2Dchild%20%7B%0Amargin%2Dbottom%3A%200%20%21important%3B%0A%7D%0Aa%3Anot%28%5Bhref%5D%29%20%7B%0Acolor%3A%20inherit%3B%0Atext%2Ddecoration%3A%20none%3B%0A%7D%0A%2Eanchor%20%7B%0Adisplay%3A%20inline%2Dblock%3B%0Apadding%2Dright%3A%202px%3B%0Amargin%2Dleft%3A%20%2D18px%3B%0A%7D%0A%2Eanchor%3Afocus%20%7B%0Aoutline%3A%20none%3B%0A%7D%0Ah1%2C%0Ah2%2C%0Ah3%2C%0Ah4%2C%0Ah5%2C%0Ah6%20%7B%0Amargin%2Dtop%3A%201em%3B%0Amargin%2Dbottom%3A%2016px%3B%0Afont%2Dweight%3A%20bold%3B%0Aline%2Dheight%3A%201%2E4%3B%0A%7D%0Ah1%20%2Eocticon%2Dlink%2C%0Ah2%20%2Eocticon%2Dlink%2C%0Ah3%20%2Eocticon%2Dlink%2C%0Ah4%20%2Eocticon%2Dlink%2C%0Ah5%20%2Eocticon%2Dlink%2C%0Ah6%20%2Eocticon%2Dlink%20%7B%0Acolor%3A%20%23000%3B%0Avertical%2Dalign%3A%20middle%3B%0Avisibility%3A%20hidden%3B%0A%7D%0Ah1%3Ahover%20%2Eanchor%2C%0Ah2%3Ahover%20%2Eanchor%2C%0Ah3%3Ahover%20%2Eanchor%2C%0Ah4%3Ahover%20%2Eanchor%2C%0Ah5%3Ahover%20%2Eanchor%2C%0Ah6%3Ahover%20%2Eanchor%20%7B%0Atext%2Ddecoration%3A%20none%3B%0A%7D%0Ah1%3Ahover%20%2Eanchor%20%2Eocticon%2Dlink%2C%0Ah2%3Ahover%20%2Eanchor%20%2Eocticon%2Dlink%2C%0Ah3%3Ahover%20%2Eanchor%20%2Eocticon%2Dlink%2C%0Ah4%3Ahover%20%2Eanchor%20%2Eocticon%2Dlink%2C%0Ah5%3Ahover%20%2Eanchor%20%2Eocticon%2Dlink%2C%0Ah6%3Ahover%20%2Eanchor%20%2Eocticon%2Dlink%20%7B%0Avisibility%3A%20visible%3B%0A%7D%0Ah1%20%7B%0Apadding%2Dbottom%3A%200%2E3em%3B%0Afont%2Dsize%3A%202%2E25em%3B%0Aline%2Dheight%3A%201%2E2%3B%0Aborder%2Dbottom%3A%201px%20solid%20%23eee%3B%0A%7D%0Ah1%20%2Eanchor%20%7B%0Aline%2Dheight%3A%201%3B%0A%7D%0Ah2%20%7B%0Apadding%2Dbottom%3A%200%2E3em%3B%0Afont%2Dsize%3A%201%2E75em%3B%0Aline%2Dheight%3A%201%2E225%3B%0Aborder%2Dbottom%3A%201px%20solid%20%23eee%3B%0A%7D%0Ah2%20%2Eanchor%20%7B%0Aline%2Dheight%3A%201%3B%0A%7D%0Ah3%20%7B%0Afont%2Dsize%3A%201%2E5em%3B%0Aline%2Dheight%3A%201%2E43%3B%0A%7D%0Ah3%20%2Eanchor%20%7B%0Aline%2Dheight%3A%201%2E2%3B%0A%7D%0Ah4%20%7B%0Afont%2Dsize%3A%201%2E25em%3B%0A%7D%0Ah4%20%2Eanchor%20%7B%0Aline%2Dheight%3A%201%2E2%3B%0A%7D%0Ah5%20%7B%0Afont%2Dsize%3A%201em%3B%0A%7D%0Ah5%20%2Eanchor%20%7B%0Aline%2Dheight%3A%201%2E1%3B%0A%7D%0Ah6%20%7B%0Afont%2Dsize%3A%201em%3B%0Acolor%3A%20%23777%3B%0A%7D%0Ah6%20%2Eanchor%20%7B%0Aline%2Dheight%3A%201%2E1%3B%0A%7D%0Ap%2C%0Ablockquote%2C%0Aul%2C%0Aol%2C%0Adl%2C%0Atable%2C%0Apre%20%7B%0Amargin%2Dtop%3A%200%3B%0Amargin%2Dbottom%3A%2016px%3B%0A%7D%0Ahr%20%7B%0Aheight%3A%204px%3B%0Apadding%3A%200%3B%0Amargin%3A%2016px%200%3B%0Abackground%2Dcolor%3A%20%23e7e7e7%3B%0Aborder%3A%200%20none%3B%0A%7D%0Aul%2C%0Aol%20%7B%0Apadding%2Dleft%3A%202em%3B%0A%7D%0Aul%20ul%2C%0Aul%20ol%2C%0Aol%20ol%2C%0Aol%20ul%20%7B%0Amargin%2Dtop%3A%200%3B%0Amargin%2Dbottom%3A%200%3B%0A%7D%0Ali%3Ep%20%7B%0Amargin%2Dtop%3A%2016px%3B%0A%7D%0Adl%20%7B%0Apadding%3A%200%3B%0A%7D%0Adl%20dt%20%7B%0Apadding%3A%200%3B%0Amargin%2Dtop%3A%2016px%3B%0Afont%2Dsize%3A%201em%3B%0Afont%2Dstyle%3A%20italic%3B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0Adl%20dd%20%7B%0Apadding%3A%200%2016px%3B%0Amargin%2Dbottom%3A%2016px%3B%0A%7D%0Ablockquote%20%7B%0Apadding%3A%200%2015px%3B%0Acolor%3A%20%23777%3B%0Aborder%2Dleft%3A%204px%20solid%20%23ddd%3B%0A%7D%0Ablockquote%3E%3Afirst%2Dchild%20%7B%0Amargin%2Dtop%3A%200%3B%0A%7D%0Ablockquote%3E%3Alast%2Dchild%20%7B%0Amargin%2Dbottom%3A%200%3B%0A%7D%0Atable%20%7B%0Adisplay%3A%20block%3B%0Awidth%3A%20100%25%3B%0Aoverflow%3A%20auto%3B%0Aword%2Dbreak%3A%20normal%3B%0Aword%2Dbreak%3A%20keep%2Dall%3B%0A%7D%0Atable%20th%20%7B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0Atable%20th%2C%0Atable%20td%20%7B%0Apadding%3A%206px%2013px%3B%0Aborder%3A%201px%20solid%20%23ddd%3B%0A%7D%0Atable%20tr%20%7B%0Abackground%2Dcolor%3A%20%23fff%3B%0Aborder%2Dtop%3A%201px%20solid%20%23ccc%3B%0A%7D%0Atable%20tr%3Anth%2Dchild%282n%29%20%7B%0Abackground%2Dcolor%3A%20%23f8f8f8%3B%0A%7D%0Aimg%20%7B%0Amax%2Dwidth%3A%20100%25%3B%0Abox%2Dsizing%3A%20content%2Dbox%3B%0Abackground%2Dcolor%3A%20%23fff%3B%0A%7D%0Acode%20%7B%0Apadding%3A%200%3B%0Apadding%2Dtop%3A%200%2E2em%3B%0Apadding%2Dbottom%3A%200%2E2em%3B%0Amargin%3A%200%3B%0Afont%2Dsize%3A%2085%25%3B%0Abackground%2Dcolor%3A%20rgba%280%2C0%2C0%2C0%2E04%29%3B%0Aborder%2Dradius%3A%203px%3B%0A%7D%0Acode%3Abefore%2C%0Acode%3Aafter%20%7B%0Aletter%2Dspacing%3A%20%2D0%2E2em%3B%0Acontent%3A%20%22%5C00a0%22%3B%0A%7D%0Apre%3Ecode%20%7B%0Apadding%3A%200%3B%0Amargin%3A%200%3B%0Afont%2Dsize%3A%20100%25%3B%0Aword%2Dbreak%3A%20normal%3B%0Awhite%2Dspace%3A%20pre%3B%0Abackground%3A%20transparent%3B%0Aborder%3A%200%3B%0A%7D%0A%2Ehighlight%20%7B%0Amargin%2Dbottom%3A%2016px%3B%0A%7D%0A%2Ehighlight%20pre%2C%0Apre%20%7B%0Apadding%3A%2016px%3B%0Aoverflow%3A%20auto%3B%0Afont%2Dsize%3A%2085%25%3B%0Aline%2Dheight%3A%201%2E45%3B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0Aborder%2Dradius%3A%203px%3B%0A%7D%0A%2Ehighlight%20pre%20%7B%0Amargin%2Dbottom%3A%200%3B%0Aword%2Dbreak%3A%20normal%3B%0A%7D%0Apre%20%7B%0Aword%2Dwrap%3A%20normal%3B%0A%7D%0Apre%20code%20%7B%0Adisplay%3A%20inline%3B%0Amax%2Dwidth%3A%20initial%3B%0Apadding%3A%200%3B%0Amargin%3A%200%3B%0Aoverflow%3A%20initial%3B%0Aline%2Dheight%3A%20inherit%3B%0Aword%2Dwrap%3A%20normal%3B%0Abackground%2Dcolor%3A%20transparent%3B%0Aborder%3A%200%3B%0A%7D%0Apre%20code%3Abefore%2C%0Apre%20code%3Aafter%20%7B%0Acontent%3A%20normal%3B%0A%7D%0Akbd%20%7B%0Adisplay%3A%20inline%2Dblock%3B%0Apadding%3A%203px%205px%3B%0Afont%2Dsize%3A%2011px%3B%0Aline%2Dheight%3A%2010px%3B%0Acolor%3A%20%23555%3B%0Avertical%2Dalign%3A%20middle%3B%0Abackground%2Dcolor%3A%20%23fcfcfc%3B%0Aborder%3A%20solid%201px%20%23ccc%3B%0Aborder%2Dbottom%2Dcolor%3A%20%23bbb%3B%0Aborder%2Dradius%3A%203px%3B%0Abox%2Dshadow%3A%20inset%200%20%2D1px%200%20%23bbb%3B%0A%7D%0A%2Epl%2Dc%20%7B%0Acolor%3A%20%23969896%3B%0A%7D%0A%2Epl%2Dc1%2C%0A%2Epl%2Ds%20%2Epl%2Dv%20%7B%0Acolor%3A%20%230086b3%3B%0A%7D%0A%2Epl%2De%2C%0A%2Epl%2Den%20%7B%0Acolor%3A%20%23795da3%3B%0A%7D%0A%2Epl%2Ds%20%2Epl%2Ds1%2C%0A%2Epl%2Dsmi%20%7B%0Acolor%3A%20%23333%3B%0A%7D%0A%2Epl%2Dent%20%7B%0Acolor%3A%20%2363a35c%3B%0A%7D%0A%2Epl%2Dk%20%7B%0Acolor%3A%20%23a71d5d%3B%0A%7D%0A%2Epl%2Dpds%2C%0A%2Epl%2Ds%2C%0A%2Epl%2Ds%20%2Epl%2Dpse%20%2Epl%2Ds1%2C%0A%2Epl%2Dsr%2C%0A%2Epl%2Dsr%20%2Epl%2Dcce%2C%0A%2Epl%2Dsr%20%2Epl%2Dsra%2C%0A%2Epl%2Dsr%20%2Epl%2Dsre%20%7B%0Acolor%3A%20%23183691%3B%0A%7D%0A%2Epl%2Dv%20%7B%0Acolor%3A%20%23ed6a43%3B%0A%7D%0A%2Epl%2Did%20%7B%0Acolor%3A%20%23b52a1d%3B%0A%7D%0A%2Epl%2Dii%20%7B%0Abackground%2Dcolor%3A%20%23b52a1d%3B%0Acolor%3A%20%23f8f8f8%3B%0A%7D%0A%2Epl%2Dsr%20%2Epl%2Dcce%20%7B%0Acolor%3A%20%2363a35c%3B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0A%2Epl%2Dml%20%7B%0Acolor%3A%20%23693a17%3B%0A%7D%0A%2Epl%2Dmh%2C%0A%2Epl%2Dmh%20%2Epl%2Den%2C%0A%2Epl%2Dms%20%7B%0Acolor%3A%20%231d3e81%3B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0A%2Epl%2Dmq%20%7B%0Acolor%3A%20%23008080%3B%0A%7D%0A%2Epl%2Dmi%20%7B%0Acolor%3A%20%23333%3B%0Afont%2Dstyle%3A%20italic%3B%0A%7D%0A%2Epl%2Dmb%20%7B%0Acolor%3A%20%23333%3B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0A%2Epl%2Dmd%20%7B%0Abackground%2Dcolor%3A%20%23ffecec%3B%0Acolor%3A%20%23bd2c00%3B%0A%7D%0A%2Epl%2Dmi1%20%7B%0Abackground%2Dcolor%3A%20%23eaffea%3B%0Acolor%3A%20%2355a532%3B%0A%7D%0A%2Epl%2Dmdr%20%7B%0Acolor%3A%20%23795da3%3B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0A%2Epl%2Dmo%20%7B%0Acolor%3A%20%231d3e81%3B%0A%7D%0Akbd%20%7B%0Adisplay%3A%20inline%2Dblock%3B%0Apadding%3A%203px%205px%3B%0Afont%3A%2011px%20Consolas%2C%20%22Liberation%20Mono%22%2C%20Menlo%2C%20Courier%2C%20monospace%3B%0Aline%2Dheight%3A%2010px%3B%0Acolor%3A%20%23555%3B%0Avertical%2Dalign%3A%20middle%3B%0Abackground%2Dcolor%3A%20%23fcfcfc%3B%0Aborder%3A%20solid%201px%20%23ccc%3B%0Aborder%2Dbottom%2Dcolor%3A%20%23bbb%3B%0Aborder%2Dradius%3A%203px%3B%0Abox%2Dshadow%3A%20inset%200%20%2D1px%200%20%23bbb%3B%0A%7D%0A%2Etask%2Dlist%2Ditem%20%7B%0Alist%2Dstyle%2Dtype%3A%20none%3B%0A%7D%0A%2Etask%2Dlist%2Ditem%2B%2Etask%2Dlist%2Ditem%20%7B%0Amargin%2Dtop%3A%203px%3B%0A%7D%0A%2Etask%2Dlist%2Ditem%20input%20%7B%0Amargin%3A%200%200%2E35em%200%2E25em%20%2D1%2E6em%3B%0Avertical%2Dalign%3A%20middle%3B%0A%7D%0A%3Achecked%2B%2Eradio%2Dlabel%20%7B%0Az%2Dindex%3A%201%3B%0Aposition%3A%20relative%3B%0Aborder%2Dcolor%3A%20%234078c0%3B%0A%7D%0A%2EsourceLine%20%7B%0Adisplay%3A%20inline%2Dblock%3B%0A%7D%0Acode%20%2Ekw%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