-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdiscriminator.py
51 lines (42 loc) · 1.54 KB
/
discriminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import torch.nn as nn
class CNNBlock(nn.Module):
def __init__(self,in_channels, out_channels, stride = 2):
super(CNNBlock,self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels,out_channels,4,stride,padding_mode='reflect',bias=False),
nn.BatchNorm2d(out_channels),
nn.LeakyReLU(0.2)
)
def forward(self,x):
return self.conv(x)
class Discriminator(nn.Module):
def __init__(self,in_channels = 3, features = [64,128,256,512]):
super().__init__()
self.initial = nn.Sequential(
nn.Conv2d(in_channels*2,features[0],kernel_size=4,stride=2,padding=1,padding_mode='reflect'),
nn.LeakyReLU(0.2)
) # according to paper 64 channel doesn't contain BatchNorm2d
layers = []
in_channels = features[0]
for feature in features[1:]:
layers.append(CNNBlock(in_channels,feature,stride=1 if feature==features[-1] else 2 ))
in_channels = feature
layers.append(
nn.Conv2d(in_channels,1,kernel_size=4,stride=1,padding=1,padding_mode='reflect')
)
self.model = nn.Sequential(*layers)
def forward(self,x,y):
x = torch.cat([x,y],dim=1)
x = self.initial(x)
x = self.model(x)
return x
def test():
x = torch.randn((1, 3, 256, 256))
y = torch.randn((1, 3, 256, 256))
model = Discriminator(in_channels=3)
preds = model(x, y)
print(model)
print(preds.shape)
if __name__ == "__main__":
test()