forked from kaiu85/CRNs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_graphs_for_figure_2.py
194 lines (124 loc) · 6.5 KB
/
create_graphs_for_figure_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch
import matplotlib.pyplot as plt
from network_constructors import create_wta_model
from utils import save_trajectories
import numpy as np
# C.f. Rao & Esposito (2018), equation (42)
def calculate_gibbs_free_energy(As):
gs = torch.lgamma(As + 1.0)
gs = gs.sum(dim = [0])
return gs
steps = 300000
log_every = 3000
print_debug = False
n = 100000
# Number of initial reaction events to record, after system is closed
n_dir = 10
steps_eval = n_dir + 1
log_every_eval = 1
# List of forcings to simulate and analyze
forcings = list(np.arange(100.0, 400.0, 100.0)) + list(np.arange(310.0, 400.0, 10.0)) + list(np.arange(400.0, 2400.0, 100.0))
print('Number of forcings to simulate: ' + str(len(forcings)))
plot_forcings = [200.0, 400.0]
max_plots = 10
cm = 1/2.54 # centimeters in inches
####### SIMULATE CONVERGENCE TO STEADY STATE AND INITIAL PHASE OF DECAY
for forcing in forcings:
print('Simulating CRN initialized at high-concentration state for forcing ' + str(forcing) )
suffix = 'wta_energy_calculation_network_final_' + str(forcing)
CRN = create_wta_model(mean_forcing = forcing, n = n)
CRN.A[:,:] = torch.randint(0,500,CRN.A.shape)
CRN.A[1,:] = forcing
CRN.A[2,:] = 5.0
CRN.A[3,:] = 5.0
CRN.init_global_reaction_variables(print_debug = print_debug)
results = CRN.run(steps, log_every = log_every, print_debug = print_debug)
save_trajectories(results, './results/', suffix)
ts = np.load('./results/ts' + suffix + '.npy')
As = np.load('./results/As' + suffix + '.npy')
suffix = 'decaying_' + suffix
CRN2 = create_wta_model(mean_forcing = forcing, n = n)
CRN2.clamped = dict()
CRN2.A = torch.tensor(As[:,:,-1]).cuda()
CRN2.init_global_reaction_variables(print_debug = print_debug)
results = CRN2.run(steps_eval, log_every = log_every_eval, print_debug = print_debug)
save_trajectories(results, './results/', suffix)
for forcing in forcings:
print('Simulating CRN initialized at low-concentration state for forcing ' + str(forcing) )
suffix = 'wta_energy_calculation_network_final_low' + str(forcing)
CRN = create_wta_model(mean_forcing = forcing, n = n)
CRN.A[:,:] = torch.randint(0,500,CRN.A.shape)
CRN.A[1,:] = 5.0
CRN.A[2,:] = 5.0
CRN.A[3,:] = 5.0
CRN.init_global_reaction_variables(print_debug = print_debug)
results = CRN.run(steps, log_every = log_every, print_debug = print_debug)
save_trajectories(results, './results/', suffix)
ts = np.load('./results/ts' + suffix + '.npy')
As = np.load('./results/As' + suffix + '.npy')
suffix = 'decaying_' + suffix
CRN2 = create_wta_model(mean_forcing = forcing, n = n)
CRN2.clamped = dict()
CRN2.A = torch.tensor(As[:,:,-1]).cuda()
CRN2.init_global_reaction_variables(print_debug = print_debug)
results = CRN2.run(steps_eval, log_every = log_every_eval, print_debug = print_debug)
save_trajectories(results, './results/', suffix)
##### CREATE GRAPHS FOR FIGURE 2
Wmins_direct_high = []
Wmins_std_high = []
forcings_high = []
Wmins_direct_low = []
Wmins_std_low = []
