-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathonefile.py
1369 lines (1089 loc) · 56.5 KB
/
onefile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import print_function
from utils import query_graph_to_sparql as sparql_constructor
from utils import dbpedia_interface as db_interface
from utils import embeddings_interface
from configs import config_loader as cl
from utils import natural_language_utilities as nlutils
import network_rdftype as net_rdftype
import network_intent as net_intent
import data_loader as dl
import auxiliary as aux
import network as net
import os
import sys
import json
import torch
import pickle
import traceback
import numpy as np
import pandas as pd
from pprint import pprint
from progressbar import ProgressBar
if sys.version_info[0] == 3: import configparser as ConfigParser
else: import ConfigParser
# Loading relations file.
COMMON_DATA_DIR = 'data/data/common'
INTENTS = ['count', 'ask', 'list']
RDFTYPES = ['x', 'uri', 'none']
# params for ULMFit
# parameter_dict['intentmodel'] = 'bilstm_dense'
# parameter_dict['intentmodelnumber'] = '16'
#
# parameter_dict['rdftypemodel'] = 'bilstm_dense'
# parameter_dict['rdftypemodelnumber'] = '12'
#
# parameter_dict['rdfclassmodel'] = 'bilstm_dot'
# parameter_dict['rdfclassmodelnumber'] = '16'
glove_id_sf_to_glove_id_rel = dl.create_relation_lookup_table('data/data/common')
class QuestionAnswering:
"""
Usage:
qa = QuestionAnswering(parameter_dict, False, _word_to_id, device, True)
q = np.rancorechainmodeldom.randint(0, 1233, (542))
p = np.random.randint(0, 123, (10, 55))
print(qa._predict_corechain(q,p))
print("intent: ", qa._predict_intent(q))
print("rdftype: ", qa._predict_rdftype(q))
print("rdfclass: ", qa._predict_rdfclass(q, p))
"""
def __init__(self, parameters, pointwise, word_to_id, device, _dataset,debug):
self.parameters = parameters
self.pointwise = pointwise
self.debug = debug
self.device = device
self._word_to_id = word_to_id
# Load models
# self.parameters['dataset'] = 'transfer-b'
self._load_corechain_model()
if self.parameters['dataset'] == 'transfer-d':
self.parameters['dataset'] = 'lcquad'
'''
since all auxilary components perform really bad if just trained on QALD
We always use ones trained on LC-QuAD.'
'''
self.parameters['dataset'] = 'lcquad'
self._load_rdftype_model()
self._load_rdfclass_model()
self._load_intentmodel()
self.parameters['dataset'] = _dataset
def _load_corechain_model(self):
# Initialize the model
m = self.parameters['corechainmodel']
# self.parameters['corechainmodel'] = 'slotptrortho'
# self.parameters['bidirectional'] = False
if self.parameters['corechainmodel'] == 'bilstm_dot':
self.corechain_model = net.BiLstmDot(_parameter_dict=self.parameters, _word_to_id=self._word_to_id,
_device=self.device, _pointwise=self.pointwise, _debug=self.debug)
if self.parameters['corechainmodel'] == 'bilstm_densedot':
self.corechain_model = net.BiLstmDenseDot(_parameter_dict=self.parameters, _word_to_id=self._word_to_id,
_device=self.device, _pointwise=self.pointwise, _debug=self.debug)
if self.parameters['corechainmodel'] == 'slotptr':
self.corechain_model = net.QelosSlotPointerModel(_parameter_dict=self.parameters, _word_to_id=self._word_to_id,
_device=self.device, _pointwise=self.pointwise, _debug=self.debug)
if self.parameters['corechainmodel'] == 'slotptr_common_encoder':
self.corechain_model = net.QelosSlotPointerModel_common_encoder(_parameter_dict=self.parameters,
_word_to_id=self._word_to_id,
_device=self.device, _pointwise=self.pointwise,
_debug=self.debug)
if self.parameters['corechainmodel'] == 'slotptrortho':
self.corechain_model = net.QelosSlotPointerModelOrthogonal(_parameter_dict=self.parameters, _word_to_id=self._word_to_id,
_device=self.device, _pointwise=self.pointwise, _debug=self.debug)
if self.parameters['corechainmodel'] == 'reldet':
self.corechain_model = net.RelDetection(_parameter_dict=self.parameters, _word_to_id=self._word_to_id,
_device=self.device, _pointwise=self.pointwise, _debug=self.debug)
if self.parameters['corechainmodel'] == 'decomposable_attention':
self.corechain_model = net.DecomposableAttention(_parameter_dict=self.parameters, _word_to_id=self._word_to_id,
_device=self.device, _pointwise=self.pointwise, _debug=self.debug)
if self.parameters['corechainmodel'] == 'cnn_dot':
self.corechain_model = net.CNNDot(_parameter_dict=self.parameters, _word_to_id=self._word_to_id,