%2Edt%20%7B%20color%3A%20%23ed6a43%3B%20%7D%0Acode%20%2Edv%20%7B%20color%3A%20%23009999%3B%20%7D%0Acode%20%2Ebn%20%7B%20color%3A%20%23009999%3B%20%7D%0Acode%20%2Efl%20%7B%20color%3A%20%23009999%3B%20%7D%0Acode%20%2Ech%20%7B%20color%3A%20%23009999%3B%20%7D%0Acode%20%2Est%20%7B%20color%3A%20%23183691%3B%20%7D%0Acode%20%2Eco%20%7B%20color%3A%20%23969896%3B%20%7D%0Acode%20%2Eot%20%7B%20color%3A%20%230086b3%3B%20%7D%0Acode%20%2Eal%20%7B%20color%3A%20%23a61717%3B%20%7D%0Acode%20%2Efu%20%7B%20color%3A%20%2363a35c%3B%20%7D%0Acode%20%2Eer%20%7B%20color%3A%20%23a61717%3B%20background%2Dcolor%3A%20%23e3d2d2%3B%20%7D%0Acode%20%2Ewa%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%2Ecn%20%7B%20color%3A%20%23008080%3B%20%7D%0Acode%20%2Esc%20%7B%20color%3A%20%23008080%3B%20%7D%0Acode%20%2Evs%20%7B%20color%3A%20%23183691%3B%20%7D%0Acode%20%2Ess%20%7B%20color%3A%20%23183691%3B%20%7D%0Acode%20%2Eim%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%2Eva%20%7Bcolor%3A%20%23008080%3B%20%7D%0Acode%20%2Ecf%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%2Eop%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%2Ebu%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%2Eex%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%2Epp%20%7B%20color%3A%20%23999999%3B%20%7D%0Acode%20%2Eat%20%7B%20color%3A%20%23008080%3B%20%7D%0Acode%20%2Edo%20%7B%20color%3A%20%23969896%3B%20%7D%0Acode%20%2Ean%20%7B%20color%3A%20%23008080%3B%20%7D%0Acode%20%2Ecv%20%7B%20color%3A%20%23008080%3B%20%7D%0Acode%20%2Ein%20%7B%20color%3A%20%23008080%3B%20%7D%0A" rel="stylesheet">
<style>
body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
padding-top: 0px;
}
</style>
</head>
<body>
<!-- README.md is generated from README.Rmd. Please edit that file -->
<h1 id="the-pepo-package">The P(e):P(o) package</h1>
<p>This is the alpha release of <code>pepo</code>, a minimal package to calculate the probabilities of hemiplasy (trait evolution incongruent with species tree due to incomplete lineage sorting) and homoplasy (incongruent traits due to convergent mutations). Currently, the package includes functions to estimate the ratio of these two probabilities, which we call the Hemiplasy Risk Factor (HRF), for all branches on a phylogeny. Provided a tree, branch lengths and population-wide mutation rate in coalescent units (2N), the HRF will give an intuition for the relative importance of hemiplasy in the evolution of a particular clade.</p>
<h2 id="installation">Installation</h2>
<p>This package depends on <code>ape</code>, <code>dplyr</code>, and <code>purrr</code>. The last two are part of the <code>tidyverse</code>.</p>
<p>Install <code>pepo</code> from github with: <code>devtools::install_github("guerreror/pepo")</code>.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(pepo)</code></pre></div>
