-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
130 lines (96 loc) · 4.72 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms.functional import InterpolationMode
from PIL import Image, ImageOps
import glob
from pathlib import Path
# NOTE changing size requires changing fully connected layer for classification in
# ClassificationHead in model.py
image_width = 224
image_height = 224
norm_params = {'mean': [0.327812], 'std': [0.201863]}
def get_dataloaders(path, batch_size, test_size=0.2, include_test_loader=False):
full_dataset = BreastCancerDataset(path=path)
# Make the test split
train_size = int((1 - test_size) * len(full_dataset))
test_size = len(full_dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size],
generator=torch.Generator().manual_seed(42))
# Make train/val split
val_size = test_size
train_size = train_size - val_size
train_dataset, val_dataset = torch.utils.data.random_split(train_dataset, [train_size, val_size],
generator=torch.Generator().manual_seed(1))
# Make dataloaders
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=1)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=1)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False,
num_workers=1) if include_test_loader else None
return {'train': train_loader, 'val': val_loader, 'test': test_loader}
class BreastCancerDataset(Dataset):
preprocessing = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((image_width, image_height), interpolation=InterpolationMode.NEAREST),
])
normalization = transforms.Normalize(mean=norm_params['mean'], std=norm_params['std'])
def __init__(self, path):
path = Path(path)
if not (path.exists() and path.is_dir()):
raise ValueError(f"Data path '{path}' is invalid")
self._samples = self._collect_samples(path)
def __getitem__(self, index):
# Access the stored paths and label for the given index
img_path, mask_path, label = self._samples[index]
# Load PIL images into memory
img = Image.open(img_path)
mask_img = Image.open(mask_path)
# Make sure images are grayscale
img = ImageOps.grayscale(img)
mask_img = ImageOps.grayscale(mask_img)
# To tensor and resize image
img = BreastCancerDataset.preprocessing(img)
mask_img = BreastCancerDataset.preprocessing(mask_img)
# Normalize input image
img = BreastCancerDataset.normalization(img)
# Other fixes
mask_img = mask_img.long()
# Note image paths to loaded data
loaded_paths = {"input_image": img_path, "segmentation_image": mask_path}
return img, mask_img, label, loaded_paths
def __len__(self):
return len(self._samples)
@staticmethod
def _collect_samples(path):
benign_image_list = sorted(glob.glob(f'{path}/benign/images/*'))
benign_masks_list = sorted(glob.glob(f'{path}/benign/masks/*'))
malignant_image_list = sorted(glob.glob(f'{path}/malignant/images/*'))
malignant_masks_list = sorted(glob.glob(f'{path}/malignant/masks/*'))
normal_image_list = sorted(glob.glob(f'{path}/normal/images/*'))
normal_masks_list = sorted(glob.glob(f'{path}/normal/masks/*'))
# Place benign and normal image samples first followed by the malignant examples
image_list = benign_image_list + normal_image_list + malignant_image_list
mask_list = benign_masks_list + normal_masks_list + malignant_masks_list
# Note down the label of each sample. Mark benign and normal images as "0" and malignant as "1"
label = [0 for _ in benign_image_list + normal_image_list]
label.extend([1 for _ in malignant_image_list])
label = torch.tensor(label, dtype=torch.long)
# Index 0 example:
# 0: (image_path, mask_path, target)
return list(zip(image_list, mask_list, label))
def compute_mean_std():
mean = 0
std = 0
nb_samples = 0
loaders = get_dataloaders('./data/', batch_size=8, include_test_loader=True)
for img, _, _, _ in loaders['train']:
batch_samples = img.size(0)
img = img.view(batch_samples, img.size(1), -1)
mean += img.mean(2).sum(0).item()
std += img.std(2).sum(0).item()
nb_samples += batch_samples
mean /= nb_samples
std /= nb_samples
print(f"Mean: {mean}, Std: {std}")
if __name__ == "__main__":
compute_mean_std()