_device=self.device, _pointwise=self.pointwise, _debug=self.debug)
if self.parameters['corechainmodel'] == 'bilstm_dot_multiencoder':
self.corechain_model = net.BiLstmDot_multiencoder(_parameter_dict=self.parameters, _word_to_id=self._word_to_id,
_device=self.device, _pointwise=self.pointwise, _debug=self.debug)
if self.parameters['corechainmodel'] == 'ulmfit_slotptr':
self.corechain_model = net.ULMFITQelosSlotPointerModel(_parameter_dict=self.parameters, _word_to_id=self._word_to_id,
_device=self.device, _pointwise=self.pointwise, _debug=self.debug)
if self.parameters['corechainmodel'] == 'bert':
### This needs to change
self.corechain_model = net.Bert_Scorer(_parameter_dict=self.parameters, _word_to_id=self._word_to_id,
_device=self.device, _pointwise=self.pointwise, _debug=self.debug)
if self.parameters['corechainmodel'] == 'slotptr_randomvec':
self.corechain_model = net.QelosSlotPointerModelRandomVec(_parameter_dict=self.parameters, _word_to_id=self._word_to_id,
_device=self.device, _pointwise=self.pointwise, _debug=self.debug)
if self.parameters['corechainmodel'] == 'bert_slotptr':
self.corechain_model = net.Bert_Scorer_slotptr(_parameter_dict=self.parameters,
_word_to_id=self._word_to_id,
_device=self.device,
_pointwise=self.pointwise,
_debug=self.debug)
# Make the model path
model_path = os.path.join(self.parameters['_model_dir'], 'core_chain')
if self.pointwise:
model_path = os.path.join(model_path, self.parameters['corechainmodel']+'_pointwise')
else:
model_path = os.path.join(model_path, self.parameters['corechainmodel'])
# model_path = os.path.join(model_path, self.parameters['slotptr_common_encoder'])
model_path = os.path.join(model_path, self.parameters['dataset'])
# model_path = os.path.join(model_path, "transfer-b")
model_path = os.path.join(model_path, self.parameters['corechainmodelnumber'])
model_path = os.path.join(model_path, 'model.torch')
self.corechain_model.load_from(model_path)
self.parameters['corechainmodel'] = m
self.parameters['bidirectional'] = True
def _load_rdfclass_model(self):
# Initialize the model
if self.parameters['rdfclassmodel'] == 'bilstm_dot':
self.rdfclass_model = net.BiLstmDot(_parameter_dict=self.parameters, _word_to_id=self._word_to_id,
_device=self.device, _pointwise=False, _debug=self.debug)
# Make the model path
model_path = os.path.join(self.parameters['_model_dir'], 'rdf_class')
model_path = os.path.join(model_path, self.parameters['rdfclassmodel'])
model_path = os.path.join(model_path, self.parameters['dataset'])
model_path = os.path.join(model_path, self.parameters['rdfclassmodelnumber'])
model_path = os.path.join(model_path, 'model.torch')
self.rdfclass_model.load_from(model_path)
def _load_rdftype_model(self):
# Initialize the model
self.rdftype_model = net_rdftype.RdfTypeClassifier(_parameter_dict=self.parameters,
_word_to_id=self._word_to_id,
_device=self.device)
# Make model path like:
# ('model with accuracy ', 0.998, 'stored at', 'data/models/intent/bilstm_dense/lcquad/2/model.torch')
model_path = os.path.join(self.parameters['_model_dir'], 'rdf_type')
model_path = os.path.join(model_path, self.parameters['rdftypemodel'])
model_path = os.path.join(model_path, self.parameters['dataset'])
model_path = os.path.join(model_path, self.parameters['rdftypemodelnumber'])
model_path = os.path.join(model_path, 'model.torch')
self.rdftype_model.load_from(model_path)
def _load_intentmodel(self):
# Initialize the model
self.intent_model = net_intent.IntentClassifier(_parameter_dict=self.parameters,
_word_to_id=self._word_to_id,
_device=self.device)
# Make model path like:
# ('model with accuracy ', 0.998, 'stored at', 'data/models/intent/bilstm_dense/lcquad/2/model.torch')
model_path = os.path.join(self.parameters['_model_dir'], 'intent')
model_path = os.path.join(model_path, self.parameters['intentmodel'])
model_path = os.path.join(model_path, self.parameters['dataset'])
model_path = os.path.join(model_path, self.parameters['intentmodelnumber'])
model_path = os.path.join(model_path, 'model.torch')
self.intent_model.load_from(model_path)
def _predict_corechain_old(self, _q, _p, _p1 = None , _p2 = None, _p1_randomvec = None, _p2_randomvec = None):
"""
Given a datapoint (question, paths) encoded in embedding_vocab,
run the model's predict and find the best corechain.