<h2 id="quick-example">Quick example</h2>
<p>In this example we start with a preloaded phylogeny of Solanum sect Lycopersicon from Pease et al (2016). The tree is already of class <code>phylo</code> (from the 'ape' package).</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">data</span>(<span class="st">"tomato"</span>)
<span class="kw">class</span>(tomato)
<span class="co">#> [1] "phylo"</span></code></pre></div>
<p>The two functions you'll need from <code>pepo</code> are: <code>prep_branch_lengths()</code> and <code>tree_hrf()</code>. The former returns a tibble (a tidy data frame) with variables that will be needed by the latter.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">tomato_branches <-<span class="st"> </span><span class="kw">prep_branch_lengths</span>(tomato)
tomato_branches
<span class="co">#> # A tibble: 36 x 7</span>
<span class="co">#> code from to this_branch descendants ancestor sibling</span>
<span class="co">#> <chr> <int> <int> <dbl> <list> <dbl> <dbl></span>
<span class="co">#> 1 20-21 20 21 1.40 <dbl [2]> NA 4.59 </span>
<span class="co">#> 2 21-22 21 22 1.38 <dbl [2]> 1.40 0.596</span>
<span class="co">#> 3 22-23 22 23 1.56 <dbl [2]> 1.38 0.376</span>
<span class="co">#> 4 23-24 23 24 4.42 <dbl [2]> 1.56 2.76 </span>
<span class="co">#> 5 24-25 24 25 0.525 <dbl [2]> 4.42 0.355</span>
<span class="co">#> 6 25-26 25 26 0.616 <dbl [2]> 0.525 1.63 </span>
<span class="co">#> 7 26-27 26 27 1.07 <dbl [2]> 0.616 1.00 </span>
<span class="co">#> 8 27-1 27 1 0.612 <dbl [0]> 1.07 1.00 </span>
<span class="co">#> 9 27-2 27 2 1.00 <dbl [0]> 1.07 0.612</span>
<span class="co">#> 10 26-3 26 3 1.00 <dbl [0]> 0.616 1.07 </span>
<span class="co">#> # ... with 26 more rows</span></code></pre></div>
<p>Then we can call <code>tree_hrf()</code> on that tibble. The function will return the original data frame plus a new variable, <code>hrf</code>. This function assumes branch lengths are <strong>in coalescent units</strong> (e.g., calculated in MP-EST). The call below will assume the default population-wide mutation rate (0.01).</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">tomato_hrf <-<span class="st"> </span><span class="kw">tree_hrf</span>(tomato_branches)
tomato_hrf
<span class="co">#> # A tibble: 36 x 8</span>
<span class="co">#> code from to this_branch descendants ancestor sibling hrf</span>
<span class="co">#> <chr> <int> <int> <dbl> <list> <dbl> <dbl> <dbl></span>
<span class="co">#> 1 20-21 20 21 1.40 <dbl [2]> NA 4.59 NaN </span>
<span class="co">#> 2 21-22 21 22 1.38 <dbl [2]> 1.40 0.596 0.473 </span>
<span class="co">#> 3 22-23 22 23 1.56 <dbl [2]> 1.38 0.376 0.241 </span>