forcings_low = []
for forcing in forcings:
suffix = 'wta_energy_calculation_network_final_' + str(forcing)
if forcing in plot_forcings:
ts = np.load('./results/ts' + suffix + '.npy')
As = np.load('./results/As' + suffix + '.npy')
for j in range(min(ts.shape[0],max_plots)):
plt.figure(figsize = (30*cm, 20*cm))
plt.plot(ts[j,:],As[:,j,:].squeeze().transpose(), label = None)
plt.savefig("./figures/Fig_2cd_WTA_%d_%d.svg" % (forcing, j) )
suffix = 'decaying_' + suffix
ts = np.load('./results/ts' + suffix + '.npy')
As = np.load('./results/As' + suffix + '.npy')
gs = calculate_gibbs_free_energy(torch.tensor(As)).numpy()
high_indices = ( As[1,:,-1] > 0.5*forcing )
print('%d of %d trajectories stayed in high-concentration state' % (high_indices.sum(), n) )
# Only calculate heat production rate, if at least 1000 of the trajectories
# stayed in a high concentration state
if high_indices.sum() > 1000:
Wmins_direct_high.append( - np.divide(gs[:,n_dir]-gs[:,0], ts[:,n_dir]-ts[:,0])[high_indices].mean() )
Wmins_std_high.append( np.divide(gs[:,n_dir]-gs[:,0], ts[:,n_dir]-ts[:,0])[high_indices].std()/np.sqrt(len(high_indices)) )
forcings_high.append(forcing)
for forcing in forcings:
suffix = 'decaying_wta_energy_calculation_network_final_low' + str(forcing)
ts = np.load('./results/ts' + suffix + '.npy')
As = np.load('./results/As' + suffix + '.npy')
gs = calculate_gibbs_free_energy(torch.tensor(As)).numpy()
low_indices = np.logical_and( As[1,:,-1] < 0.5*forcing , np.logical_and( As[2,:,-1] < 0.5*forcing, As[3,:,-1] < 0.5*forcing ) )
print('%d of %d trajectories stayed in spontaneous state' % (low_indices.sum(), n) )
# Only calculate heat production rate, if at least 1000 of the trajectories
# stayed in a low concentration state
if low_indices.sum() > 1000:
Wmins_direct_low.append( - np.divide(gs[:,n_dir]-gs[:,0], ts[:,n_dir]-ts[:,0])[low_indices].mean() )
Wmins_std_low.append( np.divide(gs[:,n_dir]-gs[:,0], ts[:,n_dir]-ts[:,0])[1 - high_indices].std()/np.sqrt(n-len(high_indices)) )
forcings_low.append(forcing)
cm = 1/2.54 # centimeters in inches
plt.figure(figsize = (30*cm, 20*cm))
plt.figure()
plt.plot(forcings_low,Wmins_direct_low)
plt.fill_between(forcings_low, np.array(Wmins_direct_low) - np.array(Wmins_std_low), np.array(Wmins_direct_low) + np.array(Wmins_std_low), color = 'lightblue' )
plt.plot(forcings_high,Wmins_direct_high)
plt.fill_between(forcings_high, np.array(Wmins_direct_high) - np.array(Wmins_std_high), np.array(Wmins_direct_high) + np.array(Wmins_std_high), color = 'papayawhip' )
plt.xlim([100.0, 1400.0])
plt.ylim([-10.0, 200.0])
plt.savefig("./figures/Fig_2a.svg")
plt.figure()
plt.plot(forcings_low,Wmins_direct_low)
plt.fill_between(forcings_low, np.array(Wmins_direct_low) - np.array(Wmins_std_low), np.array(Wmins_direct_low) + np.array(Wmins_std_low), color = 'lightblue' )
plt.plot(forcings_high,Wmins_direct_high)
plt.fill_between(forcings_high, np.array(Wmins_direct_high) - np.array(Wmins_std_high), np.array(Wmins_direct_high) + np.array(Wmins_std_high), color = 'papayawhip' )
plt.xlim([200.0, 400.0])
plt.ylim([-10.0, 50.0])
plt.savefig("./figures/Fig_2b.svg")