_q: (<var len>)
_p: (100/500, <var len>)
returns score: (100/500)
"""
# Pad questions
Q = np.zeros((len(_p), self.parameters['max_length']))
Q[:, :min(len(_q), self.parameters['max_length'])] = \
np.repeat(_q[np.newaxis, :min(len(_q), self.parameters['max_length'])], repeats=len(_p), axis=0)
# Pad paths
P = np.zeros((len(_p), self.parameters['max_length']))
if _p1:
P1 = np.zeros((len(_p), self.parameters['max_length']))
P2 = np.zeros((len(_p), self.parameters['max_length']))
for i in range(len(_p)):
P[i, :min(len(_p[i]), self.parameters['max_length'])] = _p[i][:min(len(_p[i]), self.parameters['max_length'])]
if _p1_randomvec:
P1_randomvec = np.zeros((len(_p), self.parameters['max_length']))
P2_randomvec = np.zeros((len(_p), self.parameters['max_length']))
if _p1:
# print(_p1)
for i in range(len(_p)):
# print(type(_p1[i]),_p1[i],_p1[:5])
P1[i, :min(len(_p1[i]), self.parameters['max_length'])] = _p1[i][
:min(len(_p1[i]), self.parameters['max_length'])]
P2[i, :min(len(_p2[i]), self.parameters['max_length'])] = _p2[i][
:min(len(_p2[i]),
self.parameters['max_length'])]
P1 = torch.tensor(P1, dtype=torch.long, device=self.device)
P2 = torch.tensor(P2, dtype=torch.long, device=self.device)
if self.parameters['corechainmodel'] == 'slotptr' or self.parameters['corechainmodel'] == 'slotptr_randomvec'\
or self.parameters['corechainmodel'] == 'bert_slotptr':
P1 = P1[:,:self.parameters['relsp_pad']]
P2 = P2[:,:self.parameters['relsp_pad']]
else:
P1 = P1[:, :self.parameters['relrd_pad']]
P2 = P2[:, :self.parameters['relrd_pad']]
if _p1_randomvec:
# print(_p1)
for i in range(len(_p)):
# print(type(_p1[i]),_p1[i],_p1[:5])
P1_randomvec[i, :min(len(_p1[i]), self.parameters['max_length'])] = _p1_randomvec[i][
:min(len(_p1_randomvec[i]), self.parameters['max_length'])]
P2_randomvec[i, :min(len(_p2[i]), self.parameters['max_length'])] = _p2_randomvec[i][
:min(len(_p2_randomvec[i]),
self.parameters['max_length'])]
P1_randomvec = torch.tensor(P1_randomvec, dtype=torch.long, device=self.device)
P2_randomvec = torch.tensor(P2, dtype=torch.long, device=self.device)
P1_randomvec = P1_randomvec[:, :self.parameters['relrd_pad']]
P2_randomvec = P2_randomvec[:, :self.parameters['relrd_pad']]
# Convert np to torch stuff
Q = torch.tensor(Q, dtype=torch.long, device=self.device)
P = torch.tensor(P, dtype=torch.long, device=self.device)
P = P[:, :self.parameters['rel_pad']]
# if self.debug:
# print("Q: ", Q.shape, " P: ", P.shape)
# We then pass them through a predict function and get a score array.
if self.parameters['corechainmodel'] == 'slotptr' or self.parameters['corechainmodel'] == 'reldet' or \
self.parameters['corechainmodel'] == 'bert_slotptr':
# print("path rel 1 main ", P1)
# print("path rel 2 main ", P2)
# print("path rel 2 main ", P1.shape)
# print("path rel 2 main ", P2.shape)
score = self.corechain_model.predict(ques=Q, paths=P, paths_rel1=P1, paths_rel2=P2, device=self.device)
#Visual stuff.
# score,attention_score = self.corechain_model.predict(ques=Q, paths=P, paths_rel1=P1, paths_rel2=P2, device=self.device,attention_value=True)
# score1 = attention_score.squeeze(-1)[0, :, 0]
# score2 = attention_score.squeeze(-1)[0, :, 1]
# return score.detach().cpu().numpy(), score1.detach().cpu().numpy(), score2.detach().cpu().numpy()
elif self.parameters['corechainmodel'] == 'slotptr_randomvec':
score = self.corechain_model.predict(ques=Q, paths=P, paths_rel1=P1, paths_rel1_randomvec=P1_randomvec,
paths_rel2=P2, paths_rel2_randomvec=P2_randomvec, device=self.device)
else:
score = self.corechain_model.predict(ques=Q, paths=P, device=self.device)
return score.detach().cpu().numpy()
def _predict_corechain(self, _q, _p, _p1 = None , _p2 = None, _p1_randomvec = None, _p2_randomvec = None):
"""
Given a datapoint (question, paths) encoded in embedding_vocab,
run the model's predict and find the best corechain.