<span class="co">#> 4 23-24 23 24 4.42 <dbl [2]> 1.56 2.76 0.0341</span>
<span class="co">#> 5 24-25 24 25 0.525 <dbl [2]> 4.42 0.355 0.685 </span>
<span class="co">#> 6 25-26 25 26 0.616 <dbl [2]> 0.525 1.63 0.624 </span>
<span class="co">#> 7 26-27 26 27 1.07 <dbl [2]> 0.616 1.00 0.561 </span>
<span class="co">#> 8 27-1 27 1 0.612 <dbl [0]> 1.07 1.00 NA </span>
<span class="co">#> 9 27-2 27 2 1.00 <dbl [0]> 1.07 0.612 NA </span>
<span class="co">#> 10 26-3 26 3 1.00 <dbl [0]> 0.616 1.07 NA </span>
<span class="co">#> # ... with 26 more rows</span></code></pre></div>
<p>Some <code>NA</code> values in the <code>hrf</code> column are normal: the function does not calculate HRF for tips or ancestral branches. This is because the HRF is a property of a branch that has: 1) two descendant lineages, 2) a sister lineage, and 3) an ancestral branch with known length.</p>
<p>That's it. Now we can explore/plot the HRF of all branches in the phylogeny. For example, we can use the <code>ggtree</code> package to plot the tree. The <code>to_treedata()</code> function converts our HRF tibble and <code>phylo</code> tree into a <code>ggtree</code>-compatible object (which allows for easy plotting).</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(ggtree)
solgg <-<span class="st"> </span><span class="kw">to_treedata</span>(tomato, tomato_hrf<span class="op">%>%</span>
<span class="st"> </span><span class="kw">mutate</span>(<span class="dt">cathrf =</span> <span class="kw">cut</span>(hrf, <span class="dt">breaks=</span><span class="kw">c</span>(<span class="dv">0</span>, <span class="fl">0.2</span>, <span class="fl">0.5</span>, <span class="fl">0.8</span>, <span class="dv">1</span>))))
<span class="kw">ggtree</span>(solgg, <span class="kw">aes</span>(<span class="dt">color=</span>hrf), <span class="dt">size=</span><span class="dv">2</span>) <span class="op">+</span><span class="st"> </span>
<span class="st"> </span><span class="kw">geom_tiplab</span>(<span class="dt">color=</span><span class="st">'black'</span>) <span class="op">+</span>
<span class="st"> </span><span class="kw">scale_color_gradient2</span>(<span class="dt">limits=</span><span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">1</span>), <span class="dt">low=</span><span class="st">'#008080'</span>, <span class="dt">mid=</span><span class="st">'#f6edbd'</span>, <span class="dt">high=</span><span class="st">'#ca562c'</span>, <span class="dt">midpoint=</span><span class="fl">0.5</span>, <span class="dt">na.value =</span> <span class="st">'grey90'</span>)<span class="op">+</span>
<span class="st"> </span><span class="kw">theme</span>(<span class="dt">legend.position =</span> <span class="kw">c</span>(.<span class="dv">05</span>, .<span class="dv">85</span>))</code></pre></div>
