forked from keineahnung2345/leetcode-cpp-practices
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1007. Minimum Domino Rotations For Equal Row.cpp
172 lines (158 loc) · 5.83 KB
/
1007. Minimum Domino Rotations For Equal Row.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
//WA
//78 / 84 test cases passed.
class Solution {
public:
int minDominoRotations(vector<int>& A, vector<int>& B) {
int aValue = A[0], bValue = B[0];
int N = A.size();
int aSwap = 0, bSwap = 0;
for(int i = 1; i < N; i++){
if(A[i] == aValue){
continue;
}else if(B[i] == aValue){
aSwap++;
}else{
//cannot swap so that A is filled with aValue
aSwap = INT_MAX;
break;
}
}
for(int i = 1; i < N; i++){
if(B[i] == bValue){
continue;
}else if(A[i] == bValue){
bSwap++;
}else{
bSwap = INT_MAX;
break;
}
}
cout << aSwap << " " << bSwap << endl;
if(aSwap == INT_MAX && bSwap == INT_MAX) return -1;
return min(aSwap, bSwap);
}
};
//https://leetcode.com/problems/minimum-domino-rotations-for-equal-row/discuss/252242/JavaC%2B%2BPython-Different-Ideas
//Runtime: 128 ms, faster than 42.29% of C++ online submissions for Minimum Domino Rotations For Equal Row.
//Memory Usage: 17.1 MB, less than 100.00% of C++ online submissions for Minimum Domino Rotations For Equal Row.
//time: O(N), space: O(N)
class Solution {
public:
int minDominoRotations(vector<int>& A, vector<int>& B) {
int N = A.size();
vector<int> countA(7, 0), countB(7, 0), same(7, 0);
for(int i = 0; i < N; i++){
countA[A[i]]++;
countB[B[i]]++;
if(A[i] == B[i]) same[A[i]]++;
}
int ans = -1;
for(int i = 1; i <= 6; i++){
/*
countA[i] + countB[i] - same[i]: i can fill how many position,
this value will always <= N
*/
if(countA[i] + countB[i] - same[i] == N){
/*
if countA[i] > countB[i],
we flip N - countA[i] times so that
row A will be all i
*/
ans = N - max(countA[i], countB[i]);
/*
we can break the loop immediately because when there are 2 "i"
(say x and y) meets the condition
"countA[i] + countB[i] - same[i] == N",
same[x] and same[y] will be 0,
and countA[x] will equal countB[y],
countA[y] will equal countB[x],
so max(countA[i], countB[i]) and so ans will be the same
*/
break;
}
// cout << i << " " << countA[i] << " " << countB[i] << " " << same[i] << " " << ans << endl;
}
return ans;
}
};
//Two pass
//https://leetcode.com/problems/minimum-domino-rotations-for-equal-row/discuss/252242/JavaC%2B%2BPython-Different-Ideas
//Runtime: 120 ms, faster than 83.05% of C++ online submissions for Minimum Domino Rotations For Equal Row.
//Memory Usage: 16.7 MB, less than 100.00% of C++ online submissions for Minimum Domino Rotations For Equal Row.
//time: O(N), space: O(1)
class Solution {
public:
int minDominoRotations(vector<int>& A, vector<int>& B) {
int N = A.size();
int aSwap = 0, bSwap = 0;
//try make row A(maintained by aSwap) or row B(aSwap) all A[0]
for(int i = 0; i < N; i++){
if(A[i] == A[0] || B[i] == A[0]){
if(A[i] != A[0]) aSwap++;
if(B[i] != A[0]) bSwap++;
}else{
/*
for position i,
we cannot swap the element in A or B to make it A[0],
so we fail it
*/
break;
}
/*
the condition: A[i] == A[0] || B[i] == A[0] holds for all i
now we can determine whether to make row A or row B all A[0]
*/
if(i == N-1) return min(aSwap, bSwap);
}
//try make row A or row B all B[0]
aSwap = 0, bSwap = 0;
for(int i = 0; i < N; i++){
if(A[i] == B[0] || B[i] == B[0]){
if(A[i] != B[0]) aSwap++;
if(B[i] != B[0]) bSwap++;
}else{
break;
}
if(i == N-1) return min(aSwap, bSwap);
}
return -1;
}
};
//Set
//https://leetcode.com/problems/minimum-domino-rotations-for-equal-row/discuss/252242/JavaC%2B%2BPython-Different-Ideas
//Runtime: 732 ms, faster than 5.03% of C++ online submissions for Minimum Domino Rotations For Equal Row.
//Memory Usage: 114.6 MB, less than 16.67% of C++ online submissions for Minimum Domino Rotations For Equal Row.
class Solution {
public:
int minDominoRotations(vector<int>& A, vector<int>& B) {
set<int> mainset = {1,2,3,4,5,6};
vector<int> countA(7, 0), countB(7, 0);
int N = A.size();
for (int i = 0; i < N; ++i) {
set<int> tmpset = {A[i], B[i]};
set<int> result;
set_intersection(mainset.begin(), mainset.end(),
tmpset.begin(), tmpset.end(),
inserter(result, result.begin()));
mainset.swap(result);
countA[A[i]]++;
countB[B[i]]++;
}
//here we get the value either exist in row A or B for every position
// for(int i : mainset){
// cout << i << " ";
// }
// cout << endl;
/*
if there are 2 values in mainset, for example:
[2,1,2,1,2,2]
[1,2,1,2,1,1]
their max(countA[i], countB[i]) will be the same,
so we can jsut calculate N - max(countA[i], countB[i]) for one value and return
*/
for(int i : mainset){
return N - max(countA[i], countB[i]);
}
return -1;
}
};