-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrender_blender_scene.py
156 lines (130 loc) · 7.54 KB
/
render_blender_scene.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
import os
import torch
import numpy as np
from PIL import Image
from frosting_utils.general_utils import str2bool
from blender.frosting_utils import (
load_blender_package,
load_frosting_models_from_blender_package,
load_cameras_from_blender_package,
build_composite_scene,
render_composited_image,
)
from rich.console import Console
if __name__ == "__main__":
print_every_n_frames = 5
# ----- Parser -----
parser = argparse.ArgumentParser(description='Script to render Frosting scenes edited or animated with Blender.')
parser.add_argument('-p', '--package_path',
type=str,
help='(Required) path to the Blender data package to use for rendering.')
parser.add_argument('-o', '--output_path',
type=str,
default=None,
help='Path to the output folder where to save the rendered images. \
If None, images will be saved in ./output/blender/renders/{package_name}.')
parser.add_argument('--thickness_rescaling_method', type=str, default='median',
help="Method to use for rescaling the thickness of the Frosting. Can be 'median' or 'triangle'."
"The 'triangle' method may be more accurate but also more unstable and can lead to more artifacts.")
parser.add_argument('--adaptation_method', type=str, default='simple',
help="Method to use for automatically adapting the parameters of the Gaussians. Can be 'simple' or 'complex'."
"The 'simple' method is faster and more stable but may be less accurate."
"The 'complex' method can be more accurate but may produce more artifacts.")
parser.add_argument('--deformation_threshold', type=float, default=2.,
help='Threshold for the deformation of the Frosting. '
'A face is considered too much deformed if its size increases by a ratio greater than this threshold.'
'The faces with a deformation greater than this threshold will be not be rendered.')
parser.add_argument('--occlusion_culling', type=str2bool, default=False,
help='Use occlusion culling for rendering. This should be set to True only if the scenes have been trained with occlusion culling.')
parser.add_argument('--render_background_gaussians', type=str2bool, default=True,
help='Render the background Gaussians for better quality. '
'Only the background Gaussians of the Frosting model with the highest number of Gaussians will be rendered, '
'as it is assumed to be the background scene.')
parser.add_argument('--export_frame_as_ply', type=int, default=0,
help='Export the Frosting representation of the scene at the specified frame as a PLY file. '
'If 0, no PLY file will be exported and all frames will be rendered.')
parser.add_argument('--sh_degree', type=int, default=None, help='SH degree to use.')
parser.add_argument('--gpu', type=int, default=0, help='Index of GPU device to use.')
parser.add_argument('--white_background', type=str2bool, default=False, help='Use a white background instead of black.')
CONSOLE = Console(width=120)
args = parser.parse_args()
scene_name = os.path.splitext(os.path.basename(args.package_path))[0]
output_path = args.output_path if args.output_path else f"./output/blender/renders/{scene_name}"
sh_degree = args.sh_degree
use_simple_adapt = True if args.adaptation_method == 'simple' else False
thickness_rescaling_method = args.thickness_rescaling_method
deformation_threshold = args.deformation_threshold
use_occlusion_culling = args.occlusion_culling
use_background_gaussians = args.render_background_gaussians
frame_to_export_as_ply = args.export_frame_as_ply - 1
# ----- Setup -----
torch.cuda.set_device(args.gpu)
device = torch.device(torch.cuda.current_device())
CONSOLE.print("[INFO] Using device: ", device)
CONSOLE.print("[INFO] Images will be saved in: ", output_path)
# ----- Load Blender package -----
CONSOLE.print("\nLoading Blender package...")
package = load_blender_package(args.package_path, device)
CONSOLE.print("Blender package loaded.")
# ----- Load Frosting models -----
CONSOLE.print("\nLoading Frosting models...")
frosting_models, scene_paths = load_frosting_models_from_blender_package(package, device)
# ----- Build composite scene -----
CONSOLE.print("\nBuilding composite scene...")
frosting_comp = build_composite_scene(
frosting_models, scene_paths, package,
use_simple_adapt=use_simple_adapt,
thickness_rescaling_method=thickness_rescaling_method,
deformation_threshold=deformation_threshold,
)
if frosting_comp.editable:
CONSOLE.print(f"{frosting_comp._edition_mask.sum()} / {frosting_comp._edition_mask.shape[0]} faces of the mesh are editable.")
# ----- Build cameras -----
CONSOLE.print("\nLoading cameras...")
render_cameras = load_cameras_from_blender_package(package, device=device)
# ----- Render and saving images -----
CONSOLE.print("\nLoading successful. Rendering and saving images...")
if use_occlusion_culling:
CONSOLE.print("Using occlusion culling...")
n_frames = len(package['camera']['lens'])
os.makedirs(output_path, exist_ok=True)
frosting_comp.eval()
frosting_comp.adapt_to_cameras(render_cameras)
frosting_comp.use_background_gaussians = frosting_comp.use_background_gaussians and use_background_gaussians
with torch.no_grad():
if frame_to_export_as_ply == -1:
for i_frame in range(n_frames):
# Change pose of meshes if needed and render the scene
rgb_render = render_composited_image(
package=package,
frosting=frosting_comp,
render_cameras=render_cameras,
i_frame=i_frame,
sh_degree=sh_degree,
deformation_threshold=deformation_threshold,
use_occlusion_culling=use_occlusion_culling,
).nan_to_num().clamp(min=0, max=1)
# Save image
save_path = os.path.join(output_path, f"{i_frame+1:04d}.png")
img = Image.fromarray((rgb_render.cpu().numpy() * 255).astype(np.uint8))
img.save(save_path)
# Info
if i_frame % print_every_n_frames == 0:
print(f"Saved frame {i_frame} to {save_path}")
torch.cuda.empty_cache()
else:
# Export PLY file
ply_save_path = os.path.join(output_path, f"{frame_to_export_as_ply+1:04d}.ply")
render_composited_image(
package=package,
frosting=frosting_comp,
render_cameras=render_cameras,
i_frame=frame_to_export_as_ply,
sh_degree=sh_degree,
deformation_threshold=deformation_threshold,
use_occlusion_culling=use_occlusion_culling,
return_GS_model=True,
).save_ply(ply_save_path)
CONSOLE.print(f"Exported PLY file of frame {frame_to_export_as_ply+1} to {ply_save_path}")
CONSOLE.print("Rendering completed.")