-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapplication.py
39 lines (32 loc) · 1.31 KB
/
application.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from flask import Flask, request, jsonify, render_template
from src.components.model_prediction import prediction, decode
import numpy as np
from src.logger import logging
app = Flask(__name__)
initiate_model = prediction()
model = initiate_model.load_model('artifacts/models/trained_model.keras')
@app.route('/')
def index():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
try:
logging.info("app step 1 completed ")
image_file = request.files['image']
image_path = 'temp_image.jpg'
image_file.save(image_path)
logging.info("app.py step 2 completed ")
preprocessed_image = initiate_model.preprocess_image(image_path)
logging.info("app.py step 3 completed ")
if preprocessed_image is not None:
predictions = model.predict(np.expand_dims(preprocessed_image, axis=0))
decoder = decode()
decoder.load_index_to_label()
decoded_predictions = decoder.decode_prediction(predictions)
return jsonify({'predictions': decoded_predictions})
else:
return jsonify({'error': 'Failed to preprocess the image'}), 400
except Exception as e:
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.run(host='127.0.0.1', port=5000)