_q: (<var len>)
_p: (100/500, <var len>)
returns score: (100/500)
"""
# Pad questions
Q = np.zeros((len(_p), self.parameters['max_length']))
Q[:, :min(len(_q), self.parameters['max_length'])] = \
np.repeat(_q[np.newaxis, :min(len(_q), self.parameters['max_length'])], repeats=len(_p), axis=0)
# Pad paths
P = np.zeros((len(_p), self.parameters['max_length']))
if _p1:
P1 = np.zeros((len(_p), self.parameters['max_length']))
P2 = np.zeros((len(_p), self.parameters['max_length']))
for i in range(len(_p)):
P[i, :min(len(_p[i]), self.parameters['max_length'])] = _p[i][:min(len(_p[i]), self.parameters['max_length'])]
if _p1_randomvec:
P1_randomvec = np.zeros((len(_p), self.parameters['max_length']))
P2_randomvec = np.zeros((len(_p), self.parameters['max_length']))
if _p1:
# print(_p1)
for i in range(len(_p)):
# print(type(_p1[i]),_p1[i],_p1[:5])
P1[i, :min(len(_p1[i]), self.parameters['max_length'])] = _p1[i][
:min(len(_p1[i]), self.parameters['max_length'])]
P2[i, :min(len(_p2[i]), self.parameters['max_length'])] = _p2[i][
:min(len(_p2[i]),
self.parameters['max_length'])]
if self.parameters['corechainmodel'] == 'slotptr' or \
self.parameters['corechainmodel'] == 'slotptr_randomvec' or self.parameters['corechainmodel'] == 'bert_slotptr':
P1 = P1[:,:self.parameters['relsp_pad']]
P2 = P2[:,:self.parameters['relsp_pad']]
else:
P1 = P1[:, :self.parameters['relrd_pad']]
P2 = P2[:, :self.parameters['relrd_pad']]
# P1 = torch.tensor(P1, dtype=torch.long, device=self.device)
# P2 = torch.tensor(P2, dtype=torch.long, device=self.device)
if _p1_randomvec:
# print(_p1)
for i in range(len(_p)):
# print(type(_p1[i]),_p1[i],_p1[:5])
P1_randomvec[i, :min(len(_p1[i]), self.parameters['max_length'])] = _p1_randomvec[i][
:min(len(_p1_randomvec[i]), self.parameters['max_length'])]
P2_randomvec[i, :min(len(_p2[i]), self.parameters['max_length'])] = _p2_randomvec[i][
:min(len(_p2_randomvec[i]),
self.parameters['max_length'])]
P1_randomvec = P1_randomvec[:, :self.parameters['relrd_pad']]
P2_randomvec = P2_randomvec[:, :self.parameters['relrd_pad']]
# P1_randomvec = torch.tensor(P1_randomvec, dtype=torch.long, device=self.device)
# P2_randomvec = torch.tensor(P2_randomvec, dtype=torch.long, device=self.device)
# Tensorize things here
# Convert np to torch stuff
P = P[:, :self.parameters['rel_pad']]
#Check what variables are None and which are not none.
if not _p1_randomvec:
P1_randomvec,P2_randomvec = None, None
if not _p1:
P1,P2 = None,None
def distribute_it(np_array, k):
# print(len(np_array))
return np.array_split(np_array[:-1], k, axis=0)
distribute = True
k = 1000
if len(Q) < k+1:
distribute = False
if distribute:
print("in distributed setting")
if _p1_randomvec:
Q_dist, P_dist, P1_dist, P2_dist, P1_randomvec_dist, P2_randomvec_dist = distribute_it(Q,k), \
distribute_it(P,k), \
distribute_it(P1,k), \
distribute_it(P2,k), \
distribute_it(P1_randomvec,k),\
distribute_it(P2_randomvec,k)
temp_score = []
for q,p,p1,p2,p1_rv,p2_rv in zip(Q_dist,P_dist,P1_dist,P2_dist,P1_randomvec_dist,P2_randomvec_dist):
temp_score.append(self.tensorized_Score(q,p,p1,p1_rv,p2,p2_rv))
if not _p1_randomvec and _p1:
Q_dist, P_dist, P1_dist, P2_dist = distribute_it(Q, k), \
distribute_it(P, k), \
distribute_it(P1, k), \
distribute_it(P2, k)
temp_score = []
for q, p, p1, p2 in zip(Q_dist, P_dist, P1_dist, P2_dist):
temp_score.append(self.tensorized_Score(q, p, p1, None, p2, None))
if not _p1_randomvec and not _p1:
Q_dist, P_dist = distribute_it(Q, k), \
distribute_it(P, k)
temp_score = []
for q, p in zip(Q_dist, P_dist):
temp_score.append(self.tensorized_Score(q, p, None, None, None, None))
final_score = []
for scores in temp_score:
for s in scores:
final_score.append(s)
return np.asarray(final_score)
else:
return self.tensorized_Score(Q,P,P1=P1,P1_randomvec=P1_randomvec,P2=P2,P2_randomvec=P2_randomvec)
