forked from adaptive-cfd/python-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfourier_tools.py
250 lines (173 loc) · 5.98 KB
/
fourier_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 4 16:54:45 2019
@author: engels
"""
def spectrum(u):
import numpy as np
# x = np.linspace(0, 2*np.pi, 128, endpoint=False)
# X,Y = np.meshgrid(x,x)
# u = np.sin(10.0*X) + np.sin(10.0*Y)
if (len(u.shape) != 2):
print(u.shape)
raise ValueError('wrong dimension: Spectrum is currently for 2D data only.')
uk = np.fft.fft2(u)
N = u.size
ek = np.abs( uk/N )**2.0
ek = 0.5 * ek
dimMax = np.max( u.shape )
k = np.fft.fftfreq(dimMax) * dimMax
# Only consider one half of spectrum (due to symmetry)
halfDim = int( np.floor(dimMax/2) + 1 )
kx, ky = np.meshgrid( k, k )
K = np.sqrt( kx**2 + ky**2 )
K = np.round( K )
# allocate spectrum
EK = np.zeros( halfDim );
# loop over wavenumbers
for ik in range(0, halfDim):
# sum up all fourier coefficients that have the same wavenumber k
# ek = np.ones(ek.shape)
EK[ik] = np.sum( ek[ np.abs(K-float(ik)) <= 1.0e-10 ])
k = np.asarray( range(0, halfDim ) )
# print( np.sum(EK) )
# print( np.sum(u**2) )
# print( np.sum(ek) )
return k, EK
def spectrum1(u):
import numpy as np
# x = np.linspace(0, 2*np.pi, 128, endpoint=False)
# X,Y = np.meshgrid(x,x)
# u = np.sin(10.0*X) + np.sin(10.0*Y)
if (len(u.shape) != 1):
print(u.shape)
raise ValueError('wrong dimension: Spectrum is currently for 2D data only.')
N = u.size
ek = np.abs( np.fft.fft(u) / N )**2.0
ek = 0.5 * ek
dimMax = np.max( u.shape )
# Only consider one half of spectrum (due to symmetry)
halfDim = int( np.floor(dimMax/2) + 1 )
k = np.asarray( range(0, halfDim ), dtype=float )
ek = ek[0:halfDim]
return k, ek
def fft2_resample(u, res):
"""
Resampling of 2D data field in Fourier space.
Input:
- u ... data field, two dimensional, supposed to be square matrix N by N
- res ... new resolution, i.e. output data is res by res
Output:
- u ... now the resampled data with size res by res
Notes:
If res > N, then upsampling using zero-padding in Fourier space is performed.
If res < N, then downsampling (cropping of Fourier coefficients) is performed.
If res = N, the input is returned unchanged.
If your data is single precision (i.e. read from standard FLUSI fields)
and converted to double precision, very large upsampling can amplify the noise
that comes from the missing precision In that case, better use single precision.
"""
import numpy as np
nold = np.asarray(u.shape)
if (np.all(res > nold)):
u = fft2_upsample(u, res)
elif (res < u.shape[0]):
u = fft2_downsample(u, res)
return u
def fft2_upsample(u, resolution):
"""
u is a 2d field
resolution of the upsampled field [nx,ny] or just n
"""
import numpy as np
# import matplotlib.pyplot as plt
if not isinstance(resolution, (list, tuple)):
res = [resolution]
else:
res = resolution
res=np.asarray(res)
E_in = np.sum(u**2)/np.float64(u.size)
uk = np.fft.fft2(u)
uk = np.fft.fftshift( uk )
nold = u.shape
# zero-pad
n = np.asarray ( (res - nold) / 2, dtype=np.dtype(int) )
uk = np.pad( uk, ((n[0],n[0]),(n[1],n[1])), 'constant')
uk = np.fft.ifftshift( uk )
# renormalize (array.size is nx*ny)
uk = uk * ( np.float64(uk.size) / np.float64(u.size) )
# goback to x-space
u2 = np.real( np.fft.ifft2( uk ) )
E_out = np.sum(u2**2)/np.float64(u2.size)
# plt.figure()
# plt.pcolormesh(u2)
# plt.colorbar()
# #--------------------------
#
# uk2 = np.fft.rfft2( u )
# uk2 = np.fft.fftshift( uk2, axes=0 )
#
# nold = u.shape[0]
#
# # zero-pad
# n = int( (res - nold) / 2 )
# uk3 = np.pad( uk2, ((n,n),(0,n)), 'constant')
#
# uk3 = np.fft.ifftshift( uk3, axes=0 )
#
# # renormalize (array.size is nx*ny)
## uk3 = uk3 * ( float(2.0*uk3.size)/float(u.size) )
#
# # goback to x-space
# u22 = np.real( np.fft.irfft2( uk3 ) )
#
# u22 *= (np.sum(u**2)) / (np.sum(u22**2))
#
# plt.figure()
# plt.pcolormesh(u22)
# plt.colorbar()
#
# raise ValueError
print( " fft: upsampling: energy was=%20.15e is now=%20.15e " % (E_in, E_out) )
print(" New Resolution:", u2.shape)
print(" Old Resolution:", nold)
print( " delta_E=%20.15e" % (E_in - E_out) )
print( " delta_E=%20.15e" % ((E_in - E_out)/E_in) )
# print( "rfft: upsampling: energy was=%20.15e is now=%20.15e (from %i to %i points)" % (np.sum(u**2)/u.size, np.sum(u22**2)/u2.size, nold, res))
return u2
#import insect_tools
#import numpy as np
#time_ref, box_ref, origin_ref, u = insect_tools.read_flusi_HDF5( '/home/engels/dev/WABBIT4-new-physics/three-vortices/equidistant_convergence_RHS_only/../spectral_acm/Re20k_c0_10_gamma1/solution_2048/ux_020000.h5', dtype=np.float64 )
#
#fft2_upsample(u[0,::8,::8], 3072)
def fft2_downsample(u, res):
import numpy as np
uk = np.fft.fft2(u)
uk = np.fft.fftshift( uk )
nold = u.shape[0]
# cropping
n = int ( (nold - res) / 2 )
uk = uk[n:-n,n:-n]
uk = np.fft.ifftshift( uk )
# renormalize (array.size is nx*ny)
uk = uk * ( float(uk.size)/float(u.size) )
# goback to x-space
u2 = np.real( np.fft.ifft2( uk ) )
print( "downsampling: energy was=%15.10e is now=%15.10e (loss is desired!)" % (np.sum(u**2)/u.size, np.sum(u2**2)/u2.size))
return u2
def fft1_downsample(u, res):
import numpy as np
uk = np.fft.fft(u)
uk = np.fft.fftshift( uk )
nold = u.shape[0]
# cropping
n = int ( (nold - res) / 2 )
uk = uk[n:-n]
uk = np.fft.ifftshift( uk )
# renormalize (array.size is nx*ny)
uk = uk * ( float(uk.size)/float(u.size) )
# goback to x-space
u2 = np.real( np.fft.ifft( uk ) )
print( "downsampling1d: energy was=%15.10e is now=%15.10e (loss is desired!)" % (np.sum(u**2)/u.size, np.sum(u2**2)/u2.size))
return u2