<p><img src="" /></p>
<h2 id="hemiplasy-risk-in-the-great-apes">Hemiplasy Risk in the Great Apes</h2>
<p>This is a quick calculation of the HRF on the phylogeny of Human-Chimpanzee-Gorilla.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">apetree <-<span class="st"> </span>ape<span class="op">::</span><span class="kw">read.tree</span>(<span class="dt">text =</span> <span class="st">"((((human,chimpanzee),gorilla),orangutan),out);"</span>)
<span class="co">#nodevec <- c("human","chimpanzee", "gorilla", "orangutan", "hcg", "hc")</span>
<span class="co">#two_n_vec <- c(125, 45, 65, 10, 20, 21, 19, 50)*1000*2 #2Ne for each node</span>
two_n_vec <-<span class="st"> </span><span class="kw">c</span>(<span class="dv">125</span>, <span class="dv">45</span>, <span class="dv">65</span>, <span class="dv">15</span>, <span class="dv">15</span>, <span class="dv">18</span>, <span class="dv">19</span>, <span class="dv">50</span>)<span class="op">*</span><span class="dv">1000</span><span class="op">*</span><span class="dv">2</span>
pop_std_vec <-<span class="st"> </span>two_n_vec<span class="op">/</span>two_n_vec[<span class="dv">3</span>] <span class="co">#relative to human 2Ne</span>
time_vec <-<span class="st"> </span><span class="kw">c</span>(<span class="dv">5</span>, <span class="fl">6.5</span>, <span class="fl">1.5</span>, <span class="fl">4.1</span>, <span class="fl">4.1</span>, <span class="fl">5.5</span>, <span class="dv">12</span>, <span class="dv">15</span>)<span class="op">*</span><span class="dv">1000000</span> <span class="co"># times in MY</span>
length_vec <-<span class="st"> </span>time_vec<span class="op">/</span>(<span class="dv">20</span> <span class="op">*</span><span class="st"> </span>two_n_vec) <span class="co"># coalescent branch lengths: MY/(gen * 2Ne)</span>
apetree<span class="op">$</span>edge.length <-<span class="st"> </span>length_vec
<span class="kw">plot</span>(apetree); ape<span class="op">::</span><span class="kw">edgelabels</span>(<span class="kw">prettyNum</span>(length_vec, <span class="dt">digits=</span><span class="dv">2</span>))</code></pre></div>
<p><img src="" /></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">ape_hrf <-<span class="st"> </span><span class="kw">prep_branch_lengths</span>(apetree)<span class="op">%>%</span><span class="st"> </span><span class="kw">tree_hrf</span>(<span class="dt">mutation =</span>(<span class="dv">2</span><span class="op">*</span><span class="dv">10000</span><span class="op">*</span><span class="dv">10</span><span class="op">^-</span><span class="dv">8</span>))
ape_hrf
<span class="co">#> # A tibble: 8 x 8</span>
<span class="co">#> code from to this_branch descendants ancestor sibling hrf</span>
<span class="co">#> <chr> <int> <int> <dbl> <list> <dbl> <dbl> <dbl></span>