# # Q = torch.tensor(Q, dtype=torch.long, device=self.device)
# # P = torch.tensor(P, dtype=torch.long, device=self.device)
# # if self.debug:
# # print("Q: ", Q.shape, " P: ", P.shape)
#
# # We then pass them through a predict function and get a score array.
# if self.parameters['corechainmodel'] == 'slotptr' or self.parameters['corechainmodel'] == 'reldet':
# # print("path rel 1 main ", P1)
# # print("path rel 2 main ", P2)
# # print("path rel 2 main ", P1.shape)
# # print("path rel 2 main ", P2.shape)
#
# score = self.corechain_model.predict(ques=Q, paths=P, paths_rel1=P1, paths_rel2=P2, device=self.device)
# #Visual stuff.
# # score,attention_score = self.corechain_model.predict(ques=Q, paths=P, paths_rel1=P1, paths_rel2=P2, device=self.device,attention_value=True)
# # score1 = attention_score.squeeze(-1)[0, :, 0]
# # score2 = attention_score.squeeze(-1)[0, :, 1]
# # return score.detach().cpu().numpy(), score1.detach().cpu().numpy(), score2.detach().cpu().numpy()
# elif self.parameters['corechainmodel'] == 'slotptr_randomvec':
# score = self.corechain_model.predict(ques=Q, paths=P, paths_rel1=P1, paths_rel1_randomvec=P1_randomvec,
# paths_rel2=P2, paths_rel2_randomvec=P2_randomvec, device=self.device)
# else:
# score = self.corechain_model.predict(ques=Q, paths=P, device=self.device)
# return score.detach().cpu().numpy()
def tensorized_Score(self,Q,P,P1=None,P1_randomvec=None,P2=None,P2_randomvec=None):
# with torch.no_grad:
# Tensorize vectors:
Q = torch.tensor(Q, dtype=torch.long, device=self.device)
P = torch.tensor(P, dtype=torch.long, device=self.device)
# P = P[:, :self.parameters['rel_pad']]
if type(P1) != type(None):
# Then P2 also exists
P1 = torch.tensor(P1, dtype=torch.long, device=self.device)
P2 = torch.tensor(P2, dtype=torch.long, device=self.device)
if type(P1_randomvec) != type(None):
# Then P2 randomvec also exists
P1_randomvec = torch.tensor(P1_randomvec, dtype=torch.long, device=self.device)
P2_randomvec = torch.tensor(P2_randomvec, dtype=torch.long, device=self.device)
# Send it to the module and expect some scores
if self.parameters['corechainmodel'] == 'slotptr' or self.parameters['corechainmodel'] == 'reldet' or self.parameters['corechainmodel'] == 'bert_slotptr':
score = self.corechain_model.predict(ques=Q, paths=P, paths_rel1=P1, paths_rel2=P2, device=self.device)
elif self.parameters['corechainmodel'] == 'slotptr_randomvec':
score = self.corechain_model.predict(ques=Q, paths=P, paths_rel1=P1, paths_rel1_randomvec=P1_randomvec,
paths_rel2=P2, paths_rel2_randomvec=P2_randomvec,
device=self.device)
else:
score = self.corechain_model.predict(ques=Q, paths=P, device=self.device)
return score.detach().cpu().numpy()
def _predict_rdfclass(self, _q, _p):
"""
Given a datapoint (question, paths) encoded in embedding_vocab,
run the model's predict and find the best corechain.
_q: (<var len>)
_p: (100/500, <var len>)
returns score: (100/500)
"""
# Pad questions
Q = np.zeros((len(_p), self.parameters['max_length']))
Q[:, :min(len(_q), self.parameters['max_length'])] = \
np.repeat(_q[np.newaxis, :min(len(_q), self.parameters['max_length'])], repeats=len(_p), axis=0)
# Pad paths
P = np.zeros((len(_p), self.parameters['max_length']))
for i in range(len(_p)):
P[i, :min(len(_p[i]), self.parameters['max_length'])] = \
_p[i][:min(len(_p[i]), self.parameters['max_length'])]
# Convert np to torch stuff
Q = torch.tensor(Q, dtype=torch.long, device=self.device)
P = torch.tensor(P, dtype=torch.long, device=self.device)
# We then pass them through a predict function and get a score array.
score = self.rdfclass_model.predict(ques=Q, paths=P, device=self.device)
return score.detach().cpu().numpy()
def _predict_intent(self, _q):
"""
Given a question, it runs a distribution over possible intents (ask/count/list)
_q: (<var len>)
returns: np.arr shape (3)
"""
# Pad the question
Q = np.zeros(self.parameters['max_length'])
Q[:min(_q.shape[0], self.parameters['max_length'])] = _q[:min(_q.shape[0], self.parameters['max_length'])]
data = {'ques_batch': Q.reshape(1, Q.shape[0])}
# Get prediction
score = self.intent_model.predict(data, self.device)
return score.detach().cpu().numpy()
def _predict_rdftype(self, _q):
"""
Given a question, it runs a distribution over possible places where we attach an rdftype constraint
(x/uri/none)
_q: (<var len>)
returns: np.arr shape (3)
"""
# Pad the question
Q = np.zeros(self.parameters['max_length'])
Q[:min(_q.shape[0], self.parameters['max_length'])] = _q[:min(_q.shape[0], self.parameters['max_length'])]
data = {'ques_batch': Q.reshape(1, Q.shape[0])}
# Get prediction
score = self.rdftype_model.predict(data, self.device)
return score.detach().cpu().numpy()
def construct_paths(data, relations, gloveid_to_embeddingid, qald=False):
"""
:param data: a data node of id_big_data
relations : a dictionary which maps relation id to meta inforamtion like surface form, embedding id
of surface form etc.
