-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
99 lines (89 loc) · 3.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import cv2
import numpy as np
from keras.preprocessing import image
import visualize_car_detection
import process_image as ip
import model
class InferenceConfig():
# Set batch size to 1 since we'll be running inference on
# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
GPU_COUNT = 1
IMAGES_PER_GPU = 1
BACKBONE_SHAPES=np.array([[256, 256], [128, 128], [ 64, 64], [ 32, 32], [ 16, 16]])
BACKBONE_STRIDES=[4, 8, 16, 32, 64]
BATCH_SIZE=1
BBOX_STD_DEV=[ 0.1, 0.1, 0.2, 0.2]
DETECTION_MAX_INSTANCES=100
DETECTION_MIN_CONFIDENCE=0.6 #0.5
DETECTION_NMS_THRESHOLD=0.3
IMAGE_MAX_DIM=1024
IMAGE_MIN_DIM=800
IMAGE_PADDING=True
IMAGE_SHAPE=np.array([1024, 1024, 3])
LEARNING_MOMENTUM=0.9
LEARNING_RATE =0.002
MASK_POOL_SIZE=14
MASK_SHAPE =[28, 28]
MAX_GT_INSTANCES=100
MEAN_PIXEL =[ 123.7, 116.8, 103.9]
MINI_MASK_SHAPE =(56, 56)
NAME ="coco"
NUM_CLASSES =81
POOL_SIZE =7
POST_NMS_ROIS_INFERENCE =1000
POST_NMS_ROIS_TRAINING =2000
ROI_POSITIVE_RATIO=0.33
RPN_ANCHOR_RATIOS =[0.5, 1, 2]
RPN_ANCHOR_SCALES =(32, 64, 128, 256, 512)
RPN_ANCHOR_STRIDE =2
RPN_BBOX_STD_DEV =np.array([ 0.1, 0.1, 0.2 , 0.2])
RPN_TRAIN_ANCHORS_PER_IMAGE=256
RPN_NMS_THRESHOLD = 0.3
STEPS_PER_EPOCH =1000
TRAIN_ROIS_PER_IMAGE =128
USE_MINI_MASK =True
USE_RPN_ROIS =True
VALIDATION_STPES =50
WEIGHT_DECAY =0.0001
class_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird',
'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard',
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster',
'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
'teddy bear', 'hair drier', 'toothbrush']
def findLane(img):
cropped_img = ip.area_of_interest(img, [ip.crop_points.astype(np.int32)])
trans_img = ip.applyTransformation(cropped_img)
masked_image = ip.applyMasks(trans_img)
left_fit, right_fit, _ = ip.slidingWindow(masked_image)
lane_mask = ip.applyBackTrans(img, left_fit, right_fit)
img_result = cv2.addWeighted(img, 1, lane_mask, 1, 0)
return img_result
def process_video(neural_net, input_img):
img = cv2.resize(input_img, (1024, 1024))
img = image.img_to_array(img)
results = neural_net.detect([img], verbose=0)
r = results[0]
final_img = visualize_car_detection.display_instances2(img, r['rois'], r['masks'], r['class_ids'],
class_names, r['scores'])
inp_shape = image.img_to_array(input_img).shape
final_img = cv2.resize(final_img, (inp_shape[1], inp_shape[0]))
return final_img
if __name__ == "__main__":
img_arr = cv2.imread('input/test2.jpg')
config = InferenceConfig()
#NN = model.MaskRCNN(mode="inference", model_dir='logs', config=config)
#NN.load_weights('mask_rcnn_coco.h5', by_name=True)
#img_result = process_video(NN,img_arr)
#cv2.imwrite('output/output1.png', img_result)
img_result = findLane(img_arr)
cv2.imwrite('output/output_lane.png', img_result)