-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
75 lines (65 loc) · 2.87 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from utils import save_checkpoint,save_some_examples,load_checkpoint
import config
from dataset import MapDataset
from generator import Generator
from discriminator import Discriminator
def train_fn(disc,gen,loader,opt_disc,opt_gen,l1,bce,g_scaler,d_scaler):
loop = tqdm(loader,leave=True)
for idx , (x,y) in enumerate(loop):
x, y = x.to(config.DEVICE), y.to(config.DEVICE)
#train discriminator
with torch.cuda.amp.autocast():
y_fake = gen(x)
D_real = disc(x,y)
D_fake = disc(x, y_fake.detach())
D_real_loss = bce(D_real,torch.ones_like(D_real))
D_fake_loss = bce(D_fake,torch.zeros_like(D_fake))
D_loss = (D_real_loss + D_fake_loss) / 2
disc.zero_grad()
d_scaler.scale(D_loss).backward()
d_scaler.step(opt_disc)
d_scaler.update()
# train generator
with torch.cuda.amp.autocast():
D_fake = disc(x, y_fake)
G_fake_loss = bce(D_fake,torch.ones_like(D_fake))
L1 = l1(y_fake,y) * config.L1_LAMBDA
G_loss = G_fake_loss + L1
opt_gen.zero_grad()
g_scaler.scale(G_loss).backward()
g_scaler.step(opt_gen)
g_scaler.update()
if idx % 10 == 0:
loop.set_postfix(
D_real=torch.sigmoid(D_real).mean().item(),
D_fake=torch.sigmoid(D_fake).mean().item(),
)
def main():
disc = Discriminator(in_channels=3).to(config.DEVICE)
gen = Generator(in_channels=3).to(config.DEVICE)
opt_disc = optim.Adam(disc.parameters(),lr= config.LEARNING_RATE,betas=(0.5,0.999))
opt_gen = optim.Adam(gen.parameters(),lr= config.LEARNING_RATE,betas=(0.5,0.999))
BCE =nn.BCEWithLogitsLoss()
L1_LOSS = nn.L1Loss()
if config.LOAD_MODEL:
load_checkpoint(config.CHECKPOINT_GEN,gen,opt_gen,config.LEARNING_RATE)
load_checkpoint(config.CHECKPOINT_DISC,disc,opt_disc,config.LEARNING_RATE)
train_dataset = MapDataset(config.TRAIN_DIR)
train_loader = DataLoader(train_dataset,batch_size=config.BATCH_SIZE,shuffle=True,num_workers=config.NUM_WORKERS)
g_scaler = torch.cuda.amp.GradScaler()
d_scaler = torch.cuda.amp.GradScaler()
val_dataset = MapDataset(config.VAL_DIR)
val_loader = DataLoader(val_dataset,batch_size=1,shuffle=False)
for epoch in range(config.NUM_EPOCHS):
train_fn(disc,gen,train_loader,opt_disc,opt_gen,L1_LOSS,BCE,g_scaler,d_scaler)
if config.SAVE_MODEL and epoch % 5 ==0:
save_checkpoint(disc,opt_disc,filename=config.CHECKPOINT_DISC)
save_checkpoint(gen,opt_gen,filename= config.CHECKPOINT_GEN)
save_some_examples(gen,val_loader,epoch,folder='evaluation')
if __name__ == "__main__":
main()