:return: unpadded , continous id spaced question, positive path, negative paths
@TODO: remove from here, and use dataloader version
"""
question = np.asarray(data['uri']['question-id'])
# questions = pad_sequences([question], maxlen=max_length, padding='post')
# inverse id version of positive path and creating a numpy version
positive_path_id = data['parsed-data']['path']
no_positive_path = False
# print("**", positive_path_id)
if positive_path_id == -1:
positive_path = np.asarray([-1])
no_positive_path = True
else:
positive_path = []
for p in positive_path_id:
if p in ['+', '-']:
positive_path += vocabularize_relation(p)
else:
positive_path += relations[int(p)][3].tolist()
positive_path = np.asarray(positive_path)
# padded_positive_path = pad_sequences([positive_path], maxlen=max_length, padding='post')
# negative paths from id to surface form id
negative_paths_id = data['uri']['hop-2-properties'] + data['uri']['hop-1-properties']
negative_paths = []
for neg_path in negative_paths_id:
negative_path = []
for path in neg_path:
if path in embeddings_interface.SPECIAL_CHARACTERS:
negative_path += vocabularize_relation(path)
else:
negative_path += relations[int(path)][3].tolist()
negative_paths.append(np.asarray(negative_path))
negative_paths = np.asarray(negative_paths)
# negative paths padding
# padded_negative_paths = pad_sequences(negative_paths, maxlen=max_length, padding='post')
# explicitly remove any positive path from negative path
negative_paths = dl.remove_positive_path(positive_path, negative_paths)
# remap all the id's to the continous id space.
# passing all the elements through vocab
'''
Legacy stuff.
This was a mapping between glove and embedding id. For now we are nit using it.
'''
# question = np.asarray([gloveid_to_embeddingid[key] for key in question])
# if not no_positive_path:
# positive_path = np.asarray([gloveid_to_embeddingid[key] for key in positive_path])
# for i in range(0, len(negative_paths)):
# # temp = []
# for j in range(0, len(negative_paths[i])):
# try:
# negative_paths[i][j] = gloveid_to_embeddingid[negative_paths[i][j]]
# except:
# negative_paths[i][j] = gloveid_to_embeddingid[0]
# negative_paths[i] = np.asarray(temp)
# negative_paths[i] = np.asarray([vocab[key] for key in negative_paths[i] if key in vocab.keys()])
if qald:
return question, positive_path, negative_paths, no_positive_path
return question, positive_path, negative_paths
def prune_candidate_space(question, paths, k=None):
"""
Boilerplate to reduce the number of valid paths.
Note: path[0] is the correct path.
Should we remove it? Should we not?
As of now it returns an index
"""
return np.arange(len(paths))
def create_sparql(log, data, embeddings_interface, relations):
"""
Creates a query graph from logs and sends it to sparql_constructor
for getting a valid SPARQL query (or results) back.
Query graph is a dict containing:
best_path,
intent,
rdf_constraint,
rdf_constraint_type,
rdf_best_path
:param log: dict made using answer_question function
:param embeddings_interface: the file
:param embeddingid_to_gloveid: reverse vocab dict
:param relations: the relations dict
:return: sparql query as string
"""
query_graph = {}
query_graph['intent'] = log['pred_intent']
query_graph['best_path'] = log['pred_path']
query_graph['rdf_constraint_type'] = log['pred_rdf_type']
query_graph['rdf_best_path'] = log['pred_rdf_class']
query_graph['entities'] = data['parsed-data']['entity']
query_graph['rdf_constraint'] = False if log['pred_rdf_type'] == 'none' else True
# return sparql_constructor.convert_runtime(_graph=query_graph)
return sparql_constructor.convert(_graph=query_graph, relations=relations,
embeddings_interface=embeddings_interface)
def create_rd_sp_paths(paths,no_reldet=False):
special_char = [embeddings_interface.vocabularize(['+']), embeddings_interface.vocabularize(['-'])]
dummy_path = [0]
paths_rel1_sp = []
paths_rel2_sp = []
paths_rel1_rd = []
paths_rel2_rd = []
for p in paths:
p1, p2 = dl.break_path(p, special_char)
paths_rel1_sp.append(p1)
'''
>>>>IMPLEMENT THIS<<<<
>>>>IMPLEMENT THIS<<<<
>>>>IMPLEMENT THIS<<<<
>>>>IMPLEMENT THIS<<<<
'''
if no_reldet:
paths_rel1_rd.append(p1)
else:
paths_rel1_rd.append([dl.relation_table_lookup_reverse(p1,glove_id_sf_to_glove_id_rel)])
if p2 is not None:
paths_rel2_sp.append(p2)
if no_reldet:
paths_rel2_rd.append(p2)
else:
paths_rel2_rd.append([dl.relation_table_lookup_reverse(p2,glove_id_sf_to_glove_id_rel)])
else:
paths_rel2_sp.append(dummy_path)
paths_rel2_rd.append(dummy_path)
paths_rel1_sp = [np.asarray(o) for o in paths_rel1_sp]
paths_rel2_sp = [np.asarray(o) for o in paths_rel2_sp]
paths_rel1_rd = [np.asarray(o) for o in paths_rel1_rd]
paths_rel2_rd = [np.asarray(o) for o in paths_rel2_rd]
return paths_rel1_sp,paths_rel2_sp,paths_rel1_rd,paths_rel2_rd
def corechain_prediction(question, paths, positive_path, negative_paths, no_positive_path,model,quesans, verbal_question=""):
'''
Why is path needed ?
