forked from adaptive-cfd/python-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfarge_colormaps.py
executable file
·172 lines (133 loc) · 6.63 KB
/
farge_colormaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri May 18 19:42:20 2018
@author: engels
"""
import numpy as np
def farge_colormap_multi(taille=256, limite_faible_fort=0.3, etalement_du_zero=0.02, blackmargin=0.25, type='vorticity', return_vctor=False):
import numpy as np
import matplotlib
if type == 'vorticity':
color1=[0.0, 0.5, 1.0] #light blue
color2=[1.0, 1.0, 1.0] #white
color3=[1.0, 0.5, 0.5] #light red
zero=[1.0, 222.0/255.0, 17.0/255.0]
elif type == 'pressure':
color1=[0.0, 0.5, 1.0];
color2=[1.0, 1.0, 1.0];
color3=[1.0, 1.0, 0.0];
zero =[1.0, 0.0, 0.0];
elif type == 'streamfunction':
color1=[0.5, 0.0, 1.0];
color2=[1.0, 1.0, 1.0];
color3=[1.0, 0.8, 0.0];
zero=[0.0, 1.0, 0.5];
elif type == 'velocity':
color1=[1.0, 1.0, 0.0];
color2=[1.0, 1.0, 1.0];
color3=[1.0, 0.5, 0.5];
zero =[0.5, 1.0, 0.5];
etalement_du_zero = int( np.ceil(etalement_du_zero * taille) )
limite_basse = int( np.floor(taille/2.0*(1.0-limite_faible_fort)) )
limite_haute = int( np.ceil(taille/2.0*(1.0+limite_faible_fort)) )
zero_moins = int( np.floor((taille-etalement_du_zero)/2.0) )
zero_plus = int( np.ceil((taille + etalement_du_zero)/2.0) )
colors = np.zeros([taille,3])
# I could not figure out how to handle all colors in one go, so I loop over colors
for i in range(3):
# concatenate some linear vectors
y2 = (np.linspace(blackmargin, 1.0 ,limite_basse)*color1[i],
np.linspace(blackmargin**3.0, 0.5, zero_moins-limite_basse)*color2[i],
np.squeeze(np.ones([etalement_du_zero, 1])*zero[i]),
np.linspace(0.5, 1.0-blackmargin**3, limite_haute-zero_plus)*color2[i],
np.linspace(blackmargin, 1.0, taille-limite_haute)*color3[i])
colors[:,i] = np.hstack( y2 )
# farge_cmap = matplotlib.colors.LinearSegmentedColormap(segmentdata=colors, name='farge')
farge_cmap = matplotlib.colors.ListedColormap(colors, name='farge', N=None)
if return_vctor:
return colors
else:
return farge_cmap
# this function writes Marie's colormaps to *.dat files, for usage in other tools
def farge_colormaps_to_dat():
for cmap in ['vorticity','pressure','streamfunction','velocity']:
colors = farge_colormap_multi(taille=256, limite_faible_fort=0.3, etalement_du_zero=0.02, blackmargin=0.25, type=cmap, return_vctor=True)
fid = open( 'colors_'+cmap+'.dat', 'w')
for i in range(colors.shape[0]):
fid.write('%f %f %f\n' % (colors[i,0],colors[i,1],colors[i,2]) )
# this function writes Marie's colormaps to *.xmf files, for usage in paraview
def farge_colormaps_to_paraview():
for cmap in ['vorticity','pressure','streamfunction','velocity']:
colors = farge_colormap_multi(taille=256, limite_faible_fort=0.2, etalement_du_zero=0.02, blackmargin=0.25, type=cmap, return_vctor=True)
fid = open( 'colors_'+cmap+'.xml', 'w')
fid.write('<ColorMaps>\n')
fid.write(' <ColorMap space="RGB" indexedLookup="false" name="marie-%s">\n' % (cmap))
for i in range(colors.shape[0]):
fid.write('<Point x="%f" o="1" r="%f" g="%f" b="%f"/>\n' % (i/(colors.shape[0]-1), colors[i,0],colors[i,1],colors[i,2]) )
fid.write(' </ColorMap>\n')
fid.write('</ColorMaps>\n')
def random_colormap_for_paraview(n=256):
colors = np.random.rand(n,3)
fid = open( 'colors_random.xml', 'w')
fid.write('<ColorMaps>\n')
fid.write(' <ColorMap space="RGB" indexedLookup="false" name="%i_random_colors">\n' % (n))
for i in range(colors.shape[0]):
fid.write('<Point x="%f" o="1" r="%f" g="%f" b="%f"/>\n' % (i/(colors.shape[0]-1), colors[i,0],colors[i,1],colors[i,2]) )
fid.write(' </ColorMap>\n')
fid.write('</ColorMaps>\n')
# source: https://stackoverflow.com/questions/14720331/how-to-generate-random-colors-in-matplotlib
def rand_cmap(nlabels, type='bright', first_color_black=True, last_color_black=False, verbose=False):
"""
Creates a random colormap to be used together with matplotlib. Useful for segmentation tasks
:param nlabels: Number of labels (size of colormap)
:param type: 'bright' for strong colors, 'soft' for pastel colors
:param first_color_black: Option to use first color as black, True or False
:param last_color_black: Option to use last color as black, True or False
:param verbose: Prints the number of labels and shows the colormap. True or False
:return: colormap for matplotlib
"""
from matplotlib.colors import LinearSegmentedColormap
import colorsys
import numpy as np
if type not in ('bright', 'soft'):
print ('Please choose "bright" or "soft" for type')
return
if verbose:
print('Number of labels: ' + str(nlabels))
# Generate color map for bright colors, based on hsv
if type == 'bright':
randHSVcolors = [(np.random.uniform(low=0.0, high=1),
np.random.uniform(low=0.2, high=1),
np.random.uniform(low=0.9, high=1)) for i in range(nlabels)]
# Convert HSV list to RGB
randRGBcolors = []
for HSVcolor in randHSVcolors:
randRGBcolors.append(colorsys.hsv_to_rgb(HSVcolor[0], HSVcolor[1], HSVcolor[2]))
if first_color_black:
randRGBcolors[0] = [0, 0, 0]
if last_color_black:
randRGBcolors[-1] = [0, 0, 0]
random_colormap = LinearSegmentedColormap.from_list('new_map', randRGBcolors, N=nlabels)
# Generate soft pastel colors, by limiting the RGB spectrum
if type == 'soft':
low = 0.6
high = 0.95
randRGBcolors = [(np.random.uniform(low=low, high=high),
np.random.uniform(low=low, high=high),
np.random.uniform(low=low, high=high)) for i in range(nlabels)]
if first_color_black:
randRGBcolors[0] = [0, 0, 0]
if last_color_black:
randRGBcolors[-1] = [0, 0, 0]
random_colormap = LinearSegmentedColormap.from_list('new_map', randRGBcolors, N=nlabels)
# Display colorbar
if verbose:
from matplotlib import colors, colorbar
from matplotlib import pyplot as plt
fig, ax = plt.subplots(1, 1, figsize=(15, 0.5))
bounds = np.linspace(0, nlabels, nlabels + 1)
norm = colors.BoundaryNorm(bounds, nlabels)
cb = colorbar.ColorbarBase(ax, cmap=random_colormap, norm=norm, spacing='proportional', ticks=None,
boundaries=bounds, format='%1i', orientation=u'horizontal')
return random_colormap