<span class="co">#> 1 6-7 6 7 1.00 <dbl [2]> NA 7.50 NaN </span>
<span class="co">#> 2 7-8 7 8 3.61 <dbl [2]> 1.00 15.8 0.287</span>
<span class="co">#> 3 8-9 8 9 0.577 <dbl [2]> 3.61 7.64 0.907</span>
<span class="co">#> 4 9-1 9 1 6.83 <dbl [0]> 0.577 6.83 NA </span>
<span class="co">#> 5 9-2 9 2 6.83 <dbl [0]> 0.577 6.83 NA </span>
<span class="co">#> 6 8-3 8 3 7.64 <dbl [0]> 3.61 0.577 NA </span>
<span class="co">#> 7 7-4 7 4 15.8 <dbl [0]> 1.00 3.61 NA </span>
<span class="co">#> 8 6-5 6 5 7.50 <dbl [0]> NA 1.00 NA</span></code></pre></div>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">hc_hrf <-<span class="st"> </span>ape_hrf <span class="op">%>%</span><span class="st"> </span><span class="kw">filter</span>(to<span class="op">==</span><span class="dv">9</span>)
<span class="co"># the data here are from Kong et al 2012</span>
<span class="co"># numerators are sums of CpG and nonCpG mutations, from Table 2</span>
<span class="co"># the denominator 2*78*2.583e9 is the number of sites observed (effective bases times transmission events -- two times number of trios)</span>
cpg <-<span class="st"> </span><span class="kw">tibble</span>(<span class="dt">mu =</span><span class="kw">c</span>(<span class="fl">1.2e-8</span>, (<span class="dv">2489</span> <span class="op">+</span><span class="st"> </span><span class="dv">1516</span>)<span class="op">/</span>(<span class="dv">2</span><span class="op">*</span><span class="dv">78</span><span class="op">*</span><span class="fl">2.583e9</span>), (<span class="dv">855</span><span class="op">+</span><span class="st"> </span><span class="dv">73</span>)<span class="op">/</span>(<span class="dv">2</span><span class="op">*</span><span class="dv">78</span><span class="op">*</span><span class="fl">48.8e6</span>)))<span class="op">%>%</span>
<span class="st"> </span><span class="kw">mutate</span>(<span class="dt">nmu =</span> <span class="dv">2</span><span class="op">*</span><span class="dv">15000</span><span class="op">*</span>mu)<span class="op">%>%</span>
<span class="st"> </span><span class="kw">mutate</span>(<span class="dt">hc =</span> <span class="kw">map_dbl</span>(nmu, <span class="cf">function</span>(x) <span class="kw">tree_hrf</span>(hc_hrf, <span class="dt">mutation =</span> x, <span class="dt">mode =</span> <span class="st">'strict'</span>, <span class="dt">pepo=</span>T)<span class="op">$</span>hrf))
cpg
<span class="co">#> # A tibble: 3 x 3</span>
<span class="co">#> mu nmu hc</span>
<span class="co">#> <dbl> <dbl> <dbl></span>
<span class="co">#> 1 0.0000000120 0.000360 5.42 </span>
<span class="co">#> 2 0.00000000994 0.000298 6.55 </span>
<span class="co">#> 3 0.000000122 0.00366 0.521</span></code></pre></div>
</body>
</html>