'''
# Remove if adding to class
# global quesans
mrr = 0
best_path = ''
path_predicted_correct = False
if no_positive_path and len(negative_paths) == 0:
'''
There exists no positive path and also no negative paths
Why does this quest exists ?
> Probably in qald
'''
print("The code should not have been herr. There is no warning. RUN!!!!!!!!")
# raise ValueError
elif not no_positive_path and len(negative_paths) == 0:
'''
There exists a positive path and there exists no negative path
'''
best_path = positive_path
mrr = 1
path_predicted_correct = True
print("here here is the code")
elif no_positive_path and len(negative_paths) != 0:
'''
There exists no correct/true path and there are few negative paths.
'''
if model == 'reldet':
_, _, paths_rel1_rd, paths_rel2_rd = create_rd_sp_paths(paths)
# print("paths rel1 rd are loop1 ", paths_rel1_rd)
# print("paths rel2 rd are loop1 ", paths_rel2_rd)
output = quesans._predict_corechain(question,paths,paths_rel1_rd,paths_rel2_rd)
elif model == 'slotptr' or model == 'bert_slotptr':
paths_rel1_sp, paths_rel2_sp, _, _ = create_rd_sp_paths(paths)
output= quesans._predict_corechain(question,paths,paths_rel1_sp,paths_rel2_sp)
elif model == 'slotptr_randomvec':
paths_rel1_sp, paths_rel2_sp, paths_rel1_rd, paths_rel2_rd = create_rd_sp_paths(paths)
output = quesans._predict_corechain(_q=question, _p=paths, _p1=paths_rel1_sp, _p2=paths_rel2_sp,
_p1_randomvec=paths_rel1_rd, _p2_randomvec=paths_rel2_rd)
else:
output = quesans._predict_corechain(question, paths)
best_path_index = np.argmax(output)
best_path = paths[best_path_index]
elif not no_positive_path and len(negative_paths) != 0:
'''
There exists positive path and also negative paths
path = positive_path + negative_paths
'''
if model == 'reldet':
_, _, paths_rel1_rd, paths_rel2_rd = create_rd_sp_paths(paths)
# print("paths rel1 rd are loop1 ", paths_rel1_rd)
# print("paths rel2 rd are loop1 ", paths_rel2_rd)
output = quesans._predict_corechain(question,paths,paths_rel1_rd,paths_rel2_rd)
elif model == 'slotptr' or model == 'bert_slotptr':
paths_rel1_sp, paths_rel2_sp, _, _ = create_rd_sp_paths(paths)
# print("paths rel1 rd are loop1 ", paths_rel1_sp)
# print("paths rel2 rd are loop1 ", paths_rel2_sp)
output= quesans._predict_corechain(question,paths,paths_rel1_sp,paths_rel2_sp)
elif model == 'slotptr_randomvec':
paths_rel1_sp, paths_rel2_sp, paths_rel1_rd, paths_rel2_rd = create_rd_sp_paths(paths)
output = quesans._predict_corechain(_q=question, _p=paths, _p1 = paths_rel1_sp, _p2 = paths_rel2_sp,
_p1_randomvec = paths_rel1_rd, _p2_randomvec = paths_rel2_rd)
else:
output = quesans._predict_corechain(question, paths)
best_path_index = np.argmax(output)
best_path = paths[best_path_index]
# Calculate mrr here
mrr = 0
if best_path_index == 0:
path_predicted_correct = True
if model == 'bert':
output = [i[0] for i in output]
print(output)
mrr_output = np.argsort(output)[::-1]
# print("mrr_output is 1 ", mrr_output)
mrr_output = mrr_output.tolist()
# print("mrr_output is", mrr_output)
mrr = mrr_output.index(0) + 1.0
# raise IOError
# print(output)
if mrr != 0:
mrr = 1.0 / mrr
else:
print("The code should not have been herr. There is no warning. RUN!!!!!!!!")
raise ValueError
return mrr, best_path, path_predicted_correct
def answer_question(qa, index, data, relations, parameter_dict):
"""
Uses everything to do everyhing for one data instance (one question, subgraph etc).
"""
log = {}
log['question'] = None
log['true_path'] = None
log['true_intent'] = None
log['true_rdf_type'] = None
log['true_rdf_class'] = None
log['pred_path'] = None
log['pred_intent'] = None
log['pred_rdf_type'] = None
log['pred_rdf_class'] = None
metrics = {}
question, positive_path, negative_paths, no_positive_path = dl.construct_paths(data, qald=True,
relations=relations)
log['question'] = question
'''
@some hack
if the dataset is LC-QUAD and data['pop']
is false then the positive path has been forcefully inserted and needs to be removed.
'''
if parameter_dict['dataset'] == 'lcquad':
try:
if data['pop'] == False:
no_positive_path = True
except KeyError:
pass
# ##############################################
"""
Core chain prediction
"""
# ##############################################
if no_positive_path:
'''
There is no positive path, maybe we do something intelligent
'''
log['true_path'] = [-1]
nps = [n.tolist() for n in negative_paths]
paths = nps
index_selected_paths = prune_candidate_space(question, paths, parameter_dict['prune_corechain_candidates'])
else:
pp = [positive_path.tolist()]
nps = [n.tolist() for n in negative_paths]
paths = pp + nps
if parameter_dict['prune_corechain_candidates']:
index_selected_paths = prune_candidate_space(question, paths, parameter_dict['prune_corechain_candidates'])
if index_selected_paths[-1] == 0:
# Counts the number of times just using word2vec similarity, the best path came the most similar.
# This will only work if CANDIDATE_SPACE is not none.
metrics['word_vector_accuracy_counter'] = 1
else:
index_selected_paths = prune_candidate_space(question, paths, len(paths))
log['true_path'] = pp[0]
# Put the pruning index over the paths
paths = [paths[i] for i in index_selected_paths]
'''
Converting paths to numpy array
'''
for i in range(len(paths)):
paths[i] = np.asarray(paths[i])
paths = np.asarray(paths)
cc_mrr, best_path, cc_acc = corechain_prediction(question,
paths, positive_path,
negative_paths, no_positive_path,parameter_dict['corechainmodel'],qa)
log['pred_path'] = best_path
metrics['core_chain_accuracy_counter'] = cc_acc
metrics['core_chain_mrr_counter'] = cc_mrr
metrics['num_paths'] = len(paths)
# ##############################################
"""
Intent, rdftype prediction
Straightforward.
Metrics: accuracy
"""
# ##############################################
# Get intent
intent_pred = np.argmax(qa._predict_intent(question))
intent_true = np.argmax(net_intent.get_y(data))
intent_acc = 1 if intent_pred == intent_true else 0
metrics['intent_accuracy_counter'] = intent_acc
intent = INTENTS[intent_pred]
log['true_intent'] = INTENTS[intent_true]
log['pred_intent'] = INTENTS[intent_pred]
# Get rdftype
rdftype_pred = np.argmax(qa._predict_rdftype(question))
rdftype_true = np.argmax(net_rdftype.get_y(data))
rdftype_acc = 1 if rdftype_pred == rdftype_true else 0
metrics['rdftype_accuracy_counter'] = rdftype_acc
rdftype = RDFTYPES[rdftype_pred]
log['true_rdf_type'] = RDFTYPES[rdftype_true]
log['pred_rdf_type'] = RDFTYPES[rdftype_pred]
# ##############################################
"""
RDF class prediction.
do this only if we need to, based on the prediction of rdftype model.
"""
# ##############################################
# Add dummy rdfclass logs and metrics
log['true_rdf_class'] = None
log['pred_rdf_class'] = None
metrics['rdfclass_accuracy_counter'] = None
# rdftype = "none"
if rdftype == "none":
pass
else:
"""
We do need an rdf constraint.
We let the rdf class model (ranker) choose between both x and uri paths,
and the rdf type model is just used to see if we need paths at all.
"""
rdf_candidates = sparql_constructor.rdf_type_candidates(data, best_path,
relations)
if rdf_candidates:
rdf_candidate_pred = qa._predict_rdfclass(_q=question, _p=rdf_candidates)
best_rdf_path = rdf_candidates[np.argmax(rdf_candidate_pred)]
else:
# No candidates found
best_rdf_path = []
# @TODO: as of now we don't have ground truth so we add a 0 in metrics and 0 in log
log['true_rdf_class'] = 0
log['pred_rdf_class'] = best_rdf_path
metrics['rdfclass_accuracy_counter'] = 0
return log, metrics
def sparql_answer(sparql,dbi=None):
if not dbi:
dbi = dbp
test_answer = []
interface_test_answer = dbi.get_answer(sparql)
for key in interface_test_answer: