From 193141eef89c5824f6c78d7bfbc1f0cd3229992f Mon Sep 17 00:00:00 2001 From: christinawlindberg Date: Mon, 16 Dec 2019 16:46:40 -0800 Subject: [PATCH 1/7] M31 example --- M31_Example/M31_workflow.ipynb | 784 +++++++++++++++++++++++++++++++++ 1 file changed, 784 insertions(+) create mode 100644 M31_Example/M31_workflow.ipynb diff --git a/M31_Example/M31_workflow.ipynb b/M31_Example/M31_workflow.ipynb new file mode 100644 index 0000000..229e65c --- /dev/null +++ b/M31_Example/M31_workflow.ipynb @@ -0,0 +1,784 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Source Density Mapping Example\n", + "\n", + "We'll be walking through a standard BEAST workflow in this example, using some M31 data as an example.\n", + "\n", + "Before we do anything though, we have to import the following packages. This seems like a lot but they are all here to make our lives easier down the line. And running them all as the first cell means that if our kernel ever crashes halfway through, we can just reimport everything at once rather than stepping through the cells individually." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n" + ] + } + ], + "source": [ + "import h5py\n", + "\n", + "import numpy as np\n", + "from astropy import wcs\n", + "from astropy.io import fits\n", + "from astropy.table import Table\n", + "import tables\n", + "\n", + "import glob\n", + "import os\n", + "import types\n", + "import argparse\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from beast.tools.run import (\n", + " create_physicsmodel,\n", + " make_ast_inputs,\n", + " create_obsmodel,\n", + " run_fitting,\n", + " merge_files,\n", + " create_filenames,\n", + ")\n", + "\n", + "from beast.plotting import (plot_mag_hist, plot_ast_histogram)\n", + "from beast.tools import (\n", + " create_background_density_map,\n", + " split_ast_input_file,\n", + "# subdivide_obscat_by_source_density,\n", + "# cut_catalogs,\n", + "# split_asts_by_source_density,\n", + "# setup_batch_beast_trim,\n", + "# setup_batch_beast_fit,\n", + " )\n", + "\n", + "import importlib" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step -1. Obtain data file and convert to fits file\n", + "\n", + "Sometimes data is given to us in HDF5 file formats. While these are great for storing data in different heirarchies, it's a little hard to work with directly, so we would have to convert our HDF5 file to a FITS file.\n", + "\n", + "Thankfully, our data is already in a FITS format so we don't need to worry about this." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1a. Make magnitude histogram\n", + "\n", + "Step 1a is to make histograms of all the magnitudes of all the stars in all the different filters. This is done so that we know where the peak of the histogram is. This peak will then be used later when we make source density maps. Essentially what happens is that, for the density maps, we only count objects within a certain range, currently set to mag_cut = 15 - (peak_for_filter-0.5). So if the peak was 17.5, then the objects that would be counted would have to be in the range between 15 and 18. \n", + "\n", + "The reason we only count brighter sources is because dimmer sources tend to not be properly observed, especially as the magnitudes near the telescope limit. There will always be far more dim sources than bright sources, but if we know how many bright sources there are, then we can extrapolate as to how many dim sources there should be, and probably get a better understand from that than if we were to try and actually count all the dim sources we detect. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "gst_file = \"./M31-B21-WEST_cutout.st.fits\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see what type of data this fits file holds by making a table." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "Table length=205331\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
F160W_STF160W_GSTF475W_STF475W_GSTF336W_STF336W_GSTF814W_STF814W_GSTF275W_STF275W_GSTF110W_STF110W_GSTXYRADECCHI_GLSNR_GLSHARP_GLROUND_GLCROWD_GLF475W_COUNTF475W_SKYF475W_RATEF475W_RATERRF475W_VEGAF475W_TRANSF475W_ERRF475W_CHIF475W_SNRF475W_SHARPF475W_ROUNDF475W_CROWDF814W_COUNTF814W_SKYF814W_RATEF814W_RATERRF814W_VEGAF814W_TRANSF814W_ERRF814W_CHIF814W_SNRF814W_SHARPF814W_ROUNDF814W_CROWDF275W_COUNTF275W_SKYF275W_RATEF275W_RATERRF275W_VEGAF275W_TRANSF275W_ERRF275W_CHIF275W_SNRF275W_SHARPF275W_ROUNDF275W_CROWDF336W_COUNTF336W_SKYF336W_RATEF336W_RATERRF336W_VEGAF336W_TRANSF336W_ERRF336W_CHIF336W_SNRF336W_SHARPF336W_ROUNDF336W_CROWDF110W_COUNTF110W_SKYF110W_RATEF110W_RATERRF110W_VEGAF110W_TRANSF110W_ERRF110W_CHIF110W_SNRF110W_SHARPF110W_ROUNDF110W_CROWDF160W_COUNTF160W_SKYF160W_RATEF160W_RATERRF160W_VEGAF160W_TRANSF160W_ERRF160W_CHIF160W_SNRF160W_SHARPF160W_ROUNDF160W_CROWDEXTCHIPMAJAX_GLOBJTYPE_GLF475W_FLAGF814W_FLAGF275W_FLAGF336W_FLAGF110W_FLAGF160W_FLAG
boolboolboolboolboolboolboolboolboolboolboolboolfloat64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64int64int64int64int64int64int64int64int64int64int64
FalseFalseTrueTrueFalseFalseTrueTrueFalseFalseFalseFalse1776.9200000250678111.5400000013487411.38694615196245342.1989799610847241.741353.0-0.2540.0270000000000000030.031788000000.0119921.14.6299999999999995e-071.7699999999999999e-0915.83599999999999916.150.0041.25262.2-0.0240.0180000000000000020.0121300000000.0333344.01.57e-065.420000000000001e-0914.50914.5020.0041.85290.1-0.0120.0289999999999999980.0090000000000000010.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001951000000
FalseFalseTrueTrueFalseFalseTrueTrueFalseFalseFalseFalse1922.93000002574041116.99000000151111.40054678770081942.208853190488822.011267.2-0.3120.030.040999999999999995508000000.097384.642.9899999999999996e-071.99e-0916.31216.8130.0069999999999999991.73149.8-0.0340.0180000000000000020.0161460000000.0375732.81.77e-066.53e-0914.38214.3870.0042.04270.50.0050.0170.0180000000000000020.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001801000000
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue234.910000024985952446.620000001614211.43933556535987342.200810702923792.463920.6-0.050.0139999999999999990.073268000000.054944.231.57e-071.4300000000000002e-0917.00817.2110.012.27110.1-0.0750.0330.032354000000.096353.574.2e-071.2800000000000001e-0915.94215.9330.0031.11327.3-0.0110000000000000010.0240.0471290000.0304.814.440000000000001e-084.81e-1018.382nan0.0121.8992.2-0.0409999999999999950.0230.00612000000.02313.221.3800000000000002e-074.2999999999999996e-1017.15nan0.0031.8321.3-0.0240.0150.006999999999999999169000000.048374.125.34e-075.15e-1015.681nan0.0012.221037.7-0.0460.0370000000000000050.14800000000000002156000000.046501.097.76e-074.12e-1015.275nan0.0011.21885.2-0.04-0.0010.146011501202002
FalseFalseTrueTrueFalseFalseFalseFalseFalseFalseFalseFalse2036.7200000260377178.5000000008387811.38508565187309842.202441121370063.211512.9-0.0680.0610.01111000000.028257.256.52e-081.75e-0917.964000000000002nan0.0289999999999999983.2837.2-0.0980.0420.0030.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.0011001000000
FalseFalseTrueTrueFalseFalseTrueTrueFalseFalseFalseFalse1976.700000024361633.150000001450711.39262952080721542.205492821186892.541730.50.0040.0590000000000000040.002118000000.027629.486.94e-087.620000000000001e-1017.89618.0740.0121.3891.1-0.0289999999999999980.0130000000000000010.004146000000.046486.861.7699999999999998e-071.0400000000000001e-0916.88316.8740000000000020.0061.05170.5-0.006999999999999999-0.0390.0020.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.0011001000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1922.78000002478621120.530000001714411.40060202515979542.2088805036592414.74580.70.1360.2130.794-2088263.0906.05-1.2e-098.989999999999999e-10nannan9.9995.17-1.40.00.00.011100000.055734.841.3400000000000001e-084.79e-0919.684nan0.387999999999999967.562.8-0.8950.357000000000000041.81199999999999980.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001901000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1776.810000023902108.2600000013346711.38689773891995642.1989518565664310.46357.0-0.1090.4451.0654230000.0-2949.382.49e-091.58e-0921.5122.0819999999999970.68900000000000016.911.6-0.3110.2171.64916600000.043917.842.0099999999999998e-085.820000000000001e-0919.24419.2570.3159.93.4-0.5830.6691.1990.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001651000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1922.51000002467031113.710000001688511.40050178964176642.2088216158828517.35471.70.5730.3370.86900000000000013470000.0-2525.232.04e-096.78e-1021.726nan0.3613.333.0-1.1210.4981.466-887249.844637.52-1.1e-095.14e-09nannan9.99910.82-0.20.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001751000000
TrueTrueTrueTrueTrueTrueTrueTrueFalseFalseTrueTrue52.000000024349221384.150000001783211.42527548516140942.190061383721542.062897.6-0.0010.0180000000000000020.00211200000.05220.696.55e-091.1499999999999999e-1120.45921.0980000000000030.0021.32567.5-0.0069999999999999990.0080.071600000.024266.998.109999999999999e-089.480000000000001e-1117.72717.7550.0010.97855.6-0.010.010.0-300.943.26-1.1e-111.8800000000000002e-11nannan9.9990.74-0.60.00.00.076677.081.039e-104.2e-1122.615nan0.0511.9421.4-0.0010.0289999999999999980.052900000.024705.161.67e-071.42e-1016.945nan0.0011.321173.4-0.0010.0139999999999999990.00869200000.029082.283.43e-072.23e-1016.16nan0.0011.121537.4-0.0180000000000000020.0050.009000000000000001011301000000
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue237.32000002463772449.090000001340711.43934632215778742.200857951882575.272322.8-0.0559999999999999940.040.2857700000.05785.543.3700000000000004e-088.42e-1118.68200000000000219.0140.0032.68399.8-0.0409999999999999950.0289999999999999980.23800000000000002101000000.042804.671.1900000000000001e-071.2800000000000001e-0917.30817.3020.0121.8893.4-0.0310.0270000000000000030.287132188.391.934.53e-092.12e-1020.859nan0.0512.4121.4-0.080.160.206000000000000022060000.0930.212.36e-084.900000000000001e-1019.069000000000003nan0.0234.6848.2-0.0590000000000000040.089000000000000010.11349100000.026101.821.55e-079.4e-1017.026nan0.0069999999999999997.03164.5-0.0289999999999999980.0020.51746000000.027541.752.2899999999999997e-078.59e-1016.602999999999998nan0.0043.59266.2-0.0320.1060.6809999999999999011301220002
.....................................................................................................................................................................................................................................................................................................................
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2009.35000002479052062.93000000172911.413909768802842.21756927573031.073.90.1350.5160.6822316.82983.761.36e-128.09e-1329.66630.0510.64599999999999991.071.70.23-0.0279999999999999971.0884914.44806.065.54e-121.84e-1228.14228.1390.3611.163.0-0.013000000000000001-0.69400000000000010.843103.236.584.34e-121.2900000000000002e-1128.406999999999996nan3.2390.810.30.4153.55800000000000030.091-498.594.46-5.9e-125.54e-12nannan9.9991.16-1.10.0480.3770.0852135.213186.456.730000000000001e-128.359999999999999e-1227.93nan1.3491.340.8-1.1470.0682.778-1226.116097.25-6.0999999999999995e-121.9100000000000004e-11nannan9.9991.02-0.3-0.905-0.0152.401351200202
FalseFalseFalseFalseFalseFalseTrueTrueFalseFalseFalseFalse2322.54000002598832305.430000001254511.41411736213807342.223067061144091.013.8-0.0520000000000000050.7050.103000000000000011901.62927.851.1100000000000001e-126.97e-1329.88430.4519999999999980.681.01.6-0.2530.7670.1067779.34785.928.75e-121.64e-1227.64527.6580.2040.975.30.0139999999999999990.92299999999999990.084-534.922.68-1.8e-111.24e-11nannan9.9990.91-1.40.104000000000000010.330.001-597.574.52-6.799999999999999e-124.33e-12nannan9.9990.91-1.60.2170.337999999999999970.0165373.519030.721.7e-117.429999999999999e-1226.927nan0.476000000000000031.22.30.22899999999999998-0.462999999999999971.126440.915541.832.1899999999999998e-121.53e-1129.149nan7.5970.990.1-0.317-2.5592.116011751200000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1603.04000002479072178.73000000146311.42015596275282342.2139612073953861.143.7-0.30.4831.5894940.52779.02.8900000000000004e-127.68e-1328.849nan0.2891.03.8-0.1680.2720.738-632.44575.1-7.200000000000001e-131.85e-12nannan9.9991.2-0.4-0.630.1381.4269999999999998-1258.132.47-4.5e-111.8899999999999997e-11nannan9.9991.02-2.30.00.00.0-777.329.55-9.1e-125.51e-12nannan9.9990.99-1.70.00.00.04653.813329.481.4699999999999998e-119.87e-1227.084nan0.7311.911.5-0.1510.2072.2525304.516044.932.63e-111.74e-1126.45nan0.721.021.5-0.530.22.6060000000000003011452000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1966.66000002552661904.880000001644511.41198922453343742.2157962931884751.063.7-0.1460.5420.054771.32912.52.79e-128e-1328.88428.2370.3111.093.5-0.294-0.2670.033643.54638.397.269999999999999e-131.7200000000000001e-1230.34630.2012.5691.140.4-0.1310.92799999999999990.049-165.65.51-5.2000000000000005e-121.2900000000000002e-11nannan9.9990.9-0.41.1242.3160.01293.259.291.19e-124.11e-1229.814nan3.7630.870.3-0.2071.0570.0139999999999999991447.713042.054.56e-124.450000000000001e-1228.351999999999997nan1.0580.951.0-0.011000000000000001-3.9451.06-2705.815990.34-1.2999999999999999e-111.35e-11nannan9.9990.78-1.01.111-0.981.584011651000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2359.90000002616532053.20000000211111.40988542474495142.221420435706091.063.70.1910.4860.0842665.52875.351.56e-127.650000000000001e-1329.5229.7520.5341.12.00.104000000000000010.9020.1263907.74739.954.410000000000001e-121.83e-1228.3928.3810.451.182.40.0279999999999999971.35300000000000020.285-299.811.8-1.1e-111.19e-11nannan9.9990.95-0.90.43700000000000006-2.50699999999999970.017-215.890.1-2.6000000000000002e-124.68e-12nannan9.9990.95-0.50.534-0.9320.0090000000000000010.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001851000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1595.70000002525422274.860000001389411.42169244597452342.214666008134551.073.60.0991.0910.523490.52898.232.0299999999999996e-127.380000000000001e-1329.2329.3710.393999999999999961.022.80.0512.0290.5343787.14732.574.269999999999999e-122.0399999999999998e-1228.42428.4140.521.32.10.44799999999999995-0.226999999999999980.6559999999999999-379.219.31-1.2999999999999999e-111.2999999999999999e-11nannan9.9990.98-1.0-0.792-0.3320.07400000000000001-408.475.66-4.6e-124.48e-12nannan9.9991.0-1.0-0.100999999999999990.218999999999999970.015604.013353.221.9e-125.3e-1229.301nan3.02399999999999961.010.4-3.2820.223.4492734.316155.881.3599999999999999e-111.39e-1127.168000000000003nan1.1120.891.0-0.389-0.166999999999999981.29101101000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2277.6700000262062275.090000001511311.4141542715643242.2223154572359361.113.8-0.238000000000000020.9710.19253.72986.561.49e-137.32e-1332.0732.7575.3481.110.2-0.031-0.4240.3063666.94732.644.12e-121.76e-1228.46228.5210.4651.122.3-0.5479999999999999-0.0409999999999999950.514-566.525.37-2.0000000000000002e-111.19e-11nannan9.9990.76-1.70.2284.0390.078294.874.153.39e-124.469999999999999e-1228.676nan1.4350.910.8-0.2370.69200000000000010.0279999999999999976375.019026.22.01e-115.88e-1226.741nan0.3170.93.4-0.12-0.040.8554936.515663.152.45e-111.53e-1126.526999999999997nan0.680.811.60.0850.5121.201901000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2493.05000002608361857.700000000733311.40545297020719142.221312343545061.143.50.241000000000000020.71.0312782.62969.721.6299999999999997e-121.43e-1229.471999999999998nan0.95700000000000011.281.1-0.5160.57200000000000010.667-329.34815.9-3.9e-133.2499999999999997e-12nannan9.9991.41-0.10.1930.357000000000000040.596-474.46.58-1.6e-111.33e-11nannan9.9990.91-1.20.00.00.01344.070.531.5499999999999998e-114.6e-1227.025nan0.322999999999999950.763.40.291000000000000040.5040.0260000000000000020.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.0011351000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2301.9100000244261932.400000001521711.40869802179464942.219780892091981.053.6-0.0440000000000000041.0021.1922739.92968.811.61e-127.75e-1329.48529.5969999999999980.5241.02.1-0.283000000000000030.0191.0783201.84719.943.6200000000000003e-122.0099999999999997e-1228.60328.5930000000000040.6031.231.8-0.181000000000000021.1241.283000000000000178.94.262.81e-121.1499999999999999e-1128.878nan4.4550.890.2-0.148000000000000020.0610.012-215.386.27-2.3e-124.25e-12nannan9.9990.94-0.50.5682.6350.0870.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001251000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1870.32000002522361975.530000001819211.4141241731325342.215294543599380.983.70.1290.6161.3473019.22948.781.77e-127.979999999999998e-1329.38199999999999829.0819999999999970.491.122.20.3970.6740.608771.54763.368.66e-131.55e-1230.15630.1019999999999971.93699999999999980.870.6-0.2090.21.0590000000000002245.022.529.1e-121.32e-1127.601999999999997nan1.5710.710.7-0.040.6910.006999999999999999-199.358.62-2.2e-124.32e-12nannan9.9990.9-0.50.1840.346000000000000030.008-1360.613188.47-4.3e-126.5700000000000005e-12nannan9.9991.15-0.70.00.00.01238.116034.66.1600000000000004e-121.54e-1128.026nan2.72300000000000030.830.40.43700000000000006-0.1021.735011351200000
" + ], + "text/plain": [ + "\n", + "F160W_ST F160W_GST F475W_ST F475W_GST ... F336W_FLAG F110W_FLAG F160W_FLAG\n", + " bool bool bool bool ... int64 int64 int64 \n", + "-------- --------- -------- --------- ... ---------- ---------- ----------\n", + " False False True True ... 0 0 0\n", + " False False True True ... 0 0 0\n", + " True True True True ... 0 0 2\n", + " False False True True ... 0 0 0\n", + " False False True True ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " True True True True ... 0 0 0\n", + " True True True True ... 0 0 2\n", + " ... ... ... ... ... ... ... ...\n", + " False False False False ... 2 0 2\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hdul = fits.open(\"M31-B21-WEST_cutout.st.fits\")\n", + "Table(hdul[1].data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see, there's a lot of columns and even more rows. For plotting the magnitude histograms, we're going to be interested in any column that contains the name VEGA. These are the columns with the magnitudes for each filter." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/christina/anaconda3/lib/python3.7/site-packages/beast/plotting/plot_mag_hist.py:52: RuntimeWarning: invalid value encountered in less\n", + " np.where(data_table[filt + \"_VEGA\"] < 90)\n" + ] + } + ], + "source": [ + "# this if statement just checks if there's already a histogram file\n", + "if not os.path.isfile('./data/'+field_names[0]+'.gst_maghist.pdf'):\n", + " peak_mags = plot_mag_hist.plot_mag_hist(gst_file, stars_per_bin=70, max_bins=75)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can check out the results for the histograms in the file **./*_maghist.pdf**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1b: Make source density maps" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we'll be creating source density maps. These are maps of our data field colored such that they show how many stars/sources there are in each degree field. The standard size is 5 arc seconds squared, but because this is a small area, I'll plot every 1 arc second squared, just so that there is some resolution This decision can easily be changed by modifying the **pixsize** variable below." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# the list of fields (we only have 1 so far)\n", + "field_names = [\"M31-B21-WEST_cutout\"]\n", + "\n", + "# distance moduli and velocities\n", + "# http://adsabs.harvard.edu/abs/2013AJ....146...86T\n", + "# TODO: these values needs to be changed at some point\n", + "dist_mod = [24.36]\n", + "velocity = [-236]\n", + "\n", + "# the path+file for a reference image\n", + "#im_path = [\"14610_M33-B01_1.phot.fits.gz\"]\n", + "\n", + "# Pick the filter with the dimmest peak\n", + "ref_filter =[\"F475W\"]\n", + "\n", + "# choose a filter to use for removing artifacts\n", + "# (remove catalog sources with filter_FLAG > 99)\n", + "flag_filter = [\"F275W\"]\n", + "\n", + "# number of fields\n", + "n_field = len(field_names)\n", + "\n", + "# Need to know what the correspondence is between filter names in the\n", + "# catalog and the BEAST filter names.\n", + "#\n", + "# These will be used to automatically determine the filters present in\n", + "# each GST file and fill in the datamodel.py file. The order doesn't\n", + "# matter, as long as the order in one list matches the order in the other\n", + "# list.\n", + "#\n", + "gst_filter_names = [\"F275W\", \"F475W\", \"F336W\", \"F814W\", \"F110W\", \"F160W\"]\n", + "beast_filter_names = [\n", + " \"HST_WFC3_F275W\",\n", + " \"HST_WFC3_F475W\",\n", + " \"HST_WFC3_F336W\",\n", + " \"HST_WFC3_F814W\",\n", + " \"HST_WFC3_F110W\",\n", + " \"HST_WFC3_F160W\",\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# check to see if the file already exists\n", + "if not os.path.isfile(gst_file.replace(\".fits\", \"_source_den_image.fits\")):\n", + " # if not, run all this other code\n", + " \n", + " # - pixel size of 5 arcsec\n", + " # - use ref_filter[b] between vega mags of 15 and peak_mags[ref_filter[b]]-0.5\n", + " # since we're only working with one field, our index b is set to 0\n", + " sourceden_args = types.SimpleNamespace(\n", + " subcommand=\"sourceden\",\n", + " catfile=gst_file,\n", + " pixsize=1,\n", + " npix=None,\n", + " mag_name=ref_filter[0]+ \"_VEGA\",\n", + " mag_cut=[17, peak_mags[ref_filter[0]] - 0.5],\n", + " flag_name=flag_filter[0]+'_FLAG',\n", + " )\n", + " create_background_density_map.main_make_map(sourceden_args)\n", + "\n", + "# new file name with the source density column\n", + "gst_file_sd = gst_file.replace(\".fits\", \"_with_sourceden.fits\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Try to view the fits images of the source density maps\n", + "\n", + "Now that we have the source density maps outputted, we can plot the image and see that the density looks like." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Filename: ./M31-B21-WEST_cutout.st_source_den_image.fits\n", + "No. Name Ver Type Cards Dimensions Format\n", + " 0 PRIMARY 1 PrimaryHDU 19 (174, 175) float64 \n", + "\n", + "(175, 174)\n" + ] + } + ], + "source": [ + "# open the fits file\n", + "hdu_list = fits.open(\"./M31-B21-WEST_cutout.st_source_den_image.fits\")\n", + "hdu_list.info()\n", + "\n", + "# extract the image data\n", + "image_data = hdu_list[0].data\n", + "\n", + "# take a look at what the image should look like\n", + "# in this case, we can see that the image is 5x6 squares\n", + "print(type(image_data))\n", + "print(image_data.shape)\n", + "\n", + "# close the fits file\n", + "hdu_list.close()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAIzCAYAAADxp0j/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9fZCk13ndd+707Hxhd7GDHXwsAZAgQICEQIIQC/wKQ4amlJCWUpLsshMpZZcqUYp2TDlxyk5s2X/YSUVVzpfkOIqVgkuKpCpZFCVTMsu0jJCmWaBpAhCMAEvAIPFlktglCGKxs9wFZnZmp+fNH+899547/czOAljsznSfX9XWNN7ufr+70fc8554ndV0HY4wxxpi9xtTl3gFjjDHGmNeCf8QYY4wxZk/iHzHGGGOM2ZP4R4wxxhhj9iT+EWOMMcaYPcn05d4BY4wxxrzxfPxPXNG9dHJ4Sbb1b46u3dt13Sfe6O34R4wxxhgzAbx0cogH733zJdnW4MhTS5diOy4nGWOMMWZPYiXGGGOMmQA6AJvYvNy7cVGxEmOMMcaYPYmVGGOMMWYi6DDsrMQYY4wxxlx2rMQYY4wxE0DviRmvps9WYowxxhizJ7ESY4wxxkwInp1kjDHGGLMLsBJjjDHGTAAdOgw7e2KMMcYYY14TKaW5lNKDKaVHU0qPp5T+h7z8N1JK/y6l9Ej+d9dO67ISY4wxxkwIu2R20hqAj3Vd93JKaR+Af5VS+qP83H/Xdd3vX+iK/CPGGGOMMZeMrus6AC/n/9yX/72mX1cuJxljjDHmYrOUUnpI/n1Sn0wpDVJKjwD4PoAvdF33QH7qF1NKR1NKv5xSmt1pI1ZijDHGmAmgAzC8dOWkE13X3b3tvnTdEMBdKaVDAP4gpfROAL8A4HsAZgDcA+CvA/gfz7cRKzHGGGOMuSx0XXcKwJcBfKLruue7njUA/w+A9+30fv+IMcYYYyaETXSX5N/5SCldnRUYpJTmAfwogG+klI7kZQnATwF4bKfjcTnJGGOMMZeSIwB+M6U0QC+mfKbrun+aUvpSSulqAAnAIwD+4k4r8o8YY4wxZgLogF0Rdtd13VEAPxws/9irXZfLScYYY4zZk1iJMcYYYyaE8Wr/aCXGGGOMMXsUKzHGGGPMBNChu5Q5MZcEKzHGGGOM2ZNYiTHGGGMmgQ4YjpcQYyXGGGOMMXsTKzHGGGPMBNDBs5OMMcYYY3YFVmKMMcaYiSBhiHS5d+KiYiXGGGOMMXsS/4gxxhhjzJ7E5SRjjDFmAugAbHqKtTHGGGPM5cdKjDHGGDMh2NhrjDHGGLMLsBJjjDHGTAAdrMQYY4wxxuwKrMQYY4wxE8JmZyXGGGOMMeayYyXGGGOMmQDsiTHGGGOM2SVYiTHGGGMmgA4JwzHTLsbraIwxxhgzMViJMcYYYyYEz04yxhhjjNkFWIkxxhhjJoBxnJ20K37EzKTZbg5XXO7dMMZcQtJUFYK7zc3LuCfGXB7OYPlE13VXX+792Mvsih8xc7gC708/crl3wxhzCZmaXyiPN1dWLuOeGHN5+GL3+9++3Puw19kVP2KMMePN1EL9wYJb3wIASKvrZdH06hoAYOO5Y5d0v4yZLBKG3XhZYcfraIwxxhgzMViJMca84aQbjpTHw/l9AICBKDHGmDeeDsDmmGkX43U0xhhjjJkYrMQYY4wxE4KnWBtjzHkY3HZLeTy8KkcnnHxl5HUpm3kBoJufBQBM33hDWbb50sn62LOXjDEB/hFjjDHGTABdN36zk/wjxhjzuhksHS6Pu2PP1yee7BWU7t23j7xn86oD5TGnW1ORAay+GGN2xj9ijDHGmAlhc8w8MeOlKxljjDFmYrASY4x5VTSlo+uv6f/K81Mnz9THh6/qH8iyJCUjQgPwQA3AH7izPr7/6OvYY2MMwAaQ46VdjNfRGGOMMWZisBJjjNkW7XnE1N1ufqYuC1J31265pjyefeb7I8+f+GD//OFHTtXtrJ4b3bYuy8bgzUefuNBdN8aMMH6zk8braIwxxhgzMViJMcYYYyaAceyd5B8xxpgRmJyrWS7IpSMtIbG0dG5xvizbt7xaHjN1txh8AVz9pedGtsftlITfLdDwq4m+G88du4AjMcaMM+P1k8wYY4wxE4OVGGOMMWZCGHbjFXbnHzHGGABbSjXX9+Wf9UM102Xm1Nq2y7SE1JSbbn0LAGBNyk2Dsxv936ePy9b7cpLmxGj7Aq5n9eZalprLpSq3JzBmcvGPGGOMMWYC6JDGLuzOP2KMmWBUfVGGc6NfDcxtmZFlVGXmJNNFzbnTx3u1ZHhk/8j6BvI4FdPwWl2Yc2kAFFPxwuOizvD5J58Jj8EYM/74R4wxxhgzIWw67M4YY4wx5vJjJcaYCYTtBLRFAA23QDXqzohJd5jLNsOPvkfeM+zXp00fZTs0CM89/3JZlo73rQjSfDX7IpeRutVqEB5eX028LGVFOTLrn3hveTzzz/945HljTI8bQBpjjDHG7BKsxBgzgZx73ztGltGEC1QFZaANHj9wJ4C2qWM33xt7VUHpVupj5PVoou/sSVFgtq5HEoKbKdhXHeqXHZdt5+3ML9T1dVlh8rRrY0bpkMYuJ8ZKjDHGGGP2JFZijDHGmAnBDSCNMbuewdLh8pgG2pU7au7K/LN96Wj9TVeWZWrynfnuD0aeLwSG25TLPVsfs0Q1JWUi3Q7Z9+A3+tdJo8iNt10/8rqh7A/3Uc2+zLcZfPnh0f02xowd/hFjjDHGTABdBwzHLCfGP2KM2eNo6m4x2IoaspGVCvY5UmYe+3Z5vP7Ot5THTM7VnkgRxbCrxl0x/hKdgr0v/92c31efzwoMDb5AazTezH2ScOfbRvZxarVmCFMZQjb4bsWGX2PGC/+IMcYYYyaChE1M2OyklNKvp5S+n1J6bMvyv5xS+mZK6fGU0v8iy38hpfR0fu7jb8ROG2OMMcZciBLzGwB+BcBvcUFK6U8A+EkAd3Zdt5ZSuiYv/yEAPw3gDgBvAvDFlNJtXdcNL/aOGzPpMHVXSzDQx1tYOVJLPgdzqWbjxEtl2b7larilCbhpuJhLVWc+XEs6B77ydP/c9fW9G2L8HZx8pX/+WF3PJjNo8nNANftGpSgAwK19qWv57dXEu5RzZNKqHPPJU/32bq2lsYZHn4iXG2P2JDv+iOm67r6U0k1bFv9XAP5u13Vr+TX85vlJAJ/Oy/9dSulpAO8D8LWLtsfGGGOMedV0sLGX3AbgwymlXwRwFsBf67rujwFcD+B+ed2xvGyElNInAXwSAOYQm/CMMS2NiTerLjS4Ko0akhWLg8dHk3Kn3n17fSzm27n8V6dDUyXZ/+zpsqz0P5JkX0357eaz6TZQRnT6dmQg1hTgqezrXfra+sjr9Pg3rx+dvq1w6vlQFChjzN7ltf6ImQawCOADAN4L4DMppZuB0DHURSvouu4eAPcAwMF0VfgaY4wxxlw83ACy5xiAz3Y9DwLYBLCUl98or7sBwHdf3y4aY4wxxozyWpWYPwTwMQBfTindBmAGwAkAnwPwj1JKv4Te2HsrgAcvxo4aM2nQuKulmJUj+8vj+YeeBdCWUH5we1+iOfTwiyPr0/IMM2GYegsAm5KqywyX5duqaXZhsa8MH3j8xHn3WxN0S26LQEPv1HzNdzmbj2tOX/hUzYmhcThpQ8qchbMZmIY1Y6Y7j9nZmEmiQ8LmLmgAmVKaA3AfgFn0v0N+v+u6v51SeiuATwO4CsDDAP5813WjNWThQqZY/w56Y+7bU0rHUko/B+DXAdycp11/GsDPZlXmcQCfAfBvAfxzAJ/yzCRjjDHGCGsAPtZ13bsB3AXgEymlDwD4nwH8ctd1twJYBvBzO63oQmYn/cw2T/25bV7/iwB+caf1GmOMMebSshs8MV3XdQBezv+5L//r0Fd4/rO8/DcB/B0Av3q+dTmx15hdhM4WYukkyayh+dVgds7xmq3C+T7NjKU8g0hnLK0t7tvyDmBwdqM8ZqbMNQ+cKsvYYuDMHUtlGXNiVKDWNgA8hk5KR3ysbQfYEkGXaYsBlqD0uEqZKJj5pLOq9LhYwprSWUxP9a0X3JLAmIvKUkrpIfnve/KEHgBASmkA4N8AeBuA/wvAMwBOdV3HD+y2s5sV/4gxxhhjJoAOwOaly4k50XXd3dvuS281uSuldAjAHwC4PXrZThvxjxhjdgHMf1HjLtNyT99dByNNRkv+q2m5mvVC2DxxPafwAsDC86O5LMO5+nWw/96v9+8VNYQm4BmZb1hyYrYjJ+gmaUi5enOvCM0/e3L0ddusLzTn5vdMyXvOZQVGc2fUDMxsmn0PfqMsY/NJKzHGXHq6rjuVUvoy+siWQyml6azGXNDs5stfHDPGGGPMJSBheIn+nXcvUro6KzBIKc0D+FEATwD4lwD+TH7ZzwL4JzsdkZUYY4wxxlxKjgD4zeyLmQLwma7r/mlK6d8C+HRK6X8C8P8B+LWdVuQfMcZcYlg6UvPpVC5/aMNFPh+VfgBg+La+zKRZLCXrJZtVAeDsR+4YWfdG0IQRmu+SSyyQdbMUM/NYXXfHMtHJagAGat4Mm0UefOh4WTY426cuqNkXLIlJ6UfzZrifbZbNaCYMWyNoCU7PH02+WiY7e6gvVc3put0o0owhl9gTs/1+dN1RAD8cLH8Wfb/FC+byH40xxhhjzGvASowxbxAlcRdopwFn823Y9FAMrFQNGrVEGOSp1UzfBaoSsfa+d5Rlr1zbf8znn5V1c52ioJx5z9XlMTWJKHF39e6by2Oac6kKAXV6NlDTfVVB4XGd1fThvB5tCsljabZ981UjywYn63FxCraqL2pYjs7pfH6sypAbRZpxZSe/yl7DSowxxhhj9iRWYowxxpgJoOvSrvDEXEz8I8aYiwxLEZrfoqm6NMMyAReoZtk2J+UKbEVLHsxeGc4N5Pm+tKKlqoPRe7OBVktRi189Vh7TVKym2RkmCEtqLstEWp45II/52iZBOL9nPiiTabpulA1DUzBQU4e1BMVzoSbmgTS+5PmN1q1pwdM75d8YY3YF4/WTzBhjjDETg5UYYy4CauKlAtMkxYriERl6qRCoAZZoryJN7I1Mrnzt7HI15JZpxaI0DLMKxBReIO43FC1bfntdtvjNXk0ZiNIESeflVO7QICz7T4VFlZjQxKtKzMF+DLb/2Xo+Z7NpWvdbp4Sfj8YAnJWawW231OeffOaC1mPMbmY4ZuWk8ToaY4wxxkwMVmKMMcaYCaADsDlmU6z9I8aYV4mWjtJCNoBKCYWps2qk1bINk2i1rLT8oT7Fd+F7tQTFnJQDkoOi61w71JtYDz384nn3l8ZXLdXwsa5PDcJE95HlqMO/92hZdo55NJITE6Em5p22Q9T4y3OmZanFoEx2Nje5nHv+5fpe2bepo0/375HE3iiHh+dMs2po2AacH2PMbsE/YowxxpiJINkTY4wxxhizG7ASY8wFwjJSuuFIWcb8k00py2icPpk5VXNSBk/3zRA1R4YZLZsv1VwWtg7Y9+A36oqkfcHawdHadmnSKOWrcDZUnk2kpRYtwUzlWT46W4qlnNIcUtb98s0HEcG2A1NyfjiDiDOXdH80J0ezXDhzSGcQcduawbOQ36+zk7QktJHLSE0JKbdekHaU5TzqPpyRppL77+23vbmyAmP2Cn0DyPHyxFiJMcYYY8yexEqMMedh+sYbymMqB1RSAGAzqylULgBgIT9uUmGl0SLVD5pMAQBUN0RpKUZcWabbufazvcKgig5Vh5U7qlpUmjReVROAhzm3JjLuAkA6T6KtjnyYhUPFpV+2hq3otlNO0FWTLhUYVWe0kSRzb6LMF83gYYqv5unodWACsSpMm4EpmesZnK37ffChet07qnHOjjF7jOGYaRfjdTTGGGOMmRisxBhjjDETQIc0dp4Y/4gxZgtT7769/oeUb1j+aMyn+W9UvtF2AUB9zNLIYKGu53zx/Nq+QMsgaTUo+bAho8Tzcz8Wnq+lI5Zlhtvku7AkpM0VaRaOmic2TSHFnMwcGc2GGeTyjxpuo3VqiYr7EbVvUOPz2sff1W9Xcmlm5RrS8KvG50Fgcua5UgOwmoVXruttwIty3BvP1QaaxphLg3/EGGOMMRPC5pi5SPwjxkw0mr7LqcMrMkV6ICN6jvyj6btzss7I2Dq9ulke0zS6Twy5NAuf+tFby7KdknipsAxnqzx85RO9wqDpvAcf6vexaS6pCcOZ5bdXE+sVh0aVEaIm3Ug5Kim+qOenmS6d399M385qyXCuKj/r0gAyMidTbdknxucDX+nN0mp21m1TgTnxwfr80ud707WqLlR+VkRNU2UIGJ2CbYy59PhHjDHGGDMBdB0wHDNPzHjpSsYYY4yZGKzEmIlE818IyxssXQBb8016g+1A8lRoyGX+iK6nLT9U2HRRM182sqlUS0h8nRp7FRqE1TTLEktjpD25fclDy0FDeRnTe3Xb3B9NzWUJRk3MK1fXsdEi+rJN03wyl87UIE1jtJ57zdap26vLpvP7tSxF46/myWhpief88COjuT16DYlmw6h5mwnM2kBz/RPvBQDM3fd4WeZEX2PeWPwjxhhjjJkQPMXamD1GpLqczn1wmqTZPNW2W6lTkddvvqM8ns+qgyb2cuQ/pVOf2csnMM8CVQ2ITKGRaVZH+5qqS5OqToOm4qHKB9epSoOqCmTpaDW2UoFZFXMt1QdVecq6xbh83R9Jsm0+xkbRCvobcd3N9uQ9Z27qDdiDta4sYyqvKlozeb91KrZOp956fAAwHfSJIrqPqrCkPD1ep2VrfyxjzKXBP2KMMcaYCaAPuxsvK+x4HY0xxhhjJgYrMWYsiUpIL37sxvJ46fNPAmhNny9/+G0AqmEWABYef748riWouk4aSJvyRa6maBmoMcjmBoiQchKbHaqRNCIFeStaLmFpSUs+NMtqc0Um+up7teTDsg4Nvsq85KnwGF+RjJm552tZhkZjLW+xxKTm22ryrfuopuOF762PrIdEZaDt0oAjI3Y5L/cfLcsGH7hzZJ1JEpa5v5otw3ygtSAnx2m+ZrcwxHh5YqzEGGOMMWZPYiXGGGOMmQA6eHaSMbuWwW23lMebx2oZKN3Qz8S54oVaimA5YF3aCjC+n20BAEDnD0Wlno2ggSLX3T1VyyXrUmJALvloOWV2uV8WlUZ0RtK6tANgqUvLRGyNoFk2zHDRMhnLMtHMJqDOtGkyanJGi+a7sAQ1e7rOTtL9LeUU2Uduc23bSH+MbJuzjrREF22PJahme3LOWB5jaRCozR61BHk6l/f0nE1J6RF5f5rGl6X5Zj2PpbGnNMV0dowxFw//iDHGGGMmgvGbneQfMWbPQwVGjanDN1XlgyNjTYPlCFlHzbOnejOsmnkVZoaoaZQjf02xLaNvUVWokDRIjgz3Q9UHPR6iWSQ0rKq5tKxP1rM/aNJYGi5KDooaaaluqNJA1SlSg/avBjk58h410vK86DmhkVjP/aaoF1TTNBOGBulpUYaKGiLnZCDXhuc3Un5UBWMGzXZpyVST9F6IKPshpmD9X4hVGWNeH/4RY4wxxkwIm56dZIwxxhhz+bESY/YUU+++HUBr5kRuA7AukfVaOqKx9YCUGFg6+cHt1di6+NU+y0NzRbScwtKBljk2c+lo34PfqMvufNvIfkeNFJXlnLNy8Nv1I0nj74kfv60sW/paLV+wpNE0V8zH2JTW5kY/5ms3HwRQTa1AW6pJuVSzef1ouWkhaHa5HSw9TYsn+uyR/Xm/h3W/8+OSoQMAt9bsndpsoMLxpF4PjsrUuHvgK0+Xx8PAiH0+VvJ5AlqTb1QeZCaOZu90x+LSpDGXg64DhmM2O2lHJSal9Osppe+nlB4LnvtrKaUupbSU/zullP5+SunplNLRlNJ73oidNsYYY4y5ECXmNwD8CoDf0oUppRsB/IcAviOL/ySAW/O/9wP41fzXmFfNYOnw6MJsGlUz58rdN4+8TBsJFvIUYaCO4hdkinVRAUQN0CnUbEJ44FuSfMtmkDfUhopUHzaO1HXr9GwqMaryHPx2/1inXdP4G6kvQJxeS9VJFRZOGddlBx7/QbMvwJZE36zoREbjc2IGpjqljRJnT9bjplG3UUayqTZqbKkJyqqSMbFX9LeyP2qg3sjraabDy71Cpo5WdYaKjx4rz7OuR1Unqi6zol5RndHrSkNvCszHQG0+6URfc6kYt9lJOx5N13X3ATgZPPXLAP57tErvTwL4ra7nfgCHUkqj7XKNMcYYY14nr+knWUrpJwAc77ru0S1PXQ/gOfnvY3lZtI5PppQeSik9dA5uYW+MMcaYV8erNvamlBYA/C0A/1H0dLAs8uSh67p7ANwDAAfTVeFrzOShJaQzuSGjZnqwBKE3DFNYmwyRwJyrpaGa71IbJb7wp3sD7cHv1DKNGoQXskG2afqXywQbYqRllstMrV415ZZS3hFzcknQ1UaS2SB64oP1vSw7KZrvMr06O/I8DakshwEACxqa+aLHylKN5rusHFnK26jpvCxBNWZWOfdRWjChwVfR5pIHvlUzVHiMeo1Z1lLjMks6ahDuAnNyZL6elnXzeuixnJPSI49Xm4oefqS/4Ct3VPF5/qFnR9aj8LUzLieZS0CH5LYDAG4B8FYAj6aUAOAGAA+nlN6HXnm5UV57A4Dvvt6dNMYYY4zZyqv+EdN13dcBlKFNSulbAO7uuu5ESulzAH4+pfRp9IbeH3Rd5zmG5rxw2jSA0pMGqCP+yMwajb7VPKoj/9Nv6UfBV3+pVjqpIFDFAYCN+Tqdlqj5lArKvuW6jCrPiph4uW1VJ4ZyDHw+UkGqLlS3zRE+ALwsU373P9sftyoEZeQv6gPVlMHZatzl+dPjV0PqcK7fX/2CYG+p/c++jK2ckT5IqtRQRYt6DGn6MFWimSClGKiqzUKglkQMA9VN1zN33+P1xdnYq8Zm8sJH63nk8QPAgXwvLH5Tpu3nfZvXlF9JZT4fw4/WiZyDLz98Qe8x5rUwcWF3KaXfAfA1AG9PKR1LKf3ceV7+zwA8C+BpAP8QwF+6KHtpjDHGGLOFHZWYrut+Zofnb5LHHYBPvf7dMsYYY8zFpAPsiTHm9RBlvwzF4HomyAbRsgxZkfIFy0mag6LlJuasqLkyaprIMo+msWqphpkhWnZIq6PJrSw7zYgbjCUt3R8twbB0pOWitYO9UKolCz1GlkZYQgLaMlJZTzbAaqrw+kfuAAAMNPlY8ktKOrEs4/VQcy1LeGyYqPsF1LweLd8U+VfWzbTk5Q/dMLI9oJaeItNslMLbmK+llMVSz1CMvSzrafNJ3itLR+s6T9xZS128NgcfGk2fiBKZ9bpq9szcU30uUNMI8gN39n/vl40bY0L8I8YYY4yZECYu7M4YY4wxZjdiJcZcEqZv7MsEmt/BTBSN2l+YqzkpLOtoM0NK+td+uUbx83ktIegsnyiKnzN2ogaGGj+vMfea9VLIpYwm5j6js6V0hhHbHxx8aG3ktbqPQC5lSVlh/RPvrc8y1yWYAZOO1/ODxf6cajYKyzNadtMZVsjlD83omcnr1KaQC3/wQP9AZpjprCMydbiW4Fiq0bYCB76Vs3OkhKRlPV4TbeXAMpLOPiqNQaVMNn287k8tLdV7ijO09N4c5pJhc0+t1fewJKjlLS1HEZYj9bpqOXI9v18zejpm2YyszZjXSTd+OTFWYowxxhizJ7ESY94wNP/ldB7ZqwGUhl1tjhc2NZSk2Ws/+ySA1sxJNWFdmj5q/gm3qYbT4VyvJtDAClTVRZUfTaxFHlWrQlCOL2hwqMe6qcoAU35lRH7gK31DwtaY279ucNstZcnaocGWZ1sjKQ2kB7RxY04l1nNbsmPE7Lxy3dXlMRURPRd48pn+r2aw5Gus6pWOjEpjx20Sa+s+jn4VqYGYKliU3qznlmqSKmN6ntn4cXjLaIrviR+/rSxjMvKypCWrwZrZRao68R7QfWyM01v2AQDmc+NQPc98Xj8/m48+MbIeY14tHSYwJ8YYY4wxZjdiJcYYY4yZEMbNE+MfMeaiUyLUpXzBDBYtO7AcoFK6lhUo86vZk+WWqO3A7DYNICn9a54Km0vOiJlzc340dl7Nniw96bqZg6LGTZpHNZ/knJqCg3h7HleUS6Mc+uJT5fGpH721X/bwiyPv0RKKlta2Hpd+nel6uO9NK4d8XTW3h+d2KKU6NamyqaI2SmRZRrdHs/Pq3TeXRWqkLg0ypX3D1ueAevxq2G7aO+TyjZYReT2j9g5Ln3+yLNMSZrkX9P7IpvSoHNncj+97R3nMe1fNyT/4iT4nhtk5gE2+xmyHf8QYY4wxE4ATe40Rphaq4Van0A7ySF1HzRy56ug6GoXqqHnfltcB1cSpy77//n6K8bWfldG1jMQ5UqdyAQCDtQ5AO7rmtlVJUNMx911H/jR2qgE4SrHV/X05MDnTxBpN6d6u0SGVjMYUuprVLVGqOE1YDcBUfjpZnxppqTCoGlTUhJNVseAa9VqrAsVj0OabVEn0ddwPPfdKlILL66Xnh/uoit/g7LA+fyxPg76hTo3mvut6eG3UaK33KZWuqImnXg8ev6pXqgIRnapd1Da595jiq1O+hzRaGzPB2NhrjDHGmD2JlRhjjDFmQnA5yUw8NO4OJGlXG/dd+UQvna9cV0sAs1n5Vlmd5YRn/ss3l2Vv/exyeUyTK3NOgGpS1dLH0tHRLA41yFK+v1LKASw3aJmCj6LSBVCThZk0DMSlHi0TEc0yYY6IbmcjSojN79FckXNiCp3K719+ey1fXPFCvz9RM8PNILNEt6clDZZgBl9+uCwrhm0pHbFMpudBTbV8XpdxP34g9wxLKE0ujcBSjpbJeC9o/s8gP68NNzXf5WxufKnnh/uuJcHoekT7po0tWaLS9Uzl497unuI6NW+GJc7B06PGbi3b7TtWy7lNA0ljJgj/iDHGGGMmgA7j13bAP2LMeaF5V427nDrNacpAOw06WkY1YFVSdTnaV/WFplegKhoz0geI29REWioRh1dHp+QCcX+kqJ8SR/mNKVaTdrNy1CT2PtWrM5u3VnWGKlGkbOh6Tr2nJuQ20435Oo7o5dyrKsU9Y7osIOqXbADp1isAACAASURBVJtqwdR83ccITQM+8K1+nZoaOx2Ys8+dJ8UYEMXrWFU+pvK50mMu6oMoH2r85bnU6eJUdKJlS18bnQaur9V7guc5ul5ToqDofbG22G/nwMn6Hqotut9qMN76OqCqLZGBfFqWUYnS86OmbGMmFf+IMcYYYyYEtx0wxhhjjNkFWIkxBZaONu+sZaKzJYtjGL6HaPYFpXo19gKjDfMokT//kcWy7E33vlAe0/Q4JVkdTP5VSX7pa/22tWwwI6ZjXHVoZH+L+fap+rr1bPrUZN+GLO9ryWv6yB2jx5X/6jlj+QEABtk0SgO07ruex8hc2myH5mYxMTPlVRN7EzNRdkhL1oTYkugrJQ2WBKPE3rPbJPZyO2pI5rWJcnsOHo9zYmjE1VIWS2tzYtiO0NIiy1+t8be/NnrdedxadtL3MN2XZUmgZupoOm/UpFLLUrMn++1oKYslL13G6z4IylMAMH1jb5LeeO5Y+LwxAIBu/GYnWYkxxhhjzJ7ESsyEM1g6XB5z6rCaNOeDtFeOujlVGGhH/kwx1ZE9R9A6Cj1xZ68CLH39bH1vMH03MvuqYTJKXNUePBzF6wiZvPzxd5XH06t9hxpNadWp2twfNQPTFKq9gZbyOVPFgkqU0o7Oe1VBe/Fw3U3/omVJN84j9Ugl0yTZSKmginNWzaxP122XHlWyj1ynGml5zvVYo6nIek9x3apE8TxHU7GBqtrpemZ4D0iC8Hq+7htH6nXTKe+8/7RP0tb9AoBTt/fX68C36tRlTR2O7qUo0Rh5nc3UeXkPj1enfHOZnmdeL70/kqQOb2bjtKZoe9q12co4th2wEmOMMcaYS0ZK6caU0r9MKT2RUno8pfTf5OV/J6V0PKX0SP73Yzuty0qMMcYYMyHsEiVmA8Bf7bru4ZTSAQD/JqX0hfzcL3dd979d6Ir8I2YCoQkQaMtALA1oqYalAU0P3cjlnW6bDI2N+V7g2wyaMKqsfu1jvey+XQIuSwxavmGJYShlHr5HG/RpCYUGSTXFcj+0wSHPRVRC0uW6jGWypjyRywnaXFJNoZphsnV/o7wQPX6FJmAtN82sMkG3lpj0eAp5mZYsmmaHuXyxKfdHMexquSQfo2beaBmR90B0TtUMzHKK3o9TQcKylht5DPvkPuQ+Nq8TWLZbub0+f+XnjvYPJOuHpa50XJuKVoM4730tqXKbamcvJTHNG1Lzcj6XG3Kv8LijjBm9p/QzybJokxb96BMj7zdmN9B13fMAns+Pz6SUngBw/fnfFeNykjHGGDMBMLH3UvwDsJRSekj+fTLap5TSTQB+GMADedHPp5SOppR+PaW0GL1H8Y8YY4wxxlxsTnRdd7f8u2frC1JK+wH8YwB/peu60wB+FcAtAO5Cr9T87zttxOWkCWJw2y0AgGWR/nX2BUtCAykX8LGWOYazozVVLQMtPN8/jmaXKCqNk0Zqz6WFMzfVGRfcX81d2f9sX5546a4q92sUP8tIOmNnLa+T+ST9es7fuJEzcDRWfjaXXTS/ZN9TuaQjpbPptXoMJf8maOyobQ72PfiN/nXSdiBqoaD7zZLQTrOFeE4Pyeu0PMjZVlomY8lo8aujWT8600j3kWUpbR3B3B4t70U090/+G5X39HXruUSlZTKFZauBXK9yfqWpaJlpJCUkPY+DYNZeOec6Wyq32dDsnCj/RSmlvOBaN58j2TeWRZsSbv68D598ZmQ9ZnLpdocnBimlfeh/wPx213WfBYCu616Q5/8hgH+603qsxBhjjDHmkpFSSgB+DcATXdf9kiw/Ii/7UwAe22ldVmLGFJp3dWS2nkeus6eq6VPVAo4aNWMlGimysaOaNXXkzxG7qhwLOQbjjBgqiwFUzJwRh774VHlMpWGhxmrUpn+ff3LkdUA1SC6oynOehoJqUtaGi4O8PFIDNCGYR71dGi5H4gNJsaVJd/lD1XR9AH1y8tlDo5kkADCX/2qODlF1htdY94fKiS7TUT4VGDXfsmFjk1Wy2u+bKhKKvra+JzeXXK3viVQHVeU2X+ofazYK9ZcoLVjVsmZ/ssISJSNH110VlNZo3K9fzx/N5vuk2SUN1prsq1k/dXt121P5XETGZ0WPkecHch7ZdJOKDGBVxuwaPgTgzwP4ekrpkbzsbwL4mZTSXei/Rr8F4C/stCL/iDHGGGMmhN3QALLrun8FhDvyz17tulxOMsYYY8yexErMGKGR4yxZqBzOXA0tEakczuVRa4BrHqhmRcr8Wio48+HaNJJlh+9+/NqybP+zvYQelVV0fzai0pIYGFm+0TIPS0JRqwFF183nNWPlwFd6o+2KHIuamA89PJqTMsOoDtnHzWxYbsoTYiQtbRDk/K3lrBwtwdGIrOdnReL0WSbT8oSWusp6mF8SmHjV7KzlNu7bK2KWns/9EfVaM8NGj1X3gRlAavxmeesHUlpkiVKv65mbamnt0MOjJTWW/6L7ef3Q6LVWovuMRmoAQC71bVcm4/u1xFTOpZQJeTzbZf3w/XpdSdtI8zxtDlDLbJ08r41cy/bY5NUtCSaSzg0gjTHGGGN2B1ZixoEP3AkA2JRFkSH32J/oraBXPVFfqVNjObVTVYOlo9X4uxWddq0jzdVsEF58qo5Si4IiZkWaHnU0q6NzqhIHJJl0NpsZdZoq93te01V1R7NKokZRnRJNOOVblQ1VEDjKH0oaLEfar1xbP0o0xappWo2d+7IJU0fKVElWrqvT3/c/2ytMaqDWfaNKsHJdVQuoxTWpwnk6+r4HqyLBkfvcfY/X14mCwP05/HuPlmWrH7kDQJtyTKbEUNrsrxhoCVWMKNlXp5gvPH4SW1H1gYm1qsBRlZuXc6+mYSbw6jXksa7r8Wej9nZp0ty2xgTwM6f3M49HlZbo/M0GJvn1YB9VGZoKpoRrwvBA1EGS8nRyKzGTy26ZYn2xsBJjjDHGmD2JlRhjjDFmIkhj54nxj5g9xGDpcHmspRyK3Cpjf//9vZQ8e7qafd/62WUAbcnmB01uSy4nibkyyi9Z+F6/7cisCQAbWTqPEnDbclL/fs050fJWWa6yeC4nqemR5YntykUsrWhJh+Uvpv0CVZ5fl1KVHiONm5otw+LHzKlaBiEq/U+v1hIeSzmaRHxlvnYbYiRmTsjaoXo99PywbEMjNVBLEFpqAM+jNDhkuU3TgKPSTyfvmX+od/ZuSgYPzbV6/bUkxGujz299DtjGxNxch5ptRIY3j5pzo6aJuoyfmyjRWLN+WEaKzgkAIK+nSZjONCbcfC603NoYcvP9vO12+J6c+XJOSl4ISlD6vdAFadsbz/UlvKYJ7HO1rGfMXsM/YowxxpgJYdw8Mf4Rswdg4qYa/RQqJzoZ9OB3egVBFYsy6jtV1ZDIAKzvoSmSU2C3Q6dqU4GJeic100bz6HIB1eCqqsyBx08AqAnAQDX7qsrDdav6oqNqKjn6nuc/0jdHvfaPJbE3KwOqtKiiUaf81vPH1+qInKqVJiNH04D1nNKQWbW2qiDo5Fs9zzT07luuV56qk5pZeR5XRbmgobeTBFxdN1Ui3cfhkd5Aq6oIpyWrYqMKE98/JaoUp2Nr/ysqVQMxcc+IaVaXF/J1VcUr6hOlKhBVED0XJVpAtreTMsKp+WrSLVPmA/OxJkiHhl1J+aXhu0kVDpbpNV4NejQNs8Iy9e7by7Kpq/rHa6riyFT/4YmXRg/WmF2Mf8QYY4wxE0AH58QYY4wxxuwKrMTsVnL2CwBQvI/SWIHWSElY5lCpnWUZNYcqUQpp1FyQJsWmQV/QwE9TXMsykbFPf7CX2K/+0nNl2UGpGkRlGR6XmjUppZ94Zz0PS3M1O6RJLebzXz+7/T7KMj230XnjfjTJv9/qMzi2y4lhWasxhdJ8KcfF0oheD33Pobx+LU/wHtHmgTxnWiajuVjf25RQcklITd4b8/2YpylB5jKSlg41/yVKmp3Jxzjz3brsRL4XBpLLovc7Sz3NOWMDRElQns7nMTLPKnoueI9HqbpaotTzw2sYPb8m53Qlf+a0LBclJ58LmoGq8Zk5M/tX4zyecjxyLjgRIKnJO7PvqVpuHUpmDN/jstKY0vWpvePEjkpMSunXU0rfTyk9Jsv+15TSN1JKR1NKf5BSOiTP/UJK6emU0jdTSh9/o3bcGGOMMZPNhZSTfgPAJ7Ys+wKAd3ZddyeAJwH8AgCklH4IwE8DuCO/5x+klAYwxhhjzGVnE+mS/LtU7FhO6rruvpTSTVuW/b/yn/cD+DP58U8C+HTXdWsA/l1K6WkA7wPwtYuyt2MKZx8BVfp+8e11lsXBb/fLdIbGeiC760waytyac0JU+t+ucR+JJPbSAFIke10nyyha5GJ5Q0s7V8z1crmWYjRWn+Ublc25nWVpTMjzc8MXaolA3xPNWNmuNLf1vU2WS96fs0HrBM2B4fFHJSRdv54fzk7Sj/5w7sr8t16jWbnGLAXpsei+FVg6kBlEvM+0tKEc+uJT/TFIs8f9934dQNsugddju9Iij6uLsmXkfj78yEzeL5kFF5SJNl+S2XYLuZWFzCpi6U3j9zXXhp8R/awEZ6y2QZDPj97vvIZNaSjP8tFlg7Oj915U/tNSFbejzTk5C2q78lbZN8lU4nb0GHidksxK01FmKT+7nGT2CBfD2PtfAPij/Ph6AM/Jc8fyshFSSp9MKT2UUnroHEZr1sYYY4wx5+N1GXtTSn8LfWDsb3NR8LLQRtR13T0A7gGAg+mqMbMabc/UQh3Zc0TbiXGTJlU2EQTqqFFHlE2GBA25sp3l2/qR2dLROgqjuVBHeE1uSx6F6WieJk5VJGgo1fwWNb2WRomiIDDt9YU/fVtZtvjk6I9XVRU42uWxAMDB7/TjxsVvVtNsSXvVUbwqMXk/Tr+lrmc4O7oP3LaaWZlLA1QFQU2hZX1yzkoOjKhYqjDQLKxqwEpuYqjXo2S+BAm4+nykDDUKS1YsXnh/HaXPnu5H6Zr2q0rDmbtHm2Fy9K5GYyoea6IMNupEvmf1+Gnu1gaFPBeREViXqwpU3hvsj6bUDjWvKP9VtShKHY5UDDXJl4RcNQ3nba5oBs0//+N+fZ94b31Z/iwArUK1dTvRfab5R6dFJWMWUPjaoBFklJMDAFNHnwbgRN9xpYPD7goppZ8F8B8D+JGuK37nYwBulJfdAOC7W99rjDHGGPN6eU0/YlJKnwDw1wH8B13XaU/3zwH4RymlXwLwJgC3Anjwde+lMcYYY14nE9gAMqX0OwA+CmAppXQMwN9GPxtpFsAXUkoAcH/XdX+x67rHU0qfAfBv0ZeZPtV13WjntgmEZaSzH7mjLFt4vI8aV7Meywlq/otyYM7dMipDT4np8ZoHerm8MbjmMgm3CwAvfqwKZ1e80EvnKmOzQeTawXrjU+7W7IvG2JsNm0MpMdAgquUbSvUqkatJk5L9dc/U95wvNl6lfS0dLX2tLzGsv+vasoztBrS0xiNocmXEXKpm6rIsaFzI41+9u2bVLIjx9cxNfRnukJQvovYPLI2sy3r02vCc6/VcC+4LlhOueaAeS7lecnynfvTW8phlJi2hlPc++sTIspnv1pJF9J4oj0ZLOnyP3kcQQzZLPWHDxdUd8mTuP1oebuT8JTUVl7KWnIt9wTHoZ4kGaz3f/Hw1ZaAc+a/XV0tdKSijsfSmhvTEY5TSkJaQokyhl/NnTl/Hc84yF9BOLCjtI6TU6ewYs5u5kNlJPxMs/rXzvP4XAfzi69kpY4wxxlx8xi3szom9byBqjuNoce2QmEbzKE6NpFGTR44qdeTKBE+gGkgj0yObBAJVOdFR39Lnn6z7mE2Gaji9Mg+6o+Re3e9mf/NIk80BAWDt4+/q/0rTv4XneyVGFYvlWyX59al+P/WcMQ1XWc7T0afFfExVCaij1Ov/8Dtl2UbQ7JEqwLoam4OGixuzoypP04TwbaMT8lbuqFNaeQxNQ8YgYTnlUbcqQ9H0XJ2izqnc0X2kJlUqG7qvTZPPrEqcVTWJio+mSWfT9EDMvGripTq2JvfPvqwYqppI1U3N6arK8LyoOlGnU6+OLGsMwrK/RFU1qnac5q3bVmUjmk6tRvRiLBdFh8qJJlUPdN/ya4di2KZKpJ8u7m+U9gvI9ZTzQwVGlxUFSs5Jl828QJ22vhZFOKzUY91cGf0cGnM58I8YY4wxZkIYt9lJbgBpjDHGmD2JlZiLjJrkNrU0sNpLyJqnwnyPpjFflqTZEA8A1t/1ZgBtOWTtLs1+yM3hJBW2mD6lRMDyjybJrh2s22H2SmQaPvCVKjmz/KOG0qbUlUsnM6eqRM6SV5PpkY91Q0pjNNwCtWSmJSSW1gYnqyS/Md8fj6bmvnLttDzf/1ZfQN0flkHU2MvrMJB8G91fpthGBt/G9JmNq4Onq/yueSB8bXT+tBTDcoGW8vQaE82j2QxM4CwHROveDh6jZpowp0jPSbQ+3Q7LdmouTYevavZrO5pGnCyXyHku5SQxyrLcryUUNfny3tQS3VIQAjFYZelVj6uaczdyGU7PBbc5La9bC8p6up4ul5tO3Fn397rjOZ34WL0/uBeN4V/KgxyN6rGy5DUl6wGzfoISEoBS/tIy9IG8nenD9fPjctLepOusxBhjjDHG7AqsxLwOop5Hy5Jiq2moVFY0iZcKgRK9jiNxnc45LUmyHJ1H06l1G0xfVeVnIeh5NJTRXh2RVfWB79f9aQyOeTqpJqAy3XfxqzX9k+rDcLaODNpR/vzIsuUP9WZpTdLlKL+Zxnt69Nzq/kzlEfaM9NjhNPDtknZ1xE84+tYEZTXxEp1iyynlkXky6vOkqblR3ys1S/Ne0HNW3iPv5Yj93DbXkMe903TgaBSkSsMgCwNqYm6msPNYnnym3y8xw2vqcun1JNPxqRpEPbxUkdCUY04tTrIdVREvlGiqN7Jhee1976jb0/3N6OSQLm9bp79TQWkUkkxkzgbq+dF0XX4/RePuKVFVFKYNq2LMmIVFOWaum9fN7B3GLSfGSowxxhhj9iRWYowxxpgJwTkxpmQsJJFXWVqJGiECtTyk5QCWCZKUNJayjK/NFWlsVaOjlqq4Hc2QYGlFy0ksF2jZSWEZSUsjg7NXjWy7NMwTaVvLLiu5/DUtplmeF5X+aWxu8kkElkb0nHE9egzrwX7vkxLBS9kErUUDrvOMpNRG+7GTAVYl/bIeMewSLb1xm1oSI3oMfI+eZzUi89pGZl+WAJQX3l8fv+13+796z0QlHy21lOaKsk7ee5qAi/nRMlDUzFDvezZInJLXNaWYvM6oYeJmUBLV863r0TLS1v1oDML5Pu3EFLt5ay3/8X7X55Gfb7aX16nnUXOYeAfouSjH+JSsh8cn+63l05KzkxOCAQB5H9WIrvdXOS7ZtyhFXL/TSDExu1Gkucz4R4wxxhgzIXh2kjHGGGPMLsBKzA6wcePLOTYfaDMvyPJtvfy8WFP8t8waGc3WYHlnNYh2j/JkNH5/Jsi20FkhZX0y0yYqI0WzanQ2B2e5aNkkyi8ZSuQ/S11anogycZjlojOJotkX0yq/55kbwyP1nEWzXbTEcPDbayP7E5U3WAbQkoWuh3upJRjCWVNAfPyatzKcu3lkvynPq4zPe+qaB+o11EaSTbT+lvVotg7P46GHR17eROTr3RHNkmI7Cd0uy0gnfvy2suzqLz03uo9SGilNBuU8c/ZWk3MjLRGYa5KiY9ZZeUFpcVkbW+asn7YslTN65D5jltIBOT+RlSDdcGTk+dVtGnaW1wXHEKHNYqP16GyysOyZ912f4We7ndkk+UH58xWVnaJZd5qFxO9KZ8iYS4l/xBhjjDETQIc0duUk/4gJ4IgCQDHrqfpCQ502QFx8sh9JbmcuLc0FxZjJEZKmyw7O9iNEHWVxFDYnHsKo+Zsa9KgW6Ou4bVUAVEGYPTUE0GaM0ISo6gzRcxKN3NXg+r0/eWM+vjpqZkKwbk8NqQvZTKzpoTTDanYKFY/B2WE9Fh2Jf+zGkX2bORUkGueRPxtKAlXFAaq5eUZHrtnYuagprPOj5zlSKjjqBQDQIKtK1Fq/nrPSkHIQqGl6r/BcqqIRnZ/S1C9IuwWqwqKqAlOS9Z7i+/U86XExB6XJJcn31OZLkjuSFY0UnEegqjedml3ze5rjD7JsVJWiyVXvKSpnjcE1K5jaIDNKd1ZDLht2RgncTYPQoCGjmorPZIVT7/GtxwdsY16+SpK882M9p8O5/PkKGmkC9XpqU1Gei+i4lHM5H0eNzcMTL428zpiLiX/EGGOMMRPCmM2wtrHXGGOMMXsTKzGZwdLh8lhzFVgymrvv8friIIOFUivLJgBw7ZfFNJslYjXaMrr8sDRjUwMxYWlouI0ETJrcjaBJIcsJKm2rgZjG38ZcmSX2KA9F0RLMFS/0srtG7Q/W2mNR1ACr2SksrRz41qjZV88FS0fHf+rNZdkSqtT+yvV9Dfjxn/8HZdm7fukvAQDmX6zbW/xmv53Dv/doWXYuiJBXU+hLf/bdAIArXqj7yDKS7iNLZ0CV6vVe4HFpPhDfo+dezxXPr0r7UVmvmIql1MASg5ZdmjLHlmMBUIyiWlFn6wQtrer5icoO3ObmnW8ry2jcXZfzHZlLh/Iefn50vyPjr8J1zjwmLRZyCUXLLpu5fKqfs3nJwin5L3KsNLprs9SmvJNpMnUyapqN8pGmghJcc6Q0XYsRmaWw9UP1nuHkgENfHM2yUbSZKu+/aOKAHn9Y0nI5aXfhBpDGGGOMMbsDKzFERg9q+tvIzQkHMkIk0VTrpaN11MxpmvpaTdmcyirHpphmDz7Uj9LUZPjCR68ZWbeaPctoWY6BZkd9HY22OvrW/aHyoQbG+TwKU/WmNAeUkZkqEcX02IzCrxhZD5UfNZw26k2guvCcakotTcdvuveFkdcBwLmDvdry4U/9hbrsrv7v0mN1v0tTPzGhNmm5WXVQhWD29MGRYyjvlRF3t1JH/vtX+/XoteFZUWWMScNXf6mOvtnAEKjprHodpo/nqcoyYu9uHVXlynOB8RuoU7n1PtzMI3ttfsjzo+dE7y8qR6pksrGhps9yH9Wkq2ZybnMgwhC3o/sTNXNsrgP/6hTrwHzL9+jrmsfcnqgl5ftAPodRmvSGmIV5j6viVc6ZGGlLU0iZ0r2pBmsafmXbZd1y/AtUbOR16pGIEpYj1S5SZcr6dki5NpeZMTPFWIkxxhhjzJ7ESowxxhgzIYybJ2Yif8QMbrulPKb0OVRZWHIlmA2iZYWVIzTCjTbZ09dpzsMwyAEpRlyRl4scLnkYC5KMSxqpOZBvWcrRpFgml7bHV0V93TcSZoyMvCpOFNUykKa4ludzOSVKrgWqyVVLLEw+VhMzz5+aXleuFtP1O3qz48nTi2XZBz/+dQDAd//orWUZ5fKosR5Q02C1zBE1Xyxpr+IF13RaltH02kRGbGavNHkgWgrM65kJzLNRkmxDNoCek+1qKY/3oZYENTmZ0PjaZN7I4wWWInR/8v2qmSfcHy27qUzc5RKUrrs8J6WRqWAfo/KNHhfvGz1+BKWzLti2fnZ53+g9wzKSvjdap+bR8POgzSVTLnFubGPu570bplLLvaffc0TLbTxXuozm3cik3eTk0CAt1yDJd+3wyWdG3m/M62Uif8QYY4wxk0g3Zp6Ysf8Ro6pLSdqV5zlS2gz6BQHV7KgqBQ18oUlVRjBDGeVOB0bJU4Eywmmax/7yD5VlVz3IMWmdCnnwodF+QTpiR96ffbKP3A7VJaBVQWjWYzIrgDpCDpSEWRlxNX2C8jqX76oj5IN5m6ffUtc9e3qz2S7QTgdlmm40hXhK9ofKWGP2nZe+Tp/OCsps/fR+8+/1fWnO/Pt1vH/jb+RrJ0qMqjJUrRo1LRid7pS0OpNHr6o6DL7cNzaiWReo96GmGO97sI7OZ88zTTqagq8m1GFgUtb7pygsogZwerMqCeU5mUqrnzmaT0MjusBkYFVD9D7lfqoKxs9ao5wF0+AbZAoymeMxBgZo/bxOnRxdrtPfB8G6EUxf1jRcTsfW9RRFR95TFJj7j5ZlqnLw86fqHu8vVeWmg6naSY3sNPKvjKYgK5GCFMUwqLI6fWOfDr7x3LGR1xnzWhn7HzHGGGOM6UvL4+aJ8ewkY4wxxuxJxlaJoXSp5b9iuBPZdyWQsRUur2Ze4ECWTc9JMz7mW6i8qqbZyCjJhosqw+7PMv7s8WpCXXixf53m0qjMXfNWJNk2SAWlCVGzOKLGdCrjD28ebfzIc6LSvp4/rnNa0nd5LjQNlzK3HouWGrgeLReUxoUicU9LqYKosfeaB/rrHZU0Fr9a95v3gpqY9RpG8Jzp/cFy0okP1pJGk6PDzBQpXwx4X8j9weNmg0IAwELdzkaQKstrpyUfvk6XDXPpqLmGmqbMMmJQYmlKOvne1cRr5eUgqZpoGYxlEC1jTB8evfeacm2+n5v9ZtPDwPitz0f3lH42ee9F6dVA3GiSaNPMangfbS4J1LJXdG9qKaY0Hw0mJQD18xeV0bRpJq9nk2y8OvrZbYzhTGqW0hiN6HruWXqMUq77AxstrZlLTAfASowxxhhjzOVnrJQYqi8AsPyh/vHiV6uJjP1J5mQEwxRbHV3qKP9lMeERjpBU0eCITVNPlcgcx9GTpstyFH/DvzxbX5dHMzQCAzVJGKhTcRWOlHQfB1H6roxYp4JRHJUINQxypKnLoh4xNOYCVSX6/p97d1nG3lLNqFlIXKcoXjS5zp6qI1f2g5mrHtQm3Zjnfk7WzXM+lPN45ob+N/2BY1V90fsnSoMlC7JtKiNXNNPXq7rDxFqd7kolRhWCaHpuq/SNfnz5HjXp8tzreqK+RI2qkM+9KgRFVZCRPThil+uvCgITqPXzFfV3mqYaoPeRKAR8v6qWkcG4HIvuj5wnmm8HOlU5MrsyVVj3RxRcaow6puU2+Z0C1OugioVOVefzUURBYxrmsQTnBPgDLQAAIABJREFUDojvhRIPoT2qaNhuErjreea50OsFxkPI/pQJEfKZ4Dlr0puDfZ1aWCiPN1dWglcYc+GM1Y8YY4wxxmzPuE2xdjnJGGOMMXuSPavE0EioSadTUjphyqtmMtBQ97Ik4M4GpliWnRQ144Wt6bOsqtkOakJcC8o7lHspuStNk8b8Xi1tRCWGJqchS8CRWbHJNhG5nMs132Xxm6+MvI5lJD33jcEvb2dtsZZLFp7PjQJP12EAz9/mNpke3B8112qmDjnxzr7kceUT4Wra/ByuJ2jIufC94FjkPJ9b7Nej15D7uCL31IHH+3PWND0Uo2RU6uN+RA0QtWwSmXOjfA5dTymXiGk2MrjqcXN5lOmyLsbNYoqVkuBQ1skvGP0spAs0eOpnYOpon6fSGI1zeUfvw30PfqN/IK9rrtf8aJ4TDadnP3JHWcRSb5O3o9kp2XTclODy/uj9zG1r+aYx5OZz3qRuB9lMJDJs63Y2d0jkLYZcMdx2zXfA2sh7tIRZj2E2v3595HW6j3qt+TlsCu75Om0+us2H11x8rMQYY4wxxlx+9qwSY4wxxphXQxq7sLs99SNG48zLsm0i4CmLHgxmBe1fHc1YUXc/Z7sAtSyls4tYboqkduXMh+usAEbiN7OU8rajkpdCqTjK5wCq1K4y/8p1vTx9pcjhlJoHQVQ+UEsIhx85NfIebSswk0tV2kLgirn6/MZ8L/Dtv/frI9u4crXK/NGME4UNIDUnhbOKNNr/2ofONvsKbMm6yeUonTXC2Wtanopmb50LSmaa/0L0nJUSzXaNJPP+aNsG7nlT6svHozNA9BijUkTUXLFI/5Ixw5KFlj+j5oGpyRAZnXnH/W1aKASNRBWuZxg0M2z2O2i4GJVCm9kwLNsF3wVKE5efSyfRDKFm23L+wplqufyjx8DXRcsaoiyX4HPalNjks81ZZJrXxNKathUo7Rvk+HU9KZglxu8XzShimUiv0SAopzX3K1tCNEeUz49nLJnXyJ76EWOMMcaY18GYeWL2xI+YYuKVkS1pjLJNhsJo+mwZmchoZjZI3jz9ljqSKCMcGVFQaaBSANQRvY5qNDukvFfVlDxinV6tys+Zmxaa9QE1G0WX6bGu39wbElUZGpztn3+5MZz2ZlYdmVKRAGquiyYRE1Wn5p/tFYvDj9Rj1SaFxYAsI8AXP3YjgDa5NlKyVFVgFk40ktbRfj1ndZkqH6tB6jAVtsgIqcevpuLGfJm5+kvP5efq/TPI69R7Qd/LEb8ajmtqbD3WwcnR9zbrvMDGhSloOMn3qEKgShXv0xQYV/dJU0iqBprSqtemqECyb/wObRSA42zEKk0o5fZo9p3L8n4MJQeFalqUt6M05zFvs0ngzt8VU3IPbwTqjSoW3J9N2U4K1KvmGIKE3PW8HzNili5mcBqXt+zbQpDvMhUkHkeoKZvHqAnUC8yJCVLA1bhbFGrJj9LsqaLeRIqeqDw0alqRMRfCnvgRY4wxxpjXSecGkMYYY4wxu4Jdq8RoQ7mo2RiCpmQv5ZIFUMsWGvfOHAhdRmiEBYClr1V5lSUjllAAAFlqZQNHoMrY2kJATbpFshVJmpKtRt/TxKolBJZ5VOKlUbh/Uy/PNubboKEl16nrZlkFqHK6nguWsK58YlTO10h6PRc0Kk+vVmGdeTONiTdfwyiHQtHcHq5TywFRdkwXtJaIDJXaJmIur1PLIVEmjBI19owMwlHbiYGUsnh/rEjzQC3vhOQSRBjtrtvLn5GmMWHOsOm0jLFDy4PSXFG2U0ofQSNAoJZ6po+PNhlszK7nMcX2z49m5rCUpfcUy6y6P03LgyCen9e7ydbJpRh9b9PmgKURWU9Uvtkokf0jTwGo5V7NiiqR/kHejJYO16T8RdNs1IohKi3q63Q7PD8HvvJ0XQGvu3zX8r7QLJvSwkXLbnJt2NZBS49l/7VSxVKnmJ1dWrqIjJknxkqMMcYYY/Yku0KJSfNzmHr77QDqSExNj0x+Xb6tLlt8MjcCFNPeUPxiVCKakVswtfOF9/ZqwpH7luubpdHb2sF+mzpKpUFWjb2cdqwjKh0BccRSpisCOHDyyMh6olRdjtf1WHXdxUgXNGGcFqWB5ludsqzngudZ1RmO3DQVlVPD1Zir6ymqlZzH8n6dVpuPldcAAN507wvl8cFvj96e1QArSaGLo43n9PzwXopMkQMZzUZqmW7nhY/267nuj54Lt1P2Jx9jM9qV13H0zfsIQLl2ek5Lw9Jtpv5SCdP38P7R7VFhU8Mlp+PrOYvOn5prV7LSNxckzjbmazFpUukanKz3Ic3UOoKKlCqddjzIilF0XDOBQqb3oyqY/HxG5tJmyveW/QeAKYlmiPaX+3YuUEhUbdT74kBgaOY9p6ZzvkeVsZlV+bzn+0cH2bwmkSqnsQ4aVzD48sP9A1HCI86X/KvqSzNF/9bRpGqeqybFmUndYtjG/UfPuz/m1WBPjDHGGGPMZWfHHzEppV9PKX0/pfSYLLsqpfSFlNJT+e9iXp5SSn8/pfR0SuloSuk9b+TOG2OMMeZV0F2if5eICykn/QaAXwHwW7LsbwD4F13X/d2U0t/I//3XAfxJALfmf+8H8Kv57/nZ7GojvSBrYF+WWqdXa9mBpQ8VhZfu+Vp5vPKn+s0uYDTlVvMOrkUvq2rOySHJTVh8ctQgy9ISDbdALROd/vi7yjI19tKIqnkQlK+1vMNygJavahO5erRqqp3Lf1XGpllRz+NcPo9qOG3yIJ4fLdVQplazK6XtqLEiAKwUc3M1OdOQq1Iyz/n1f/idskzLBSxVqFma+zEMjlVNmAq3+bJcGxqjm7yZnLCsJUE959d+ub8vVIpvDNYZXmvN4FHjM8+zHhe3GZUJI0MlAMzn66SSPdep+9UY4jPMv6HZEtiSSDs/mhMTGeKj7JxOjyGXuiLTebNt+VxEDIOskrWb++u178FqJJ5e7bej53F2uX7N8XpGn6+oKWSTZSTl0S4o3ZbtSVmORu3t0r3LtdXyaD7WNmcol8K3MSlHjTjXggkRvFf0/tDP++on3tu/RyYG8POuny+Wkdoy0Fqzr0B7v6bjo2bg0rhSzcd5f5omlB+4s27HpSUj7KjEdF13H4Ctn8CfBPCb+fFvAvgpWf5bXc/9AA6llM7/7WSMMcYY8xp4rcbea7uuex4Auq57PqXEn9bXA3hOXncsLxuZK5pS+iSATwLAHBYwfPIZAAB/15/60VvLawdrvTalysZGHgGoGjCQkUKZIigjJo4GBzIK40hcR8r6nqL4iPmNo1g1XG7eef5RPPvtaI+dqGcQTZ96rMXgJ0Y/3TYVGO5r//6sWAQpo5p+uh/VsPv8Rxb79R2oKk/EkX/d3zaaZqsjN25bTZF8Xk2Ghx7uR1x6DXWdHL2uHay/tZmCrMd68KHcD0bTSpt+MOv5dfXa8LVM+wWAQ198Km9YEns1GTkfT2PIDab68z2NQVpHu/k+bKax5vc3ptBs3NzUXk6Lo6NY3cdm3zJlSrPsY7lemvYro/jISDrLkbaOrvM6w35AQqTiRL2cdJSuz5dUZtT7uZh0dT07QCVCDan8jEzJ54L7oebaqeY6jJrJqe7o1Plomnw0bVunpQ/Qj/sipW5qte6Dfn/wGuvnvUyTD0zMTTqxLOd10s8PlUe9t7id7fqeEf1cbATT5KlWls8e6veTTllvpo7f2L9n47lj59222YZdMMU6pXQj+urOdehDru/puu7/SCldBeB3AdwE4FsA/pOu65a3Ww9w8Y29ke05PGVd193Tdd3dXdfdvQ+jHzJjjDHGjCUbAP5q13W3A/gAgE+llH4I1apyK4B/kf/7vLzWHzEvsEyU/3I4cgzAjfK6GwB89zVuwxhjjDEXiw5Aly7Nv/PtRtc933Xdw/nxGQBPoK/abGdV2ZbXWk76HICfBfB3899/Ist/PqX0afSG3h+w7HShUFZdFLMi5Uw1srG8E6X4AjXHoC2x9DKl5pIsvNgbTptyksD3aGmkJMCKMXE6S5/bmTmZWNs0V2TOhUjbNMNGyaLK8ttrCYHpxE3eQ9AIbz2bDLUUpWWOs1m9vvqRut/Hfrx//I7/c1Q21nwOlcNZWtMSE/dHyw4v3dWXS3hugFaeZ5np4LfreihzT6/W60GZWqVtPe5hNkHrcVOeXhSZeiU4P9F1b8pWTEFGhfuhZZ6BnCuWybR0QmNnVOZQ9PzwXosag2oeEdF0Xh6/3sOQ5zt+lrS0ynKJmKF5n6phu9lmPj9RQ875wByrxlQte5Yka7nPXvyz7wawpaloNkNrvo02UuR10nPPa7wg5YuOybZBOQRoy56kJO0GpbXmPEsZZPPdfT7WZlAK1XIjTbrR5wOo51fvs9J8U7NacilQ7zMt+cwG+TdRcTm6x7nfTQlOyl+8V4ay32VSg9wLKT9eC8r+QL13pxZqKdiJvruSpZTSQ/Lf93Rdd8/WF6WUbgLwwwAewPZWlW3Z8UdMSul3AHw079AxAH8b/Y+Xz6SUfg7AdwD82fzyfwbgxwA8DWAFwH++0/qNMcYYc2noLp0n5kTXdXef7wUppf0A/jGAv9J13emUXn0Q344/Yrqu+5ltnvqR4LUdgE+96r0wxhhjzMSQUtqH/gfMb3dd99m8+IWU0pGswqhVZVt2RdsBhbLgpkRORxkjRHMqzkk0PuXVletqpD8zUa7941ouKBKnyMNaiiBaYqCMuxKUjqJmhECVX5c/WNUxzlTSSH/mN2gODCVyLS8sfrPKq5x1NGzi8kfzbTjzQCX7qGShs4GAuMy2Fb1elOf1nLGEsDFf180yks480GaPLLvo9aBUrbNdTtzZS9qLT0q5UWR3yup6r0SZMlGjyGhWjc7c4GwrXd/6kVEBfhCUB/V+ZplEm+NF+S66Hd5rTRPLfM6jPKI2dyTPWJJ1N5H1ucSwIeUC7q/OMBsE5zY1JY3RpqPcxyirRcdhei74vC5jmVHPI2c16swwZt4A9V4bSsmjlPc034SNPaN2CPIeLenwntPPF9sJbG6T7zJdmj2O3o9RnoruY5T/0tzXOU9l+NHRzNFmFqBkSZX1SYmJ11NLeZzVFjWcTDJ7Tb9fomyZqOS19fVb11PeI7PSeB+7rHQB7I7ZSQnArwF4ouu6X5KntrOqbMuu+xFjjDHGmLHmQwD+PICvp5Qeycv+Jra3qmzLrv0Ro8bEufyrv0mpDZri6ciEo7x2RJZH8ZIEOZVHOyuS2Dtb/cE1aVNMw6fvug1AayikiTUaFQN1JDq9Vn8Gnw1G7FEzO5reomaWQB2lNGbgPCLTERf3pzGUCm/9bD8dX9OLb/h8TnaVkStVJR09Defqe6ho6D4WhSBIJtXRoyofvIZ6XZmdoabHg3M35/fW6xFlxuj5VtPxVnQf1RTKLBdVIqjaRAZgpRnlUwWR9dB0q8camXTXb76j7k4eQQ9EyeM6GzUp3+9R8u92ybN8Xu+p8jhIS1aVR82efE9kJNV7nffSmhyLNuyksqSZJkUhEJWH6lSTOv3oE+Xh8k9/AECbkh2pADwGTSyOVAe952jeVRWsXGO5HpFpP8p8ie6zyEirx9B8R+QmjtNBY8/mvlZTbZAFVFKCr6pqK/dX7+tyHmV9TRNUfu/Itqm8qQLL7wo1Z+ux8nthn6p/XKeVmJ3ZYebQJdmFrvtX2L4T5YhV5Xy4AaQxxhhj9iS7VokxxhhjzMUl7QJPzMVk1/6IUYPWdJZVB4uj8eJN40aRiCMTcJH8cx4IUMsKmumiRrciwYsUT0Oubntwtj+Vr1w7Lcsk2jvvT5RHE5lHdT3ITSy1iZw21CvlCymh0Ox63R/VLhBR/Li2MmDLA91H7puWS+aDzBeV1SOzXhTJznXqcZ15TzVis8GmrofR52zWCAD77/16vz9iLlb5mUQlSC07RGbf6aDUEDark2vI53Xd3/4z15bHR/71WQDAWj7fQD0uNbuW0tINo1I7UM8Bje+67ab8FxxfnOkh5YlcEojKW1r64DJdT5PnlEsZTZkoMAizfKH3kRo3uZ2opKPlJG5bU1wGt91SHpd4eyl5RNed50LLN9PH673A89yUb3idTmo9evQ7S89pdL24bf28ngsypVble2w+KkPn928GZRctLW6KYTcxK0fOT1iO5L7JsW6ceKl/fS5jAVJCkm3ruhF8vnhfRMcPxM0uyzrzPpjJYdf+iDHGGGPMRaTDrpiddDHZEz9i2OhrRsxmnJbcTGmWUQFHks/9RB0BLz3Wj3Aa82hWAyI1BKijNB2lUrFQ0zBHCld/qSofOv2SqOmTZjYdmXFUqabhaN90RF6aqIkSdc0D55r933oMpJnumUf0uj2OjBtlK59nbSh4Vo15NKIujI6edPQ9nf3Vep6ovui21fS3dmgw8jpOu33h7rmyjNcaEFOxJrfmEWJr6sxKgxi/I+NrNIW4SV0O3nPNw6MNRNWcnIIR+9ZtAK36x/tvU4yrU7k5nprdNldGVUmO/Bk70FMfc98axStP/2/ViVFlZEqUKl7bZsp7/hxvyLRZKodLR0Xlked5n+q6eS81Ruz8uElLFuWIx6MNVvm5aJShrAIMRQHQL8tyLzXqRL5OK6PfU3p/aBIxpypH3y+6j/z8qPrSJEtnBU/Pc/Tdxft+XZWNl0YnDETRFfodQJP8K0FkhBp3VWGaDqbtL799NJWb94yqcgqvd9NckkrdjTX2wg0iJ4M98SPGGGOMMa+Xnfsa7TU8O8kYY4wxe5I9pcQMxbQ1891esmduCADsX63SJss7N/yDR8qysx+pGRuEpRPNU1EJnYZLlVcpq6tUGjV/Uzm0GNNExqWpODLAarItH89IP3CVvg89PGrqK0bAoFSlaIPMsKnmlv0CgNmT/bpf/FhtWL70tSohn/qJOwHE6cXnbhlNIVWpXdOLydx9j9f/yNcwSiu9YbmeezUC8jqdyWmuum+alFqaIqoZUUoVJZ9CZPVI2l65edSIrY95HfQ92jiUzDyW5XnZn2JMRS0tzD1VG+GFCahByYLnR0sWTSZMLuVoU9EoZ4nllNA0jvq50pJhyZaR/JuFI+8CsMUoK+VjliLYDBYAZgOjP9fdlASlfDMbpHHzXOx7SrJsWAoNXg+glAw7NfE+lff91noPl8+X3Nda8gFzfaSkc2C1L59GjRvng2wdoDY51XPG8/vyx99VlvF6N59xMY6HmTnMV5LzHWUUlddLGbBpRJpNw7ps6el+nY1JuSQo1+8rnVhA9DPDUrp+/06jf95lpfFmT/2IMcYYY8zrwMbe3QH7eGjTe/3lzhGZjkKIqhwcaUbTb4E4NZbLVMUY3tT/6lf1Yfnt1cC29PknAbQjDo7oo7RKVXFovlTVSUfI3A8dVZeprUFvF90eVSWgjrQbxSaPTgdixqMCw95HABpT9cL3+vPTTMvOoyudslxMhNeP7iNQR90HTo6eHx0x0sCoo3hNdqVqtajpoXnEporNVDDddTronZOC6ax6TqPE4qgf16ysmybdZtoo91WnS4tpuPR6kpH/eqDAEVXvuG29P6Lp1NGU3hkZace9c+r54XXXe/fA4/12VkUZ5TT5DZkmr8pQZPIs+6uG/qzYrMjnTM30vL/U8F5M54frMl67yJAM1KjRpt9UVjS0L1Ok2qpawOX6RVxMqjKlm8qP3veNKpW/DyIlk+cWqMfYpGSL8TmKB+BnTo+B6lbUo2ygibyHg+nrwXnWa1TOs3wvqJLJz5Ka+4u6KfvN87Nfz7eY4M14sGd/xBhjjDHmVTJmSoyNvcYYY4zZk+xZJYaJvgORkjfVUJZNjAcefwVbiXI3FuR5NW5SLlUTGWXMtYNSljrdZ6xoCUUzY05ns7CWbyjvR2a9lwLT7HbN3yir6/OR0ZJSsebAvHRXLU9wO03ZavEdI+thpoPK/VNBU0lNHV54fK3ZB6BKv1rmUJmb5bFTkuLLNGE9Z5TDNwKTLhBnX1Aa15LgynX985r/o+eRz+9bruvhvmtDySjNVMtxvEe0lFOaHQYmyyjfB6jnUrNjFr96bGS/WaLa2KEMFKUFa6mP901YftASghiWeYw0yOt2tISwnM3gV37uaH2dlJv4mdTPM1OrB7LfNBI310PLQHnfGuNvPsbtSiwRZZ1S3iuNG4Prpec7Mjk3htwgsZef7TM31c9ClFMVGd47uaeYkNt8djXRl001JcW3fNdK8vF6zmaKypZ6zzTlttXRBG6esyjXR++pyPjbkD9rJ378trKI5e6o/DvRWIkxxhhjjLn87FklxhhjjDGvgg5jF3a353/EaHYMRC6nhKiNEumyZ2Q20DrcSdOMLf/VWUeUYkvMNmpZQctOc5pZkCP9dd2M6lfpe/3QVSPrjma2aNmKUfzKQt7HsFwikv1B1HIRZV6V/k/kWHHNgSmy+TZlIMIZWUCbvbJ1PVF+DVAl+NlglpOWaihfq0S+LrOFShlEZriUcoHE7vMab3dcfF7laV5vlnH648n7K6UGvV56vQln0emsM+7vdu/l8Wq7Cc0b2Yqu58xNo60qtITAcsHgyw/XbbOcEJRwpySLRXNZZoLcGpaG9NzyntQsJ50xyGuis8A4y/A7H6/3/9t+t79G25U614NGiqV9QVCCje5rRctEPEYtmXJ2n84g03I1WwwcPF7vwxQ0QCT6PaT34b6ybLSsqd8f3HbUIBeo35cz27RtIOX8yT0eZcw0246W5TLqtMxYYrltKN/dUQlJy8yH8m2qJXxeh2ZmnNy7QzeLHAv2/I8YY4wxxlwYacw8MWP1I0aTIJlBoaM5GiCjJFk146lSMzg5O/I8819mReU4EOR76Hqolsw/VA2F80z9FCViLm9HFZuyDt2eqCULeQQUGVv3BZkUbJgItCMyjtxUveLIJsqb0ZFiM1rLozg12WlDS8KRdGN21mZ1bBQouT40AK7fPDpC1ms9G+S7NIbKkWfr/bO2zfmJcnSoZGhmB5snqsExyiHaDPJE9J4p2xYFhY0SAWDxyWzSlFHz8E3bGy51NMt7pjGUymi4pOq++/a6At7jMvqm4jEQ82iT7hxkE5UsJLlnuqxU6HlqG22ONmrl8bx1WY29/f7odVNlbZDPuabKcj8acymNv7JM4X0a5QM1+52PS5fpdmhej0zFqmwMnu4VBM2BUUPuVKDeFGVNrkdkAF6NFA9NIuZ+68SJIJclavYZXYcZ/a7kfaPHmtW/2RtHU6x1O6p+lkwpbaq62p+Lg/Kd2zR05fHcX5Vps/cYqx8xxhhjjDkPY6bEeHaSMcYYY/YkY6XEMM8AkKaBYqhjrgLNdECV8TVrQxkETf+YP/D0p2pR4trZvrngYC3+mUsDsZYYKO2q4TTKmODzjGsHWglYJfayLMvKeqyUVQfbNevbRjoHWiPk9/50Xya65gExeGo0fpbil05W6ZYmPDVSR3Hmaj6dy3+j1gitGbp/j7YQ0GIcJW+9hix50HAN1HKKXo8mYyIo8fGc6Xq6wMTc7FtgquRxaXYKSwxNGejx0fwTlflplBxKfD/vKS2r1LYLcduBCN0OiUqLCqV/Pa6t+w9Ug7Dmt0R5M2FrBF325DMAgLOfeG9ZthCUFnU7zCDRz9ELP/N2AMCb7n2h7o+UPHj+ouulRJ9nXcbr3jQ4PDQaxc8y0nZloLlsIE6aCZO/+6LvFz2WyGgeGXang7YdWnaaDYy9ChsxDpYOn/d1w4++p9+elKWaUnAuN21KqbMY4rXUWb7PYpNyuQdkf2z23XtYiTHGGGPMnmSslBiFqoz+SqMqMZyt8+Q5EtKpps/9xLXl8ZVPrDavA6q58q2/piOPfsT+/L83V5a8+fOjCkKjWOQRkpo1Vd0gZ27q84S1gWGovsiIq6SiSlNIjhS3S4DlSGtqVczAwYidhlJN1NTGhBxBqyZFBSZqpKn7XRQ01Om2OlKsI0lpMsjRVTDteju4zdNv0enb/WMdcUZN9hTuz4ZM1WaTuXVRA9SwGilwNKSuqEE4m7d16rMqLBxVNiPkLc8BOpW9HivvQ1WFdGRfmkuKMbyaXeu1ZjNQnYIfqSU69ZvXVRUm7m9z3dQMOzdqxaYRuxO1lUZkPd+q+PAYdDvRsR65L79Hp5PLe3j+zoqxd/6hZ0fWXQy3aqAWhWkzUG8iZSQ0auftAXUiQ6PeBCpy+R6S7Ubpvc33VL5MUdL5gUCBVcWuUVafyrnogcoTTRxQmmP4QJ/uvLnN8+VY8mezidTQ5ORA3WJUgKr648a4zU6yEmOMMcaYPcnYKjHGGGOM2YITe/cYT1VD6sJ8L8U3zQGDRm7zL1a9jdK/ypVLR7Ox9z+tbSPf+k966XvwvuW67b9Xtz0MGqZRSr02kP5V4i0NJ2+JTZiU7NWsOMxSqR5rZDxUwynyY82j0XIU4fOzKouL1EwZmwnBQM10UMmex6CJmguo5RKWGzR3hMejycgsBWqGRmmoCAAL/X5uimmP5sEoGVnlbDUV817SPBWeUz1PXLdK+1rKmWGTPTlnLKfMPhOYI8WsGaWn6n2BwABb96Fuj+dR7wktT2xmWf2c3nOrkrGRKanMoaGy7u+6ZO+U3B8p1aiJl+h1j0o+5b1qvs7rbBoGBs8rPAeRqXjtnXHSLo9rXq4Hyyh6jViObLJKgnylOSnxskyrqv8w76N+L2hTUZ6fJm8mlyv1M85lLFEDbSPJYv6W8xyVpfgeLSnrPUC0ZFjKfvIeHqOuu1wPOY/NNc7lWuSyElDLXwNZN83iTWlRzj0/503GEx9kg7jZ/bicZIwxxpg9ydgrMWrQihJZS6KomBo5hRoAVo6MKjE0jL3pvjpW4nqu+Xt15Mp+OEAdqesolX2S1KTLkZKaPiN0iiTXMxNMgdVEURoGdfSko2uOuPbf+/WyjOdP0zM5llkJTI0AsO+p/lgPiYLAEXRjGMyjK1UxdDRclsk5K8mtMpWdCoOqDzqKpUKzb1kMl/l66hR0GmkbxUsGdB5fAAAgAElEQVSmllMR2Qx6PalZWkfLJOorEykRpwNj72qQTgzU0XekujT3R2TwDBQN7XnEqbqRcqgmXb5OVZ5GLQj2m+qWGmAjr2GTJp0VU6awAqgKlaorWQ2IpnTrdvQzMJ3P/YuSME2jsqpyOoqPVLvp46PXuCTIitIUTdXW6e9lH+U9VCX0fOo553qiadCN8pyP4UpVfoJkZIX3QBckBOtxbTBuQLbXwOskik1ZpyjmHFmriV3hFO0UbUf2J5oEEH0ONf2c+zNgnzDUaftjQQeH3RljjDHG7AbGXokxxhhjTGbMlJiJ+hHD0ojK1CyJnHhnLXPc8IVqBJteDdJg8/vV9FkakIk0uW85yFWQ5pNsCnnlE6NN75p29Xl7mnegWS4XSmkspyZKbbyWS1ibmkXCXA2RmVkSa0x7UTaGbJvHNVQjMQ3JYuBTQybLX5Ecrlk/W/cLANZvvkOOazRTh2WkxribaUoIgVlRibIoyLZlKa47KKc0+5Pl90HQUBGo5QItjURlKZpKtYTEa6R5IZr22gUlM5a15h8aTT7W/ZoJ5HvNeSlNGKXsVJJ/JU+lKW/RTC33a8k9Csoceu71885ylB5fyu/RrJuo7NA0SmQmjDxf9ldya7g9LUHq9dqcz+tsrk0+vudqg8PpXM6NyoCA3M+yjKXbpE0hg8aN+rmZChrQRnI9P4d6nvg57YLt9a/tl+t3G0tVSczyvAf0c6/Xc+XD/fdTVAbSz2HJnJL7Omq0qcfPbWrJlOUrp/nuTibqR4wxxhgzyYxb2N1k/ogRE9lgsTf53vi5+su7GSmcRw1opv7m3jnsEQS0fYL4WFWHK4NRz3oeSZx+c700B7/Tj2Kj1Fegmhgb4yFHzaqWlORWMQQG/YCa6Zer/QhIe0tRTVLD27QYf4taEozwdPr2/nv7adCnfqJOleRUbKCOOqOp5ZqwzNGgpqfquSoqkOwPDZfNVNw8ut7cIe1Xzz0VhPlgZKtppTr9uxyLqDPh88GUZh2Jl2mlqhblc6FTejmin3qpXlccHp2yO9WMmtfz3zrSnufUXzk/VO/U5K2mWipCqjBRiRgEKlek6G1HNPLfidBgHRBGL+hnKasuat6PVL1IqdL/h5SkYjn3PJfzmrDM1Ga5/qqmlHTnQEHTY+ZjVSSmApPvYBulphxX/p6Kvl/0u+LMDVXHufFztQ/VyP6I6sSIAo1JmBGFjtEO+lngPTXD6dcAzuX1aCp3iQRA3DNrihMQ9PzkCSED91jalUzmjxhjjDFmEhkzJcazk4wxxhizJ5lIJUazY9jWPWkOiki/lMMXEDRqi1Jzz8anlLK7SrNRngil+IXaB7HIy1EZA6jlFi1PrOWyluagsvywXaYJDZBaBuM2NdWTkvOqNDiENK1jtk5UQpiVYziX83p0ewq3ree5mktrLs1KloW1eWRjTmY5Sc93kOYZJY6qCZOlDs3w4bXR9bDMMTg5miui79dGeWHCbi4hDMVQOqslFhp7pVywFiX25mTTqSBXo8nWkVJEeSwZLCx56fGzHKJFDC1VRE0zo+acUdklMier8bfk/0jZYZg/20MpbyFIpVai5oHn8rojIzWAYt4tOTCQxF7JOpo9mZuhqjFezg/vFb2GM/lzqo0/mRK9KaVwJlHrtrXsnfK5WtGSKcs/9x+tx5rLLkA1XR/7WDXIvvnzfQq5lvem8yFGmUEHPn1/WTar3xFcJue0fH7U2Jyv52bQ7BSQHB1N8c2f3aGUZbmdqyXmZVPM4vy+0ATu4z/1ZgDA9X/4nbLsdC4ZqpEYe7mcZCXGGGOMMebyM5FKjDHGGDNppM6zkyYClY0bCTHDksYgKMWcuLOWi655oErx5wIZm675K14YLU8s31pn8Sx9/SyAtlwURaSrTM9ZPi9+7MayjNvR/dbSAMtNUYlB4/nZJuCVa3U91eHPmVpNdgpnM0gZiPurJZsNKbFotghh2ebMh6vUzO1tbhNTTlTGZskjamDXlO1O1sf87DdNGA8xL2O0JBbNFAGq5N/M6AnyKc5+pM+6aUpeQmlOKsuidhVaPtxKM4PsaC2NaNYJiUpeRGdi6YyV6WA2EI9RZfy1fH8NpNSin72oeWnZHymrDG4YLe9tl4lS9icos/I8avmqaXlwHnSmGfexaYop5SbmEIVZJXoNcilHz1k0K2sjKFW15yJfD2me2MwYfLY/3iP/+mxZVsq6+lnh+uTcs/SoMxWngm3rPnL2p5aq2BamKfMFLTr0s8L7Vb8jy/+rpUys569sT2Y/XvvHo581tmFpZpV5ptKu4XWVk1JK/21K6fGU0mMppd9JKc2llN6aUnogpfRUSul3U0rxN7kxxhhjLi1dujT/LhGvWYlJKV0P4L8G8ENd162mlD4D4KcB/BiAX+667tMppf8bwM8B+NWLsrdvIJpTMHXV7eXxMEiV5UhTR08crSw+qZkMdQR4+q5+NHDw2/X5xd/8Wr9u+VXPUcPc86NZLjrCmz29WR4zm0YNshw1aQoplQHNhqEJF6jmSR2ZUL1YkPdwhHdwG0WnjJCD0ZMm4HL0peqLqgEzVFZkPZs0MK7W4+doTvNt9FwMgwaIZTR81WgDTFUc9FwURKkpCpTs41pgON0no2qO7qMmhTpSjPJ/9HGkutC8HDVejFKXm/wjSTZdz8c4mK/XJko45bLtGi5GCbPRyIkG2cj0u922y/WS1525Y6lfX5DmquvR61WygkRNKupF1KwQkqNzgU0aG2OqHGP5bMu2aQhv1E9mAsl6ouvQmLPZNPN4ve95b+o9LulBRZnch2tGlimRkZjbU/WqJBKjJgerEtWkh2eKmrJNWjaVnIEqUfl66Lnlfv//7b1vlF1Xmd757Lql+mdJrrJkZLXlYGxsxzFtaC8Dpr1gOUAHE3oBmTRrwfTqeDLMeCYr3dM9SaYxnTXT82E+kJlMGjKTkDgNgZ5hoDsOBK+Gxg24PTAsMAgDBrfANmrAkuW/kiyZKlWpbu35cPa797PrvFclqUpV98/zW8urrs6955y99zn3+uz3ffbzegU3m7Y1Y/r0zVN52579KQLFkb/02iuuCWCwRb5DwHqFveMApkMI42i+C0cAvBHAPen9jwN45zrPIYQQQoiNIG7Sf5vEeT/ExBgPA/jnAH6G5uHlBQDfBnA8xmhTxEMALvf2DyHcGULYH0LYfxpn56IphBBCCGGsJ500B+AdAF4G4DiA/wDgrc5H3WeyGOPdAO4GgJ3hkr7SS3P4NBcbozCu52nRvbrtIcJhTE7rZK69uvW55RQi9sSYLHTldMr2g20x2pITNjah7cRx/6Exh2kdH5Tl6fK8uzNFgzk9UxVes5QQpVC6KXTLKZ9cvoCt72mfHGJ3fC5+fl0JpVt/Jo8XcbHno+P5SgSnACZv88TAlU273SsU+s7j54hjARI0k5jRUj1cZDCnaByvFqCkqzgFZUk/Ln9hHj9eWqUqiEdh/m2H2umhbkrvVX47ucRCOQ779QSnRMe25HXCBScXzGr/YNvLBijXZGyB7PlzKrQc20TnXsmLiup6NfdNVaQzvV+Js8mjJaZr61ryU2po4gvfal6QkJbHuZu9d8q9a/4w253yINwer18skLXyGbzN7ude191Sa3wdciqY0jeWWqnS8DPpu83fe+de4fIWXafsieszRe9be9lnKfeB00mp3ctOCQEA6CYBcU4hwfcMKr9t5Th8jaeQ5Ad0f7AXmbiwrGd10psB/FWM8VkACCF8GsAvA5gNIYynaMw+AE+uv5lCCCGEWC9aYl34GYBbQggzABYAvAnAfgB/AeDXAHwKwB0APrveRm42vGRu+33pyZxmjd7TuodXuJBnUiYG5giLzch4BmOzJ3aAZXiWu3qfasaVjs0zuJ37y4zLHFK5eODYQiNg40iLzch4KXI1g07LLr1Cdxd7s8ceS4A9AbWNHy9LN/fRCZrtMt71stnuQlrGDPji1Gr8Uh+qIoI221vDiXktMaNdQ16CbjNpXtpbLX9vHaVEm7iQplew1Oa/3NZxbpcTibDrVEUaUnumaIbLERbbn0XOOXLELrUpmtarQGMWiz5W7rPteGnap0TY3IKLvEzaGXtrW6CI1or1m2bXvJzYomjBWeY8TdcaSbS/xCJ4igLZ+FX9tnawO3NaTsxtYBGrjTNH8owZJ+LH37nILrZJ0OzZA3DB17FXNtGHcZTl1LbkmSPZi1cV24Od+5vtbC1g9ztHGO33pyrwSNfNW1qe32eHbWsr/75QlMgibxzRsXuJ+2+/Q7xtxnG/XmaLB3JEFheW9WhiHkQj4H0IwPfTse4G8D4A/yiE8DiAXQA+sgHtFEIIIcR6GTJh77rM7mKMvw/g91dtPgjgNes5rhBCCCHEWsix9yzhcK+95nSRpYQqV1NKMeTChZR2sWJ+XniUw8IcfjV6CSCNRUdo7KWYAoXaTRTJWMqI0xwWuuU0GLd3yglFex41FuYdc8LdgO/bYqkl7v9SKmBXpRDoOBYi5nSKtZBFzsuOHwSngSzF4vnocMi6CE5LX3ccJb+RJNTlEHlu+3Q7ZcHpEA5949FGPOgVyvMcbjmlY2F1TrVx+N6uuzemPPb5ulIb6iKEaXzZaTb1h1MIuf2VJw7fR03bVhwhaIcdedM9yWPGaZeu48sy9ZWjrX3GUhfMPRaohb+WeuUCl/Y+n8/SsJyqrNIkh9vX3d6vviu2D/XVcyJmgXBOYfNY5KKhdJzq2iT/G/q9s+veSQsRAOS0zQr7+qRjs1jXczzn3xK7n6t7M7WH2+j5u3hp6MonJu1fLTogB2Fv8YOXzrRtvRy4vd+NmMaKU3B9wRCWHVABSCGEEEIMJIrErIEtlatEfWnW5LnU8pP8+GF+qm+e1vf8UZnZ/uzFOQDA85/dk7d10wSRl/3ZeXo5Rtpsmh0+TRzHUZzuVDNLqZYf85LddBybZQIlOsMznOPXNxENTzwKlDHw3Fo5smEzoUkWMNJyYpv3eMtlvaXRfL6qFsvV7X57AkcPz0HWF42Wc89f2swNdj/8c3gs5WW15f7xHGmtbaf2lmvIM+1tSVwJFmmm2WK1DDzNSLsULVmr33Y/e47F3H9jnu89Cl7ZOMdqufAl1TkA5OvOIlMWCBvjdF29aJNFPBad+kVAmbXN9HAqztvSX+4rRx08h+EcoaRIhM38vWgqAEybkJS25UgDiaVNDO19z4DyW8M/6DmiQwsVxtL4VpNxp//8G2C/JdW5LXJE0RK7xvw7VS1vXrBobLu+U3UNUr84ultFnp1onLWtijCl41RL/uk8XiTci4rbtudfVaKpu77b+phbyykvO0cfLbtWJEYIIYQQYutRJEYIIYQYFYYsEqOHmLOEvWMsRNhxQo+e2BcoYeV/sOf+vO03fvpeAMA4ZV323d98jgu9nSk9AxQRJovovFC7tYePUzsML7WO42FOu55gEChF+Nhx09I70Snq1ku4mgvqscNpen+lKtjZnJt9azjgbH1kd1E4njLmmTJBIWk+5vxlTTh87muU/srOv2WfPQ80KYjnXlfuhUvvL6FmTwTuiZht/13fLSk2D26jwYLdruMC7Ql33fQf3R8mhvWuO4vCPeFz5RacricLm60IKN/3nFq0tI1X9NATY/YSeY+dQUxfkc69Qukt0PhUAuvEqZQyYvGopYZ6CXu72fG4tCenxEhUbP2p+v94+77wXGyrArO5L+V76I3p9vu+n7dF83163vGCYpGypcbo/vC+u5UA1kk3GpwG4lSoHbNK9Vo60isgys7Z7CNzJldm2se+K+y6Xi0SSIJuTyAd+dzfO9Bum1g3eogRQgghRgStThJCCCGE6AMUiTkPTGU+5llzUwppcba8nj7YhBf/q+/9vbxt12eatNR7/sfP5W2f/2ATcuUwpIXLX7i+hDA7i+Vx2tI2HBa11IjnJ+OFjwHysiEfBwvPcsqiKpTnYKmFytPD8aewlAeHgDnUnFcVUbrAUiIrlA6yUpicQuDVIOYFY1bpADB22PEGcVIW3NfuVFMcr15xYaul2tb3HH7m9IWlGzgNUq3USVgaiVed2aoYADklMHG4vVqoSheka8cpCyvoOeH46QClgCSvQLOyF5wGWnCKivKYWcie74XxMxQUrPxAKDVi4+ylIrzyHpyKgrP6JFKBS155aFjqwyv/AaCUAaDVLp4VvZUl4HuGj2npuioFlY7NCS8blyrN7Fjxc8pwgQqnGnad+DjVPuk3YMJL29E9Zb81VVFVr12cWkrH8TxfGG9mXaUZUzu8Ypdc8sCuYbUSj/uQ7oHTlLZDes3pWE6petu8gq723ebfkvErmhINVVpbrBtFYoQQQggxkCgSsx6oONypVEiQZ6SdU2V4D/xu4wnz4Vf8X3nbH/9OU53hg3/+1rzt2mvaM3KbZV18oLznzWA4WmIzBRPZAr5gl9/PnjDzbedenpl44jmeFVnUpXLiXWhHXex99leINCu2c/JMu/PAQwDKrAYos1ye4XEEyvq446tFZLjszLTtfByxmOZifTaL9cSK1NcsZu0hWD52XTM72/05mtmnz/Ls2Wbn3cmQtx1/8zX59eyXHmsd23NB9pxkMxSx4OPMPNXMsDmi9fM946ndj5bPOUUzK/F2On6XhJBnEsRXzq0k5vScbT0xdPbJ4WjA0bYA1vOg4eiMebSMk1iTvVN2fHWhOh+/rqIT6dzz9D1jwbt9tvJEOTyd9qEoTxpnjl5VESgTl9LY2z4rjvi28iMiP5qZo5e0jm0RZ76nsli89LT+DbDPOUJ9Hh/73lQu4ulauwU5e2C/fdtAvxXpe8rfqer3Ge17IEcRnUimF3kHfEGzfde8yOGWI02MEEIIIcTWo4cYIYQQQgwkSietA7aRNjEsi9qWKBx89f/d2MV/6P/4z/I2E2z+tYViJW/W1pfe/0TrfOxNwCJDC8VWxfzMn4L8O0ysyWmpnfvbpQwsNQaQZwWFl+08nNIKa3hxmMdEVdTO9qUUUmXjnsLKk0fJTyQJeldIrOeJa5lKDLtqH6+UA1v785hbio6vsR2HQ/9ZGE0haUshAeXaLjuh9qqNaRwvJnsJFi66IWsLaVMbn3vbtQBWC42b0DgXYfQEjCw47Zxqjsn9L8fz7fAXnRILBo+twSLLysMondPzP+KUjpt2ckoQeAUOuYglp1iMKg1kx2dRdbre1fc0naeX95KlZTjNYcdhn5ScZqVx9lK8Y2uUZbD0zdJsea/DRS4dgbmNKWch7H7lvi6m3zP2mEFVbLbt5+MJli39w6lK77vN6b9tTsrLxL68UIGxa1h5CtlfL3VE8oEujdmYk8K00hMr/SbiVQFIIYQQQoj+QJGYDYIdfY0Zem2zPRbSji80i4N5pjCVZg/eEuHFuRLFYImYzcQr4WGa+bGAz5x2q9L0dJxTznJZm9nzrM9mO6dZcEvHsdkVRw14lrsaFt5VBQ5NpEezsPm9zWxnpq0nrcS13lJd2xegona8xDoFNCYdgSLgz2xtdmaCSKDMADnqxJE1u07WBj42C5JXnGXpHN3xZsgWdeDrZRGY7qM/ztvMdXqb40zK+1dL652ikCaE7FZjU+45m+V6Y8dLsW1WzNeN79Oxh9O40HHs2LwPR11Wfw4gETkJe/OM/hKKxCRRqbecHijf5y7NtMe9CFWOjJVvLEcvbJy9woXcRvse10LRM0eg7LPHbi0i+Nkkdq2sFxxxdxXpTb9tbFFg5+vQ78vMkRQ5o3uKx8zGkrd5YmCL/nlFKIFy/82nyDJQRO7R+35wdJcLVqa//BtpeIL/4Cw64GNWztApkreCPkSRGCGEEEKIrUeRGCGEEGJUGLJIjB5iNhgL06/GQpYsDrRQPYfALYx74rUlLDqXUiws0q1CxA8923o/e2iw42wKFbNgrkoNpDQSh6xzeNoR1nliTe7XxELpgwn32A9jbGFHqz2MVxzOwsrcf/M06Tri4+Y8Tfh6+30k1tzVTm944W4OP5+8srm2czQ+XtrBxo/Fzpy2sj7wPuZNM8Xuog4sjrTihC+8vbgXm8Mup1g8kaKl91hQyWk0uy9Y6Gnn9u4pTyDNx+FU6Hjq6zSlMbI7M6UxOpTKMl8Xbq+lXDk10nZPqsfe67cJ2Tmta2PLP5BVaslecCHRNAae4JbvI2/85smV2YSxnL6wdK1XzJLby6Jruw4X3/twaWMax8qXhvqYXXW52KP1ke5N+83y7g/XQRkAUnrVS2d7vlf8e+alliZ+wMU5rRBr+X5YGqzjuPQC5Z6qvu8pBTVGXln2OU8gDqAUn6R9eNGH8AkhfBTArwJ4Jsb4irTtfwbwXwN4Nn3s92KMnz/TcZROEkIIIUaAgGZ10mb8dxZ8DMDtzvY/iDG+Kv13xgcYQJGYDYefwHkmZTNVb5bCsyKbcbzkwTJLtVkKzxh4mfTTtzXHnHu0zEJyXSKaHVgblh1xJFBmbiwqtmWeY+yeacsiybmWxXPWL295Mi/ZXX08ANUyxiwQpG3LaSbNNX2svRzR4ZlkdlOeLsJNE9xV7rzO0mjGxIMrjlCQRcM7Uo2hqn4PHXPZERJmQTP11YvydLg8DwkoDb6/DLselTDTWSLrLa/1RKin59rX2osqAeWasBDdIiMcNTCn3sUeS6yzGy6JxadXvdcLvjftnmUhvkWEqpo/6XvDURyONnlRO4OjCvwdMXhGb2PKUUKb+XO/vN8AjjrYvVItdU9jtUCWCRa1qr4r7Ohr4+uIc3nsJw63+2L3ghdpAsp94dVm85xt+d6zRRAAjT0tgy91tqjmk4mv+ftG4m2LOrF4Pds5OHWiqiX/TsRHnBsxxq+EEK5c73EUiRFCCCFGhbhJ/wG7Qwj76b87z7KFvxlCeDiE8NEQwtxaH9ZDjBBCCCE2mudijDfTf3efxT4fBnA1gFcBOALgf19rB6WTLiAcsu7s3gXAL1a3PF2eJT1nz1wkjTwplm5/dX592Z81HiScBsoiTUoDWZjWC4Ez7BSaQ9v0vgnzZtjjwSl616U0mYXNq6KQjnCXw9jZf4G2WXg+OoXuKnEttddC6FVqJKUvprkQoB2T0kBV0UR7TSkfC9XzdTM/lu5tN5XzOULjqhBeCk9Hao8Vvav8SRxhoqW5uL0snrR+n3hpSTWYdwy3i9Oalt5ayxnarh2nAzpHSdCcrvGZ3FoB5KKhXADSc3IOTmHHFacAJqc+mJOvb9IJ2+8j4WY6ZpWKmXE8X+h962/lSp1eeykkL93KdNkt2CniudZssxrLhBWDrFK4dm/TOPJ9aOkfvudyKstJo3LqyPq40sOJesbS2fS+N45nEpDzMblAZLAxd4qPcuFGryjtBH3fTSDNztFG9V3oNyfes6XPHXtjjE/b6xDCvwPwp2vto0iMEEIIIbacEAKXFv87AH6w1j6KxAghhBCjQp9EYkIInwRwGxrtzCEAvw/gthDCq9C08icA/pu1jqOHmE3CUktdXpmQQufje29w9zGefeMVAIDdnyshcF5dYGF+3ualaiwE3Ktwo73PoW0L93K42vxkelnEW6Daa09FCuO++PpyPrYXz/vwiqUU5q9WB6T+eysc+LO8uiD7hTgrrE738IOw4yzT+FjapVrlg6ub95y0AR+np5+GtdFZkcJEp/BcSOFyr5wElz6wa8fh9QnHq4OvsVfewjxNOA3G2LhwKN4j3z972ytpmOo+SumAatVQCvPzSizuoxUD5VREXoFEK5FsdRKvyouUdrCUCKdL8goqZ3VbcApFAiU92KEip156y+CyJVVh08eSNxFdBy+FZ/1acn6HAGBs+qVpX0oxpdU7vAJv5jMPNu2+9urWOaoVfzQ+di95nkJemrnbo+SD3VOc1rQVc3XKtNW06jvn3ZOe/41do2V5v2woMcb3OJs/cq7H0UOMEEIIMSr0SSRmo9BDzCZTCeGSYHVxtpRPXE4zLXartBk0+5M896oym9v9uUcBAPNUSNGiJTxTtJnZ+GEq8EizPRN2el4uPDMzIdWL7DJKTsR5Rrqw2NrGEYvuVNNvnlGy6M+iJM+/65V5267vJk8Pmrl50SKe2VmkhsfCokDH33xN3mTeMx0nIgGUGTv7U4w7/hxZPOl4TQB+dMKLJo0t2DiSaJoFp46LssHXxkTHld+MRaCcgoH82Spql/rP96YJsRc4EkcRFG+2myNe5M/huTazR8updG+70Rn6nEUGunwNyTNozHFqdkn9ij0iKHYveUUYq4KDtn+Pe8EExJVgOfWnW/kDNeezyBdQC97tHuFIjX0nqyKL6XxVAUOOojnttajE5I8p+plcfAO7e6f7fsb57gGlqKJXYNX77s7v5WK55fvFBWoNu892ooy993vG92OOVpNYfsKiQFQsVfQ3EvYKIYQQYiBRJEYIIYQYEfp5ifX5oIeYTabyjkkhWyvgCPiiTziphrkflXC5eShk63r4BQW98CqnKjw/lW5KE/CxTQi4HSWczakBz4rewuGTTqj5JAl7q1RFwjxNuA8sQrUwde3BU8LPnm/HQkpPcPkGz2uDQ/8mQGbxse3DwuaJZHPOYsQqpJ/Gqgqhp89yuYTT6R7g9NY4izXNW8YRpG4/2O4LY+kL9hbyUjo2tgAwPt32TrF0CacQ+Jh239QC6XTP0T3jjT2XN7B7lsP8brHVlMrhlN+Y45XEREdcupTato3SE3yNc7vIU8k8gzjlZfe2CWGBWnRs8HfFqETnVuCRUj9LNH52h3j3ZkX6zalKI9BvQD6P47fCqUf7fek83r73gnOfACWVzh5P+V5gr5Z0DSvhstMe/t3YnsT/81wYN/knscfMipdSJZRGGjz0ECOEEEKMCorEiI3Cnvq9ZYqMzdK9yAbgu6Z6orXphXZhOZ4B2fJCXopsr6vCc0kcyOJJT8DJAuLV7eI+TNJs31vyzLNGixZ4UQzuF0eGtqUxYBdOOw63p+sUZuRIlQkl+dwrPUTAq9vA0RRe0pqPk49Q0DsAACAASURBVJZts0jNohdVIUBndj1G2kqLMLH40WbafA1tmTQLsj04gmL3H0dnzDKAhaIc6bPohbcknkXuNnuvlvLT+zYT5+/KmQo/9oq+5GXpjriUv1/cH8OzNWBnX08Qb+MbqN11BKVdsDOLhkkgbO3lZd4dul8tIrZIS6fnL2v6OvtQWwDuidwBKiRJ2yx6PH5FiXJ4Amv7fvHYeZG86Dhic+QnF66khQp8vuhEaiwKdvG9D5fj7GoL+lW4cfjQQ4wQQggxCpTijEODVicJIYQQYiBRJKYPqIr67bKQffGOMXFtLwfc7E9BIdnsF8EOn8kvhFMgJ8knxYRw0Sn0xqF7e79KaTni0uC4uFZFGFPYuXKrdUR/J68v++z4RhMuHkcJbXuunywgPvGWX2z2pfDzipOqsv4cv+nSvG2W+phD+iwOTftXYk7H64dTfXC8SlbsBXl/5AkTORavOG7KLKTN/kCUlrNUTeXgmnxkOOV1gr2Hvt5OD9r4dOkaruXEi3TvcprIUgwd+lguTsrCb6dQoIefBqSURo80rGH3JKdRbcyrQoA0VtZv9m46U3vG+d50xozb616vVe8B/jXmY3dOmYcRpSPT/cppHk7KWaqHfwMsDcTpNhP2zlAb7fvM7sQTC+WeyqJ19rdJn2Xx7ZKzACE6RRz59y67iNP34/nrmuvA9/LAFm7cQIZtdZIiMUIIIYQYSBSJ6QNWqCaHCQUrYWZ2B20LFIEiiuMox+SxRsRZieycGeKOn5Rz56XavPQwHZuXl+ZlszTj4plUFpCSKNZmlTxTtGXkE1ynxWmjRYgAINryVJrZ5ppQNNvnCEMWr9LMzd732sPn45mvvc9RMoNrxFjEq5fw1KJWXL/G2rHs1Ith8ahXR2l6/8FWe3mWahMvbg87vxq7n/TrH+Vjp2vIwuSVNKs+7UQpAF8Aateb7QbGUvSOXWgrkXfqjzcj7zxehKLW/0VnbJm1augspgiMV9OK96+X9bcF9nZP9vru2rhVImYHi7ZxdGLMCU55ta7cpdbM0fb4sSO29ZWv+0SKeHjHrpY+k3A81yuj7wr/bhgWcfaWnQMAnMiruVvztl1pmX1XNY9qFIkRQgghhNh6FIkRQgghRoRh08ToIabPsBD7GAnrnr6teT33KKWYSIRo4TQOi3th3jM51wIlVO0Je72ia7wvM+2cZ2W+7buxLQn9zOMBACa+8K38eun2VzfHo30srTXNqSynwOOEk8rikH52FSahXycdh/sPFik6IX9LCXmFAMd6OJdGRwxqKaZj15V0mhW7ZNYsbGlCy6PtfU9TigXm6eF41gBlzFg0bEzvJxF3+luNDfXb0oNVCsG2sefLobZbcIX1xxs73mapKkr5VSL41C8vTVQVkkzfL8/fht/30lv83fOE8ew9ZPdp9Z2z45B78/TBVJiQvWE8MTAXrEzbvFRfh/bltGa+jpSOzClpSvV5aU3rP/sas3De83PKxyHxekwLAlh8zHji7JXvHWj+unuIYWZd6aQQwmwI4Z4Qwg9DCAdCCK8LIVwSQvhiCOGx9HduoxorhBBCiHUQN+m/TWK9kZgPAfhCjPHXQggTAGYA/B6AL8cYPxBCuAvAXQDet87zjBw2swCAl6ARs/KMinkxLZfdQbOwcLgtHuXljgYv2/aWKhvdqSIaXpxrZlcmYAXq2ZVFaFiEaDMyrmljS7CrKM8tN+aXngOqiYqrJZlWx4WXjfaoo9Q63u5d5Ti29NeZ6fE5veW+oYfIOZ+HjmnXi+vcmHCVoy82Y2dxsedUzOS+OkJSjk6Y4DZ6S7q53VQzy2bxXu0b7jNH/Ioovbe7LkCOxdQn17HWmbH3qgOUP1dFQZp7jWvk8D2Qz+fUsuIfS4vaVNfarg210USlVb0kJ0q24tX3cYStvcYn13piIX8aF/4u2P1jvw/AqqXl6dqeJGsGE4GPOdYAlbVC2pe/C2MUgbX9WVRtkZ8lWspu9xnfr55bMgu6xehy3pGYEMJOAG8A8BEAiDEuxRiPA3gHgI+nj30cwDvX20ghhBBCrJPNisJsYiRmPemkqwA8C+DfhxC+E0L4wxDCRQD2xBiPAED6205iAwgh3BlC2B9C2H8abb2FEEIIIcSZWE86aRzATQB+K8b4YAjhQ2hSR2dFjPFuAHcDwM5wyZDppTcWSy3Nv/uWvG3yeAm15rQEpR1yyJVCxeYjwyFnFi56aSQO/RqeDwqH9C0NVB3PUlUckk7n5kKRlSjScfM0KhFv+lv5czzvpHzIQdjGgpMcNi4sMmUHUDtnVaTQEYhaO3oVl7TrVYfim2NWqZHDbVdYHtMzpckYOyb7yWTo2OwFZOkmvn/snqqKgWYRcxlJ9glh12LDE5jnu9nxLAForNjt1Xxi6FLbda0KBjoFNDvTRVRs14b7ZWM2TvdrLZbf0dont4vus/F0j7Pg1BN2e4VPg5MaW7iqtIdTLIspRcnXy3NGzmm5Nc5dpYrTmHMfctvoHsy/Lz1EzPZ9598fr+isjTPfr157uyrgKLC+SMwhAIdijA+mf9+D5qHm6RDCXgBIf9fwJRdCCCHEhSZs4n+bxXk/xMQYnwLwRAjhurTpTQD+EsC9AO5I2+4A8Nl1tVAIIYQQwmG9q5N+C8An0sqkgwD+PpoHoz8JIbwXwM8AvGud5xAJtsNnHwcLtXP43VIanA7Kan/2jXDsxRkL87o+H7SNC9x5Vuu5SCUd2wslM1Z4jkP2+ZyUdhhL6Z8446/esvA+p8562cnz56vzrdp/9TZesTOfQv6c0jhTAUOA/G9oH281lGfF7q344rbayrJOtaqoeX+J7oVqlVgaX05FWCpj2vPpoDQYr7oyjt1aCnZevNBOl1gKL/S6hnZv0z6eFX8uzMjpRE5B2f50/3TSa/7+WPqTU34r01QSIo053ysLZyhcWKUBHY+WifaQVdfQvkt8jfg4XtrOvu91KY/2d9fjudeV34K5H6XCn7T6z4rScl8tTWSr74C6vEXXWYHm/b54KHW0gQyZeGNdDzExxu8CuNl5603rOa4QQgghxFrIsXeAqArmkTjQPCZ4hmMzP/ZasFkTz4BP3FxEs1Y0kiMjZ5oheZEJgIraeZ4d5BthMzdPUAz0iDrYC3Y4TVEedhD2HIZZQOx5ddgxeebK/beZb6RZvs0uOVpi52ZBqVf0z/x2gBK9qApAptn+sbcX75yqYGeaGVfi03QeFidbPIyjEyHtU4u86Xo5RUWnvvIIAODkW34xb9t+sDkfi0O5+KLdSxcfKJEvz9nW8Nx3AeTr1a1ccxsPG/YlMRH0ilNIEyjXdtxx4vXudW5PFY10rrsJbb1ijxw1YaG6OSYHuoZLzvcni4856rbL76Mx5WzL7aL7g6NJdg/s/Gn7+8OO4J5PznM3Nm3c8wB9jgt6pvGrfje8eyC1bUWFGy8Iw1Z2QAUghRBCCDGQKBIjhBBCjApDFonRQ8ygwtbmybKbhXcWimbhXQ67k8DTKx3AaYXsp0JC2FLIrR02B8hvhba9mLxDWIDoHYdTOTl0zsLM1AcWYVr6gn0lKhv8M4kGWexqvjSUDmH/E0s3VUXtUhtjDzGwwWkZS7HMHClpOwvPV+mr1O/Zh54t27hQYkppcFrGUlUd8rcJKdXDaQP0SAWuhq+7WcPv+GpJaVi6hctbMF4KoVjfU5mMlBpZdnxygHI9q9SQ3e+XtMtpVJ5BND6lDMJka9ta9x5b8XviZTumV+yR78f5veXe3XHUSieUfcyK3/OT4fZUY+WUd7C0HRfxzN8RElB7qU4u6On5NHm85MGU8uNxPENKC6DvEpVZEeJc0EOMEEIIMSooEiP6ARa9dR54qHlBxRPz53i2lmasaxXjY0x8uu1Ye3bJUYHTVMDNWzLNER8jixUpqjQ2TVGQNDuPvBTXxLfUr1xEjqIBLFjNIl6K3lgkZ54cUDspWtJryXdxKS3ntpkxt8eiANUyX4rE2OyUC3p618YVwNJM/Nh1zfhd9HRpry3R5qjBDJqZdOXMmv6enqNifDTO7Aybj51m8Twzt754ok+Gl6BbFJGFqRbF8NxjAT+ik0ecRdpJOM7L7V+8qrTXokgsArdopRUSBYBOjm5SEUKKIlp762XQE+l8O1v7cGRo+wK5UltBSo5eOI69Y/nzZdtzry1juueBn7feN8FyVTzx5e17ge9Du47zND68f+7rfPsa2/0aeoiYzYahcpr+xsOt4whxLughRgghhBgFolYnCSGEEEL0BYrEDBGeh8TYwyUU7DlmjjmOvezia94x7vl2sWdHSWmcvHKmOd7OUkHDwt3dR39c9n/l9QDqVBQLCs3zg8PduV2UvrA0Ee/LWOrIK5jIDrlGFdpfo+CipetYVN1Jn6uKR9L4WMifx9nEl1XhwgXz0Wn3CQB2f73tw2PwdbPrzWJo8wdigWpV2DJ53VQiZUdA6xUpdAWpnDLc1U5V5bQMp/wcF+iqQOThhdb5OH1qsGsskriZUyR2XattC+1ju32l1Iml5lj4jJwmnKTPkUtyOmY1zqmP7jhS/1/yIBXdTOnD8YVSptHSf1UBUfuNIJE3f5csBcULAmxblW471W6bfQP4PquKaqb0qvxfthhFYoQQQgghth5FYoYInuFYFGCMZtd5Rk5LV1lwWZZGlxmXzdJ4my0X5hkcz7jMVbaztx1B6d52U3md/lZC2qq+TzNLneCluGmWx862NkNkl15uz0Kq88LYLPXk60u0xKISYwu+8HnJEf56586C5R4Rryz4pdmwRWAqoajN4qkNHMma/zuvBVALTk1AytfGq2WVowVcL4iiJbZ8m2f+Z4oMVJO7x0royKIuK/S2F9GysWUh7fJ0mWNlgex0+56qxidFxKroAkfEkqCVhat2Ho5imBswH6daqpyuFwtcre0sGvYifZUI2lmW7Tlwe/YInoCY97G2VY7YJpan9iw/cSi/tt+LymbBqetl7eXIl1fDbUVLp/sOaWKEEEIIIfoAPcQIIYQQYiBROmlIMQHfqTfckLdZymNsDbEiu8saXKzQPF84vO7hecOwA6x5kXAKgRM52YXUKQrIYXOv0B2LJy11dPzN15R90jG5jStOKN3EzkBJA3DRzO0HTzT7Ou6pDItmg6UQyGcnp/8W2u6pPD4dujYm3mUPEkuz8TZjzZQFOyebUNnxhKlEzE6hSL7G5kTLx7aUGaeVLJW5jVJaL1KhSTs3j2P20WHPoHTuypGXPFEs1cHuzobnf8PH4ZRh9nepxNtNCmr+MnLfTalFvif4e2Ni4udeV+6zS+9/otXX1ecFfPdrvndN3B+dsefjjF+xL782F2Ce3VoayS2M6gipOT0l+hClk4QQQgghth5FYoQQQogRYdiEvXqIGVJspdLUVx4pG69pF+lbq/ibrYaYeLJssjQQr1bgcPjcj5pQs1f0kMPq3goQDn2b9wV7nljwesWx+a+gdJKlozqL5dtrqQj2+RhLqYan3npF3rbzZ2UlkqVqKg8WW/lBoX+vkGblX2LeMr9Q/HEsZTRN49NNq0LcIp5AvjacnrDP8jjaudnnw1Ijp2jlFvukWHu8VU65zAUAXHt1s61XqQanYKelGzppX4DuPSoXYKk67gOzcnnbb8YrqRFoRY/dAZGul63y4fPla0ers8acY3MxR/OjmaU+PPe2awEAl95f7lG+njamu7/e/g5UqV5npZqXRuxwiQ5nFVh+j+57XmHVcVKdVixynFfOmYcRfa4r/xexBeghRgghhBgFIoZOE6OHmCGnKhSZZsU882LxpPmkVA6fKdLAYtYciaBZ6s6flqiLCT9PvLTMBHd/vRFcsjiQBaAGCw7tPN4sv/LDcLw2tn3zh/m1iWZd92GapVsxyD0PlFkxR5gsqtUlh2GbSY857rJeEUWgRDw6TqFEZir1h6MlHce9mP1UsqCZPmeiWRZA2+d4X56dW7Rg2Yl2cATF7oEOvV9FQ9K9FNmxNzk1c9HMLJp2fHuAEnXh6INdd76nLHpRRQHpPHbfPP+qct1NSFuJuNP1XCaxLwuazWmX22geLMduLUJZOzaPo9cHvlc8bxkvusfHtH55AuvKgZocvPM2clBecaJNFslkB+Xuc8+3PifEVqCHGCGEEGJUGLJIjFYnCSGEEGIgUSRmhLA0EhcmrMSTKQ3CIsrTKcTuiSzZV4NTQxbS3vXd461t7Hkyk8LqHBb3PFY8OH1jqS72fGH/DhNfcujf81PJ3iGXtFMNABBTmYBKiGwpGC5cmEL+LOCsCkmmfSpfkuTrw6F9S8FML/h+PJZi4HSb9YdTGnOpvZwusevFgm1ujx2HZzm2f5dTFm7LClk0iyIqN7EvlxCwtArfZ5Xo2vFtyf137hm+H4/fdGl+PfvQswCK+BwgwbYjMOf7o0r/OcUw7ftz8YFy7pzyolQU/+iWa9jN2yyl6vnEcGrIE/Za6hCAm+pbSqnQKpVLKdwsxOYUU7oPlyXcHXgChm91kiIxQgghhBhIFIkZIUzk6zmYAmXWyE+2NoNcccSRL1xfZuSz1dLpthDXZn62bBoos8cxx3GXj8OzWIuqcElHm73zLJWxYocsGs37LpCT7kJbKNohjaUtO33yva/K237hkz9q+sJF9JJwlceMlwNbfzgqNeW0+3SaNfPsmoWd2bGWjm1jakU4eZvnlswi0sqJNy/zLbP04obbjr/wdWUnWYuOVYLThbQ0nMSsJnbmY7NTc7W0PGGuwx1n2TlfQ46MlP6Q2NVxA7ZimAvkeM1L0G0yy8vbF2eb6zn7pcfyNo5u5XbTeUxgXRWsvNycrMv1sHuAt409X66dba3cgLOjcRlTOw/fr+zYa2PeVeHG4UWRGCGEEEKIrUeRGCGEEGJECHG4QjF6iBlB2OOBQ8kGp4lmnmrSF56I0ESSQB2+55C3YSE/TjXYMSvBKaVL7Dicntrx1SbMz6kGS9t4beTPsvDX0hZcKNKSP56PB4DseLz3K8fyJkvHLd3+6rzNRJqVs+0tN5bzpNQA+5eYX4+lvgA/fcMiVUuTeOm4Skjs+OhYasQrcMksO2kwz9+Hr2t1/dN9wS7QS69oxpELKlobezkIm19L5ficXnuFG/lzlU/Kqn0BEtJSesZSeSzO9gopciHJtoNPgVOC7FGz+3OPAgDmb74qb7Nzchvt2lWpxZn2GVkg7Dn22rbK64dShitKI4kBQw8xQgghxCggx14xbPQS+Bk2O+dZnbeklaMXY0m4WDnNOrN4EyHybJYjLJ5A2N7nY5s4tVdUwYSULFK12fniXImG2CzXE15y29lddSJFU1yX1STwBYBAY2YiWI66zODyqn+rz21UIlUTtNJyX+vXaWcsOBJjfexVt8rwojxeTSy+/kskLrUxXaBIg42VJ8TmyIfXjmrsUySHz2394jZy9CI6gmVbyn2anJitXxzRql130/7OUmtuo9efnT8t57b9Oerkwe01Vubbjs/sVG21jMZmZvI2W2LtfU6IQUTCXiGEEEIMJIrECCGEECPCsJnd6SFGZCy1NPsQu6K2UwyWDmF31cpbJfnQeN4nnseIJ9IF/LRVFlSSN4gJOz1hKlBSAtwXS0HseLztwlp5ozgeJJw68txVzaWWxa6gfhnc73K8Imy2IoR87Gp8UnvYo8XEy+yqa2k7z0HYazfgF8vM4+s4LPPY8nmsP1xo0pxkx5x7wRMk9zrOdHJgXna8WNaC+x0ON9epEiynNvLvPaetPLqP/hgAMMNC2ZzKLNeVBd3e94FTYUZOddK+XS9lSPfUuBWxpJSxic1XztgTIQYHPcQIIYQQo8KQRWKkiRFCCCHEQKJIjGhh9vpAKRbJq1QsjcSh7aVZSiekkDanJ/JKHFrN4a1S8bwxqhD6VBNqZ9+RXBxwob1aAyi+JPUqFTt2SY2UIoMlxH96rl00sfbEadpTedlYSqdHv8ZnbYUMpRhS2opX8djqGx57K7sAANvTdk7r5eNRe3isjJV0jbgNvFrKI6+GYQ8eJx3C12veCkByYcd07qqURfrba8wsbccpOruuXL7BxuzES8v9uJvSRHb86j5zxsKO3Wv1lqV8+P3ubTc1x36Syxw0x+Tv1Nh0KYZpq+zYM6dXWrQ5Xul/h75LuWSIU2hUCGbYNDGKxAghhBBiIFEkRrRYId+IXCySZn02K+Yn4M7RtpvpDqdoX1UIMEUIlshXY5qKU8IRvto+7NJqgstIbWSvDvOhWXBcUT0fFM+DBihRB3ak5SiAMeZ8jj/FrqqGOf/yjNz296JgQPGR4TaY8LUSXaex4uPkwoM0c4dTDLRyCL73YQDAsetKtMQ8Tzjyw+eZOVKfDygRsbGHS+THPFq8qBFQri1HULIwmI5t9+vuo23/FoCuCUV87P6pCkDaeSmaEWh7cVOebG3zPF2wr3jndCkCZfchR4HyuVlUn4TGXkFJoIy5iYuF6IkiMUIIIYQQW48iMUIIIcQoEIdPE6OHGHFGrFhkx7FXZxt2TiFYyoh9NywVw6JF8/eoUjaUQsohdgq/W9qF0wqeF0dVuC8JUjlVY+kNFvtaGon39Qpbch/Mg8UrkcDb2MtlfKFx6ahEsead4qS3mEApum2PpUKSSXwNABPNYSqB50q6TiyktbQN/555KTou8mmW9Va0EEBOM3JfvCKO7Gligu/tKALX1ccD/PIGPD5WSHHuRyQATvdHr9/p3G+6z8xHpbOwq5xvuhmL42++Jm+b/dJj+XVMxSK5CKOdm9NSdh04xTT2MJUYSEVFqzSrk5ay70pVnJRSXVzUVYhRQg8xQgghxKigSIwYRVgwaAXleHa9VqFAE59OOM61/Ln5y8qM3qIAHHU5cXMzI925vwiALQrA0Y5q2XGa7VYOwCnC4kUNPIEnUKI2LLi0fY7dWopn7vhJKrxHY7LjkfZyYcaEq54AliNMz73t2vx699ebqEw1O09t4z5Yv3mcx1PUwMYT8Jdqe0UauQ0XPd1ESFiszJE1GxeOYkymc3PBTu98nli4Wga9s5Ha8rLzyanmmCwQrsSwzhJrWxoNOp+9P+ssxQZKhIWjkV2nyKlHIJFvfKxpJ0fTjLrgZBKv073XJSdeIUYVPcQIIYQQI0DA8Gli1r06KYTQCSF8J4Twp+nfLwshPBhCeCyE8MchhLYblhBCCCFGlhDCR0MIz4QQfkDbLgkhfDE9P3wxhDC31nE2IhLz2wAOADB71n8G4A9ijJ8KIfwbAO8F8OENOI/oYzgN4nm5LM41aSQTngKU5iBPl7mvlRC5V3zSHFv5vReub9IkM0+VVAO3x85tTroMi3g9OO1gnikXH2gLli2FxHiOtEBJJ5koGChpqYnK7bVdXHLXd2kAE8++8Yr82vNtWXJcYe2YPCbsCTP7pSZV5aUJJ0+UfpkHz8nXl3RI51RJCVkaiT16LPXEourgOBZzisrzK9rzrfa1y67Ll5851ck+QvkeeIw8apJgN5B3DsOpntVwutDuU3bsZTGwOWKzp5ClvDhNuKzUkdgoYt+EYj4G4P8E8Ee07S4AX44xfiCEcFf69/vOdJB1RWJCCPsAvA3AH6Z/BwBvBHBP+sjHAbxzPecQQgghxHARY/wKgNWl4d+B5rkBOMvnh/VGYj4I4HcB2FRxF4DjMUabBh4C4FpMhhDuBHAnAExhZp3NEJuJOfqyeJJn4tvSLLieAZu7bLnlxq0eziNUq8lZnlqJGdP+XRKpWgTGm9kDRUjKjC00ERSO2HRS5KSaAdOM24u2mDCY+2BiWY5ysKjW4hgcBfLExF6dn0r4mkSuHJ3JtXpoyfOUE4nwHGI5kuXVm7JxGZ8tESSLVNiycWBVVMFxmM0ib26Ds4SfnYitPYxFm7hul/Wa7z23r3S9TGA8QYJbL1rG18uOb1FAwL8/7DhdEu7y+Nh3aJzuUYu6tBftCzFQ7A4h7Kd/3x1jvHuNffbEGI8AQIzxSAihrf5fxXk/xIQQfhXAMzHGb4cQbrPNzkfd2FXqzN0AsDNc0jfxLSGEEGJY2URh73Mxxpsv9EnWE4m5FcDbQwh/G8AUGk3MBwHMhhDGUzRmH4An199MIYQQQgw5T4cQ9qYozF4AvUu6J877ISbG+H4A7weAFIn5JzHGXw8h/AcAvwbgUwDuAPDZ8z2H6G/YJXTHIyUdYH4tO75aCvxNWsFBcrvNaaKjLFYtaRVLsbCXC4tTcztSeL4S0pKw82wnHpxGMjhVYf4nnNKxtASLaz3xLQtts1vwN39Y2rurSVuxC6ulGDil1aECmZZi4TG11Aifz/pViVHTWFXeOYTnUbOSXGqnD5YxsfN56Rk+d3eqbLO2VY7Ftu9sSSGxW7AJcb3rX6XlUr/4Xjh5fTv1yONjfa1SdelWqFKdz5f748W3/GJ1PADAN5oCmXF3cf710nI85tnl9/n2vSfEhhPR72Z396J5bvgAzvL54UIUgHwfgH8UQngcjUbmIxfgHEIIIYQYUEIInwTwdQDXhRAOhRDei+bh5VdCCI8B+JX07zOyIWZ3McYHADyQXh8E8JqNOK4QQgghNo6wsvZnNoMY43t6vPWmczmOHHvFhsA+GNvTa16RYf4nvNLIVux0ybODLestvM8hfYPt8nlljOGtTuH0ha184iIIlr6qCiVS+iK3l1bNjC00+1x6/xN5m61o4b5wCsH25vE5nVJinGKyVAPb6u84euZCnB425mut2GHs/aowob3g9F96n9tQFflM23nMPFt+O8/k8eINw9fL7oFqpVq6P/h6VSujEuzrY5+tShUcaxf2tHZ3Hi99PZ0KYAIlVco+MvO3v7pqK1CnkTwsjWQr/oQQ54YeYoQQQohRob81MeeMHmLEhsAzyfErmqJ/wRGhenC0g51UzbF1jDxUTOTrOc3OPFVm8VWkIUUOTpEb7FT6++JVO/O2xZ2NRMwKK/K+ANBJXiYsALWZfaAIgQlN2bm1EuemqMzYw0X4PJ6EvcfefmPeBe2LkgAAHVhJREFUZsLW7fd9P2+L15RxNHEqR1jcYo+pHTy2NuYcIfIiEewFZF4u7MRskQaOhnjeKotXFi+oqem2R4+duyoKSQ66iykKwhEduz9YpGuvK/EsXYdTqW3m/AwAx65rrudFU20H5RUSiHsRJPb3MfdiUHTG/IpYBC+E2Dj0ECOEEEKMCCoAKYQQQgjRBygSIzYcr1jdtmNNWJ49XyzVwKkIFsNmWEia9ufUSPYTOdr2ZwHqooKGJ2yd+1GTgmBB6elXnDl9Y8fhlIW9ZvExpy8M84YBSlqCC2BmcSlKmoMnUSZONWFqc4B2iYVsq09pO68ooutHQ+UAnntdcxwbJ6DY7rOnC8hbx66tZ8nPaSBrIwthT73hhvza7pXJJMgGisiX74Wc0qF2c79sDNgTyMrk8piY4JZneZ6XC99HVnQyUBuVRhJ9RUQ/FYDcEBSJEUIIIcRAokiM2BRsSfMyCWk9qkKJaVY+RkJJzzU3F0rscRzbx5yEgRJt4QiJF51gMaftw7NvO/f44baTLB+7KlKYnF27t91UjmNFEad50Xd93tWYuNmLRLCQ2vpgAmigLDvmCBJQxtT25/6bEzELcs2xlttoglugjOkYRScs6sRjwq67HiaQnaeomkVVOHrntdsroFkVGk1t5Cjh9EIT/VqhfrF4O0f9KPpn96kXiRSiX5AmRgghhBCiD1AkRgghhBgVhiwSo4cYsSmYKHL7QQrjpxRDFaZ3PFhWXMFp+ZyJNLl44jYnBbNzf/GtKU6y5StgQln2oOG0laUdOC1lKSNOT6w4KaHKdTj56ICErR52Pk5fcZrMRK6cTjn+5mua81FhQkv1sPjW0kjs6XLir5Wx2PNAk74xMS8A7P7cowCAbSjbrK+cLmJxsSegtm1TX3mkbNu3t/W5LNIFslCX006W1hqnlJilICunYUoteSlD64PnzsxCY07bzSy004dKIwmx+SidJIQQQoiBRJEYsSmYo2+Hl6Ra5IQiKF0W9qY6QtVSZHJQzcexSA5FdFikuTjbiGa5ho7NyDkSs/3gCQC12HVptpx7Ku0zeaztkMuMp6hE5T7rOPYyi3NpKfIjpY0WBWEHYY4MWL9ZVGt95P5302uOYtixL3q6RIMu+7NS/8muze6vlzaaaJadfc0B12pIrcaiF3YNAIoIkftwN0VDeGyic60ZGwuup2QC4ImFssSao2kmJv75nnLdLcLEy7LzfUiuwdOHS4RpWUunxQASIGGvEEIIIURfoEiMEEIIMQrEOHRmd3qIEZtK99Ef59ed3bsAAIF8YFiEGVIaidMy+X0Sz1r659it+/K2xZ0hv7Y0CYtYTWjboeOY++zc14pIdXm6BCtNvNpxhLucsjC/Fe4LC03HUvqHUyfjKc3Bx5k8sVL1D6hTR5aq8Zx4OXVkwlXrH1Bcd1noys62HlYMcpE8aExUzG3k8Zm/rC0qzr4+nFazQpqO8zFArsN8f6T3K6fh9LeXsNdGj8XQ5ujMY2b7dKmwKebbrsNCiK1FDzFCCCHEiDBsmhg9xIgtI84nYWYPAadFbbbR8uU64tFgs/TJ48Up9uJ7y/Ldxdf8dQB+XSYW9i5PNtEbjth0J0tEx7bzcSwyUjnypsiI11aA3IspgmBRABbk2vJtjkRxvSGLJvFx7Nhct8mEyFy/yKuNxAI5WwbNkZ/uy5tjcmTDlpubKHo1s196DEDtIOwtg/ZEukx5v7QnHkrL1p0IEouPeSxs+Twfx6u3xBFDIUT/oocYIYQQYlQYskiMVicJIYQQYiBRJEZsGeYdg+8dyNu4KCLS6zHyRjExKLunmvPrNvIdYQ+SnIo4VFxzuze+vDkepWd2JksQ82wB6hSMpZ480ajnJMueLievnMmvF+ea9AanYLJomNxuPS8bfr2U0lt8bkst8bGtPZ4HCzvqstNw1/qQvHoAoJNcdbn/XOTSa2MnpWh4nO08VvQSANpS6Trl82IqHMpuygtvuAFA7ezrpSa9VJf5yQDIaSSlkMQoMGyaGEVihBBCCDGQKBIjhBBCjAIRwMpwhWL0ECP6Ck5fPP+uVwIA5rhQotnTnyorkax4YJfSIVYUEqiLMxqWWmEvEuRUTDtFApCnClnRW1qqOnZqL6dnPJ8UxvNosVTPBKV8uL22DxdfHFv1HreH0zO5cCOdb+zhx8s/rF+UlrOfPk6T5T7SmCCtBgPK6iWv+Gblb5P64Hn5AMBkSm/x2NkqMU4h2Zjx5yo/mqPHm/dfXlYs4RsPQwgxmOghRgghhBgVhisQo4cY0V+skCvqzp8mvxUSipqQdoz9Quh13kZFJcNC4z1iQlCgzPL5cxa9We5RrNGKJk4mkSngC1vzPmnW336/2c4RBDv3EkUiLOrCkaQqcpTgPpj7LHvZeJEfiypxFCfuK+ee39tEPmaO0D4pUvPiW34xb8tFM2nfysvmMw8BAJZvubG0J11P/pwXieJ+22fZYdjrVycJdsdIxB24gGjyJlL0RYjhQA8xQgghxIig1UlCCCGEEH2AIjGibzGR7wqJZy2FwMJdI1BapbK5N7EwecuUVAWlaii14nHR001Kw3xpVrctnzv5qGyjNBf7kljBSxYir6R0Sl3SYLK1byRrfINFqmcqrcCpmHw8GrNI6Rv2YzFOpjSSlTEASpkEFuF2uAnXXp36UDZ2vNICKcU21aMEhZV1mHLEx3wvLKex4DTgCqWWVlTEUYihQg8xQgghxKgQhyufpIcY0bfYrDkXKwRw8vXN7HsGbSEoRxrmLytRkLkk7GRn23wOJxriRSwA4Od7kiCVlhDzcuPVPPPaEjXZ80BZJm0/IVw00hMa54KEFH1hEbO1k113DU/0Gpyl2hzZeeF6cuJ9qvls5V6cojPs2GtjyoUbWXzsLW/3sMgZF27kY+Yl9bTk27tO2eVY7rtCjAR6iBFCCCFGBAl7hRBCCCH6AEViRN/Tfe75/HrmyOWt93NahtIzFx94Ib82F1gWn1qag0Wh9rkO+dJwYcJL738CQO1pYukoTnmNJS+SPUfbni+8PwuEzaNlgXxiLFVTeblwOslxuTW4r+ZEzGkgTtvkfZ4q6aaJHzQOvJUDjyMqNmqH3LI9jw+lsjxfn+wq3ENobO97AmlmhYqJCiFWETF0ZneKxAghhBBiIFEkRgwWyWl1/Ip9eVN3qlmWa26+ALBAy6mPXdNEAxZnyz5zXzsEoJ75T+8/2ByPliyfniuzfathxMt3j990KQBgZqoITk0Ma262QB2JyYJUEqnC6iQdbzvycqSFa0ZZe6zdQHEBZkFtFrtShMmiQRyJqkS1KerC47g42wFQ14HK52htqbEaSkC9RDv3JUV+zHEY8MeCWX7i0BpnFUIwAUAYstVJisQIIYQQYiBRJEYIIYQYFVa2ugEbix5ixEDCqQST8y5eXdxeORUx91jz13xegOJB0nWKPVrxQwDY8dXiEGtCUk5B7fhJ20G4k47JHjReyLMW7LZdbG3/5emyN/fLBLKnyZ3Y0jJLzrZtKONjnjAXkwPuafK/MdgBeCqdzxMpc4qNse0zzjYukGnt5b52TlHhz9QHFnkLIYQeYoQQQogRQZoYIYQQQog+QJEYMfBYeodX15y4uawwmjnSvM+pGPNM6U518jb2h8mfo7RMPv4Z/FIYtsWvVgulNBJvs1VQ3AdL1XAxRl7ls+ORJi3DXja2OolXakWnqOLsl5oc28IbbsjbvNVA7OmS02PPlxRTN6XwxuhzvKLLxYp4UlrK2rvtGJ2PPF/KmiwhxHkjn5hCCOGKEMJfhBAOhBAeCSH8dtp+SQjhiyGEx9LfuY1rrhBCCCFEw3oiMcsA/nGM8aEQwg4A3w4hfBHAfwHgyzHGD4QQ7gJwF4D3rb+pQviY2HPsldfnbRy9ePq2Jlpw2Z89kbd1kpCWXWwtGjD54xIh4IjORNqHoxMs6M3tSREdfq9y+U2vWUBs0SL2hDFRLZ+P+2XbWSDsnc9g8S1HmDy84pLmurvkFMDkNixetTO/7k4GALW3TPGeKW0cSwJjK/ophLgQxKGrYn3ekZgY45EY40Pp9UkABwBcDuAdAD6ePvZxAO9cbyOFEEIIIVazIZqYEMKVAH4JwIMA9sQYjwDNg04IoZ2Qb/a5E8CdADBVLcAUQgghxIVg2KpYr/shJoSwHcB/BPA7McYTIYSz2i/GeDeAuwFgZ7hkyIZVbAUsBO1ce3V+Pfdokx5iIW3+XCosCJQihkuzJc0xvlCcoSwNwgJYSw2xiNfEuexbY2kXxoS5fG72ZfEKJbKw11JQHE5ddtrjCYktdcZlBSp/nNS2Kt2WvFo6VOzROHZru6RD04d22o7LJBhdpZGEEOfBupZYhxC2oXmA+USM8dNp89MhhL3p/b0A2uVyhRBCCCHWyXlHYkITcvkIgAMxxn9Bb90L4A4AH0h/P7uuFgpxPpAb7GRayuu54na5wGOKTkw/fjhv44KEU0deBLBKxJqiLSzitW0cfeF9LCLC0YkMRTksmsLOvxwZ8rB2VFGgx5oIygq7E1sxSyooyRESK4LJkaqTr385gFpcbBGkyePlOF7Ea9s3f1j2UdRFiK1jyIS960kn3QrgNwB8P4Tw3bTt99A8vPxJCOG9AH4G4F3ra6IQQgghRJvzfoiJMf5/aCp7e7zpfI8rhBBCiAtABIIKQArR/3ChwPEr9rXeN4Hs5LEigM0iVxK7crrFnGg7lN4xx1/2k7GUz8ThIgeL5PJr3iuTnGJ6vu03g2vaXi5eyocLUpo7b5XK2pUKUvKBUrptkos5vrz0wTxlupTe2rm/SbOxB42lvDgFx8T5ph3yfxFCXAj0ECOEEEKMCtLECDFYLD+RlvzecmPetv2+7wMAwr693i4FEgh7NYhmkpDWi070Oo5FUPCNH+dtnd27mnPMt8XAvIRwhdqQXXWnizj5ZHLLtagJUEdqMikytHLoSDkeCXItUrX94Im8zaJNtrQbKFGlamySkBhQBEYIcWHRQ4wQQggxKgxXIGZ9PjFCCCGEEFuFIjFiZLAigwCwcmPjebI0W7xjTMRrYl0AlcjXfGK4KKKlatgnxnxSOM1TFXY0cW5KITFhpuxjaTAWJnseNSw05jRSJqWOOiy+TdtM9AsAi3Ps2Nt4wbCjr21jf5tOSpOtkJBaCNG/hCHTxCgSI4QQQoiBRJEYIYQQYlQYskiMHmLEyMArZXJq6Q035G1msW8FHIG6VIEVZOQUy5Rt27s9b5t5pKz4MdjfhVcgZZInDKeqxlM6ilcXdcnLxcoksJdL9pshj5mQ/Gp4BZGdh/1tvBVNE3RsO49KCAgh+gU9xAghhBCjQMQq18vBRw8xYiSxqIyJdQGKWPAHKQoSkhiWIy0m4uXjWDSEPWiWuCBjimSwqBZJsOsVT+TaHizONeFw5/HiQbOQIkvTB9sOwBzlCcmpl4s5MtnxmCI/Fr2S94sQol/QQ4wQQggxAgRErU4SQgghhOgHFIkRI83K9w7k12OvvB5ASSsBq8SwaTtb/1tRSBPZAgCS10v30VJWYNv09fn1KUv5kNg3t4GyQCYqZnExp5a8cgITxxfTPhNlY2ovp5OsTILnbwMA42i8aZa/8XB5v3U2IYTYWvQQI4QQQowKQ5ZO0kOMEIks7OUl0FTMEEmou0IOubYcm6MleRk0iWLD0Z/n1zkCk4TCQFm2ba7BQHEOZpFuteQ7CYgrgXDiFC35tuhMhyIxWaRL+6xYoUwo6iKEuLCEEH4C4CSALoDlGOPN53McPcQIIYQQo0J/RWL+ZozRXyJ5lkjYK4QQQoiBRJEYIRLmjdKhwozskGt0KDWUOVq8Wqx85MkbdudtM/TR8eTRcuymS/O2iw80wuCquKTnEEx+NNmVl4pCmo/MNKWqDD7OTGpDJQ6W/4sQw83mmt3tDiHsp3/fHWO8e1Vr/jyEEAH821XvnTV6iBFCCCHERvPcGjqXW2OMT4YQXgLgiyGEH8YYv3KuJ9FDjBCryG61QCXOteXIlbjWWeZsEY/tB0+4x7d9Zr/0WNmWlkHz0mgTEJswF6gjNVbLqMoJpwgM11OydvOS7mXuoxBiZOgXs7sY45Pp7zMhhM8AeA2Ac36IkSZGCCGEEJtGCOGiEMIOew3gbwH4wfkcS5EYIYQQYlToj0jMHgCfCSEAzXPI/xNj/ML5HEgPMUKcCXKsXb7lRgDAySuLTHfua02qx4o+AkV86xVcBACkwo2VEy+5BBsmEIYj0gVKmoiddu2cYwun8zZrmwo3CiH6gRjjQQCv3Ihj6SFGCCGEGAliv0RiNgw9xAhxlljkYzYtYwZKHaVAAt+lVE9pkpY+swA4pEgMR2dWkktwSHWXgLpuk/HC9Rfn1zNPNVGXqm6THY9qQgkhxLCihxghhBBiFIgYukiMVicJIYQQYiBRJEaIs2Q5FUjsXHv1GT838YOmaOQKpYNOz5XXlv5hL5exJL61VBMAxFR88tQbbsjbJo+XApF2Hi5YKfGuEOKMDFl1V0VihBBCCDGQ6CFGCCGEEAOJ0klCnCPdR3+cX49fsQ9AnTpifxgPW5XUOUob06qk+Rv25k1TRxr/l+mD5YOcgrI0klJIQoizpV/KDmwUisQIIYQQYiBRJEaIdWBi37Hni4tv2NUUgORijuzlsnj1S1rbFm6+CgAw88iRvI0dfTPkIDxk+jwhxGagSIwQQgghxNajSIwQQggxCkQAK8MVidFDjBAbAItrzdellyC3O9WUdlz6hVJCwD7LKSQWEAshhGijhxghhBBiJFABSCHEGkzvPwgAOPn6l+dt3cmQX88+9Gzz4ujxvM2KPapwoxBCnD16iBFCCCFGhSGLxGh1khBCCCEGEkVihNhgus89DwCYOXK5/76JfEnsy/4vQghxwVAk5uwIIdweQvhRCOHxEMJdF+o8QgghhBhNLkgkJoTQAfCvAPwKgEMAvhVCuDfG+JcX4nxC9CPjh4+621eeb7ar5pEQYlMZQp+YCxWJeQ2Ax2OMB2OMSwA+BeAdF+hcQgghhBhBLpQm5nIAT9C/DwF4LX8ghHAngDsBYAozEEIIIcSFJAJxuKquXaiHmOBsq2JYMca7AdwNACGEZ78U7/k5gOcuUHu2gt0Ynv6oL+fDzzblLLo2/ckw9QUYrv70U19eutUNGHQu1EPMIQBX0L/3AXiy14djjJeGEPbHGG++QO3ZdIapP+pL/zJM/VFf+pdh6s8w9UVcuIeYbwG4JoTwMgCHAbwbwH9+gc4lhBBCiLNhyJZYX5CHmBjjcgjhNwHcB6AD4KMxxkcuxLmEEEIIMZpcMLO7GOPnAXz+HHa5+0K1ZYsYpv6oL/3LMPVHfelfhqk/w9SXc2MIl1iHOGShJSGEEEK0uXhiT/zly96zKef6whMf+vZmaI9UdkAIIYQYFYYscKECkEIIIYQYSPriIWaQ6yyFEK4IIfxFCOFACOGREMJvp+2XhBC+GEJ4LP2d2+q2ni0hhE4I4TshhD9N/35ZCOHB1Jc/DiFMbHUbz5YQwmwI4Z4Qwg/TNXrdoF6bEMJ/n+6xH4QQPhlCmBqkaxNC+GgI4ZkQwg9om3stQsO/TL8JD4cQbtq6lrfp0Zf/Ld1nD4cQPhNCmKX33p/68qMQwlu2ptU+Xl/ovX8SQoghhN3p3319XYDe/Qkh/FYa/0dCCP8rbe/ba3NBiHFz/tsktvwhhuosvRXA3wDwnhDC39jaVp0TywD+cYzxegC3APiHqf13AfhyjPEaAF9O/x4UfhvAAfr3PwPwB6kvxwC8d0tadX58CMAXYox/HcAr0fRr4K5NCOFyAP8dgJtjjK9As+rv3Risa/MxALev2tbrWrwVwDXpvzsBfHiT2ni2fAztvnwRwCtijDcCeBTA+wEg/R68G8ANaZ9/nX73+oWPod0XhBCuQFP/jm0b+/26AE5/Qgh/E03pmxtjjDcA+Odpe79fG7EGW/4QgwGvsxRjPBJjfCi9Ponmf5KXo+nDx9PHPg7gnVvTwnMjhLAPwNsA/GH6dwDwRgD3pI8MUl92AngDgI8AQIxxKcZ4HAN6bdBo2KZDCOMAZgAcwQBdmxjjVwCsrorZ61q8A8AfxYZvAJgNIezdnJaujdeXGOOfxxiX0z+/gcbkE2j68qkY42KM8a8API7md68v6HFdAOAPAPwuarf1vr4uQM/+/AMAH4gxLqbPPJO29/W12Xg2KQozSpEY+HWWLt+itqyLEMKVAH4JwIMA9sQYjwDNgw6Al2xdy86JD6L54bICG7sAHKcf50G6PlcBeBbAv0/psT8MIVyEAbw2McbDaGaPP0Pz8PICgG9jcK+N0etaDPrvwn8J4M/S64HrSwjh7QAOxxi/t+qtgetL4loAr0+p1/83hPDqtH1Q+yMS/fAQs2adpUEghLAdwH8E8DsxxhNb3Z7zIYTwqwCeiTF+mzc7Hx2U6zMO4CYAH44x/hKAn2MAUkceSSvyDgAvA/ALAC5CE9pfzaBcm7UY2PsuhPBP0aSZP2GbnI/1bV9CCDMA/imA/8l729nWt30hxgHMoUn5/w8A/iRFmQe1P+dHBLCysjn/bRL98BBzTnWW+pEQwjY0DzCfiDF+Om1+2sKs6e8zvfbvI24F8PYQwk/QpPXeiCYyM5tSGMBgXZ9DAA7FGB9M/74HzUPNIF6bNwP4qxjjszHG0wA+DeCXMbjXxuh1LQbydyGEcAeAXwXw67GYcA1aX65G87D8vfRbsA/AQyGEyzB4fTEOAfh0SoN9E02keTcGtz8i0Q8PMbnOUlpZ8W4A925xm86a9DT/EQAHYoz/gt66F8Ad6fUdAD672W07V2KM748x7osxXonmOtwfY/x1AH8B4NfSxwaiLwAQY3wKwBMhhOvSpjcB+EsM4LVBk0a6JYQwk+4568tAXhui17W4F8DfS6thbgHwgqWd+pUQwu0A3gfg7THGeXrrXgDvDiFMhqae3DUAvrkVbTwbYozfjzG+JMZ4ZfotOATgpvR9GrjrkvhPaCZlCCFcC2ACTSXrgbo2G8KQaWK23OxuCOos3QrgNwB8P4Tw3bTt9wB8AE3I8r1o/gf0ri1q30bwPgCfCiH8LwC+gySUHRB+C8An0gPyQQB/H83D+0BdmxjjgyGEewA8hCZV8R009umfw4BcmxDCJwHcBmB3COEQgN9H7+/J5wH8bTRCy3k0161v6NGX9wOYBPDF5jkT34gx/rcxxkdCCH+C5qFzGcA/jDF2t6blbby+xBh73Ud9fV2AntfmowA+mpZdLwG4I0XK+vraiLVR2QEhhBBiBLh420viL1/ydzflXF945t9sStmBfkgnCSGEEEKcM3qIEUIIIcRAsuWaGCGEEEJsBhFYGS4JiSIxQgghhBhIFIkRQgghRoEIxLh5RnSbgSIxQgghhBhIFIkRQgghRgVpYoQQQgghth5FYoQQQohRYcgMbhWJEUIIIcRAokiMEEIIMQrECKxodZIQQgghxJajSIwQQggxKkgTI4QQQgix9SgSI4QQQowIUZoYIYQQQoitR5EYIYQQYiSI0sQIIYQQQvQDeogRQgghxECidJIQQggxCkSoAKQQQgghRD+gSIwQQggxKkQtsRZCCCGE2HIUiRFCCCFGgAggShMjhBBCCLH1KBIjhBBCjAIxShMjhBBCCNEPKBIjhBBCjAjSxAghhBBCrIMQwu0hhB+FEB4PIdx1vsdRJEYIIYQYFfpAExNC6AD4VwB+BcAhAN8KIdwbY/zLcz2WIjFCCCGE2ExeA+DxGOPBGOMSgE8BeMf5HEiRGCGEEGIEOIlj930p3rN7k043FULYT/++O8Z4d3p9OYAn6L1DAF57PifRQ4wQQggxAsQYb9/qNiSCs+28FMdKJwkhhBBiMzkE4Ar69z4AT57PgfQQI4QQQojN5FsArgkhvCyEMAHg3QDuPZ8DKZ0khBBCiE0jxrgcQvhNAPcB6AD4aIzxkfM5VohxuIxvhBBCCDEaKJ0khBBCiIFEDzFCCCGEGEj0ECOEEEKIgUQPMUIIIYQYSPQQI4QQQoiBRA8xQgghhBhI9BAjhBBCiIHk/wdoor836IY0zgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot the extracted image data\n", + "fig = plt.figure(0, [10,10])\n", + "im = plt.imshow(image_data, origin=\"lower\")\n", + "plt.colorbar(im)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 0. Make datamodel file\n", + "\n", + "Once we have our FITS file ready to go, we can start making actual progress. Zeroth step is to create a data model we'll be applying to our FITS data.\n", + "\n", + "A data model file really only needs to be set up once for every field, so this can either be done manually with the datamodel.py file, or automatically within the beast production wrapper code. We've opened up the datamodel.py file in an editor and changed the following fields manually to match our data: \n", + "\n", + "* project = \"M31-B21-WEST_cutout\"\n", + "* surveyname = \"PHAT-M31\"\n", + "* filters and base filters\n", + "* make sure ast_with_positions is set to True\n", + "* ast_density_table = sourd density map (like './M31-B21-WEST_cutout.st_sourceden_map.hd5')\n", + "* ast_N_bins = 26\n", + "* ast_reference_image = fits image (like \"./M31-B21-WEST_cutout.st.fits\")\n", + "* astfile = \"data/M31-B21_WEST_cutout.gst.fake.fits\"\n", + "\n", + "\n", + "This file is also where you specify the parameters and resolution of your physics model which will become relevant in Step 2.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import datamodel\n", + "\n", + "importlib.reload(datamodel)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2: Create physics model\n", + "\n", + "Our goal is to eventually run a bunch of **ASTs** (Artificial Star Tests) in the field shown, but before we can do that, we need to generate the fake stars to use.\n", + "\n", + "In order to generate a diverse and representative sample of fake stars to use for our ASTs, we need to set up a N-dimensional model of possible stellar parameters, so that we can easily and randomly select stars from the model.\n", + "\n", + "This model is called a **physics model**, and we will be using the parameters set in the datamodel.py file to create this N-dimensional grid.\n", + "\n", + "*As a quick note, the resolution on the stellar parameters (the step size, often specified as the third input e.g. logt = [6.0, 10.13, 1.0], where 1.0 is the step size) is the main factor driving how long this physics grid will take to set up. If things take a very long time to run, consider making the step size larger for testing's sake.*\n", + "\n", + "Sometimes we are able to have access to high-performance computing resources, meaning we can split the physics model into subgrids and run them in parallel, cutting a lot of the computation time. While we're like not running this notebook in parallel here, we've still specified a number of subgrids in the datamodel.py file. \n", + "\n", + "We can check how many subgrids are set up." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "datamodel.n_subgrid" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So we can now see that we've asked for 1 grid in the datamodel.py file.\n", + "\n", + "If we've already generated a physics model, we certainly don't want to run it again, so the following code checks to make sure all the subgrids for the physics model are present." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# see which subgrid files already exist\n", + "gs_str = \"\"\n", + "if datamodel.n_subgrid > 1:\n", + " gs_str = \"sub*\"\n", + "\n", + "# searches to see if files already exist\n", + "sed_files = glob.glob(\n", + " \"./{0}_beast/{0}_beast_seds.grid{1}.hd5\".format(field_names[0], gs_str)\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "Auto-detected type: csv\n", + "Auto-detected type: hd5\n", + "Auto-detected type: hd5\n" + ] + } + ], + "source": [ + "# only make the physics model they don't already exist\n", + "if len(sed_files) < datamodel.n_subgrid:\n", + " # directly create physics model grids\n", + " create_physicsmodel.create_physicsmodel(nprocs=1, nsubs=datamodel.n_subgrid)\n", + " \n", + " # create grids with script/is parallelizable/writes out scripts that you can submit to a cue\n", + " # we won't be parallelizing the code here in this notebook\n", + " #create_physicsmodel.split_create_physicsmodel(nprocs=1, nsubs=datamodel.n_subgrid)\n", + " #print('\\n**** go run physics model code for '+field_names[0]+'! ****')\n", + " # continue\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# list of SED files\n", + "model_grid_files = sorted(\n", + " glob.glob(\n", + " \"./{0}_beast/{0}_beast_seds.grid{1}.hd5\".format(field_names[0], gs_str)\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Hopefully a lot of spectral grids and SED grids should have started generating. In the end you should have a new folder titled your project name, with a bunch of SED and spectral subgrids." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3. Create ASTs!\n", + "\n", + "Now that we have our physics model generated, we can start to generate some ASTs.\n", + "\n", + "First thing's first, we're gonna check that there isn't already a file of ASTs present in the folder we're working in." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# only create an AST input list if the ASTs don't already exist\n", + "ast_input_file = (\n", + " \"./\" + field_names[0] + \"_beast/\" + field_names[0] + \"_beast_inputAST.txt\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can create the ASTs if they don't already exist." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "creating artificial stars\n", + "\n", + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "Auto-detected type: fits\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/christina/anaconda3/lib/python3.7/site-packages/beast/tools/run/make_ast_inputs.py:58: RuntimeWarning: invalid value encountered in less\n", + " (keep,) = np.where(obsdata[sfiltername] < 99.0)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reading existing AST SEDs\n", + "Assigning positions to artifical stars\n", + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "removing 94106 stars from ./M31-B21-WEST_cutout.st.fits\n", + "1 repeats of each model in each map bin\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "3066.00 models per map bin: 0%| | 0/22 [00:00Table length=24528\n", + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
zerosonesXYHST_WFC3_F475WHST_WFC3_F275WHST_WFC3_F336WHST_WFC3_F814WHST_WFC3_F110WHST_WFC3_F160W
int64int64float64float64float64float64float64float64float64float64
0111.4003642.1861930.202235.4751533.6134326.0746224.4300823.05891
0111.4227942.2267230.202235.4751533.6134326.0746224.4300823.05891
0111.3987542.2229930.202235.4751533.6134326.0746224.4300823.05891
0111.3797342.2235430.202235.4751533.6134326.0746224.4300823.05891
0111.4199742.1938530.202235.4751533.6134326.0746224.4300823.05891
0111.3874942.212130.202235.4751533.6134326.0746224.4300823.05891
0111.4348142.1874830.202235.4751533.6134326.0746224.4300823.05891
0111.4423542.1912630.202235.4751533.6134326.0746224.4300823.05891
0111.3936942.2235224.4048527.1274725.5855222.3766621.6178120.91429
0111.4355142.2132624.4048527.1274725.5855222.3766621.6178120.91429
..............................
0111.3864342.1991949.5234150.5926552.472541.6730538.2988936.17306
0111.386442.1992649.5234150.5926552.472541.6730538.2988936.17306
0111.4005142.2092149.4414150.5106552.390541.5910538.2168936.09106
0111.3864742.1990249.4414150.5106552.390541.5910538.2168936.09106
0111.3866242.1986549.4414150.5106552.390541.5910538.2168936.09106
0111.3867342.1992649.4414150.5106552.390541.5910538.2168936.09106
0111.4004542.2091449.4414150.5106552.390541.5910538.2168936.09106
0111.3864442.1992949.4414150.5106552.390541.5910538.2168936.09106
0111.386742.1991149.4414150.5106552.390541.5910538.2168936.09106
0111.3864842.1992749.4414150.5106552.390541.5910538.2168936.09106
" + ], + "text/plain": [ + "\n", + "zeros ones X Y ... HST_WFC3_F814W HST_WFC3_F110W HST_WFC3_F160W\n", + "int64 int64 float64 float64 ... float64 float64 float64 \n", + "----- ----- -------- -------- ... -------------- -------------- --------------\n", + " 0 1 11.40036 42.18619 ... 26.07462 24.43008 23.05891\n", + " 0 1 11.42279 42.22672 ... 26.07462 24.43008 23.05891\n", + " 0 1 11.39875 42.22299 ... 26.07462 24.43008 23.05891\n", + " 0 1 11.37973 42.22354 ... 26.07462 24.43008 23.05891\n", + " 0 1 11.41997 42.19385 ... 26.07462 24.43008 23.05891\n", + " 0 1 11.38749 42.2121 ... 26.07462 24.43008 23.05891\n", + " 0 1 11.43481 42.18748 ... 26.07462 24.43008 23.05891\n", + " 0 1 11.44235 42.19126 ... 26.07462 24.43008 23.05891\n", + " 0 1 11.39369 42.22352 ... 22.37666 21.61781 20.91429\n", + " 0 1 11.43551 42.21326 ... 22.37666 21.61781 20.91429\n", + " ... ... ... ... ... ... ... ...\n", + " 0 1 11.38643 42.19919 ... 41.67305 38.29889 36.17306\n", + " 0 1 11.3864 42.19926 ... 41.67305 38.29889 36.17306\n", + " 0 1 11.40051 42.20921 ... 41.59105 38.21689 36.09106\n", + " 0 1 11.38647 42.19902 ... 41.59105 38.21689 36.09106\n", + " 0 1 11.38662 42.19865 ... 41.59105 38.21689 36.09106\n", + " 0 1 11.38673 42.19926 ... 41.59105 38.21689 36.09106\n", + " 0 1 11.40045 42.20914 ... 41.59105 38.21689 36.09106\n", + " 0 1 11.38644 42.19929 ... 41.59105 38.21689 36.09106\n", + " 0 1 11.3867 42.19911 ... 41.59105 38.21689 36.09106\n", + " 0 1 11.38648 42.19927 ... 41.59105 38.21689 36.09106" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Table.read(\"./M31-B21-WEST_cutout/M31-B21-WEST_cutout_inputAST.txt\", format=\"ascii\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Check to see how the SEDs and the ASTs compare\n", + "\n", + "The histogram that is produced should have both the SED distribution and the AST distribution plotted on it. The thing we want to test for is whether the AST distribution fully samples the SED range." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: hd5\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/christina/anaconda3/lib/python3.7/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='ASTs'\n", + "/home/christina/anaconda3/lib/python3.7/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='Model grid'\n" + ] + } + ], + "source": [ + "plot_ast_histogram.plot_ast(ast_file=\"./M31-B21-WEST_cutout/M31-B21-WEST_cutout_inputAST.txt\", sed_grid_file=\"./M31-B21-WEST_cutout/M31-B21-WEST_cutout_seds.grid.hd5\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From dabbd7c0955f0138a22f0e1ba6a8946414bf0df9 Mon Sep 17 00:00:00 2001 From: christinawlindberg Date: Mon, 16 Dec 2019 16:55:55 -0800 Subject: [PATCH 2/7] Adding datamodel --- M31_Example/datamodel.py | 355 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 355 insertions(+) create mode 100644 M31_Example/datamodel.py diff --git a/M31_Example/datamodel.py b/M31_Example/datamodel.py new file mode 100644 index 0000000..33aee84 --- /dev/null +++ b/M31_Example/datamodel.py @@ -0,0 +1,355 @@ +""" +Data Model interface v2.0 +BEAST datamodel for M33 PHAT fields +""" +import numpy as np + +from astropy import units + +# BEAST imports +from beast.physicsmodel.stars import isochrone +from beast.physicsmodel.stars import stellib +from beast.physicsmodel.dust import extinction +from beast.observationmodel.observations import Observations +from beast.observationmodel.vega import Vega +from beast.observationmodel.noisemodel import absflux_covmat + +# from extra_filters import make_integration_filter, make_top_hat_filter + +# ----------------------------------------------------------------- +# User inputs [sec:conf] +# ----------------------------------------------------------------- +# Parameters that are required to make models +# and to fit the data +# ----------------------------------------------------------------- +# AC == authomatically created +# indicates where user's input change is NOT necessary/recommended +# ----------------------------------------------------------------- + +# project : string +# the name of the output results directory +project = "M31-B21-WEST_cutout" + +# name of the survey +# used for the creation of the unique name for each source +surveyname = "PHAT-M31" + +# filters : list of strings +# full filter names in BEAST filter database +filters = [ + "HST_WFC3_F475W", + "HST_WFC3_F275W", + "HST_WFC3_F336W", + "HST_WFC3_F814W", + "HST_WFC3_F110W", + "HST_WFC3_F160W", +] + + +# basefilters : list of strings +# short names for filters +basefilters = ["F475W", "F275W", "F336W", "F814W", "F110W", "F160W"] + +# obs_colnames : list of strings +# names of columns for filters in the observed catalog +# need to match column names in the observed catalog, +# input data MUST be in fluxes, NOT in magnitudes +# fluxes MUST be in normalized Vega units +obs_colnames = [f.upper() + "_RATE" for f in basefilters] + +# obsfile : string +# pathname of the observed catalog +obsfile = "./M31-B21-WEST_cutout.st.fits" + +# ------------------------------------------------------ +# Artificial Star Test Input File Generation Parameters +# ------------------------------------------------------ + +# ast_models_selected_per_age : integer +# Number of models to pick per age (Default = 70). +ast_models_selected_per_age = 70 # NOT USED in flux bin method + +# ast_bands_above_maglimit : integer +# Number of filters that must be above the magnitude limit +# for an AST to be included in the list (Default = 3) +ast_bands_above_maglimit = 3 # NOT USED in flux bin method + +# ast_n_flux_bins : integer +# The number of flux bins into which the dynamic range of the +# model grid in each filter is divided +ast_n_flux_bins = 40 + +# ast_n_per_flux_bin : integer +# Minimum number of model seds that need to fall into each bin +ast_n_per_flux_bin = 50 + +# ast_realization_per_model : integer +# Number of Realizations of each included AST model +# to be put into the list. (Default = 20) +ast_realization_per_model = 1 # for the toothpick model (NOT truncheon) + + +# ast_maglimit : float (single value or array with one value per filter) +# (1) option 1: [number] to change the number of mags fainter than +# the 90th percentile +# faintest star in the photometry catalog to be used for +# the mag cut. +# (Default = 1) +# (2) option 2: [space-separated list of numbers] to set custom faint end limits +# (one value for each band). +ast_maglimit = [1.0] # NOT USED for this production run + +# ast_with_positions : (bool,optional) +# If True, the ast list is produced with X,Y positions. +# If False, the ast list is produced with only magnitudes. +ast_with_positions = True + +# ast_density_table : (string,optional) +# Name of density table created by +# tools/create_background_density_map.py, containing either the source +# density map or the background density map. If supplied, the ASTs will +# be repeated for each density bin in the table +ast_density_table = './M31-B21-WEST_cutout.st_sourceden_map.hd5' + +# ast_density_table = 'data/b15_4band_det_27_A_sourcedens_map.hd5' + +# ast_N_bins : (int, optional) +# Number of source or background bins that you want ASTs repeated over +ast_N_bins = 26 + + +# ast_pixel_distribution : float (optional) +# (Used if ast_with_positions is True), minimum pixel separation between AST +# position and catalog star used to determine the AST spatial distribution +ast_pixel_distribution = 10.0 + +# ast_reference_image : string (optional, but required if ast_with_positions +# is True and no X and Y information is present in the photometry catalog) +# Name of the reference image used by DOLPHOT when running the measured +# photometry. +ast_reference_image = "./M31-B21-WEST_cutout.st.fits" + +# ast_coord_boundary : None, or list of two arrays (optional) +# If supplied, these RA/Dec coordinates will be used to limit the region +# over which ASTs are generated. Input should be list of two arrays, the +# first RA and the second Dec, ordered sequentially around the region +# (either CW or CCW). +ast_coord_boundary = None + + +# ------------------------------------------- +# Noise Model Artificial Star Test Parameters +# ------------------------------------------- + +# astfile : string +# pathname of the AST files (single camera ASTs) +astfile = "data/M31-B21_WEST_cutout.gst.fake.fits" + +# ast_colnames : list of strings +# names of columns for filters in the AST catalog (AC) +ast_colnames = np.array(basefilters) + +# noisefile : string +# create a name for the noise model +noisefile = project + "/" + project + "_noisemodel.hd5" + +# absflux calibration covariance matrix for HST specific filters (AC) +absflux_a_matrix = absflux_covmat.hst_frac_matrix(filters) + +# ------------------------------------------- +# Grid +# ------------------------------------------- + +# n_subgrid : integer +# Number of sub-grids to use (1 means no subgrids). These are +# useful when the physics model grid is too large to read into +# memory. +n_subgrid = 1 + +################ + +# Distance/Velocity + +# Distances: distance to the galaxy [min, max, step] or [fixed number] +distances = [24.79] +#used 2013AJ....146...86T as a reference + +# Distance unit (any length or units.mag) +distance_unit = units.mag + +# velocity of galaxy +# velocity should be heliocentric +velocity = -179 * units.km / units.s + +################ + +# Stellar grid definition + +# log10(Age) -- [min,max,step] to generate the isochrones in years +# example [6.0, 10.13, 1.0] +logt = [6.0, 10.13, 1.0] +age_prior_model = {'name': 'flat'} + +# note: Mass is not sampled, instead the isochrone supplied +# mass spacing is used instead +mass_prior_model = {'name': "kroupa"} + +# Metallicity : list of floats +# Here: Z == Z_initial, NOT Z(t) surface abundance +# PARSECv1.2S accepts values 1.e-4 < Z < 0.06 +# example z = [0.03, 0.019, 0.008, 0.004] +# can they be set as [min, max, step]? +z = ([0.03, 0.019, 0.008, 0.004]) +met_prior_model = {'name': 'flat'} +# 10 ** np.array([-2.1, -1.8, -1.5, -1.2, -0.9, -0.6, -0.3, 0.0, 0.3]) * 0.0152 +#).tolist() + +# Isochrone Model Grid +# Current Choices: Padova or MIST +# PadovaWeb() -- `modeltype` param for iso sets from ezpadova +# (choices: parsec12s_r14, parsec12s, 2010, 2008, 2002) +# MISTWeb() -- `rotation` param (choices: vvcrit0.0=default, vvcrit0.4) +# +# Default: PARSEC+CALIBRI +oiso = isochrone.PadovaWeb() +# Alternative: PARSEC1.2S -- old grid parameters +# oiso = isochrone.PadovaWeb(modeltype='parsec12s', filterPMS=True) +# Alternative: MIST -- v1, no rotation +# oiso = isochrone.MISTWeb() + +# Stellar Atmospheres library definition +osl = stellib.Tlusty() + stellib.Kurucz() + +################ + +# Dust extinction grid definition +extLaw = extinction.Generalized_RvFALaw( + ALaw=extinction.Generalized_DustExt(curve="F20"), + BLaw=extinction.Generalized_DustExt(curve="G03_SMCBar"), +) + +# A(V): dust column in magnitudes +# acceptable avs > 0.0 +# example [min, max, step] = [0.0, 10.055, 1.0] +avs = [0.01, 10.0, 1.0] +av_prior_model = {"name": "flat"} +# av_prior_model = {'name': 'lognormal', +# 'max_pos': 2.0, +# 'sigma': 1.0, +# 'N': 10.} + +# R(V): dust average grain size +# example [min, max, step] = [2.0,6.0,1.0] +rvs = [2.0, 6.0, 1.0] +rv_prior_model = {"name": "flat"} +# rv_prior_model = {'name': 'lognormal', +# 'max_pos': 2.0, +# 'sigma': 1.0, +# 'N': 10.} + +# fA: mixture factor between "MW" and "SMCBar" extinction curves +# example [min, max, step] = [0.0,1.0, 0.25] +fAs = [0.0, 1.0, 0.25] +fA_prior_model = {"name": "flat"} +# fA_prior_model = {'name': 'lognormal', +# 'max_pos': 0.5, +# 'sigma': 0.2, +# 'N': 10.} + +################ + +# add in the standard filters to enable output of stats and pdf1d values +# for the observed fitlers (AC) +add_spectral_properties_kwargs = dict(filternames=filters) + +################ +# The following code does not require user's attention (AC) +################ + + +class GenFluxCatalog(Observations): + """Generic n band filter photometry + This class implements a direct access to the Generic HST measured fluxes. + ..note:: + it does not implement uncertainties as in this model, the noise is + given through artificial star tests + """ + + def __init__(self, inputFile, filters=filters): + """ Construct the interface """ + desc = "GENERIC star: %s" % inputFile + Observations.__init__(self, inputFile, desc=desc) + self.setFilters(filters) + # some bad values smaller than expected + # in physical flux units + self.setBadValue(6e-40) + + # rate column needed as this is the *flux* column + for ik, k in enumerate(filters): + self.data.set_alias(k, obs_colnames[ik]) + + def getFlux(self, num, units=False): + """returns the absolute flux of an observation + Parameters + ---------- + num: int + index of the star in the catalog to get measurement from + units: bool + if set returns the fluxes with a unit capsule + Returns + ------- + flux: ndarray[dtype=float, ndim=1] + Measured integrated flux values throughout the filters + in erg/s/cm^2/A + """ + + # case for using '_flux' result + d = self.data[num] + + flux = ( + np.array([d[self.data.resolve_alias(ok)] for ok in self.filters]) + * self.vega_flux + ) + + if units is True: + return flux * units.erg / (units.s * units.cm * units.cm * units.angstrom) + else: + return flux + + def setFilters(self, filters): + """ set the filters and update the vega reference for the conversions + Parameters + ---------- + filters: sequence + list of filters using the internally normalized namings + """ + self.filters = filters + + # Data "rates" are normalized to Vega already, fits are not using vega + + # for optimization purpose: pre-compute + # getting vega mags, require to open and read the content of one file. + # since getObs, calls getFlux, for each star you need to do this + # expensive operation + with Vega() as v: + _, vega_flux, _ = v.getFlux(filters) + + self.vega_flux = vega_flux + + +def get_obscat(obsfile=obsfile, filters=filters, *args, **kwargs): + """ Function that generates a data catalog object with the correct + arguments + Parameters + ---------- + obsfile: str, optional (default datamodel.obsfile) + observation file + filters: sequence(str), optional, datamodel.filters + seaquence of filters of the data + returns + ------- + obs: GenFluxCatalog + observation catalog + """ + obs = GenFluxCatalog(obsfile, filters=filters) + return obs From d25a5de1fe519c4ac87f9982275986c5002b4add Mon Sep 17 00:00:00 2001 From: christinawlindberg Date: Mon, 11 May 2020 08:47:56 -0700 Subject: [PATCH 3/7] updated example notebook --- M31_Example/M31_workflow.ipynb | 2521 ++++++++++++++++++++++++++++---- M31_Example/datamodel.py | 17 +- 2 files changed, 2228 insertions(+), 310 deletions(-) diff --git a/M31_Example/M31_workflow.ipynb b/M31_Example/M31_workflow.ipynb index 229e65c..c099b9d 100644 --- a/M31_Example/M31_workflow.ipynb +++ b/M31_Example/M31_workflow.ipynb @@ -4,11 +4,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Source Density Mapping Example\n", + "# BEAST Workflow Example\n", "\n", - "We'll be walking through a standard BEAST workflow in this example, using some M31 data as an example.\n", + "In this notebook we will be walking through a standard BEAST workflow example using some data from M31.\n", "\n", - "Before we do anything though, we have to import the following packages. This seems like a lot but they are all here to make our lives easier down the line. And running them all as the first cell means that if our kernel ever crashes halfway through, we can just reimport everything at once rather than stepping through the cells individually." + "You'll need a couple of datafiles to get started though. Please visit https://www.dropbox.com/sh/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama?dl=0 and download all the files (can omit wrangling_data.ipynb) into the same folder this Jupyter Notebook is in. \n", + "\n", + "Before we do anything, we have to import the following packages. This seems like a lot but they are all here to make our lives easier down the line. And running them all as the first cell means that if our kernel ever crashes halfway through, we can just reimport everything at once rather than stepping through the cells individually." ] }, { @@ -34,7 +36,7 @@ "from astropy import wcs\n", "from astropy.io import fits\n", "from astropy.table import Table\n", - "import tables\n", + "#import tables\n", "\n", "import glob\n", "import os\n", @@ -43,6 +45,8 @@ "\n", "import matplotlib.pyplot as plt\n", "\n", + "from beast.plotting import (plot_mag_hist, plot_ast_histogram, plot_noisemodel)\n", + "\n", "from beast.tools.run import (\n", " create_physicsmodel,\n", " make_ast_inputs,\n", @@ -52,14 +56,24 @@ " create_filenames,\n", ")\n", "\n", - "from beast.plotting import (plot_mag_hist, plot_ast_histogram)\n", + "from beast.physicsmodel.grid import FileSEDGrid\n", + "from beast.fitting import trim_grid\n", + "import beast.observationmodel.noisemodel.generic_noisemodel as noisemodel\n", + "\n", + "\n", + "from beast.tools.run import (\n", + " run_fitting,\n", + " merge_files,\n", + ") \n", + " \n", "from beast.tools import (\n", " create_background_density_map,\n", " split_ast_input_file,\n", + " split_catalog_using_map,\n", "# subdivide_obscat_by_source_density,\n", - "# cut_catalogs,\n", + " cut_catalogs,\n", "# split_asts_by_source_density,\n", - "# setup_batch_beast_trim,\n", + " setup_batch_beast_trim,\n", "# setup_batch_beast_fit,\n", " )\n", "\n", @@ -72,20 +86,29 @@ "source": [ "# Step -1. Obtain data file and convert to fits file\n", "\n", - "Sometimes data is given to us in HDF5 file formats. While these are great for storing data in different heirarchies, it's a little hard to work with directly, so we would have to convert our HDF5 file to a FITS file.\n", + "Sometimes photometric catalogs are delivered as HDF5 files. While these are great for storing data in heirarchies, it's a little hard to work with directly, so we have to convert our HDF5 file to a FITS file.\n", "\n", - "Thankfully, our data is already in a FITS format so we don't need to worry about this." + "Thankfully, our photometric catalog for this example is already in a FITS format so we don't need to worry about this and can move straight on to Step 1." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# 1a. Make magnitude histogram\n", + "# Step 1a. Make magnitude histograms\n", "\n", - "Step 1a is to make histograms of all the magnitudes of all the stars in all the different filters. This is done so that we know where the peak of the histogram is. This peak will then be used later when we make source density maps. Essentially what happens is that, for the density maps, we only count objects within a certain range, currently set to mag_cut = 15 - (peak_for_filter-0.5). So if the peak was 17.5, then the objects that would be counted would have to be in the range between 15 and 18. \n", + "The first thing we need to do is understand the range of stellar magnitudes we are working with in this data set.\n", "\n", - "The reason we only count brighter sources is because dimmer sources tend to not be properly observed, especially as the magnitudes near the telescope limit. There will always be far more dim sources than bright sources, but if we know how many bright sources there are, then we can extrapolate as to how many dim sources there should be, and probably get a better understand from that than if we were to try and actually count all the dim sources we detect. " + "To do this we can make histograms of all the magnitudes of all the stars in all the different filters from the photometric catalog. This is done so that we know where the peaks of the histograms are in each filter. These peaks will then be used later when we make source density maps. \n", + "\n", + "Essentially what happens is that, for the density maps, we only count objects within a certain range, currently set to mag_cut = 15 - (peak_for_filter-0.5). So if the peak was 17.5, then the objects that would be counted would have to be in the range between 15 and 18. \n", + "\n", + "The reason we only count brighter sources is because dimmer sources tend to not be properly observed, especially as the magnitudes near the telescope limit. There will always be far more dim sources than bright sources, but if we know how many bright sources there are, then we can extrapolate as to how many dim sources there should be, and probably get a better understand from that than if we were to try and actually count all the dim sources we detect. \n", + "\n", + "**Variable Information**\n", + "\n", + "* **field_name** : the string name of the main photometric catalog we are working with. This variable will be used to rename a lot of different files in the future which is why we have it as a separate variable.\n", + "* **gst_file** : stands for good-stars, this is the full name for the original photometric catalog we are working with." ] }, { @@ -94,68 +117,71 @@ "metadata": {}, "outputs": [], "source": [ - "gst_file = \"./M31-B21-WEST_cutout.st.fits\"" + "field_name = \"M31-B09-EAST_chunk\"\n", + "gst_file = \"./%s.st.fits\" %field_name" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We can see what type of data this fits file holds by making a table." + "We can see what type of data this fits file holds by making a table. There should be around 50,000 sources in this calalog, which is quite small compared to the original file.\n", + "\n", + "*Note: **st** stands for stars. We also sometimes name things **gst** for good stars to signify when cuts have been made.*" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ - "Table length=205331\n", - "
\n", - "\n", + "Table length=50625\n", + "
F160W_STF160W_GSTF475W_STF475W_GSTF336W_STF336W_GSTF814W_STF814W_GSTF275W_STF275W_GSTF110W_STF110W_GSTXYRADECCHI_GLSNR_GLSHARP_GLROUND_GLCROWD_GLF475W_COUNTF475W_SKYF475W_RATEF475W_RATERRF475W_VEGAF475W_TRANSF475W_ERRF475W_CHIF475W_SNRF475W_SHARPF475W_ROUNDF475W_CROWDF814W_COUNTF814W_SKYF814W_RATEF814W_RATERRF814W_VEGAF814W_TRANSF814W_ERRF814W_CHIF814W_SNRF814W_SHARPF814W_ROUNDF814W_CROWDF275W_COUNTF275W_SKYF275W_RATEF275W_RATERRF275W_VEGAF275W_TRANSF275W_ERRF275W_CHIF275W_SNRF275W_SHARPF275W_ROUNDF275W_CROWDF336W_COUNTF336W_SKYF336W_RATEF336W_RATERRF336W_VEGAF336W_TRANSF336W_ERRF336W_CHIF336W_SNRF336W_SHARPF336W_ROUNDF336W_CROWDF110W_COUNTF110W_SKYF110W_RATEF110W_RATERRF110W_VEGAF110W_TRANSF110W_ERRF110W_CHIF110W_SNRF110W_SHARPF110W_ROUNDF110W_CROWDF160W_COUNTF160W_SKYF160W_RATEF160W_RATERRF160W_VEGAF160W_TRANSF160W_ERRF160W_CHIF160W_SNRF160W_SHARPF160W_ROUNDF160W_CROWDEXTCHIPMAJAX_GLOBJTYPE_GLF475W_FLAGF814W_FLAGF275W_FLAGF336W_FLAGF110W_FLAGF160W_FLAG
\n", + "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "
F814W_STF814W_GSTF475W_STF475W_GSTF275W_STF275W_GSTF160W_STF160W_GSTF336W_STF336W_GSTF110W_STF110W_GSTXYRADECCHI_GLSNR_GLSHARP_GLROUND_GLCROWD_GLF475W_COUNTF475W_SKYF475W_RATEF475W_RATERRF475W_VEGAF475W_TRANSF475W_ERRF475W_CHIF475W_SNRF475W_SHARPF475W_ROUNDF475W_CROWDF814W_COUNTF814W_SKYF814W_RATEF814W_RATERRF814W_VEGAF814W_TRANSF814W_ERRF814W_CHIF814W_SNRF814W_SHARPF814W_ROUNDF814W_CROWDF275W_COUNTF275W_SKYF275W_RATEF275W_RATERRF275W_VEGAF275W_TRANSF275W_ERRF275W_CHIF275W_SNRF275W_SHARPF275W_ROUNDF275W_CROWDF336W_COUNTF336W_SKYF336W_RATEF336W_RATERRF336W_VEGAF336W_TRANSF336W_ERRF336W_CHIF336W_SNRF336W_SHARPF336W_ROUNDF336W_CROWDF110W_COUNTF110W_SKYF110W_RATEF110W_RATERRF110W_VEGAF110W_TRANSF110W_ERRF110W_CHIF110W_SNRF110W_SHARPF110W_ROUNDF110W_CROWDF160W_COUNTF160W_SKYF160W_RATEF160W_RATERRF160W_VEGAF160W_TRANSF160W_ERRF160W_CHIF160W_SNRF160W_SHARPF160W_ROUNDF160W_CROWDEXTCHIPMAJAX_GLOBJTYPE_GLF475W_FLAGF814W_FLAGF275W_FLAGF336W_FLAGF110W_FLAGF160W_FLAG
boolboolboolboolboolboolboolboolboolboolboolboolfloat64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64int64int64int64int64int64int64int64int64int64int64
FalseFalseTrueTrueFalseFalseTrueTrueFalseFalseFalseFalse1776.9200000250678111.5400000013487411.38694615196245342.1989799610847241.741353.0-0.2540.0270000000000000030.031788000000.0119921.14.6299999999999995e-071.7699999999999999e-0915.83599999999999916.150.0041.25262.2-0.0240.0180000000000000020.0121300000000.0333344.01.57e-065.420000000000001e-0914.50914.5020.0041.85290.1-0.0120.0289999999999999980.0090000000000000010.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001951000000
FalseFalseTrueTrueFalseFalseTrueTrueFalseFalseFalseFalse1922.93000002574041116.99000000151111.40054678770081942.208853190488822.011267.2-0.3120.030.040999999999999995508000000.097384.642.9899999999999996e-071.99e-0916.31216.8130.0069999999999999991.73149.8-0.0340.0180000000000000020.0161460000000.0375732.81.77e-066.53e-0914.38214.3870.0042.04270.50.0050.0170.0180000000000000020.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001801000000
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue234.910000024985952446.620000001614211.43933556535987342.200810702923792.463920.6-0.050.0139999999999999990.073268000000.054944.231.57e-071.4300000000000002e-0917.00817.2110.012.27110.1-0.0750.0330.032354000000.096353.574.2e-071.2800000000000001e-0915.94215.9330.0031.11327.3-0.0110000000000000010.0240.0471290000.0304.814.440000000000001e-084.81e-1018.382nan0.0121.8992.2-0.0409999999999999950.0230.00612000000.02313.221.3800000000000002e-074.2999999999999996e-1017.15nan0.0031.8321.3-0.0240.0150.006999999999999999169000000.048374.125.34e-075.15e-1015.681nan0.0012.221037.7-0.0460.0370000000000000050.14800000000000002156000000.046501.097.76e-074.12e-1015.275nan0.0011.21885.2-0.04-0.0010.146011501202002
FalseFalseTrueTrueFalseFalseFalseFalseFalseFalseFalseFalse2036.7200000260377178.5000000008387811.38508565187309842.202441121370063.211512.9-0.0680.0610.01111000000.028257.256.52e-081.75e-0917.964000000000002nan0.0289999999999999983.2837.2-0.0980.0420.0030.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.0011001000000
FalseFalseTrueTrueFalseFalseTrueTrueFalseFalseFalseFalse1976.700000024361633.150000001450711.39262952080721542.205492821186892.541730.50.0040.0590000000000000040.002118000000.027629.486.94e-087.620000000000001e-1017.89618.0740.0121.3891.1-0.0289999999999999980.0130000000000000010.004146000000.046486.861.7699999999999998e-071.0400000000000001e-0916.88316.8740000000000020.0061.05170.5-0.006999999999999999-0.0390.0020.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.0011001000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1922.78000002478621120.530000001714411.40060202515979542.2088805036592414.74580.70.1360.2130.794-2088263.0906.05-1.2e-098.989999999999999e-10nannan9.9995.17-1.40.00.00.011100000.055734.841.3400000000000001e-084.79e-0919.684nan0.387999999999999967.562.8-0.8950.357000000000000041.81199999999999980.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001901000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1776.810000023902108.2600000013346711.38689773891995642.1989518565664310.46357.0-0.1090.4451.0654230000.0-2949.382.49e-091.58e-0921.5122.0819999999999970.68900000000000016.911.6-0.3110.2171.64916600000.043917.842.0099999999999998e-085.820000000000001e-0919.24419.2570.3159.93.4-0.5830.6691.1990.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001651000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1922.51000002467031113.710000001688511.40050178964176642.2088216158828517.35471.70.5730.3370.86900000000000013470000.0-2525.232.04e-096.78e-1021.726nan0.3613.333.0-1.1210.4981.466-887249.844637.52-1.1e-095.14e-09nannan9.99910.82-0.20.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001751000000
TrueTrueTrueTrueTrueTrueTrueTrueFalseFalseTrueTrue52.000000024349221384.150000001783211.42527548516140942.190061383721542.062897.6-0.0010.0180000000000000020.00211200000.05220.696.55e-091.1499999999999999e-1120.45921.0980000000000030.0021.32567.5-0.0069999999999999990.0080.071600000.024266.998.109999999999999e-089.480000000000001e-1117.72717.7550.0010.97855.6-0.010.010.0-300.943.26-1.1e-111.8800000000000002e-11nannan9.9990.74-0.60.00.00.076677.081.039e-104.2e-1122.615nan0.0511.9421.4-0.0010.0289999999999999980.052900000.024705.161.67e-071.42e-1016.945nan0.0011.321173.4-0.0010.0139999999999999990.00869200000.029082.283.43e-072.23e-1016.16nan0.0011.121537.4-0.0180000000000000020.0050.009000000000000001011301000000
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue237.32000002463772449.090000001340711.43934632215778742.200857951882575.272322.8-0.0559999999999999940.040.2857700000.05785.543.3700000000000004e-088.42e-1118.68200000000000219.0140.0032.68399.8-0.0409999999999999950.0289999999999999980.23800000000000002101000000.042804.671.1900000000000001e-071.2800000000000001e-0917.30817.3020.0121.8893.4-0.0310.0270000000000000030.287132188.391.934.53e-092.12e-1020.859nan0.0512.4121.4-0.080.160.206000000000000022060000.0930.212.36e-084.900000000000001e-1019.069000000000003nan0.0234.6848.2-0.0590000000000000040.089000000000000010.11349100000.026101.821.55e-079.4e-1017.026nan0.0069999999999999997.03164.5-0.0289999999999999980.0020.51746000000.027541.752.2899999999999997e-078.59e-1016.602999999999998nan0.0043.59266.2-0.0320.1060.6809999999999999011301220002
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue869.890000004669244.4099999948323311.13183257065668641.6034194385187354.032917.0-0.030.020.251233000000.087358.199.039999999999999e-081.3800000000000002e-0917.6117.7210.0172.4865.40.0050.0380.175198000000.0102360.61.59e-071.27e-0916.99616.9860.0090000000000000011.77124.80.010.0490.226999999999999985970000.02256.981.25e-071.16e-0917.255nan0.012.92107.7-0.0380.0180000000000000020.08623800000.07534.451.69e-076.92e-1016.932000000000002nan0.0042.63243.9-0.0310.0590000000000000040.08479700000.088039.231.6e-072.58e-1016.992nan0.0022.23619.1-0.0040.10.3556000000.093657.591.8e-072.53e-1016.864nan0.0021.51708.8-0.0180000000000000020.0270000000000000030.396011651220000
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue868.390000004002842.18999999354980411.1318041403340241.603388910561614.132566.5-0.050.0289999999999999980.27699999999999997125000000.046004.844.85e-082.51e-1018.28599999999999818.4120.0063.02193.3-0.053-0.0060.231118000000.077080.489.23e-081.24e-0917.58717.5770.0155.8774.3-0.0960.0440000000000000040.3244360000.02332.749.15e-087.099999999999999e-1017.597nan0.0082.08128.8-0.0570.0080.09216500000.08339.991.1699999999999999e-079.25e-1017.329nan0.0090000000000000013.74126.5-0.085-0.0069999999999999990.10649500000.082165.189.92e-082.82e-1017.508nan0.0032.79352.50.013000000000000001-0.0790.51635100000.087515.551.13e-073.31e-1017.371nan0.0032.18340.0-0.026000000000000002-0.0040.63501751220200
TrueTrueFalseFalseFalseFalseTrueTrueFalseFalseTrueTrue297.150000004934122.16999999453628311.13527556698522741.5958886431035351.171663.1-0.088000000000000010.0610.00829910.710270.951.1499999999999999e-111.34e-1227.34800000000000327.8059999999999970.1261.348.6-0.6340.1770.0254160000.021190.253.17e-091.0000000000000001e-1121.24821.4230000000000020.0030.9316.3-0.0630.0490.001-1.744.5-6.900000000000001e-141.49e-11nannan9.9990.87-0.01.0582.9510.002-565.3268.32-4.1e-126.389999999999999e-12nannan9.9991.05-0.60.00.00.039700000.073069.777.96e-081.1e-1017.747nan0.0011.35723.90.012-0.0270000000000000030.01100000000000000167100000.085406.732.15e-071.8399999999999998e-1016.668nan0.0011.111172.0-0.004-0.0050.01201101000022
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue884.830000005168195.549999994055511.13261861490244341.603868587849891.92292.6-0.0250.0130000000000000010.0166100000.022123.932.5299999999999998e-082.46e-1118.9918.9770.0011.671031.4-0.0230.0139999999999999990.034800000.030329.552.64e-082.7e-1118.94400000000000318.9340.0011.23980.70.0040.0180000000000000020.0025440000.01002.341.14e-071.13e-0917.355999999999998nan0.0110000000000000012.74101.0-0.0590000000000000040.0460.012000000.02448.628.51e-085.41e-1017.676nan0.0069999999999999992.98157.3-0.0850.0370000000000000050.011400000.075079.132.28e-085.56e-1119.104nan0.0031.38411.0-0.045-0.0090000000000000010.037260000.080299.632.33e-085.929999999999999e-1119.082nan0.0030.93392.4-0.017-0.0030.079011301002000
TrueTrueFalseFalseFalseFalseTrueTrueFalseFalseTrueTrue805.8000000041931624.129999994245511.14230396052788341.6054863003324161.231555.9-0.1220.1650.016-8222.310309.21-3.2e-128.149999999999999e-13nannan9.9991.18-3.9-4.4120.7130.478854724.418592.636.51e-104.58e-1222.965999999999998nan0.0081.27142.1-0.1570.2210.006-836.744.69-1.8e-111.98e-11nannan9.9991.2-0.90.84-0.280.037000000000000005-490.7257.91-3.6000000000000004e-126.37e-12nannan9.9990.93-0.60.00.00.036400000.071988.727.299999999999999e-081.68e-1017.842nan0.0032.24433.8-0.0590000000000000040.0750.00699999999999999963800000.085344.552.05e-071.8399999999999998e-1016.723nan0.0010.981114.10.0090000000000000010.0020.0101151330022
TrueTrueTrueTrueFalseFalseTrueTrueFalseFalseTrueTrue158.71000000585047879.069999994607111.1510441920025341.5983766806643661.211504.4-0.0579999999999999960.118000000000000010.008174859.810226.126.75e-111.7799999999999999e-1225.42726.0890000000000020.0289999999999999981.2437.8-0.160.3180.015210000.021725.853.97e-091.1e-1121.00321.0960.0030.86362.1-0.0340.0330.003-124.231.75-2.6000000000000002e-121.3599999999999999e-11nannan9.9990.85-0.20.066.640.0746.3233.955.4500000000000004e-126.2599999999999996e-1228.159000000000002nan1.2461.170.9-0.039-0.70200000000000010.00625900000.068934.55.2e-081.01e-1018.21nan0.0021.76512.9-0.0540000000000000060.0650.01100000000000000145900000.080340.591.47e-071.35e-1017.08nan0.0011.041088.4-0.0240.0069999999999999990.013000000000000001011501200000
TrueTrueTrueTrueFalseFalseTrueTrueFalseFalseTrueTrue238.33000000445975474.9599999942912511.1435118648751941.5973892810344742.031436.1-0.0830.1830.1080000000000000133068.29542.111.28e-112.0299999999999996e-1227.23327.8810.1722.46.3-0.4050.6330.3541180000.018492.859.01e-101.1099999999999999e-1122.61300000000000322.7150.0130000000000000012.2481.5-0.0650.2010.10099999999999999-962.13.96-2.0000000000000002e-111.56e-11nannan9.9990.95-1.30.00.00.0-724.2249.83-5.3e-125.679999999999999e-12nannan9.9991.03-0.90.00.00.028500000.067956.215.71e-086.23e-1118.108nan0.0011.03916.4-0.003-0.0080.0341000000.077900.651.31e-071.42e-1017.204nan0.0011.15924.90.0050.0090000000000000010.047011251000000
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue824.9700000049659176.1299999942310711.13441467214382541.6034958629885451.712286.3-0.0130000000000000010.010.01548100000.018255.81.85e-081.7800000000000003e-1119.33319.3590.0011.611040.5-0.0040.0139999999999999990.00699999999999999929200000.028051.122.2200000000000004e-081.81e-1119.13319.1230.0011.111230.70.0050.0110000000000000010.0069999999999999991690000.0448.873.54e-085.58e-1018.628nan0.0172.6163.4-0.07400000000000001-0.0170.05410000.01424.623.84e-083.85e-1018.541nan0.0110000000000000012.9599.7-0.0850.020.010200000.070618.532.04e-084.5299999999999995e-1119.224nan0.0021.03450.7-0.012-0.0190.096700000.076931.272.15e-086.58e-1119.17nan0.0031.08326.6-0.0010.0120.09011351202200
TrueTrueTrueTrueFalseFalseTrueTrueTrueTrueTrueTrue590.0900000061857332.859999995311811.13869963863796841.601236303203311.372254.4-0.0190.0110000000000000010.0064650000.011464.721.79e-094.8899999999999996e-1221.86922.5340000000000020.0031.55365.6-0.020.0069999999999999990.00337700000.030650.812.8700000000000002e-082.05e-1118.85518.8920.0011.051401.2-0.0150.0080.002-392.418.53-8.4e-121.84e-11nannan9.9991.11-0.5-0.0040.90799999999999990.0069999999999999998649.2252.796.34e-119.12e-1225.495nan0.1561.116.9-0.090.2540.00634700000.072915.046.950000000000001e-088.9e-1117.895nan0.0011.31781.0-0.006999999999999999-0.0340.02451000000.083288.021.6300000000000002e-071.36e-1016.967nan0.0010.781203.3-0.008-0.00.027999999999999997011051200000
TrueTrueTrueTrueFalseFalseTrueTrueFalseFalseTrueTrue192.55000000367136766.049999994467311.14886024321624141.59825050146121.231310.9-0.0230.1610.00880824.010965.43.12e-111.7200000000000001e-1226.26426.7850.061.3918.1-0.1050.4570.0180000000000000027870000.023112.076e-091.32e-1120.55520.710.0020.84455.1-0.0289999999999999980.080.002855.83.01.81e-111.63e-1126.855999999999998nan0.9810.931.10.1070.7520.001876.4285.086.4e-128.890000000000001e-1227.984nan1.5071.360.71.5511.6320.00621000000.066448.024.21e-081.31e-1018.439nan0.0032.44321.1-0.0640.0170.00900000000000000134900000.075358.921.12e-071.29e-1017.379nan0.0010.98869.2-0.0440000000000000040.0260000000000000020.01100000000000000101701200000
.....................................................................................................................................................................................................................................................................................................................
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2009.35000002479052062.93000000172911.413909768802842.21756927573031.073.90.1350.5160.6822316.82983.761.36e-128.09e-1329.66630.0510.64599999999999991.071.70.23-0.0279999999999999971.0884914.44806.065.54e-121.84e-1228.14228.1390.3611.163.0-0.013000000000000001-0.69400000000000010.843103.236.584.34e-121.2900000000000002e-1128.406999999999996nan3.2390.810.30.4153.55800000000000030.091-498.594.46-5.9e-125.54e-12nannan9.9991.16-1.10.0480.3770.0852135.213186.456.730000000000001e-128.359999999999999e-1227.93nan1.3491.340.8-1.1470.0682.778-1226.116097.25-6.0999999999999995e-121.9100000000000004e-11nannan9.9991.02-0.3-0.905-0.0152.401351200202
FalseFalseFalseFalseFalseFalseTrueTrueFalseFalseFalseFalse2322.54000002598832305.430000001254511.41411736213807342.223067061144091.013.8-0.0520000000000000050.7050.103000000000000011901.62927.851.1100000000000001e-126.97e-1329.88430.4519999999999980.681.01.6-0.2530.7670.1067779.34785.928.75e-121.64e-1227.64527.6580.2040.975.30.0139999999999999990.92299999999999990.084-534.922.68-1.8e-111.24e-11nannan9.9990.91-1.40.104000000000000010.330.001-597.574.52-6.799999999999999e-124.33e-12nannan9.9990.91-1.60.2170.337999999999999970.0165373.519030.721.7e-117.429999999999999e-1226.927nan0.476000000000000031.22.30.22899999999999998-0.462999999999999971.126440.915541.832.1899999999999998e-121.53e-1129.149nan7.5970.990.1-0.317-2.5592.116011751200000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1603.04000002479072178.73000000146311.42015596275282342.2139612073953861.143.7-0.30.4831.5894940.52779.02.8900000000000004e-127.68e-1328.849nan0.2891.03.8-0.1680.2720.738-632.44575.1-7.200000000000001e-131.85e-12nannan9.9991.2-0.4-0.630.1381.4269999999999998-1258.132.47-4.5e-111.8899999999999997e-11nannan9.9991.02-2.30.00.00.0-777.329.55-9.1e-125.51e-12nannan9.9990.99-1.70.00.00.04653.813329.481.4699999999999998e-119.87e-1227.084nan0.7311.911.5-0.1510.2072.2525304.516044.932.63e-111.74e-1126.45nan0.721.021.5-0.530.22.6060000000000003011452000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1966.66000002552661904.880000001644511.41198922453343742.2157962931884751.063.7-0.1460.5420.054771.32912.52.79e-128e-1328.88428.2370.3111.093.5-0.294-0.2670.033643.54638.397.269999999999999e-131.7200000000000001e-1230.34630.2012.5691.140.4-0.1310.92799999999999990.049-165.65.51-5.2000000000000005e-121.2900000000000002e-11nannan9.9990.9-0.41.1242.3160.01293.259.291.19e-124.11e-1229.814nan3.7630.870.3-0.2071.0570.0139999999999999991447.713042.054.56e-124.450000000000001e-1228.351999999999997nan1.0580.951.0-0.011000000000000001-3.9451.06-2705.815990.34-1.2999999999999999e-111.35e-11nannan9.9990.78-1.01.111-0.981.584011651000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2359.90000002616532053.20000000211111.40988542474495142.221420435706091.063.70.1910.4860.0842665.52875.351.56e-127.650000000000001e-1329.5229.7520.5341.12.00.104000000000000010.9020.1263907.74739.954.410000000000001e-121.83e-1228.3928.3810.451.182.40.0279999999999999971.35300000000000020.285-299.811.8-1.1e-111.19e-11nannan9.9990.95-0.90.43700000000000006-2.50699999999999970.017-215.890.1-2.6000000000000002e-124.68e-12nannan9.9990.95-0.50.534-0.9320.0090000000000000010.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001851000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1595.70000002525422274.860000001389411.42169244597452342.214666008134551.073.60.0991.0910.523490.52898.232.0299999999999996e-127.380000000000001e-1329.2329.3710.393999999999999961.022.80.0512.0290.5343787.14732.574.269999999999999e-122.0399999999999998e-1228.42428.4140.521.32.10.44799999999999995-0.226999999999999980.6559999999999999-379.219.31-1.2999999999999999e-111.2999999999999999e-11nannan9.9990.98-1.0-0.792-0.3320.07400000000000001-408.475.66-4.6e-124.48e-12nannan9.9991.0-1.0-0.100999999999999990.218999999999999970.015604.013353.221.9e-125.3e-1229.301nan3.02399999999999961.010.4-3.2820.223.4492734.316155.881.3599999999999999e-111.39e-1127.168000000000003nan1.1120.891.0-0.389-0.166999999999999981.29101101000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2277.6700000262062275.090000001511311.4141542715643242.2223154572359361.113.8-0.238000000000000020.9710.19253.72986.561.49e-137.32e-1332.0732.7575.3481.110.2-0.031-0.4240.3063666.94732.644.12e-121.76e-1228.46228.5210.4651.122.3-0.5479999999999999-0.0409999999999999950.514-566.525.37-2.0000000000000002e-111.19e-11nannan9.9990.76-1.70.2284.0390.078294.874.153.39e-124.469999999999999e-1228.676nan1.4350.910.8-0.2370.69200000000000010.0279999999999999976375.019026.22.01e-115.88e-1226.741nan0.3170.93.4-0.12-0.040.8554936.515663.152.45e-111.53e-1126.526999999999997nan0.680.811.60.0850.5121.201901000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2493.05000002608361857.700000000733311.40545297020719142.221312343545061.143.50.241000000000000020.71.0312782.62969.721.6299999999999997e-121.43e-1229.471999999999998nan0.95700000000000011.281.1-0.5160.57200000000000010.667-329.34815.9-3.9e-133.2499999999999997e-12nannan9.9991.41-0.10.1930.357000000000000040.596-474.46.58-1.6e-111.33e-11nannan9.9990.91-1.20.00.00.01344.070.531.5499999999999998e-114.6e-1227.025nan0.322999999999999950.763.40.291000000000000040.5040.0260000000000000020.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.0011351000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2301.9100000244261932.400000001521711.40869802179464942.219780892091981.053.6-0.0440000000000000041.0021.1922739.92968.811.61e-127.75e-1329.48529.5969999999999980.5241.02.1-0.283000000000000030.0191.0783201.84719.943.6200000000000003e-122.0099999999999997e-1228.60328.5930000000000040.6031.231.8-0.181000000000000021.1241.283000000000000178.94.262.81e-121.1499999999999999e-1128.878nan4.4550.890.2-0.148000000000000020.0610.012-215.386.27-2.3e-124.25e-12nannan9.9990.94-0.50.5682.6350.0870.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001251000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1870.32000002522361975.530000001819211.4141241731325342.215294543599380.983.70.1290.6161.3473019.22948.781.77e-127.979999999999998e-1329.38199999999999829.0819999999999970.491.122.20.3970.6740.608771.54763.368.66e-131.55e-1230.15630.1019999999999971.93699999999999980.870.6-0.2090.21.0590000000000002245.022.529.1e-121.32e-1127.601999999999997nan1.5710.710.7-0.040.6910.006999999999999999-199.358.62-2.2e-124.32e-12nannan9.9990.9-0.50.1840.346000000000000030.008-1360.613188.47-4.3e-126.5700000000000005e-12nannan9.9991.15-0.70.00.00.01238.116034.66.1600000000000004e-121.54e-1128.026nan2.72300000000000030.830.40.43700000000000006-0.1021.735011351200000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse139.70000000664345235.739999995250411.14002713724323941.5949161904238451.134.20.0010.472.8771123.58802.054.2299999999999996e-138.909999999999998e-1330.93431.0009999999999982.2861.110.50.181.01700000000000011.193819.616521.36.02e-132.7400000000000004e-1230.55130.5419999999999984.9391.30.2-0.39399999999999996-0.8661.84300000000000021414.36.42.99e-111.61e-1126.31nan0.5830.921.90.042-1.0790.02524.0199.473.96e-126.179999999999999e-1228.505nan1.6920.840.6-0.0152.4280.0255249.163158.891.05e-111.26e-1127.445nan1.31.330.8-0.541-0.0554.15600000000000111899.270717.093.820000000000001e-112.1899999999999997e-1126.046nan0.6231.071.70.1210.0212.753011651000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse45.02000000496014833.559999994632811.15101530625155141.596676412951291.114.8-0.1820.670.4158471.29065.823.28e-121.09e-1228.71128.9809999999999980.361.113.00.0579999999999999960.1540.63213201.016691.071.0100000000000001e-113.18e-1227.49199999999999727.4850.342999999999999971.263.20.159-0.2630.92561.83.981.19e-111.35e-1127.315nan1.2350.850.9-0.471.20.062-430.5230.36-3.2e-124.150000000000001e-12nannan9.9990.88-0.8-0.3713.1030.088000000000000017197.461992.181.4400000000000002e-118.859999999999999e-1227.101999999999997nan0.6670.911.60.47200000000000003-0.8993.343351.268266.341.1100000000000001e-122.0699999999999997e-1129.884nan9.9991.070.1-0.28300000000000003-0.3823.88301101002000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse124.22000000354114891.709999994725611.1514935652369841.5979929809703961.074.40.278999999999999971.0750.8713799.58730.351.47e-121.03e-1229.58130.060.7620.991.40.460.0579999999999999961.154000000000000110487.516054.268e-123.0600000000000003e-1227.74199999999999727.7450.4151.232.60.100999999999999991.0241.421-946.21.81-2.0000000000000002e-111.26e-11nannan9.9991.11-1.63.8479.9990.035-859.3208.6-6.3e-124.03e-12nannan9.9991.0-1.60.015-0.0230.02200000000000000210494.961350.072.1e-111.2900000000000002e-1126.693nan0.6671.421.60.102-0.0623.24516822.666808.65.3899999999999996e-112.0899999999999997e-1125.671nan0.422000000000000040.682.6-0.1240.8212.8139999999999996011351000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse491.730000004728628.1599999940499411.1340788283108741.598439306371291.33.61.2491.40400000000000010.9420000000000001-3482.79812.03-1.3000000000000001e-129.75e-13nannan9.9991.25-1.40.9009999999999999-1.3390.45117882.318260.271.3599999999999999e-113.22e-1227.164nan0.2571.454.21.3931.7571.099-1014.151.71-2.1e-111.4699999999999998e-11nannan9.9990.9-1.40.00.00.0-2806.0259.79-2.0000000000000002e-111.0800000000000001e-11nannan9.9990.87-1.80.00.00.0-843.367460.74-1.6999999999999998e-121.6e-11nannan9.9991.71-0.10.00.00.014713.174903.594.72e-112.64e-1125.816nan0.6071.261.80.327999999999999961.5792.601301200000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse45.10000000349737784.419999994372811.15016352741409441.5964319731037261.134.50.2970.6531.626999999999999810956.98636.314.24e-121.08e-1228.430999999999997nan0.2761.033.90.131-0.1021.251-3891.815874.79-2.9999999999999997e-123.39e-12nannan9.9991.31-0.92.0928.9020000000000013.199-1522.426.91-3.2e-111.64e-11nannan9.9991.2-2.00.00.00.01473.8225.731.07e-115.480000000000001e-1227.421999999999997nan0.55299999999999990.92.00.4310.91799999999999990.05313270.760622.412.66e-111.16e-1126.438000000000002nan0.4751.472.30.2490.7692.7821628.066785.315.26e-122.0200000000000002e-1128.198nan4.170.870.30.1490.0260000000000000023.0269999999999997011501000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse300.67000000529197124.4699999946125211.1370240437316141.596445499977821.243.8-0.2392.2240.9888530.98828.883.28e-129.2e-1328.71229.0119999999999970.3051.183.6-0.119000000000000013.5171.00214136.917768.31.0800000000000001e-112.9e-1227.4227.4140.2921.313.7-0.1931.5581.268-1678.8-5.81-3.6e-111.68e-11nannan9.9991.18-2.1-0.41200000000000003-1.2620.03700000000000000520.4204.341.2e-136.4599999999999995e-1232.298nan9.9991.130.0-1.3790.3640.0996309.564820.311.26e-111.39e-1127.245nan1.1951.620.9-0.1720.1633.6871575.671781.35.0500000000000005e-121.97e-1128.241999999999997nan4.2450.880.30.062-0.0110000000000000013.931011001000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse328.90000000475607371.3799999943713611.14111239844944641.598045071427151.163.8-0.118000000000000010.6163.438-6049.98542.92-2.3e-121e-12nannan9.9991.02-2.3-0.1519.5962.115-5593.716425.26-4.3e-122.5000000000000003e-12nannan9.9991.1-1.70.376-2.54699999999999972.0734632.440.899.83e-113.2100000000000004e-1125.018nan0.3551.33.1-0.10.4020.053-1094.0197.85-8e-125.59e-12nannan9.9990.83-1.40.00.00.0-1385.963262.95-2.7999999999999998e-121.64e-11nannan9.9991.55-0.20.00.00.032938.170232.931.06e-102.7300000000000002e-1124.94nan0.281.333.90.1320.3422.597011601010000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse546.950000003710761.3199999934338411.13428414824808941.59932039424321.083.60.2970.8612.937-1815.09237.35-6.9e-138.4e-13nannan9.9991.0-0.80.0840.236000000000000021.24119.817602.081.0699999999999999e-132.54e-1232.423nan9.9991.090.00.0270000000000000030.7822.5892267.64.874.75e-111.81e-1125.807nan0.412000000000000030.912.60.431.11599999999999990.013999999999999999-1588.6199.09-1.1e-117.639999999999999e-12nannan9.9991.25-1.50.00.00.05653.167000.591.13e-111.56e-1127.365nan1.4991.520.71.16400000000000016.1524.52223006.973242.077.379999999999999e-112.6899999999999996e-1125.33nan0.3961.042.70.5240.6933.13701351000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse729.7300000053044216.0699999951789311.13574316367944841.6024616659390741.123.60.0792.2281.9454766.79215.831.82e-127.08e-1329.34800000000000329.5930000000000040.421000000000000041.072.60.1052.1971.1626956.316934.975.3e-121.96e-1228.18928.180.4011.162.70.1591.14200000000000011.744-2312.789.92-4.7999999999999996e-111.72e-11nannan9.9991.1-2.80.1930.3630.371-856.9206.22-6.0999999999999995e-125.679999999999999e-12nannan9.9990.96-1.1-0.3228.3440.0383614.764680.27.240000000000001e-121.4499999999999998e-1127.85nan2.1751.490.5-1.1280.4574.6610000000000005-2560.772170.48-8.2e-122.43e-11nannan9.9991.24-0.32.3220.4564.11901901200000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse735.9100000053115553.179999994579511.14154186564717741.6042263474051951.063.60.5213.7951.4466386.69697.992.46e-126.929999999999999e-1329.02229.0709999999999980.3051.073.60.2623.7450.8514251.117863.193.2400000000000003e-121.7799999999999999e-1228.72528.7159999999999980.5981.021.81.042.1441.3359999999999999-1733.433.06-3.7e-111.52e-11nannan9.9990.97-2.45.9799.9990.113-1083.8247.92-8e-126.29e-12nannan9.9990.95-1.30.680.3370.152-3049.365793.02-6.0999999999999995e-121.05e-11nannan9.9991.27-0.60.00.00.02055.571931.66.56e-121.96e-1127.958000000000002nan3.2380.980.3-0.230.2662.71301901020000
" ], "text/plain": [ - "\n", - "F160W_ST F160W_GST F475W_ST F475W_GST ... F336W_FLAG F110W_FLAG F160W_FLAG\n", + "
\n", + "F814W_ST F814W_GST F475W_ST F475W_GST ... F336W_FLAG F110W_FLAG F160W_FLAG\n", " bool bool bool bool ... int64 int64 int64 \n", "-------- --------- -------- --------- ... ---------- ---------- ----------\n", - " False False True True ... 0 0 0\n", - " False False True True ... 0 0 0\n", - " True True True True ... 0 0 2\n", - " False False True True ... 0 0 0\n", - " False False True True ... 0 0 0\n", - " False False False False ... 0 0 0\n", - " False False False False ... 0 0 0\n", - " False False False False ... 0 0 0\n", " True True True True ... 0 0 0\n", - " True True True True ... 0 0 2\n", + " True True True True ... 2 0 0\n", + " True True False False ... 0 2 2\n", + " True True True True ... 0 0 0\n", + " True True False False ... 0 2 2\n", + " True True True True ... 0 0 0\n", + " True True True True ... 0 0 0\n", + " True True True True ... 2 0 0\n", + " True True True True ... 0 0 0\n", + " True True True True ... 0 0 0\n", " ... ... ... ... ... ... ... ...\n", - " False False False False ... 2 0 2\n", + " False False False False ... 0 0 0\n", " False False False False ... 0 0 0\n", " False False False False ... 0 0 0\n", " False False False False ... 0 0 0\n", @@ -167,13 +193,13 @@ " False False False False ... 0 0 0" ] }, - "execution_count": 16, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "hdul = fits.open(\"M31-B21-WEST_cutout.st.fits\")\n", + "hdul = fits.open(gst_file)\n", "Table(hdul[1].data)" ] }, @@ -181,26 +207,38 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "As we can see, there's a lot of columns and even more rows. For plotting the magnitude histograms, we're going to be interested in any column that contains the name VEGA. These are the columns with the magnitudes for each filter." + "As we can see, there's a lot of columns and even more rows. For plotting the magnitude histograms, we're going to be interested in any column that contains the name VEGA. These are the columns with the magnitudes for each filter.\n", + "\n", + "We could also use the X and Y columns to plot where are the sources are located, or the RA and DEC to map their actual position in the sky.\n", + "\n", + "In larger projects we might have multiple fields to analyze during each run, so there would be multiple **field_names**. Since this is just a small example, we just have one field so our index will always be equal to **0**." ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 4, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/christina/anaconda3/lib/python3.7/site-packages/beast/plotting/plot_mag_hist.py:52: RuntimeWarning: invalid value encountered in less\n", - " np.where(data_table[filt + \"_VEGA\"] < 90)\n" - ] - } - ], + "outputs": [], + "source": [ + "# the list of fields (we only have 1 for this example.)\n", + "field_names = [field_name]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can create some histogram plots to visualize the magnitude distribution of our sources." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], "source": [ - "# this if statement just checks if there's already a histogram file\n", - "if not os.path.isfile('./data/'+field_names[0]+'.gst_maghist.pdf'):\n", + "# this 'if' statement just checks if there's already a histogram file\n", + "if not os.path.isfile('./'+field_names[0]+'.st_maghist.pdf'):\n", " peak_mags = plot_mag_hist.plot_mag_hist(gst_file, stars_per_bin=70, max_bins=75)" ] }, @@ -208,77 +246,46 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "You can check out the results for the histograms in the file **./*_maghist.pdf**" + "You can check out the results for the histograms in the file ending with **_maghist.pdf**\n", + "\n", + "From this plot, we can also see what filters exist for the data. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# 1b: Make source density maps" + "# Step 1b. Make source density maps" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Next we'll be creating source density maps. These are maps of our data field colored such that they show how many stars/sources there are in each degree field. The standard size is 5 arc seconds squared, but because this is a small area, I'll plot every 1 arc second squared, just so that there is some resolution This decision can easily be changed by modifying the **pixsize** variable below." + "Next we'll be creating source density maps. These are maps of our data field colored such that they show how many stars/sources there are in each degree field. The standard size is 5 arc seconds squared. The size can easily be changed by modifying the **pixsize** variable below." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ - "# the list of fields (we only have 1 so far)\n", - "field_names = [\"M31-B21-WEST_cutout\"]\n", - "\n", - "# distance moduli and velocities\n", - "# http://adsabs.harvard.edu/abs/2013AJ....146...86T\n", - "# TODO: these values needs to be changed at some point\n", - "dist_mod = [24.36]\n", - "velocity = [-236]\n", - "\n", - "# the path+file for a reference image\n", - "#im_path = [\"14610_M33-B01_1.phot.fits.gz\"]\n", - "\n", - "# Pick the filter with the dimmest peak\n", + "# Pick the filter with the dimmest peak from the histogram\n", "ref_filter =[\"F475W\"]\n", "\n", "# choose a filter to use for removing artifacts\n", "# (remove catalog sources with filter_FLAG > 99)\n", - "flag_filter = [\"F275W\"]\n", - "\n", - "# number of fields\n", - "n_field = len(field_names)\n", - "\n", - "# Need to know what the correspondence is between filter names in the\n", - "# catalog and the BEAST filter names.\n", - "#\n", - "# These will be used to automatically determine the filters present in\n", - "# each GST file and fill in the datamodel.py file. The order doesn't\n", - "# matter, as long as the order in one list matches the order in the other\n", - "# list.\n", - "#\n", - "gst_filter_names = [\"F275W\", \"F475W\", \"F336W\", \"F814W\", \"F110W\", \"F160W\"]\n", - "beast_filter_names = [\n", - " \"HST_WFC3_F275W\",\n", - " \"HST_WFC3_F475W\",\n", - " \"HST_WFC3_F336W\",\n", - " \"HST_WFC3_F814W\",\n", - " \"HST_WFC3_F110W\",\n", - " \"HST_WFC3_F160W\",\n", - "]" + "flag_filter = [\"F275W\"]" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ - "# check to see if the file already exists\n", + "# check to see if the sourde density file already exists\n", "if not os.path.isfile(gst_file.replace(\".fits\", \"_source_den_image.fits\")):\n", " # if not, run all this other code\n", " \n", @@ -288,54 +295,72 @@ " sourceden_args = types.SimpleNamespace(\n", " subcommand=\"sourceden\",\n", " catfile=gst_file,\n", - " pixsize=1,\n", + " pixsize=5,\n", " npix=None,\n", " mag_name=ref_filter[0]+ \"_VEGA\",\n", " mag_cut=[17, peak_mags[ref_filter[0]] - 0.5],\n", " flag_name=flag_filter[0]+'_FLAG',\n", " )\n", - " create_background_density_map.main_make_map(sourceden_args)\n", - "\n", + " create_background_density_map.main_make_map(sourceden_args)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ "# new file name with the source density column\n", - "gst_file_sd = gst_file.replace(\".fits\", \"_with_sourceden.fits\")\n" + "gst_file_sd = gst_file.replace(\".fits\", \"_with_sourceden.fits\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This function should create 3 files: \n", + "* *M31-B09-EAST_subset.st_source_den_image.fits* : a file for viewing the source density information in ds9 or with matplotlib\n", + "\n", + "* *M31-B09-EAST_subset.st_sourceden_map.hd5* : the same file as source_den_image but now with even more data (the split_catalog_using_map function will end up using this file later on) \n", + "\n", + "* *M31-B09-EAST_subset.st_with_sourceden.fits* : the same as the original photometric file (gst_file) but now with an additional column for what density bin the source is located in" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Try to view the fits images of the source density maps\n", + "### View the fits images of the source density maps\n", "\n", "Now that we have the source density maps outputted, we can plot the image and see that the density looks like." ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Filename: ./M31-B21-WEST_cutout.st_source_den_image.fits\n", + "Filename: ./M31-B09-EAST_chunk.st_source_den_image.fits\n", "No. Name Ver Type Cards Dimensions Format\n", - " 0 PRIMARY 1 PrimaryHDU 19 (174, 175) float64 \n", + " 0 PRIMARY 1 PrimaryHDU 19 (12, 12) float64 \n", "\n", - "(175, 174)\n" + "(12, 12)\n" ] } ], "source": [ "# open the fits file\n", - "hdu_list = fits.open(\"./M31-B21-WEST_cutout.st_source_den_image.fits\")\n", + "hdu_list = fits.open(\"./%s.st_source_den_image.fits\"%field_name)\n", "hdu_list.info()\n", "\n", "# extract the image data\n", "image_data = hdu_list[0].data\n", "\n", "# take a look at what the image should look like\n", - "# in this case, we can see that the image is 5x6 squares\n", "print(type(image_data))\n", "print(image_data.shape)\n", "\n", @@ -345,22 +370,22 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "Text(0.5, 1.0, 'Density of Sources per 5 arcsec^2')" ] }, - "execution_count": 7, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAIzCAYAAADxp0j/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9fZCk13ndd+707Hxhd7GDHXwsAZAgQICEQIIQC/wKQ4amlJCWUpLsshMpZZcqUYp2TDlxyk5s2X/YSUVVzpfkOIqVgkuKpCpZFCVTMsu0jJCmWaBpAhCMAEvAIPFlktglCGKxs9wFZnZmp+fNH+899547/czOAljsznSfX9XWNN7ufr+70fc8554ndV0HY4wxxpi9xtTl3gFjjDHGmNeCf8QYY4wxZk/iHzHGGGOM2ZP4R4wxxhhj9iT+EWOMMcaYPcn05d4BY4wxxrzxfPxPXNG9dHJ4Sbb1b46u3dt13Sfe6O34R4wxxhgzAbx0cogH733zJdnW4MhTS5diOy4nGWOMMWZPYiXGGGOMmQA6AJvYvNy7cVGxEmOMMcaYPYmVGGOMMWYi6DDsrMQYY4wxxlx2rMQYY4wxE0DviRmvps9WYowxxhizJ7ESY4wxxkwInp1kjDHGGLMLsBJjjDHGTAAdOgw7e2KMMcYYY14TKaW5lNKDKaVHU0qPp5T+h7z8N1JK/y6l9Ej+d9dO67ISY4wxxkwIu2R20hqAj3Vd93JKaR+Af5VS+qP83H/Xdd3vX+iK/CPGGGOMMZeMrus6AC/n/9yX/72mX1cuJxljjDHmYrOUUnpI/n1Sn0wpDVJKjwD4PoAvdF33QH7qF1NKR1NKv5xSmt1pI1ZijDHGmAmgAzC8dOWkE13X3b3tvnTdEMBdKaVDAP4gpfROAL8A4HsAZgDcA+CvA/gfz7cRKzHGGGOMuSx0XXcKwJcBfKLruue7njUA/w+A9+30fv+IMcYYYyaETXSX5N/5SCldnRUYpJTmAfwogG+klI7kZQnATwF4bKfjcTnJGGOMMZeSIwB+M6U0QC+mfKbrun+aUvpSSulqAAnAIwD+4k4r8o8YY4wxZgLogF0Rdtd13VEAPxws/9irXZfLScYYY4zZk1iJMcYYYyaE8Wr/aCXGGGOMMXsUKzHGGGPMBNChu5Q5MZcEKzHGGGOM2ZNYiTHGGGMmgQ4YjpcQYyXGGGOMMXsTKzHGGGPMBNDBs5OMMcYYY3YFVmKMMcaYiSBhiHS5d+KiYiXGGGOMMXsS/4gxxhhjzJ7E5SRjjDFmAugAbHqKtTHGGGPM5cdKjDHGGDMh2NhrjDHGGLMLsBJjjDHGTAAdrMQYY4wxxuwKrMQYY4wxE8JmZyXGGGOMMeayYyXGGGOMmQDsiTHGGGOM2SVYiTHGGGMmgA4JwzHTLsbraIwxxhgzMViJMcYYYyYEz04yxhhjjNkFWIkxxhhjJoBxnJ20K37EzKTZbg5XXO7dMMZcQtJUFYK7zc3LuCfGXB7OYPlE13VXX+792Mvsih8xc7gC708/crl3wxhzCZmaXyiPN1dWLuOeGHN5+GL3+9++3Puw19kVP2KMMePN1EL9wYJb3wIASKvrZdH06hoAYOO5Y5d0v4yZLBKG3XhZYcfraIwxxhgzMViJMca84aQbjpTHw/l9AICBKDHGmDeeDsDmmGkX43U0xhhjjJkYrMQYY4wxE4KnWBtjzHkY3HZLeTy8KkcnnHxl5HUpm3kBoJufBQBM33hDWbb50sn62LOXjDEB/hFjjDHGTABdN36zk/wjxhjzuhksHS6Pu2PP1yee7BWU7t23j7xn86oD5TGnW1ORAay+GGN2xj9ijDHGmAlhc8w8MeOlKxljjDFmYrASY4x5VTSlo+uv6f/K81Mnz9THh6/qH8iyJCUjQgPwQA3AH7izPr7/6OvYY2MMwAaQ46VdjNfRGGOMMWZisBJjjNkW7XnE1N1ufqYuC1J31265pjyefeb7I8+f+GD//OFHTtXtrJ4b3bYuy8bgzUefuNBdN8aMMH6zk8braIwxxhgzMViJMcYYYyaAceyd5B8xxpgRmJyrWS7IpSMtIbG0dG5xvizbt7xaHjN1txh8AVz9pedGtsftlITfLdDwq4m+G88du4AjMcaMM+P1k8wYY4wxE4OVGGOMMWZCGHbjFXbnHzHGGABbSjXX9+Wf9UM102Xm1Nq2y7SE1JSbbn0LAGBNyk2Dsxv936ePy9b7cpLmxGj7Aq5n9eZalprLpSq3JzBmcvGPGGOMMWYC6JDGLuzOP2KMmWBUfVGGc6NfDcxtmZFlVGXmJNNFzbnTx3u1ZHhk/8j6BvI4FdPwWl2Yc2kAFFPxwuOizvD5J58Jj8EYM/74R4wxxhgzIWw67M4YY4wx5vJjJcaYCYTtBLRFAA23QDXqzohJd5jLNsOPvkfeM+zXp00fZTs0CM89/3JZlo73rQjSfDX7IpeRutVqEB5eX028LGVFOTLrn3hveTzzz/945HljTI8bQBpjjDHG7BKsxBgzgZx73ztGltGEC1QFZaANHj9wJ4C2qWM33xt7VUHpVupj5PVoou/sSVFgtq5HEoKbKdhXHeqXHZdt5+3ML9T1dVlh8rRrY0bpkMYuJ8ZKjDHGGGP2JFZijDHGmAnBDSCNMbuewdLh8pgG2pU7au7K/LN96Wj9TVeWZWrynfnuD0aeLwSG25TLPVsfs0Q1JWUi3Q7Z9+A3+tdJo8iNt10/8rqh7A/3Uc2+zLcZfPnh0f02xowd/hFjjDHGTABdBwzHLCfGP2KM2eNo6m4x2IoaspGVCvY5UmYe+3Z5vP7Ot5THTM7VnkgRxbCrxl0x/hKdgr0v/92c31efzwoMDb5AazTezH2ScOfbRvZxarVmCFMZQjb4bsWGX2PGC/+IMcYYYyaChE1M2OyklNKvp5S+n1J6bMvyv5xS+mZK6fGU0v8iy38hpfR0fu7jb8ROG2OMMcZciBLzGwB+BcBvcUFK6U8A+EkAd3Zdt5ZSuiYv/yEAPw3gDgBvAvDFlNJtXdcNL/aOGzPpMHVXSzDQx1tYOVJLPgdzqWbjxEtl2b7larilCbhpuJhLVWc+XEs6B77ydP/c9fW9G2L8HZx8pX/+WF3PJjNo8nNANftGpSgAwK19qWv57dXEu5RzZNKqHPPJU/32bq2lsYZHn4iXG2P2JDv+iOm67r6U0k1bFv9XAP5u13Vr+TX85vlJAJ/Oy/9dSulpAO8D8LWLtsfGGGOMedV0sLGX3AbgwymlXwRwFsBf67rujwFcD+B+ed2xvGyElNInAXwSAOYQm/CMMS2NiTerLjS4Ko0akhWLg8dHk3Kn3n17fSzm27n8V6dDUyXZ/+zpsqz0P5JkX0357eaz6TZQRnT6dmQg1hTgqezrXfra+sjr9Pg3rx+dvq1w6vlQFChjzN7ltf6ImQawCOADAN4L4DMppZuB0DHURSvouu4eAPcAwMF0VfgaY4wxxlw83ACy5xiAz3Y9DwLYBLCUl98or7sBwHdf3y4aY4wxxozyWpWYPwTwMQBfTindBmAGwAkAnwPwj1JKv4Te2HsrgAcvxo4aM2nQuKulmJUj+8vj+YeeBdCWUH5we1+iOfTwiyPr0/IMM2GYegsAm5KqywyX5duqaXZhsa8MH3j8xHn3WxN0S26LQEPv1HzNdzmbj2tOX/hUzYmhcThpQ8qchbMZmIY1Y6Y7j9nZmEmiQ8LmLmgAmVKaA3AfgFn0v0N+v+u6v51SeiuATwO4CsDDAP5813WjNWThQqZY/w56Y+7bU0rHUko/B+DXAdycp11/GsDPZlXmcQCfAfBvAfxzAJ/yzCRjjDHGCGsAPtZ13bsB3AXgEymlDwD4nwH8ctd1twJYBvBzO63oQmYn/cw2T/25bV7/iwB+caf1GmOMMebSshs8MV3XdQBezv+5L//r0Fd4/rO8/DcB/B0Av3q+dTmx15hdhM4WYukkyayh+dVgds7xmq3C+T7NjKU8g0hnLK0t7tvyDmBwdqM8ZqbMNQ+cKsvYYuDMHUtlGXNiVKDWNgA8hk5KR3ysbQfYEkGXaYsBlqD0uEqZKJj5pLOq9LhYwprSWUxP9a0X3JLAmIvKUkrpIfnve/KEHgBASmkA4N8AeBuA/wvAMwBOdV3HD+y2s5sV/4gxxhhjJoAOwOaly4k50XXd3dvuS281uSuldAjAHwC4PXrZThvxjxhjdgHMf1HjLtNyT99dByNNRkv+q2m5mvVC2DxxPafwAsDC86O5LMO5+nWw/96v9+8VNYQm4BmZb1hyYrYjJ+gmaUi5enOvCM0/e3L0ddusLzTn5vdMyXvOZQVGc2fUDMxsmn0PfqMsY/NJKzHGXHq6rjuVUvoy+siWQyml6azGXNDs5stfHDPGGGPMJSBheIn+nXcvUro6KzBIKc0D+FEATwD4lwD+TH7ZzwL4JzsdkZUYY4wxxlxKjgD4zeyLmQLwma7r/mlK6d8C+HRK6X8C8P8B+LWdVuQfMcZcYlg6UvPpVC5/aMNFPh+VfgBg+La+zKRZLCXrJZtVAeDsR+4YWfdG0IQRmu+SSyyQdbMUM/NYXXfHMtHJagAGat4Mm0UefOh4WTY426cuqNkXLIlJ6UfzZrifbZbNaCYMWyNoCU7PH02+WiY7e6gvVc3put0o0owhl9gTs/1+dN1RAD8cLH8Wfb/FC+byH40xxhhjzGvASowxbxAlcRdopwFn823Y9FAMrFQNGrVEGOSp1UzfBaoSsfa+d5Rlr1zbf8znn5V1c52ioJx5z9XlMTWJKHF39e6by2Oac6kKAXV6NlDTfVVB4XGd1fThvB5tCsljabZ981UjywYn63FxCraqL2pYjs7pfH6sypAbRZpxZSe/yl7DSowxxhhj9iRWYowxxpgJoOvSrvDEXEz8I8aYiwxLEZrfoqm6NMMyAReoZtk2J+UKbEVLHsxeGc4N5Pm+tKKlqoPRe7OBVktRi189Vh7TVKym2RkmCEtqLstEWp45II/52iZBOL9nPiiTabpulA1DUzBQU4e1BMVzoSbmgTS+5PmN1q1pwdM75d8YY3YF4/WTzBhjjDETg5UYYy4CauKlAtMkxYriERl6qRCoAZZoryJN7I1Mrnzt7HI15JZpxaI0DLMKxBReIO43FC1bfntdtvjNXk0ZiNIESeflVO7QICz7T4VFlZjQxKtKzMF+DLb/2Xo+Z7NpWvdbp4Sfj8YAnJWawW231OeffOaC1mPMbmY4ZuWk8ToaY4wxxkwMVmKMMcaYCaADsDlmU6z9I8aYV4mWjtJCNoBKCYWps2qk1bINk2i1rLT8oT7Fd+F7tQTFnJQDkoOi61w71JtYDz384nn3l8ZXLdXwsa5PDcJE95HlqMO/92hZdo55NJITE6Em5p22Q9T4y3OmZanFoEx2Nje5nHv+5fpe2bepo0/375HE3iiHh+dMs2po2AacH2PMbsE/YowxxpiJINkTY4wxxhizG7ASY8wFwjJSuuFIWcb8k00py2icPpk5VXNSBk/3zRA1R4YZLZsv1VwWtg7Y9+A36oqkfcHawdHadmnSKOWrcDZUnk2kpRYtwUzlWT46W4qlnNIcUtb98s0HEcG2A1NyfjiDiDOXdH80J0ezXDhzSGcQcduawbOQ36+zk7QktJHLSE0JKbdekHaU5TzqPpyRppL77+23vbmyAmP2Cn0DyPHyxFiJMcYYY8yexEqMMedh+sYbymMqB1RSAGAzqylULgBgIT9uUmGl0SLVD5pMAQBUN0RpKUZcWabbufazvcKgig5Vh5U7qlpUmjReVROAhzm3JjLuAkA6T6KtjnyYhUPFpV+2hq3otlNO0FWTLhUYVWe0kSRzb6LMF83gYYqv5unodWACsSpMm4EpmesZnK37ffChet07qnHOjjF7jOGYaRfjdTTGGGOMmRisxBhjjDETQIc0dp4Y/4gxZgtT7769/oeUb1j+aMyn+W9UvtF2AUB9zNLIYKGu53zx/Nq+QMsgaTUo+bAho8Tzcz8Wnq+lI5Zlhtvku7AkpM0VaRaOmic2TSHFnMwcGc2GGeTyjxpuo3VqiYr7EbVvUOPz2sff1W9Xcmlm5RrS8KvG50Fgcua5UgOwmoVXruttwIty3BvP1QaaxphLg3/EGGOMMRPC5pi5SPwjxkw0mr7LqcMrMkV6ICN6jvyj6btzss7I2Dq9ulke0zS6Twy5NAuf+tFby7KdknipsAxnqzx85RO9wqDpvAcf6vexaS6pCcOZ5bdXE+sVh0aVEaIm3Ug5Kim+qOenmS6d399M385qyXCuKj/r0gAyMidTbdknxucDX+nN0mp21m1TgTnxwfr80ud707WqLlR+VkRNU2UIGJ2CbYy59PhHjDHGGDMBdB0wHDNPzHjpSsYYY4yZGKzEmIlE818IyxssXQBb8016g+1A8lRoyGX+iK6nLT9U2HRRM182sqlUS0h8nRp7FRqE1TTLEktjpD25fclDy0FDeRnTe3Xb3B9NzWUJRk3MK1fXsdEi+rJN03wyl87UIE1jtJ57zdap26vLpvP7tSxF46/myWhpief88COjuT16DYlmw6h5mwnM2kBz/RPvBQDM3fd4WeZEX2PeWPwjxhhjjJkQPMXamD1GpLqczn1wmqTZPNW2W6lTkddvvqM8ns+qgyb2cuQ/pVOf2csnMM8CVQ2ITKGRaVZH+5qqS5OqToOm4qHKB9epSoOqCmTpaDW2UoFZFXMt1QdVecq6xbh83R9Jsm0+xkbRCvobcd3N9uQ9Z27qDdiDta4sYyqvKlozeb91KrZOp956fAAwHfSJIrqPqrCkPD1ep2VrfyxjzKXBP2KMMcaYCaAPuxsvK+x4HY0xxhhjJgYrMWYsiUpIL37sxvJ46fNPAmhNny9/+G0AqmEWABYef748riWouk4aSJvyRa6maBmoMcjmBoiQchKbHaqRNCIFeStaLmFpSUs+NMtqc0Um+up7teTDsg4Nvsq85KnwGF+RjJm552tZhkZjLW+xxKTm22ryrfuopuOF762PrIdEZaDt0oAjI3Y5L/cfLcsGH7hzZJ1JEpa5v5otw3ygtSAnx2m+ZrcwxHh5YqzEGGOMMWZPYiXGGGOMmQA6eHaSMbuWwW23lMebx2oZKN3Qz8S54oVaimA5YF3aCjC+n20BAEDnD0Wlno2ggSLX3T1VyyXrUmJALvloOWV2uV8WlUZ0RtK6tANgqUvLRGyNoFk2zHDRMhnLMtHMJqDOtGkyanJGi+a7sAQ1e7rOTtL9LeUU2Uduc23bSH+MbJuzjrREF22PJahme3LOWB5jaRCozR61BHk6l/f0nE1J6RF5f5rGl6X5Zj2PpbGnNMV0dowxFw//iDHGGGMmgvGbneQfMWbPQwVGjanDN1XlgyNjTYPlCFlHzbOnejOsmnkVZoaoaZQjf02xLaNvUVWokDRIjgz3Q9UHPR6iWSQ0rKq5tKxP1rM/aNJYGi5KDooaaaluqNJA1SlSg/avBjk58h410vK86DmhkVjP/aaoF1TTNBOGBulpUYaKGiLnZCDXhuc3Un5UBWMGzXZpyVST9F6IKPshpmD9X4hVGWNeH/4RY4wxxkwIm56dZIwxxhhz+bESY/YUU+++HUBr5kRuA7AukfVaOqKx9YCUGFg6+cHt1di6+NU+y0NzRbScwtKBljk2c+lo34PfqMvufNvIfkeNFJXlnLNy8Nv1I0nj74kfv60sW/paLV+wpNE0V8zH2JTW5kY/5ms3HwRQTa1AW6pJuVSzef1ouWkhaHa5HSw9TYsn+uyR/Xm/h3W/8+OSoQMAt9bsndpsoMLxpF4PjsrUuHvgK0+Xx8PAiH0+VvJ5AlqTb1QeZCaOZu90x+LSpDGXg64DhmM2O2lHJSal9Osppe+nlB4LnvtrKaUupbSU/zullP5+SunplNLRlNJ73oidNsYYY4y5ECXmNwD8CoDf0oUppRsB/IcAviOL/ySAW/O/9wP41fzXmFfNYOnw6MJsGlUz58rdN4+8TBsJFvIUYaCO4hdkinVRAUQN0CnUbEJ44FuSfMtmkDfUhopUHzaO1HXr9GwqMaryHPx2/1inXdP4G6kvQJxeS9VJFRZOGddlBx7/QbMvwJZE36zoREbjc2IGpjqljRJnT9bjplG3UUayqTZqbKkJyqqSMbFX9LeyP2qg3sjraabDy71Cpo5WdYaKjx4rz7OuR1Unqi6zol5RndHrSkNvCszHQG0+6URfc6kYt9lJOx5N13X3ATgZPPXLAP57tErvTwL4ra7nfgCHUkqj7XKNMcYYY14nr+knWUrpJwAc77ru0S1PXQ/gOfnvY3lZtI5PppQeSik9dA5uYW+MMcaYV8erNvamlBYA/C0A/1H0dLAs8uSh67p7ANwDAAfTVeFrzOShJaQzuSGjZnqwBKE3DFNYmwyRwJyrpaGa71IbJb7wp3sD7cHv1DKNGoQXskG2afqXywQbYqRllstMrV415ZZS3hFzcknQ1UaS2SB64oP1vSw7KZrvMr06O/I8DakshwEACxqa+aLHylKN5rusHFnK26jpvCxBNWZWOfdRWjChwVfR5pIHvlUzVHiMeo1Z1lLjMks6ahDuAnNyZL6elnXzeuixnJPSI49Xm4oefqS/4Ct3VPF5/qFnR9aj8LUzLieZS0CH5LYDAG4B8FYAj6aUAOAGAA+nlN6HXnm5UV57A4Dvvt6dNMYYY4zZyqv+EdN13dcBlKFNSulbAO7uuu5ESulzAH4+pfRp9IbeH3Rd5zmG5rxw2jSA0pMGqCP+yMwajb7VPKoj/9Nv6UfBV3+pVjqpIFDFAYCN+Tqdlqj5lArKvuW6jCrPiph4uW1VJ4ZyDHw+UkGqLlS3zRE+ALwsU373P9sftyoEZeQv6gPVlMHZatzl+dPjV0PqcK7fX/2CYG+p/c++jK2ckT5IqtRQRYt6DGn6MFWimSClGKiqzUKglkQMA9VN1zN33+P1xdnYq8Zm8sJH63nk8QPAgXwvLH5Tpu3nfZvXlF9JZT4fw4/WiZyDLz98Qe8x5rUwcWF3KaXfAfA1AG9PKR1LKf3ceV7+zwA8C+BpAP8QwF+6KHtpjDHGGLOFHZWYrut+Zofnb5LHHYBPvf7dMsYYY8zFpAPsiTHm9RBlvwzF4HomyAbRsgxZkfIFy0mag6LlJuasqLkyaprIMo+msWqphpkhWnZIq6PJrSw7zYgbjCUt3R8twbB0pOWitYO9UKolCz1GlkZYQgLaMlJZTzbAaqrw+kfuAAAMNPlY8ktKOrEs4/VQcy1LeGyYqPsF1LweLd8U+VfWzbTk5Q/dMLI9oJaeItNslMLbmK+llMVSz1CMvSzrafNJ3itLR+s6T9xZS128NgcfGk2fiBKZ9bpq9szcU30uUNMI8gN39n/vl40bY0L8I8YYY4yZECYu7M4YY4wxZjdiJcZcEqZv7MsEmt/BTBSN2l+YqzkpLOtoM0NK+td+uUbx83ktIegsnyiKnzN2ogaGGj+vMfea9VLIpYwm5j6js6V0hhHbHxx8aG3ktbqPQC5lSVlh/RPvrc8y1yWYAZOO1/ODxf6cajYKyzNadtMZVsjlD83omcnr1KaQC3/wQP9AZpjprCMydbiW4Fiq0bYCB76Vs3OkhKRlPV4TbeXAMpLOPiqNQaVMNn287k8tLdV7ijO09N4c5pJhc0+t1fewJKjlLS1HEZYj9bpqOXI9v18zejpm2YyszZjXSTd+OTFWYowxxhizJ7ESY94wNP/ldB7ZqwGUhl1tjhc2NZSk2Ws/+ySA1sxJNWFdmj5q/gm3qYbT4VyvJtDAClTVRZUfTaxFHlWrQlCOL2hwqMe6qcoAU35lRH7gK31DwtaY279ucNstZcnaocGWZ1sjKQ2kB7RxY04l1nNbsmPE7Lxy3dXlMRURPRd48pn+r2aw5Gus6pWOjEpjx20Sa+s+jn4VqYGYKliU3qznlmqSKmN6ntn4cXjLaIrviR+/rSxjMvKypCWrwZrZRao68R7QfWyM01v2AQDmc+NQPc98Xj8/m48+MbIeY14tHSYwJ8YYY4wxZjdiJcYYY4yZEMbNE+MfMeaiUyLUpXzBDBYtO7AcoFK6lhUo86vZk+WWqO3A7DYNICn9a54Km0vOiJlzc340dl7Nniw96bqZg6LGTZpHNZ/knJqCg3h7HleUS6Mc+uJT5fGpH721X/bwiyPv0RKKlta2Hpd+nel6uO9NK4d8XTW3h+d2KKU6NamyqaI2SmRZRrdHs/Pq3TeXRWqkLg0ypX3D1ueAevxq2G7aO+TyjZYReT2j9g5Ln3+yLNMSZrkX9P7IpvSoHNncj+97R3nMe1fNyT/4iT4nhtk5gE2+xmyHf8QYY4wxE4ATe40Rphaq4Van0A7ySF1HzRy56ug6GoXqqHnfltcB1cSpy77//n6K8bWfldG1jMQ5UqdyAQCDtQ5AO7rmtlVJUNMx911H/jR2qgE4SrHV/X05MDnTxBpN6d6u0SGVjMYUuprVLVGqOE1YDcBUfjpZnxppqTCoGlTUhJNVseAa9VqrAsVj0OabVEn0ddwPPfdKlILL66Xnh/uoit/g7LA+fyxPg76hTo3mvut6eG3UaK33KZWuqImnXg8ev6pXqgIRnapd1Da595jiq1O+hzRaGzPB2NhrjDHGmD2JlRhjjDFmQnA5yUw8NO4OJGlXG/dd+UQvna9cV0sAs1n5Vlmd5YRn/ss3l2Vv/exyeUyTK3NOgGpS1dLH0tHRLA41yFK+v1LKASw3aJmCj6LSBVCThZk0DMSlHi0TEc0yYY6IbmcjSojN79FckXNiCp3K719+ey1fXPFCvz9RM8PNILNEt6clDZZgBl9+uCwrhm0pHbFMpudBTbV8XpdxP34g9wxLKE0ujcBSjpbJeC9o/s8gP68NNzXf5WxufKnnh/uuJcHoekT7po0tWaLS9Uzl497unuI6NW+GJc7B06PGbi3b7TtWy7lNA0ljJgj/iDHGGGMmgA7j13bAP2LMeaF5V427nDrNacpAOw06WkY1YFVSdTnaV/WFplegKhoz0geI29REWioRh1dHp+QCcX+kqJ8SR/mNKVaTdrNy1CT2PtWrM5u3VnWGKlGkbOh6Tr2nJuQ20435Oo7o5dyrKsU9Y7osIOqXbADp1isAACAASURBVJtqwdR83ccITQM+8K1+nZoaOx2Ys8+dJ8UYEMXrWFU+pvK50mMu6oMoH2r85bnU6eJUdKJlS18bnQaur9V7guc5ul5ToqDofbG22G/nwMn6Hqotut9qMN76OqCqLZGBfFqWUYnS86OmbGMmFf+IMcYYYyYEtx0wxhhjjNkFWIkxBZaONu+sZaKzJYtjGL6HaPYFpXo19gKjDfMokT//kcWy7E33vlAe0/Q4JVkdTP5VSX7pa/22tWwwI6ZjXHVoZH+L+fap+rr1bPrUZN+GLO9ryWv6yB2jx5X/6jlj+QEABtk0SgO07ruex8hc2myH5mYxMTPlVRN7EzNRdkhL1oTYkugrJQ2WBKPE3rPbJPZyO2pI5rWJcnsOHo9zYmjE1VIWS2tzYtiO0NIiy1+t8be/NnrdedxadtL3MN2XZUmgZupoOm/UpFLLUrMn++1oKYslL13G6z4IylMAMH1jb5LeeO5Y+LwxAIBu/GYnWYkxxhhjzJ7ESsyEM1g6XB5z6rCaNOeDtFeOujlVGGhH/kwx1ZE9R9A6Cj1xZ68CLH39bH1vMH03MvuqYTJKXNUePBzF6wiZvPzxd5XH06t9hxpNadWp2twfNQPTFKq9gZbyOVPFgkqU0o7Oe1VBe/Fw3U3/omVJN84j9Ugl0yTZSKmginNWzaxP122XHlWyj1ynGml5zvVYo6nIek9x3apE8TxHU7GBqtrpemZ4D0iC8Hq+7htH6nXTKe+8/7RP0tb9AoBTt/fX68C36tRlTR2O7qUo0Rh5nc3UeXkPj1enfHOZnmdeL70/kqQOb2bjtKZoe9q12co4th2wEmOMMcaYS0ZK6caU0r9MKT2RUno8pfTf5OV/J6V0PKX0SP73Yzuty0qMMcYYMyHsEiVmA8Bf7bru4ZTSAQD/JqX0hfzcL3dd979d6Ir8I2YCoQkQaMtALA1oqYalAU0P3cjlnW6bDI2N+V7g2wyaMKqsfu1jvey+XQIuSwxavmGJYShlHr5HG/RpCYUGSTXFcj+0wSHPRVRC0uW6jGWypjyRywnaXFJNoZphsnV/o7wQPX6FJmAtN82sMkG3lpj0eAp5mZYsmmaHuXyxKfdHMexquSQfo2beaBmR90B0TtUMzHKK3o9TQcKylht5DPvkPuQ+Nq8TWLZbub0+f+XnjvYPJOuHpa50XJuKVoM4730tqXKbamcvJTHNG1Lzcj6XG3Kv8LijjBm9p/QzybJokxb96BMj7zdmN9B13fMAns+Pz6SUngBw/fnfFeNykjHGGDMBMLH3UvwDsJRSekj+fTLap5TSTQB+GMADedHPp5SOppR+PaW0GL1H8Y8YY4wxxlxsTnRdd7f8u2frC1JK+wH8YwB/peu60wB+FcAtAO5Cr9T87zttxOWkCWJw2y0AgGWR/nX2BUtCAykX8LGWOYazozVVLQMtPN8/jmaXKCqNk0Zqz6WFMzfVGRfcX81d2f9sX5546a4q92sUP8tIOmNnLa+T+ST9es7fuJEzcDRWfjaXXTS/ZN9TuaQjpbPptXoMJf8maOyobQ72PfiN/nXSdiBqoaD7zZLQTrOFeE4Pyeu0PMjZVlomY8lo8aujWT8600j3kWUpbR3B3B4t70U090/+G5X39HXruUSlZTKFZauBXK9yfqWpaJlpJCUkPY+DYNZeOec6Wyq32dDsnCj/RSmlvOBaN58j2TeWRZsSbv68D598ZmQ9ZnLpdocnBimlfeh/wPx213WfBYCu616Q5/8hgH+603qsxBhjjDHmkpFSSgB+DcATXdf9kiw/Ii/7UwAe22ldVmLGFJp3dWS2nkeus6eq6VPVAo4aNWMlGimysaOaNXXkzxG7qhwLOQbjjBgqiwFUzJwRh774VHlMpWGhxmrUpn+ff3LkdUA1SC6oynOehoJqUtaGi4O8PFIDNCGYR71dGi5H4gNJsaVJd/lD1XR9AH1y8tlDo5kkADCX/2qODlF1htdY94fKiS7TUT4VGDXfsmFjk1Wy2u+bKhKKvra+JzeXXK3viVQHVeU2X+ofazYK9ZcoLVjVsmZ/ssISJSNH110VlNZo3K9fzx/N5vuk2SUN1prsq1k/dXt121P5XETGZ0WPkecHch7ZdJOKDGBVxuwaPgTgzwP4ekrpkbzsbwL4mZTSXei/Rr8F4C/stCL/iDHGGGMmhN3QALLrun8FhDvyz17tulxOMsYYY8yexErMGKGR4yxZqBzOXA0tEakczuVRa4BrHqhmRcr8Wio48+HaNJJlh+9+/NqybP+zvYQelVV0fzai0pIYGFm+0TIPS0JRqwFF183nNWPlwFd6o+2KHIuamA89PJqTMsOoDtnHzWxYbsoTYiQtbRDk/K3lrBwtwdGIrOdnReL0WSbT8oSWusp6mF8SmHjV7KzlNu7bK2KWns/9EfVaM8NGj1X3gRlAavxmeesHUlpkiVKv65mbamnt0MOjJTWW/6L7ef3Q6LVWovuMRmoAQC71bVcm4/u1xFTOpZQJeTzbZf3w/XpdSdtI8zxtDlDLbJ08r41cy/bY5NUtCSaSzg0gjTHGGGN2B1ZixoEP3AkA2JRFkSH32J/oraBXPVFfqVNjObVTVYOlo9X4uxWddq0jzdVsEF58qo5Si4IiZkWaHnU0q6NzqhIHJJl0NpsZdZoq93te01V1R7NKokZRnRJNOOVblQ1VEDjKH0oaLEfar1xbP0o0xappWo2d+7IJU0fKVElWrqvT3/c/2ytMaqDWfaNKsHJdVQuoxTWpwnk6+r4HqyLBkfvcfY/X14mCwP05/HuPlmWrH7kDQJtyTKbEUNrsrxhoCVWMKNlXp5gvPH4SW1H1gYm1qsBRlZuXc6+mYSbw6jXksa7r8Wej9nZp0ty2xgTwM6f3M49HlZbo/M0GJvn1YB9VGZoKpoRrwvBA1EGS8nRyKzGTy26ZYn2xsBJjjDHGmD2JlRhjjDFmIkhj54nxj5g9xGDpcHmspRyK3Cpjf//9vZQ8e7qafd/62WUAbcnmB01uSy4nibkyyi9Z+F6/7cisCQAbWTqPEnDbclL/fs050fJWWa6yeC4nqemR5YntykUsrWhJh+Uvpv0CVZ5fl1KVHiONm5otw+LHzKlaBiEq/U+v1hIeSzmaRHxlvnYbYiRmTsjaoXo99PywbEMjNVBLEFpqAM+jNDhkuU3TgKPSTyfvmX+od/ZuSgYPzbV6/bUkxGujz299DtjGxNxch5ptRIY3j5pzo6aJuoyfmyjRWLN+WEaKzgkAIK+nSZjONCbcfC603NoYcvP9vO12+J6c+XJOSl4ISlD6vdAFadsbz/UlvKYJ7HO1rGfMXsM/YowxxpgJYdw8Mf4Rswdg4qYa/RQqJzoZ9OB3egVBFYsy6jtV1ZDIAKzvoSmSU2C3Q6dqU4GJeic100bz6HIB1eCqqsyBx08AqAnAQDX7qsrDdav6oqNqKjn6nuc/0jdHvfaPJbE3KwOqtKiiUaf81vPH1+qInKqVJiNH04D1nNKQWbW2qiDo5Fs9zzT07luuV56qk5pZeR5XRbmgobeTBFxdN1Ui3cfhkd5Aq6oIpyWrYqMKE98/JaoUp2Nr/ysqVQMxcc+IaVaXF/J1VcUr6hOlKhBVED0XJVpAtreTMsKp+WrSLVPmA/OxJkiHhl1J+aXhu0kVDpbpNV4NejQNs8Iy9e7by7Kpq/rHa6riyFT/4YmXRg/WmF2Mf8QYY4wxE0AH58QYY4wxxuwKrMTsVnL2CwBQvI/SWIHWSElY5lCpnWUZNYcqUQpp1FyQJsWmQV/QwE9TXMsykbFPf7CX2K/+0nNl2UGpGkRlGR6XmjUppZ94Zz0PS3M1O6RJLebzXz+7/T7KMj230XnjfjTJv9/qMzi2y4lhWasxhdJ8KcfF0oheD33Pobx+LU/wHtHmgTxnWiajuVjf25RQcklITd4b8/2YpylB5jKSlg41/yVKmp3Jxzjz3brsRL4XBpLLovc7Sz3NOWMDRElQns7nMTLPKnoueI9HqbpaotTzw2sYPb8m53Qlf+a0LBclJ58LmoGq8Zk5M/tX4zyecjxyLjgRIKnJO7PvqVpuHUpmDN/jstKY0vWpvePEjkpMSunXU0rfTyk9Jsv+15TSN1JKR1NKf5BSOiTP/UJK6emU0jdTSh9/o3bcGGOMMZPNhZSTfgPAJ7Ys+wKAd3ZddyeAJwH8AgCklH4IwE8DuCO/5x+klAYwxhhjzGVnE+mS/LtU7FhO6rruvpTSTVuW/b/yn/cD+DP58U8C+HTXdWsA/l1K6WkA7wPwtYuyt2MKZx8BVfp+8e11lsXBb/fLdIbGeiC760waytyac0JU+t+ucR+JJPbSAFIke10nyyha5GJ5Q0s7V8z1crmWYjRWn+Ublc25nWVpTMjzc8MXaolA3xPNWNmuNLf1vU2WS96fs0HrBM2B4fFHJSRdv54fzk7Sj/5w7sr8t16jWbnGLAXpsei+FVg6kBlEvM+0tKEc+uJT/TFIs8f9934dQNsugddju9Iij6uLsmXkfj78yEzeL5kFF5SJNl+S2XYLuZWFzCpi6U3j9zXXhp8R/awEZ6y2QZDPj97vvIZNaSjP8tFlg7Oj915U/tNSFbejzTk5C2q78lbZN8lU4nb0GHidksxK01FmKT+7nGT2CBfD2PtfAPij/Ph6AM/Jc8fyshFSSp9MKT2UUnroHEZr1sYYY4wx5+N1GXtTSn8LfWDsb3NR8LLQRtR13T0A7gGAg+mqMbMabc/UQh3Zc0TbiXGTJlU2EQTqqFFHlE2GBA25sp3l2/qR2dLROgqjuVBHeE1uSx6F6WieJk5VJGgo1fwWNb2WRomiIDDt9YU/fVtZtvjk6I9XVRU42uWxAMDB7/TjxsVvVtNsSXvVUbwqMXk/Tr+lrmc4O7oP3LaaWZlLA1QFQU2hZX1yzkoOjKhYqjDQLKxqwEpuYqjXo2S+BAm4+nykDDUKS1YsXnh/HaXPnu5H6Zr2q0rDmbtHm2Fy9K5GYyoea6IMNupEvmf1+Gnu1gaFPBeREViXqwpU3hvsj6bUDjWvKP9VtShKHY5UDDXJl4RcNQ3nba5oBs0//+N+fZ94b31Z/iwArUK1dTvRfab5R6dFJWMWUPjaoBFklJMDAFNHnwbgRN9xpYPD7goppZ8F8B8D+JGuK37nYwBulJfdAOC7W99rjDHGGPN6eU0/YlJKnwDw1wH8B13XaU/3zwH4RymlXwLwJgC3Anjwde+lMcYYY14nE9gAMqX0OwA+CmAppXQMwN9GPxtpFsAXUkoAcH/XdX+x67rHU0qfAfBv0ZeZPtV13WjntgmEZaSzH7mjLFt4vI8aV7Meywlq/otyYM7dMipDT4np8ZoHerm8MbjmMgm3CwAvfqwKZ1e80EvnKmOzQeTawXrjU+7W7IvG2JsNm0MpMdAgquUbSvUqkatJk5L9dc/U95wvNl6lfS0dLX2tLzGsv+vasoztBrS0xiNocmXEXKpm6rIsaFzI41+9u2bVLIjx9cxNfRnukJQvovYPLI2sy3r02vCc6/VcC+4LlhOueaAeS7lecnynfvTW8phlJi2hlPc++sTIspnv1pJF9J4oj0ZLOnyP3kcQQzZLPWHDxdUd8mTuP1oebuT8JTUVl7KWnIt9wTHoZ4kGaz3f/Hw1ZaAc+a/XV0tdKSijsfSmhvTEY5TSkJaQokyhl/NnTl/Hc84yF9BOLCjtI6TU6ewYs5u5kNlJPxMs/rXzvP4XAfzi69kpY4wxxlx8xi3szom9byBqjuNoce2QmEbzKE6NpFGTR44qdeTKBE+gGkgj0yObBAJVOdFR39Lnn6z7mE2Gaji9Mg+6o+Re3e9mf/NIk80BAWDt4+/q/0rTv4XneyVGFYvlWyX59al+P/WcMQ1XWc7T0afFfExVCaij1Ov/8Dtl2UbQ7JEqwLoam4OGixuzoypP04TwbaMT8lbuqFNaeQxNQ8YgYTnlUbcqQ9H0XJ2izqnc0X2kJlUqG7qvTZPPrEqcVTWJio+mSWfT9EDMvGripTq2JvfPvqwYqppI1U3N6arK8LyoOlGnU6+OLGsMwrK/RFU1qnac5q3bVmUjmk6tRvRiLBdFh8qJJlUPdN/ya4di2KZKpJ8u7m+U9gvI9ZTzQwVGlxUFSs5Jl828QJ22vhZFOKzUY91cGf0cGnM58I8YY4wxZkIYt9lJbgBpjDHGmD2JlZiLjJrkNrU0sNpLyJqnwnyPpjFflqTZEA8A1t/1ZgBtOWTtLs1+yM3hJBW2mD6lRMDyjybJrh2s22H2SmQaPvCVKjmz/KOG0qbUlUsnM6eqRM6SV5PpkY91Q0pjNNwCtWSmJSSW1gYnqyS/Md8fj6bmvnLttDzf/1ZfQN0flkHU2MvrMJB8G91fpthGBt/G9JmNq4Onq/yueSB8bXT+tBTDcoGW8vQaE82j2QxM4CwHROveDh6jZpowp0jPSbQ+3Q7LdmouTYevavZrO5pGnCyXyHku5SQxyrLcryUUNfny3tQS3VIQAjFYZelVj6uaczdyGU7PBbc5La9bC8p6up4ul5tO3Fn397rjOZ34WL0/uBeN4V/KgxyN6rGy5DUl6wGzfoISEoBS/tIy9IG8nenD9fPjctLepOusxBhjjDHG7AqsxLwOop5Hy5Jiq2moVFY0iZcKgRK9jiNxnc45LUmyHJ1H06l1G0xfVeVnIeh5NJTRXh2RVfWB79f9aQyOeTqpJqAy3XfxqzX9k+rDcLaODNpR/vzIsuUP9WZpTdLlKL+Zxnt69Nzq/kzlEfaM9NjhNPDtknZ1xE84+tYEZTXxEp1iyynlkXky6vOkqblR3ys1S/Ne0HNW3iPv5Yj93DbXkMe903TgaBSkSsMgCwNqYm6msPNYnnym3y8xw2vqcun1JNPxqRpEPbxUkdCUY04tTrIdVREvlGiqN7Jhee1976jb0/3N6OSQLm9bp79TQWkUkkxkzgbq+dF0XX4/RePuKVFVFKYNq2LMmIVFOWaum9fN7B3GLSfGSowxxhhj9iRWYowxxpgJwTkxpmQsJJFXWVqJGiECtTyk5QCWCZKUNJayjK/NFWlsVaOjlqq4Hc2QYGlFy0ksF2jZSWEZSUsjg7NXjWy7NMwTaVvLLiu5/DUtplmeF5X+aWxu8kkElkb0nHE9egzrwX7vkxLBS9kErUUDrvOMpNRG+7GTAVYl/bIeMewSLb1xm1oSI3oMfI+eZzUi89pGZl+WAJQX3l8fv+13+796z0QlHy21lOaKsk7ee5qAi/nRMlDUzFDvezZInJLXNaWYvM6oYeJmUBLV863r0TLS1v1oDML5Pu3EFLt5ay3/8X7X55Gfb7aX16nnUXOYeAfouSjH+JSsh8cn+63l05KzkxOCAQB5H9WIrvdXOS7ZtyhFXL/TSDExu1Gkucz4R4wxxhgzIXh2kjHGGGPMLsBKzA6wcePLOTYfaDMvyPJtvfy8WFP8t8waGc3WYHlnNYh2j/JkNH5/Jsi20FkhZX0y0yYqI0WzanQ2B2e5aNkkyi8ZSuQ/S11anogycZjlojOJotkX0yq/55kbwyP1nEWzXbTEcPDbayP7E5U3WAbQkoWuh3upJRjCWVNAfPyatzKcu3lkvynPq4zPe+qaB+o11EaSTbT+lvVotg7P46GHR17eROTr3RHNkmI7Cd0uy0gnfvy2suzqLz03uo9SGilNBuU8c/ZWk3MjLRGYa5KiY9ZZeUFpcVkbW+asn7YslTN65D5jltIBOT+RlSDdcGTk+dVtGnaW1wXHEKHNYqP16GyysOyZ912f4We7ndkk+UH58xWVnaJZd5qFxO9KZ8iYS4l/xBhjjDETQIc0duUk/4gJ4IgCQDHrqfpCQ502QFx8sh9JbmcuLc0FxZjJEZKmyw7O9iNEHWVxFDYnHsKo+Zsa9KgW6Ou4bVUAVEGYPTUE0GaM0ISo6gzRcxKN3NXg+r0/eWM+vjpqZkKwbk8NqQvZTKzpoTTDanYKFY/B2WE9Fh2Jf+zGkX2bORUkGueRPxtKAlXFAaq5eUZHrtnYuagprPOj5zlSKjjqBQDQIKtK1Fq/nrPSkHIQqGl6r/BcqqIRnZ/S1C9IuwWqwqKqAlOS9Z7i+/U86XExB6XJJcn31OZLkjuSFY0UnEegqjedml3ze5rjD7JsVJWiyVXvKSpnjcE1K5jaIDNKd1ZDLht2RgncTYPQoCGjmorPZIVT7/GtxwdsY16+SpK882M9p8O5/PkKGmkC9XpqU1Gei+i4lHM5H0eNzcMTL428zpiLiX/EGGOMMRPCmM2wtrHXGGOMMXsTKzGZwdLh8lhzFVgymrvv8friIIOFUivLJgBw7ZfFNJslYjXaMrr8sDRjUwMxYWlouI0ETJrcjaBJIcsJKm2rgZjG38ZcmSX2KA9F0RLMFS/0srtG7Q/W2mNR1ACr2SksrRz41qjZV88FS0fHf+rNZdkSqtT+yvV9Dfjxn/8HZdm7fukvAQDmX6zbW/xmv53Dv/doWXYuiJBXU+hLf/bdAIArXqj7yDKS7iNLZ0CV6vVe4HFpPhDfo+dezxXPr0r7UVmvmIql1MASg5ZdmjLHlmMBUIyiWlFn6wQtrer5icoO3ObmnW8ry2jcXZfzHZlLh/Iefn50vyPjr8J1zjwmLRZyCUXLLpu5fKqfs3nJwin5L3KsNLprs9SmvJNpMnUyapqN8pGmghJcc6Q0XYsRmaWw9UP1nuHkgENfHM2yUbSZKu+/aOKAHn9Y0nI5aXfhBpDGGGOMMbsDKzFERg9q+tvIzQkHMkIk0VTrpaN11MxpmvpaTdmcyirHpphmDz7Uj9LUZPjCR68ZWbeaPctoWY6BZkd9HY22OvrW/aHyoQbG+TwKU/WmNAeUkZkqEcX02IzCrxhZD5UfNZw26k2guvCcakotTcdvuveFkdcBwLmDvdry4U/9hbrsrv7v0mN1v0tTPzGhNmm5WXVQhWD29MGRYyjvlRF3t1JH/vtX+/XoteFZUWWMScNXf6mOvtnAEKjprHodpo/nqcoyYu9uHVXlynOB8RuoU7n1PtzMI3ttfsjzo+dE7y8qR6pksrGhps9yH9Wkq2ZybnMgwhC3o/sTNXNsrgP/6hTrwHzL9+jrmsfcnqgl5ftAPodRmvSGmIV5j6viVc6ZGGlLU0iZ0r2pBmsafmXbZd1y/AtUbOR16pGIEpYj1S5SZcr6dki5NpeZMTPFWIkxxhhjzJ7ESowxxhgzIYybJ2Yif8QMbrulPKb0OVRZWHIlmA2iZYWVIzTCjTbZ09dpzsMwyAEpRlyRl4scLnkYC5KMSxqpOZBvWcrRpFgml7bHV0V93TcSZoyMvCpOFNUykKa4ludzOSVKrgWqyVVLLEw+VhMzz5+aXleuFtP1O3qz48nTi2XZBz/+dQDAd//orWUZ5fKosR5Q02C1zBE1Xyxpr+IF13RaltH02kRGbGavNHkgWgrM65kJzLNRkmxDNoCek+1qKY/3oZYENTmZ0PjaZN7I4wWWInR/8v2qmSfcHy27qUzc5RKUrrs8J6WRqWAfo/KNHhfvGz1+BKWzLti2fnZ53+g9wzKSvjdap+bR8POgzSVTLnFubGPu570bplLLvaffc0TLbTxXuozm3cik3eTk0CAt1yDJd+3wyWdG3m/M62Uif8QYY4wxk0g3Zp6Ysf8Ro6pLSdqV5zlS2gz6BQHV7KgqBQ18oUlVRjBDGeVOB0bJU4Eywmmax/7yD5VlVz3IMWmdCnnwodF+QTpiR96ffbKP3A7VJaBVQWjWYzIrgDpCDpSEWRlxNX2C8jqX76oj5IN5m6ffUtc9e3qz2S7QTgdlmm40hXhK9ofKWGP2nZe+Tp/OCsps/fR+8+/1fWnO/Pt1vH/jb+RrJ0qMqjJUrRo1LRid7pS0OpNHr6o6DL7cNzaiWReo96GmGO97sI7OZ88zTTqagq8m1GFgUtb7pygsogZwerMqCeU5mUqrnzmaT0MjusBkYFVD9D7lfqoKxs9ao5wF0+AbZAoymeMxBgZo/bxOnRxdrtPfB8G6EUxf1jRcTsfW9RRFR95TFJj7j5ZlqnLw86fqHu8vVeWmg6naSY3sNPKvjKYgK5GCFMUwqLI6fWOfDr7x3LGR1xnzWhn7HzHGGGOM6UvL4+aJ8ewkY4wxxuxJxlaJoXSp5b9iuBPZdyWQsRUur2Ze4ECWTc9JMz7mW6i8qqbZyCjJhosqw+7PMv7s8WpCXXixf53m0qjMXfNWJNk2SAWlCVGzOKLGdCrjD28ebfzIc6LSvp4/rnNa0nd5LjQNlzK3HouWGrgeLReUxoUicU9LqYKosfeaB/rrHZU0Fr9a95v3gpqY9RpG8Jzp/cFy0okP1pJGk6PDzBQpXwx4X8j9weNmg0IAwELdzkaQKstrpyUfvk6XDXPpqLmGmqbMMmJQYmlKOvne1cRr5eUgqZpoGYxlEC1jTB8evfeacm2+n5v9ZtPDwPitz0f3lH42ee9F6dVA3GiSaNPMangfbS4J1LJXdG9qKaY0Hw0mJQD18xeV0bRpJq9nk2y8OvrZbYzhTGqW0hiN6HruWXqMUq77AxstrZlLTAfASowxxhhjzOVnrJQYqi8AsPyh/vHiV6uJjP1J5mQEwxRbHV3qKP9lMeERjpBU0eCITVNPlcgcx9GTpstyFH/DvzxbX5dHMzQCAzVJGKhTcRWOlHQfB1H6roxYp4JRHJUINQxypKnLoh4xNOYCVSX6/p97d1nG3lLNqFlIXKcoXjS5zp6qI1f2g5mrHtQm3Zjnfk7WzXM+lPN45ob+N/2BY1V90fsnSoMlC7JtKiNXNNPXq7rDxFqd7kolRhWCaHpuq/SNfnz5HjXp8tzreqK+RI2qkM+9KgRFVZCRPThil+uvCgITqPXzFfV3mqYaoPeRKAR8v6qWkcG4HIvuj5wnmm8HOlU5MrsyVVj3RxRcaow6puU2+Z0C1OugioVOVefzUURBYxrmsQTnBPgDLQAAIABJREFUDojvhRIPoT2qaNhuErjreea50OsFxkPI/pQJEfKZ4Dlr0puDfZ1aWCiPN1dWglcYc+GM1Y8YY4wxxmzPuE2xdjnJGGOMMXuSPavE0EioSadTUjphyqtmMtBQ97Ik4M4GpliWnRQ144Wt6bOsqtkOakJcC8o7lHspuStNk8b8Xi1tRCWGJqchS8CRWbHJNhG5nMs132Xxm6+MvI5lJD33jcEvb2dtsZZLFp7PjQJP12EAz9/mNpke3B8112qmDjnxzr7kceUT4Wra/ByuJ2jIufC94FjkPJ9b7Nej15D7uCL31IHH+3PWND0Uo2RU6uN+RA0QtWwSmXOjfA5dTymXiGk2MrjqcXN5lOmyLsbNYoqVkuBQ1skvGP0spAs0eOpnYOpon6fSGI1zeUfvw30PfqN/IK9rrtf8aJ4TDadnP3JHWcRSb5O3o9kp2XTclODy/uj9zG1r+aYx5OZz3qRuB9lMJDJs63Y2d0jkLYZcMdx2zXfA2sh7tIRZj2E2v3595HW6j3qt+TlsCu75Om0+us2H11x8rMQYY4wxxlx+9qwSY4wxxphXQxq7sLs99SNG48zLsm0i4CmLHgxmBe1fHc1YUXc/Z7sAtSyls4tYboqkduXMh+usAEbiN7OU8rajkpdCqTjK5wCq1K4y/8p1vTx9pcjhlJoHQVQ+UEsIhx85NfIebSswk0tV2kLgirn6/MZ8L/Dtv/frI9u4crXK/NGME4UNIDUnhbOKNNr/2ofONvsKbMm6yeUonTXC2Wtanopmb50LSmaa/0L0nJUSzXaNJPP+aNsG7nlT6svHozNA9BijUkTUXLFI/5Ixw5KFlj+j5oGpyRAZnXnH/W1aKASNRBWuZxg0M2z2O2i4GJVCm9kwLNsF3wVKE5efSyfRDKFm23L+wplqufyjx8DXRcsaoiyX4HPalNjks81ZZJrXxNKathUo7Rvk+HU9KZglxu8XzShimUiv0SAopzX3K1tCNEeUz49nLJnXyJ76EWOMMcaY18GYeWL2xI+YYuKVkS1pjLJNhsJo+mwZmchoZjZI3jz9ljqSKCMcGVFQaaBSANQRvY5qNDukvFfVlDxinV6tys+Zmxaa9QE1G0WX6bGu39wbElUZGpztn3+5MZz2ZlYdmVKRAGquiyYRE1Wn5p/tFYvDj9Rj1SaFxYAsI8AXP3YjgDa5NlKyVFVgFk40ktbRfj1ndZkqH6tB6jAVtsgIqcevpuLGfJm5+kvP5efq/TPI69R7Qd/LEb8ajmtqbD3WwcnR9zbrvMDGhSloOMn3qEKgShXv0xQYV/dJU0iqBprSqtemqECyb/wObRSA42zEKk0o5fZo9p3L8n4MJQeFalqUt6M05zFvs0ngzt8VU3IPbwTqjSoW3J9N2U4K1KvmGIKE3PW8HzNili5mcBqXt+zbQpDvMhUkHkeoKZvHqAnUC8yJCVLA1bhbFGrJj9LsqaLeRIqeqDw0alqRMRfCnvgRY4wxxpjXSecGkMYYY4wxu4Jdq8RoQ7mo2RiCpmQv5ZIFUMsWGvfOHAhdRmiEBYClr1V5lSUjllAAAFlqZQNHoMrY2kJATbpFshVJmpKtRt/TxKolBJZ5VOKlUbh/Uy/PNubboKEl16nrZlkFqHK6nguWsK58YlTO10h6PRc0Kk+vVmGdeTONiTdfwyiHQtHcHq5TywFRdkwXtJaIDJXaJmIur1PLIVEmjBI19owMwlHbiYGUsnh/rEjzQC3vhOQSRBjtrtvLn5GmMWHOsOm0jLFDy4PSXFG2U0ofQSNAoJZ6po+PNhlszK7nMcX2z49m5rCUpfcUy6y6P03LgyCen9e7ydbJpRh9b9PmgKURWU9Uvtkokf0jTwGo5V7NiiqR/kHejJYO16T8RdNs1IohKi3q63Q7PD8HvvJ0XQGvu3zX8r7QLJvSwkXLbnJt2NZBS49l/7VSxVKnmJ1dWrqIjJknxkqMMcYYY/Yku0KJSfNzmHr77QDqSExNj0x+Xb6tLlt8MjcCFNPeUPxiVCKakVswtfOF9/ZqwpH7luubpdHb2sF+mzpKpUFWjb2cdqwjKh0BccRSpisCOHDyyMh6olRdjtf1WHXdxUgXNGGcFqWB5ludsqzngudZ1RmO3DQVlVPD1Zir6ymqlZzH8n6dVpuPldcAAN507wvl8cFvj96e1QArSaGLo43n9PzwXopMkQMZzUZqmW7nhY/267nuj54Lt1P2Jx9jM9qV13H0zfsIQLl2ek5Lw9Jtpv5SCdP38P7R7VFhU8Mlp+PrOYvOn5prV7LSNxckzjbmazFpUukanKz3Ic3UOoKKlCqddjzIilF0XDOBQqb3oyqY/HxG5tJmyveW/QeAKYlmiPaX+3YuUEhUbdT74kBgaOY9p6ZzvkeVsZlV+bzn+0cH2bwmkSqnsQ4aVzD48sP9A1HCI86X/KvqSzNF/9bRpGqeqybFmUndYtjG/UfPuz/m1WBPjDHGGGPMZWfHHzEppV9PKX0/pfSYLLsqpfSFlNJT+e9iXp5SSn8/pfR0SuloSuk9b+TOG2OMMeZV0F2if5eICykn/QaAXwHwW7LsbwD4F13X/d2U0t/I//3XAfxJALfmf+8H8Kv57/nZ7GojvSBrYF+WWqdXa9mBpQ8VhZfu+Vp5vPKn+s0uYDTlVvMOrkUvq2rOySHJTVh8ctQgy9ISDbdALROd/vi7yjI19tKIqnkQlK+1vMNygJavahO5erRqqp3Lf1XGpllRz+NcPo9qOG3yIJ4fLdVQplazK6XtqLEiAKwUc3M1OdOQq1Iyz/n1f/idskzLBSxVqFma+zEMjlVNmAq3+bJcGxqjm7yZnLCsJUE959d+ub8vVIpvDNYZXmvN4FHjM8+zHhe3GZUJI0MlAMzn66SSPdep+9UY4jPMv6HZEtiSSDs/mhMTGeKj7JxOjyGXuiLTebNt+VxEDIOskrWb++u178FqJJ5e7bej53F2uX7N8XpGn6+oKWSTZSTl0S4o3ZbtSVmORu3t0r3LtdXyaD7WNmcol8K3MSlHjTjXggkRvFf0/tDP++on3tu/RyYG8POuny+Wkdoy0Fqzr0B7v6bjo2bg0rhSzcd5f5omlB+4s27HpSUj7KjEdF13H4Ctn8CfBPCb+fFvAvgpWf5bXc/9AA6llM7/7WSMMcYY8xp4rcbea7uuex4Auq57PqXEn9bXA3hOXncsLxuZK5pS+iSATwLAHBYwfPIZAAB/15/60VvLawdrvTalysZGHgGoGjCQkUKZIigjJo4GBzIK40hcR8r6nqL4iPmNo1g1XG7eef5RPPvtaI+dqGcQTZ96rMXgJ0Y/3TYVGO5r//6sWAQpo5p+uh/VsPv8Rxb79R2oKk/EkX/d3zaaZqsjN25bTZF8Xk2Ghx7uR1x6DXWdHL2uHay/tZmCrMd68KHcD0bTSpt+MOv5dfXa8LVM+wWAQ198Km9YEns1GTkfT2PIDab68z2NQVpHu/k+bKax5vc3ptBs3NzUXk6Lo6NY3cdm3zJlSrPsY7lemvYro/jISDrLkbaOrvM6w35AQqTiRL2cdJSuz5dUZtT7uZh0dT07QCVCDan8jEzJ54L7oebaqeY6jJrJqe7o1Plomnw0bVunpQ/Qj/sipW5qte6Dfn/wGuvnvUyTD0zMTTqxLOd10s8PlUe9t7id7fqeEf1cbATT5KlWls8e6veTTllvpo7f2L9n47lj59222YZdMMU6pXQj+urOdehDru/puu7/SCldBeB3AdwE4FsA/pOu65a3Ww9w8Y29ke05PGVd193Tdd3dXdfdvQ+jHzJjjDHGjCUbAP5q13W3A/gAgE+llH4I1apyK4B/kf/7vLzWHzEvsEyU/3I4cgzAjfK6GwB89zVuwxhjjDEXiw5Aly7Nv/PtRtc933Xdw/nxGQBPoK/abGdV2ZbXWk76HICfBfB3899/Ist/PqX0afSG3h+w7HShUFZdFLMi5Uw1srG8E6X4AjXHoC2x9DKl5pIsvNgbTptyksD3aGmkJMCKMXE6S5/bmTmZWNs0V2TOhUjbNMNGyaLK8ttrCYHpxE3eQ9AIbz2bDLUUpWWOs1m9vvqRut/Hfrx//I7/c1Q21nwOlcNZWtMSE/dHyw4v3dWXS3hugFaeZ5np4LfreihzT6/W60GZWqVtPe5hNkHrcVOeXhSZeiU4P9F1b8pWTEFGhfuhZZ6BnCuWybR0QmNnVOZQ9PzwXosag2oeEdF0Xh6/3sOQ5zt+lrS0ynKJmKF5n6phu9lmPj9RQ875wByrxlQte5Yka7nPXvyz7wawpaloNkNrvo02UuR10nPPa7wg5YuOybZBOQRoy56kJO0GpbXmPEsZZPPdfT7WZlAK1XIjTbrR5wOo51fvs9J8U7NacilQ7zMt+cwG+TdRcTm6x7nfTQlOyl+8V4ay32VSg9wLKT9eC8r+QL13pxZqKdiJvruSpZTSQ/Lf93Rdd8/WF6WUbgLwwwAewPZWlW3Z8UdMSul3AHw079AxAH8b/Y+Xz6SUfg7AdwD82fzyfwbgxwA8DWAFwH++0/qNMcYYc2noLp0n5kTXdXef7wUppf0A/jGAv9J13emUXn0Q344/Yrqu+5ltnvqR4LUdgE+96r0wxhhjzMSQUtqH/gfMb3dd99m8+IWU0pGswqhVZVt2RdsBhbLgpkRORxkjRHMqzkk0PuXVletqpD8zUa7941ouKBKnyMNaiiBaYqCMuxKUjqJmhECVX5c/WNUxzlTSSH/mN2gODCVyLS8sfrPKq5x1NGzi8kfzbTjzQCX7qGShs4GAuMy2Fb1elOf1nLGEsDFf180yks480GaPLLvo9aBUrbNdTtzZS9qLT0q5UWR3yup6r0SZMlGjyGhWjc7c4GwrXd/6kVEBfhCUB/V+ZplEm+NF+S66Hd5rTRPLfM6jPKI2dyTPWJJ1N5H1ucSwIeUC7q/OMBsE5zY1JY3RpqPcxyirRcdhei74vC5jmVHPI2c16swwZt4A9V4bSsmjlPc034SNPaN2CPIeLenwntPPF9sJbG6T7zJdmj2O3o9RnoruY5T/0tzXOU9l+NHRzNFmFqBkSZX1SYmJ11NLeZzVFjWcTDJ7Tb9fomyZqOS19fVb11PeI7PSeB+7rHQB7I7ZSQnArwF4ouu6X5KntrOqbMuu+xFjjDHGmLHmQwD+PICvp5Qeycv+Jra3qmzLrv0Ro8bEufyrv0mpDZri6ciEo7x2RJZH8ZIEOZVHOyuS2Dtb/cE1aVNMw6fvug1AayikiTUaFQN1JDq9Vn8Gnw1G7FEzO5reomaWQB2lNGbgPCLTERf3pzGUCm/9bD8dX9OLb/h8TnaVkStVJR09Defqe6ho6D4WhSBIJtXRoyofvIZ6XZmdoabHg3M35/fW6xFlxuj5VtPxVnQf1RTKLBdVIqjaRAZgpRnlUwWR9dB0q8camXTXb76j7k4eQQ9EyeM6GzUp3+9R8u92ybN8Xu+p8jhIS1aVR82efE9kJNV7nffSmhyLNuyksqSZJkUhEJWH6lSTOv3oE+Xh8k9/AECbkh2pADwGTSyOVAe952jeVRWsXGO5HpFpP8p8ie6zyEirx9B8R+QmjtNBY8/mvlZTbZAFVFKCr6pqK/dX7+tyHmV9TRNUfu/Itqm8qQLL7wo1Z+ux8nthn6p/XKeVmJ3ZYebQJdmFrvtX2L4T5YhV5Xy4AaQxxhhj9iS7VokxxhhjzMUl7QJPzMVk1/6IUYPWdJZVB4uj8eJN40aRiCMTcJH8cx4IUMsKmumiRrciwYsUT0Oubntwtj+Vr1w7Lcsk2jvvT5RHE5lHdT3ITSy1iZw21CvlCymh0Ox63R/VLhBR/Li2MmDLA91H7puWS+aDzBeV1SOzXhTJznXqcZ15TzVis8GmrofR52zWCAD77/16vz9iLlb5mUQlSC07RGbf6aDUEDark2vI53Xd3/4z15bHR/71WQDAWj7fQD0uNbuW0tINo1I7UM8Bje+67ab8FxxfnOkh5YlcEojKW1r64DJdT5PnlEsZTZkoMAizfKH3kRo3uZ2opKPlJG5bU1wGt91SHpd4eyl5RNed50LLN9PH673A89yUb3idTmo9evQ7S89pdL24bf28ngsypVble2w+KkPn928GZRctLW6KYTcxK0fOT1iO5L7JsW6ceKl/fS5jAVJCkm3ruhF8vnhfRMcPxM0uyzrzPpjJYdf+iDHGGGPMRaTDrpiddDHZEz9i2OhrRsxmnJbcTGmWUQFHks/9RB0BLz3Wj3Aa82hWAyI1BKijNB2lUrFQ0zBHCld/qSofOv2SqOmTZjYdmXFUqabhaN90RF6aqIkSdc0D55r933oMpJnumUf0uj2OjBtlK59nbSh4Vo15NKIujI6edPQ9nf3Vep6ovui21fS3dmgw8jpOu33h7rmyjNcaEFOxJrfmEWJr6sxKgxi/I+NrNIW4SV0O3nPNw6MNRNWcnIIR+9ZtAK36x/tvU4yrU7k5nprdNldGVUmO/Bk70FMfc98axStP/2/ViVFlZEqUKl7bZsp7/hxvyLRZKodLR0Xlked5n+q6eS81Ruz8uElLFuWIx6MNVvm5aJShrAIMRQHQL8tyLzXqRL5OK6PfU3p/aBIxpypH3y+6j/z8qPrSJEtnBU/Pc/Tdxft+XZWNl0YnDETRFfodQJP8K0FkhBp3VWGaDqbtL799NJWb94yqcgqvd9NckkrdjTX2wg0iJ4M98SPGGGOMMa+Xnfsa7TU8O8kYY4wxe5I9pcQMxbQ1891esmduCADsX63SJss7N/yDR8qysx+pGRuEpRPNU1EJnYZLlVcpq6tUGjV/Uzm0GNNExqWpODLAarItH89IP3CVvg89PGrqK0bAoFSlaIPMsKnmlv0CgNmT/bpf/FhtWL70tSohn/qJOwHE6cXnbhlNIVWpXdOLydx9j9f/yNcwSiu9YbmeezUC8jqdyWmuum+alFqaIqoZUUoVJZ9CZPVI2l65edSIrY95HfQ92jiUzDyW5XnZn2JMRS0tzD1VG+GFCahByYLnR0sWTSZMLuVoU9EoZ4nllNA0jvq50pJhyZaR/JuFI+8CsMUoK+VjliLYDBYAZgOjP9fdlASlfDMbpHHzXOx7SrJsWAoNXg+glAw7NfE+lff91noPl8+X3Nda8gFzfaSkc2C1L59GjRvng2wdoDY51XPG8/vyx99VlvF6N59xMY6HmTnMV5LzHWUUlddLGbBpRJpNw7ps6el+nY1JuSQo1+8rnVhA9DPDUrp+/06jf95lpfFmT/2IMcYYY8zrwMbe3QH7eGjTe/3lzhGZjkKIqhwcaUbTb4E4NZbLVMUY3tT/6lf1Yfnt1cC29PknAbQjDo7oo7RKVXFovlTVSUfI3A8dVZeprUFvF90eVSWgjrQbxSaPTgdixqMCw95HABpT9cL3+vPTTMvOoyudslxMhNeP7iNQR90HTo6eHx0x0sCoo3hNdqVqtajpoXnEporNVDDddTronZOC6ax6TqPE4qgf16ysmybdZtoo91WnS4tpuPR6kpH/eqDAEVXvuG29P6Lp1NGU3hkZace9c+r54XXXe/fA4/12VkUZ5TT5DZkmr8pQZPIs+6uG/qzYrMjnTM30vL/U8F5M54frMl67yJAM1KjRpt9UVjS0L1Ok2qpawOX6RVxMqjKlm8qP3veNKpW/DyIlk+cWqMfYpGSL8TmKB+BnTo+B6lbUo2ygibyHg+nrwXnWa1TOs3wvqJLJz5Ka+4u6KfvN87Nfz7eY4M14sGd/xBhjjDHmVTJmSoyNvcYYY4zZk+xZJYaJvgORkjfVUJZNjAcefwVbiXI3FuR5NW5SLlUTGWXMtYNSljrdZ6xoCUUzY05ns7CWbyjvR2a9lwLT7HbN3yir6/OR0ZJSsebAvHRXLU9wO03ZavEdI+thpoPK/VNBU0lNHV54fK3ZB6BKv1rmUJmb5bFTkuLLNGE9Z5TDNwKTLhBnX1Aa15LgynX985r/o+eRz+9bruvhvmtDySjNVMtxvEe0lFOaHQYmyyjfB6jnUrNjFr96bGS/WaLa2KEMFKUFa6mP901YftASghiWeYw0yOt2tISwnM3gV37uaH2dlJv4mdTPM1OrB7LfNBI310PLQHnfGuNvPsbtSiwRZZ1S3iuNG4Prpec7Mjk3htwgsZef7TM31c9ClFMVGd47uaeYkNt8djXRl001JcW3fNdK8vF6zmaKypZ6zzTlttXRBG6esyjXR++pyPjbkD9rJ378trKI5e6o/DvRWIkxxhhjjLn87FklxhhjjDGvgg5jF3a353/EaHYMRC6nhKiNEumyZ2Q20DrcSdOMLf/VWUeUYkvMNmpZQctOc5pZkCP9dd2M6lfpe/3QVSPrjma2aNmKUfzKQt7HsFwikv1B1HIRZV6V/k/kWHHNgSmy+TZlIMIZWUCbvbJ1PVF+DVAl+NlglpOWaihfq0S+LrOFShlEZriUcoHE7vMab3dcfF7laV5vlnH648n7K6UGvV56vQln0emsM+7vdu/l8Wq7Cc0b2Yqu58xNo60qtITAcsHgyw/XbbOcEJRwpySLRXNZZoLcGpaG9NzyntQsJ50xyGuis8A4y/A7H6/3/9t+t79G25U614NGiqV9QVCCje5rRctEPEYtmXJ2n84g03I1WwwcPF7vwxQ0QCT6PaT34b6ybLSsqd8f3HbUIBeo35cz27RtIOX8yT0eZcw0246W5TLqtMxYYrltKN/dUQlJy8yH8m2qJXxeh2ZmnNy7QzeLHAv2/I8YY4wxxlwYacw8MWP1I0aTIJlBoaM5GiCjJFk146lSMzg5O/I8819mReU4EOR76Hqolsw/VA2F80z9FCViLm9HFZuyDt2eqCULeQQUGVv3BZkUbJgItCMyjtxUveLIJsqb0ZFiM1rLozg12WlDS8KRdGN21mZ1bBQouT40AK7fPDpC1ms9G+S7NIbKkWfr/bO2zfmJcnSoZGhmB5snqsExyiHaDPJE9J4p2xYFhY0SAWDxyWzSlFHz8E3bGy51NMt7pjGUymi4pOq++/a6At7jMvqm4jEQ82iT7hxkE5UsJLlnuqxU6HlqG22ONmrl8bx1WY29/f7odVNlbZDPuabKcj8acymNv7JM4X0a5QM1+52PS5fpdmhej0zFqmwMnu4VBM2BUUPuVKDeFGVNrkdkAF6NFA9NIuZ+68SJIJclavYZXYcZ/a7kfaPHmtW/2RtHU6x1O6p+lkwpbaq62p+Lg/Kd2zR05fHcX5Vps/cYqx8xxhhjjDkPY6bEeHaSMcYYY/YkY6XEMM8AkKaBYqhjrgLNdECV8TVrQxkETf+YP/D0p2pR4trZvrngYC3+mUsDsZYYKO2q4TTKmODzjGsHWglYJfayLMvKeqyUVQfbNevbRjoHWiPk9/50Xya65gExeGo0fpbil05W6ZYmPDVSR3Hmaj6dy3+j1gitGbp/j7YQ0GIcJW+9hix50HAN1HKKXo8mYyIo8fGc6Xq6wMTc7FtgquRxaXYKSwxNGejx0fwTlflplBxKfD/vKS2r1LYLcduBCN0OiUqLCqV/Pa6t+w9Ug7Dmt0R5M2FrBF325DMAgLOfeG9ZthCUFnU7zCDRz9ELP/N2AMCb7n2h7o+UPHj+ouulRJ9nXcbr3jQ4PDQaxc8y0nZloLlsIE6aCZO/+6LvFz2WyGgeGXang7YdWnaaDYy9ChsxDpYOn/d1w4++p9+elKWaUnAuN21KqbMY4rXUWb7PYpNyuQdkf2z23XtYiTHGGGPMnmSslBiFqoz+SqMqMZyt8+Q5EtKpps/9xLXl8ZVPrDavA6q58q2/piOPfsT+/L83V5a8+fOjCkKjWOQRkpo1Vd0gZ27q84S1gWGovsiIq6SiSlNIjhS3S4DlSGtqVczAwYidhlJN1NTGhBxBqyZFBSZqpKn7XRQ01Om2OlKsI0lpMsjRVTDteju4zdNv0enb/WMdcUZN9hTuz4ZM1WaTuXVRA9SwGilwNKSuqEE4m7d16rMqLBxVNiPkLc8BOpW9HivvQ1WFdGRfmkuKMbyaXeu1ZjNQnYIfqSU69ZvXVRUm7m9z3dQMOzdqxaYRuxO1lUZkPd+q+PAYdDvRsR65L79Hp5PLe3j+zoqxd/6hZ0fWXQy3aqAWhWkzUG8iZSQ0auftAXUiQ6PeBCpy+R6S7Ubpvc33VL5MUdL5gUCBVcWuUVafyrnogcoTTRxQmmP4QJ/uvLnN8+VY8mezidTQ5ORA3WJUgKr648a4zU6yEmOMMcaYPcnYKjHGGGOM2YITe/cYT1VD6sJ8L8U3zQGDRm7zL1a9jdK/ypVLR7Ox9z+tbSPf+k966XvwvuW67b9Xtz0MGqZRSr02kP5V4i0NJ2+JTZiU7NWsOMxSqR5rZDxUwynyY82j0XIU4fOzKouL1EwZmwnBQM10UMmex6CJmguo5RKWGzR3hMejycgsBWqGRmmoCAAL/X5uimmP5sEoGVnlbDUV817SPBWeUz1PXLdK+1rKmWGTPTlnLKfMPhOYI8WsGaWn6n2BwABb96Fuj+dR7wktT2xmWf2c3nOrkrGRKanMoaGy7u+6ZO+U3B8p1aiJl+h1j0o+5b1qvs7rbBoGBs8rPAeRqXjtnXHSLo9rXq4Hyyh6jViObLJKgnylOSnxskyrqv8w76N+L2hTUZ6fJm8mlyv1M85lLFEDbSPJYv6W8xyVpfgeLSnrPUC0ZFjKfvIeHqOuu1wPOY/NNc7lWuSyElDLXwNZN83iTWlRzj0/503GEx9kg7jZ/bicZIwxxpg9ydgrMWrQihJZS6KomBo5hRoAVo6MKjE0jL3pvjpW4nqu+Xt15Mp+OEAdqesolX2S1KTLkZKaPiN0iiTXMxNMgdVEURoGdfSko2uOuPbf+/WyjOdP0zM5llkJTI0AsO+p/lgPiYLAEXRjGMyjK1UxdDRclsk5K8mtMpWdCoOqDzqKpUKzb1kMl/l66hR0GmkbxUsGdB5fAAAgAElEQVSmllMR2Qx6PalZWkfLJOorEykRpwNj72qQTgzU0XekujT3R2TwDBQN7XnEqbqRcqgmXb5OVZ5GLQj2m+qWGmAjr2GTJp0VU6awAqgKlaorWQ2IpnTrdvQzMJ3P/YuSME2jsqpyOoqPVLvp46PXuCTIitIUTdXW6e9lH+U9VCX0fOo553qiadCN8pyP4UpVfoJkZIX3QBckBOtxbTBuQLbXwOskik1ZpyjmHFmriV3hFO0UbUf2J5oEEH0ONf2c+zNgnzDUaftjQQeH3RljjDHG7AbGXokxxhhjTGbMlJiJ+hHD0ojK1CyJnHhnLXPc8IVqBJteDdJg8/vV9FkakIk0uW85yFWQ5pNsCnnlE6NN75p29Xl7mnegWS4XSmkspyZKbbyWS1ibmkXCXA2RmVkSa0x7UTaGbJvHNVQjMQ3JYuBTQybLX5Ecrlk/W/cLANZvvkOOazRTh2WkxribaUoIgVlRibIoyLZlKa47KKc0+5Pl90HQUBGo5QItjURlKZpKtYTEa6R5IZr22gUlM5a15h8aTT7W/ZoJ5HvNeSlNGKXsVJJ/JU+lKW/RTC33a8k9Csoceu71885ylB5fyu/RrJuo7NA0SmQmjDxf9ldya7g9LUHq9dqcz+tsrk0+vudqg8PpXM6NyoCA3M+yjKXbpE0hg8aN+rmZChrQRnI9P4d6nvg57YLt9a/tl+t3G0tVSczyvAf0c6/Xc+XD/fdTVAbSz2HJnJL7Omq0qcfPbWrJlOUrp/nuTibqR4wxxhgzyYxb2N1k/ogRE9lgsTf53vi5+su7GSmcRw1opv7m3jnsEQS0fYL4WFWHK4NRz3oeSZx+c700B7/Tj2Kj1Fegmhgb4yFHzaqWlORWMQQG/YCa6Zer/QhIe0tRTVLD27QYf4taEozwdPr2/nv7adCnfqJOleRUbKCOOqOp5ZqwzNGgpqfquSoqkOwPDZfNVNw8ut7cIe1Xzz0VhPlgZKtppTr9uxyLqDPh88GUZh2Jl2mlqhblc6FTejmin3qpXlccHp2yO9WMmtfz3zrSnufUXzk/VO/U5K2mWipCqjBRiRgEKlek6G1HNPLfidBgHRBGL+hnKasuat6PVL1IqdL/h5SkYjn3PJfzmrDM1Ga5/qqmlHTnQEHTY+ZjVSSmApPvYBulphxX/p6Kvl/0u+LMDVXHufFztQ/VyP6I6sSIAo1JmBGFjtEO+lngPTXD6dcAzuX1aCp3iQRA3DNrihMQ9PzkCSED91jalUzmjxhjjDFmEhkzJcazk4wxxhizJ5lIJUazY9jWPWkOiki/lMMXEDRqi1Jzz8anlLK7SrNRngil+IXaB7HIy1EZA6jlFi1PrOWyluagsvywXaYJDZBaBuM2NdWTkvOqNDiENK1jtk5UQpiVYziX83p0ewq3ree5mktrLs1KloW1eWRjTmY5Sc93kOYZJY6qCZOlDs3w4bXR9bDMMTg5miui79dGeWHCbi4hDMVQOqslFhp7pVywFiX25mTTqSBXo8nWkVJEeSwZLCx56fGzHKJFDC1VRE0zo+acUdklMier8bfk/0jZYZg/20MpbyFIpVai5oHn8rojIzWAYt4tOTCQxF7JOpo9mZuhqjFezg/vFb2GM/lzqo0/mRK9KaVwJlHrtrXsnfK5WtGSKcs/9x+tx5rLLkA1XR/7WDXIvvnzfQq5lvem8yFGmUEHPn1/WTar3xFcJue0fH7U2Jyv52bQ7BSQHB1N8c2f3aGUZbmdqyXmZVPM4vy+0ATu4z/1ZgDA9X/4nbLsdC4ZqpEYe7mcZCXGGGOMMebyM5FKjDHGGDNppM6zkyYClY0bCTHDksYgKMWcuLOWi655oErx5wIZm675K14YLU8s31pn8Sx9/SyAtlwURaSrTM9ZPi9+7MayjNvR/dbSAMtNUYlB4/nZJuCVa3U91eHPmVpNdgpnM0gZiPurJZsNKbFotghh2ebMh6vUzO1tbhNTTlTGZskjamDXlO1O1sf87DdNGA8xL2O0JBbNFAGq5N/M6AnyKc5+pM+6aUpeQmlOKsuidhVaPtxKM4PsaC2NaNYJiUpeRGdi6YyV6WA2EI9RZfy1fH8NpNSin72oeWnZHymrDG4YLe9tl4lS9icos/I8avmqaXlwHnSmGfexaYop5SbmEIVZJXoNcilHz1k0K2sjKFW15yJfD2me2MwYfLY/3iP/+mxZVsq6+lnh+uTcs/SoMxWngm3rPnL2p5aq2BamKfMFLTr0s8L7Vb8jy/+rpUys569sT2Y/XvvHo581tmFpZpV5ptKu4XWVk1JK/21K6fGU0mMppd9JKc2llN6aUnogpfRUSul3U0rxN7kxxhhjLi1dujT/LhGvWYlJKV0P4L8G8ENd162mlD4D4KcB/BiAX+667tMppf8bwM8B+NWLsrdvIJpTMHXV7eXxMEiV5UhTR08crSw+qZkMdQR4+q5+NHDw2/X5xd/8Wr9u+VXPUcPc86NZLjrCmz29WR4zm0YNshw1aQoplQHNhqEJF6jmSR2ZUL1YkPdwhHdwG0WnjJCD0ZMm4HL0peqLqgEzVFZkPZs0MK7W4+doTvNt9FwMgwaIZTR81WgDTFUc9FwURKkpCpTs41pgON0no2qO7qMmhTpSjPJ/9HGkutC8HDVejFKXm/wjSTZdz8c4mK/XJko45bLtGi5GCbPRyIkG2cj0u922y/WS1525Y6lfX5DmquvR61WygkRNKupF1KwQkqNzgU0aG2OqHGP5bMu2aQhv1E9mAsl6ouvQmLPZNPN4ve95b+o9LulBRZnch2tGlimRkZjbU/WqJBKjJgerEtWkh2eKmrJNWjaVnIEqUfl66Lnlfv//7b1vlF1Xmd757Lql+mdJrrJkZLXlYGxsxzFtaC8Dpr1gOUAHE3oBmTRrwfTqeDLMeCYr3dM9SaYxnTXT82E+kJlMGjKTkDgNgZ5hoDsOBK+Gxg24PTAsMAgDBrfANmrAkuW/kiyZKlWpbu35cPa797PrvFclqUpV98/zW8urrs6955y99zn3+uz3ffbzegU3m7Y1Y/r0zVN52579KQLFkb/02iuuCWCwRb5DwHqFveMApkMI42i+C0cAvBHAPen9jwN45zrPIYQQQoiNIG7Sf5vEeT/ExBgPA/jnAH6G5uHlBQDfBnA8xmhTxEMALvf2DyHcGULYH0LYfxpn56IphBBCCGGsJ500B+AdAF4G4DiA/wDgrc5H3WeyGOPdAO4GgJ3hkr7SS3P4NBcbozCu52nRvbrtIcJhTE7rZK69uvW55RQi9sSYLHTldMr2g20x2pITNjah7cRx/6Exh2kdH5Tl6fK8uzNFgzk9UxVes5QQpVC6KXTLKZ9cvoCt72mfHGJ3fC5+fl0JpVt/Jo8XcbHno+P5SgSnACZv88TAlU273SsU+s7j54hjARI0k5jRUj1cZDCnaByvFqCkqzgFZUk/Ln9hHj9eWqUqiEdh/m2H2umhbkrvVX47ucRCOQ779QSnRMe25HXCBScXzGr/YNvLBijXZGyB7PlzKrQc20TnXsmLiup6NfdNVaQzvV+Js8mjJaZr61ryU2po4gvfal6QkJbHuZu9d8q9a/4w253yINwer18skLXyGbzN7ude191Sa3wdciqY0jeWWqnS8DPpu83fe+de4fIWXafsieszRe9be9lnKfeB00mp3ctOCQEA6CYBcU4hwfcMKr9t5Th8jaeQ5Ad0f7AXmbiwrGd10psB/FWM8VkACCF8GsAvA5gNIYynaMw+AE+uv5lCCCGEWC9aYl34GYBbQggzABYAvAnAfgB/AeDXAHwKwB0APrveRm42vGRu+33pyZxmjd7TuodXuJBnUiYG5giLzch4BmOzJ3aAZXiWu3qfasaVjs0zuJ37y4zLHFK5eODYQiNg40iLzch4KXI1g07LLr1Cdxd7s8ceS4A9AbWNHy9LN/fRCZrtMt71stnuQlrGDPji1Gr8Uh+qIoI221vDiXktMaNdQ16CbjNpXtpbLX9vHaVEm7iQplew1Oa/3NZxbpcTibDrVEUaUnumaIbLERbbn0XOOXLELrUpmtarQGMWiz5W7rPteGnap0TY3IKLvEzaGXtrW6CI1or1m2bXvJzYomjBWeY8TdcaSbS/xCJ4igLZ+FX9tnawO3NaTsxtYBGrjTNH8owZJ+LH37nILrZJ0OzZA3DB17FXNtGHcZTl1LbkmSPZi1cV24Od+5vtbC1g9ztHGO33pyrwSNfNW1qe32eHbWsr/75QlMgibxzRsXuJ+2+/Q7xtxnG/XmaLB3JEFheW9WhiHkQj4H0IwPfTse4G8D4A/yiE8DiAXQA+sgHtFEIIIcR6GTJh77rM7mKMvw/g91dtPgjgNes5rhBCCCHEWsix9yzhcK+95nSRpYQqV1NKMeTChZR2sWJ+XniUw8IcfjV6CSCNRUdo7KWYAoXaTRTJWMqI0xwWuuU0GLd3yglFex41FuYdc8LdgO/bYqkl7v9SKmBXpRDoOBYi5nSKtZBFzsuOHwSngSzF4vnocMi6CE5LX3ccJb+RJNTlEHlu+3Q7ZcHpEA5949FGPOgVyvMcbjmlY2F1TrVx+N6uuzemPPb5ulIb6iKEaXzZaTb1h1MIuf2VJw7fR03bVhwhaIcdedM9yWPGaZeu48sy9ZWjrX3GUhfMPRaohb+WeuUCl/Y+n8/SsJyqrNIkh9vX3d6vviu2D/XVcyJmgXBOYfNY5KKhdJzq2iT/G/q9s+veSQsRAOS0zQr7+qRjs1jXczzn3xK7n6t7M7WH2+j5u3hp6MonJu1fLTogB2Fv8YOXzrRtvRy4vd+NmMaKU3B9wRCWHVABSCGEEEIMJIrErIEtlatEfWnW5LnU8pP8+GF+qm+e1vf8UZnZ/uzFOQDA85/dk7d10wSRl/3ZeXo5Rtpsmh0+TRzHUZzuVDNLqZYf85LddBybZQIlOsMznOPXNxENTzwKlDHw3Fo5smEzoUkWMNJyYpv3eMtlvaXRfL6qFsvV7X57AkcPz0HWF42Wc89f2swNdj/8c3gs5WW15f7xHGmtbaf2lmvIM+1tSVwJFmmm2WK1DDzNSLsULVmr33Y/e47F3H9jnu89Cl7ZOMdqufAl1TkA5OvOIlMWCBvjdF29aJNFPBad+kVAmbXN9HAqztvSX+4rRx08h+EcoaRIhM38vWgqAEybkJS25UgDiaVNDO19z4DyW8M/6DmiQwsVxtL4VpNxp//8G2C/JdW5LXJE0RK7xvw7VS1vXrBobLu+U3UNUr84ultFnp1onLWtijCl41RL/uk8XiTci4rbtudfVaKpu77b+phbyykvO0cfLbtWJEYIIYQQYutRJEYIIYQYFYYsEqOHmLOEvWMsRNhxQo+e2BcoYeV/sOf+vO03fvpeAMA4ZV323d98jgu9nSk9AxQRJovovFC7tYePUzsML7WO42FOu55gEChF+Nhx09I70Snq1ku4mgvqscNpen+lKtjZnJt9azjgbH1kd1E4njLmmTJBIWk+5vxlTTh87muU/srOv2WfPQ80KYjnXlfuhUvvL6FmTwTuiZht/13fLSk2D26jwYLdruMC7Ql33fQf3R8mhvWuO4vCPeFz5RacricLm60IKN/3nFq0tI1X9NATY/YSeY+dQUxfkc69Qukt0PhUAuvEqZQyYvGopYZ6CXu72fG4tCenxEhUbP2p+v94+77wXGyrArO5L+V76I3p9vu+n7dF83163vGCYpGypcbo/vC+u5UA1kk3GpwG4lSoHbNK9Vo60isgys7Z7CNzJldm2se+K+y6Xi0SSIJuTyAd+dzfO9Bum1g3eogRQgghRgStThJCCCGE6AMUiTkPTGU+5llzUwppcba8nj7YhBf/q+/9vbxt12eatNR7/sfP5W2f/2ATcuUwpIXLX7i+hDA7i+Vx2tI2HBa11IjnJ+OFjwHysiEfBwvPcsqiKpTnYKmFytPD8aewlAeHgDnUnFcVUbrAUiIrlA6yUpicQuDVIOYFY1bpADB22PEGcVIW3NfuVFMcr15xYaul2tb3HH7m9IWlGzgNUq3USVgaiVed2aoYADklMHG4vVqoSheka8cpCyvoOeH46QClgCSvQLOyF5wGWnCKivKYWcie74XxMxQUrPxAKDVi4+ylIrzyHpyKgrP6JFKBS155aFjqwyv/AaCUAaDVLp4VvZUl4HuGj2npuioFlY7NCS8blyrN7Fjxc8pwgQqnGnad+DjVPuk3YMJL29E9Zb81VVFVr12cWkrH8TxfGG9mXaUZUzu8Ypdc8sCuYbUSj/uQ7oHTlLZDes3pWE6petu8gq723ebfkvErmhINVVpbrBtFYoQQQggxkCgSsx6oONypVEiQZ6SdU2V4D/xu4wnz4Vf8X3nbH/9OU53hg3/+1rzt2mvaM3KbZV18oLznzWA4WmIzBRPZAr5gl9/PnjDzbedenpl44jmeFVnUpXLiXWhHXex99leINCu2c/JMu/PAQwDKrAYos1ye4XEEyvq446tFZLjszLTtfByxmOZifTaL9cSK1NcsZu0hWD52XTM72/05mtmnz/Ls2Wbn3cmQtx1/8zX59eyXHmsd23NB9pxkMxSx4OPMPNXMsDmi9fM946ndj5bPOUUzK/F2On6XhJBnEsRXzq0k5vScbT0xdPbJ4WjA0bYA1vOg4eiMebSMk1iTvVN2fHWhOh+/rqIT6dzz9D1jwbt9tvJEOTyd9qEoTxpnjl5VESgTl9LY2z4rjvi28iMiP5qZo5e0jm0RZ76nsli89LT+DbDPOUJ9Hh/73lQu4ulauwU5e2C/fdtAvxXpe8rfqer3Ge17IEcRnUimF3kHfEGzfde8yOGWI02MEEIIIcTWo4cYIYQQQgwkSietA7aRNjEsi9qWKBx89f/d2MV/6P/4z/I2E2z+tYViJW/W1pfe/0TrfOxNwCJDC8VWxfzMn4L8O0ysyWmpnfvbpQwsNQaQZwWFl+08nNIKa3hxmMdEVdTO9qUUUmXjnsLKk0fJTyQJeldIrOeJa5lKDLtqH6+UA1v785hbio6vsR2HQ/9ZGE0haUshAeXaLjuh9qqNaRwvJnsJFi66IWsLaVMbn3vbtQBWC42b0DgXYfQEjCw47Zxqjsn9L8fz7fAXnRILBo+twSLLysMondPzP+KUjpt2ckoQeAUOuYglp1iMKg1kx2dRdbre1fc0naeX95KlZTjNYcdhn5ScZqVx9lK8Y2uUZbD0zdJsea/DRS4dgbmNKWch7H7lvi6m3zP2mEFVbLbt5+MJli39w6lK77vN6b9tTsrLxL68UIGxa1h5CtlfL3VE8oEujdmYk8K00hMr/SbiVQFIIYQQQoj+QJGYDYIdfY0Zem2zPRbSji80i4N5pjCVZg/eEuHFuRLFYImYzcQr4WGa+bGAz5x2q9L0dJxTznJZm9nzrM9mO6dZcEvHsdkVRw14lrsaFt5VBQ5NpEezsPm9zWxnpq0nrcS13lJd2xegona8xDoFNCYdgSLgz2xtdmaCSKDMADnqxJE1u07WBj42C5JXnGXpHN3xZsgWdeDrZRGY7qM/ztvMdXqb40zK+1dL652ikCaE7FZjU+45m+V6Y8dLsW1WzNeN79Oxh9O40HHs2LwPR11Wfw4gETkJe/OM/hKKxCRRqbecHijf5y7NtMe9CFWOjJVvLEcvbJy9woXcRvse10LRM0eg7LPHbi0i+Nkkdq2sFxxxdxXpTb9tbFFg5+vQ78vMkRQ5o3uKx8zGkrd5YmCL/nlFKIFy/82nyDJQRO7R+35wdJcLVqa//BtpeIL/4Cw64GNWztApkreCPkSRGCGEEEKIrUeRGCGEEGJUGLJIjB5iNhgL06/GQpYsDrRQPYfALYx74rUlLDqXUiws0q1CxA8923o/e2iw42wKFbNgrkoNpDQSh6xzeNoR1nliTe7XxELpgwn32A9jbGFHqz2MVxzOwsrcf/M06Tri4+Y8Tfh6+30k1tzVTm944W4OP5+8srm2czQ+XtrBxo/Fzpy2sj7wPuZNM8Xuog4sjrTihC+8vbgXm8Mup1g8kaKl91hQyWk0uy9Y6Gnn9u4pTyDNx+FU6Hjq6zSlMbI7M6UxOpTKMl8Xbq+lXDk10nZPqsfe67cJ2Tmta2PLP5BVaslecCHRNAae4JbvI2/85smV2YSxnL6wdK1XzJLby6Jruw4X3/twaWMax8qXhvqYXXW52KP1ke5N+83y7g/XQRkAUnrVS2d7vlf8e+alliZ+wMU5rRBr+X5YGqzjuPQC5Z6qvu8pBTVGXln2OU8gDqAUn6R9eNGH8AkhfBTArwJ4Jsb4irTtfwbwXwN4Nn3s92KMnz/TcZROEkIIIUaAgGZ10mb8dxZ8DMDtzvY/iDG+Kv13xgcYQJGYDYefwHkmZTNVb5bCsyKbcbzkwTJLtVkKzxh4mfTTtzXHnHu0zEJyXSKaHVgblh1xJFBmbiwqtmWeY+yeacsiybmWxXPWL295Mi/ZXX08ANUyxiwQpG3LaSbNNX2svRzR4ZlkdlOeLsJNE9xV7rzO0mjGxIMrjlCQRcM7Uo2hqn4PHXPZERJmQTP11YvydLg8DwkoDb6/DLselTDTWSLrLa/1RKin59rX2osqAeWasBDdIiMcNTCn3sUeS6yzGy6JxadXvdcLvjftnmUhvkWEqpo/6XvDURyONnlRO4OjCvwdMXhGb2PKUUKb+XO/vN8AjjrYvVItdU9jtUCWCRa1qr4r7Ohr4+uIc3nsJw63+2L3ghdpAsp94dVm85xt+d6zRRAAjT0tgy91tqjmk4mv+ftG4m2LOrF4Pds5OHWiqiX/TsRHnBsxxq+EEK5c73EUiRFCCCFGhbhJ/wG7Qwj76b87z7KFvxlCeDiE8NEQwtxaH9ZDjBBCCCE2mudijDfTf3efxT4fBnA1gFcBOALgf19rB6WTLiAcsu7s3gXAL1a3PF2eJT1nz1wkjTwplm5/dX592Z81HiScBsoiTUoDWZjWC4Ez7BSaQ9v0vgnzZtjjwSl616U0mYXNq6KQjnCXw9jZf4G2WXg+OoXuKnEttddC6FVqJKUvprkQoB2T0kBV0UR7TSkfC9XzdTM/lu5tN5XzOULjqhBeCk9Hao8Vvav8SRxhoqW5uL0snrR+n3hpSTWYdwy3i9Oalt5ayxnarh2nAzpHSdCcrvGZ3FoB5KKhXADSc3IOTmHHFacAJqc+mJOvb9IJ2+8j4WY6ZpWKmXE8X+h962/lSp1eeykkL93KdNkt2CniudZssxrLhBWDrFK4dm/TOPJ9aOkfvudyKstJo3LqyPq40sOJesbS2fS+N45nEpDzMblAZLAxd4qPcuFGryjtBH3fTSDNztFG9V3oNyfes6XPHXtjjE/b6xDCvwPwp2vto0iMEEIIIbacEAKXFv87AH6w1j6KxAghhBCjQp9EYkIInwRwGxrtzCEAvw/gthDCq9C08icA/pu1jqOHmE3CUktdXpmQQufje29w9zGefeMVAIDdnyshcF5dYGF+3ualaiwE3Ktwo73PoW0L93K42vxkelnEW6Daa09FCuO++PpyPrYXz/vwiqUU5q9WB6T+eysc+LO8uiD7hTgrrE738IOw4yzT+FjapVrlg6ub95y0AR+np5+GtdFZkcJEp/BcSOFyr5wElz6wa8fh9QnHq4OvsVfewjxNOA3G2LhwKN4j3z972ytpmOo+SumAatVQCvPzSizuoxUD5VREXoFEK5FsdRKvyouUdrCUCKdL8goqZ3VbcApFAiU92KEip156y+CyJVVh08eSNxFdBy+FZ/1acn6HAGBs+qVpX0oxpdU7vAJv5jMPNu2+9urWOaoVfzQ+di95nkJemrnbo+SD3VOc1rQVc3XKtNW06jvn3ZOe/41do2V5v2woMcb3OJs/cq7H0UOMEEIIMSr0SSRmo9BDzCZTCeGSYHVxtpRPXE4zLXartBk0+5M896oym9v9uUcBAPNUSNGiJTxTtJnZ+GEq8EizPRN2el4uPDMzIdWL7DJKTsR5Rrqw2NrGEYvuVNNvnlGy6M+iJM+/65V5267vJk8Pmrl50SKe2VmkhsfCokDH33xN3mTeMx0nIgGUGTv7U4w7/hxZPOl4TQB+dMKLJo0t2DiSaJoFp46LssHXxkTHld+MRaCcgoH82Spql/rP96YJsRc4EkcRFG+2myNe5M/huTazR8updG+70Rn6nEUGunwNyTNozHFqdkn9ij0iKHYveUUYq4KDtn+Pe8EExJVgOfWnW/kDNeezyBdQC97tHuFIjX0nqyKL6XxVAUOOojnttajE5I8p+plcfAO7e6f7fsb57gGlqKJXYNX77s7v5WK55fvFBWoNu892ooy993vG92OOVpNYfsKiQFQsVfQ3EvYKIYQQYiBRJEYIIYQYEfp5ifX5oIeYTabyjkkhWyvgCPiiTziphrkflXC5eShk63r4BQW98CqnKjw/lW5KE/CxTQi4HSWczakBz4rewuGTTqj5JAl7q1RFwjxNuA8sQrUwde3BU8LPnm/HQkpPcPkGz2uDQ/8mQGbxse3DwuaJZHPOYsQqpJ/Gqgqhp89yuYTT6R7g9NY4izXNW8YRpG4/2O4LY+kL9hbyUjo2tgAwPt32TrF0CacQ+Jh239QC6XTP0T3jjT2XN7B7lsP8brHVlMrhlN+Y45XEREdcupTato3SE3yNc7vIU8k8gzjlZfe2CWGBWnRs8HfFqETnVuCRUj9LNH52h3j3ZkX6zalKI9BvQD6P47fCqUf7fek83r73gnOfACWVzh5P+V5gr5Z0DSvhstMe/t3YnsT/81wYN/knscfMipdSJZRGGjz0ECOEEEKMCorEiI3Cnvq9ZYqMzdK9yAbgu6Z6orXphXZhOZ4B2fJCXopsr6vCc0kcyOJJT8DJAuLV7eI+TNJs31vyzLNGixZ4UQzuF0eGtqUxYBdOOw63p+sUZuRIlQkl+dwrPUTAq9vA0RRe0pqPk49Q0DsAACAASURBVJZts0jNohdVIUBndj1G2kqLMLH40WbafA1tmTQLsj04gmL3H0dnzDKAhaIc6bPohbcknkXuNnuvlvLT+zYT5+/KmQo/9oq+5GXpjriUv1/cH8OzNWBnX08Qb+MbqN11BKVdsDOLhkkgbO3lZd4dul8tIrZIS6fnL2v6OvtQWwDuidwBKiRJ2yx6PH5FiXJ4Amv7fvHYeZG86Dhic+QnF66khQp8vuhEaiwKdvG9D5fj7GoL+lW4cfjQQ4wQQggxCpTijEODVicJIYQQYiBRJKYPqIr67bKQffGOMXFtLwfc7E9BIdnsF8EOn8kvhFMgJ8knxYRw0Sn0xqF7e79KaTni0uC4uFZFGFPYuXKrdUR/J68v++z4RhMuHkcJbXuunywgPvGWX2z2pfDzipOqsv4cv+nSvG2W+phD+iwOTftXYk7H64dTfXC8SlbsBXl/5AkTORavOG7KLKTN/kCUlrNUTeXgmnxkOOV1gr2Hvt5OD9r4dOkaruXEi3TvcprIUgwd+lguTsrCb6dQoIefBqSURo80rGH3JKdRbcyrQoA0VtZv9m46U3vG+d50xozb616vVe8B/jXmY3dOmYcRpSPT/cppHk7KWaqHfwMsDcTpNhP2zlAb7fvM7sQTC+WeyqJ19rdJn2Xx7ZKzACE6RRz59y67iNP34/nrmuvA9/LAFm7cQIZtdZIiMUIIIYQYSBSJ6QNWqCaHCQUrYWZ2B20LFIEiiuMox+SxRsRZieycGeKOn5Rz56XavPQwHZuXl+ZlszTj4plUFpCSKNZmlTxTtGXkE1ynxWmjRYgAINryVJrZ5ppQNNvnCEMWr9LMzd732sPn45mvvc9RMoNrxFjEq5fw1KJWXL/G2rHs1Ith8ahXR2l6/8FWe3mWahMvbg87vxq7n/TrH+Vjp2vIwuSVNKs+7UQpAF8Aateb7QbGUvSOXWgrkXfqjzcj7zxehKLW/0VnbJm1augspgiMV9OK96+X9bcF9nZP9vru2rhVImYHi7ZxdGLMCU55ta7cpdbM0fb4sSO29ZWv+0SKeHjHrpY+k3A81yuj7wr/bhgWcfaWnQMAnMiruVvztl1pmX1XNY9qFIkRQgghhNh6FIkRQgghRoRh08ToIabPsBD7GAnrnr6teT33KKWYSIRo4TQOi3th3jM51wIlVO0Je72ia7wvM+2cZ2W+7buxLQn9zOMBACa+8K38eun2VzfHo30srTXNqSynwOOEk8rikH52FSahXycdh/sPFik6IX9LCXmFAMd6OJdGRwxqKaZj15V0mhW7ZNYsbGlCy6PtfU9TigXm6eF41gBlzFg0bEzvJxF3+luNDfXb0oNVCsG2sefLobZbcIX1xxs73mapKkr5VSL41C8vTVQVkkzfL8/fht/30lv83fOE8ew9ZPdp9Z2z45B78/TBVJiQvWE8MTAXrEzbvFRfh/bltGa+jpSOzClpSvV5aU3rP/sas3De83PKxyHxekwLAlh8zHji7JXvHWj+unuIYWZd6aQQwmwI4Z4Qwg9DCAdCCK8LIVwSQvhiCOGx9HduoxorhBBCiHUQN+m/TWK9kZgPAfhCjPHXQggTAGYA/B6AL8cYPxBCuAvAXQDet87zjBw2swCAl6ARs/KMinkxLZfdQbOwcLgtHuXljgYv2/aWKhvdqSIaXpxrZlcmYAXq2ZVFaFiEaDMyrmljS7CrKM8tN+aXngOqiYqrJZlWx4WXjfaoo9Q63u5d5Ti29NeZ6fE5veW+oYfIOZ+HjmnXi+vcmHCVoy82Y2dxsedUzOS+OkJSjk6Y4DZ6S7q53VQzy2bxXu0b7jNH/Ioovbe7LkCOxdQn17HWmbH3qgOUP1dFQZp7jWvk8D2Qz+fUsuIfS4vaVNfarg210USlVb0kJ0q24tX3cYStvcYn13piIX8aF/4u2P1jvw/AqqXl6dqeJGsGE4GPOdYAlbVC2pe/C2MUgbX9WVRtkZ8lWspu9xnfr55bMgu6xehy3pGYEMJOAG8A8BEAiDEuxRiPA3gHgI+nj30cwDvX20ghhBBCrJPNisJsYiRmPemkqwA8C+DfhxC+E0L4wxDCRQD2xBiPAED6205iAwgh3BlC2B9C2H8abb2FEEIIIcSZWE86aRzATQB+K8b4YAjhQ2hSR2dFjPFuAHcDwM5wyZDppTcWSy3Nv/uWvG3yeAm15rQEpR1yyJVCxeYjwyFnFi56aSQO/RqeDwqH9C0NVB3PUlUckk7n5kKRlSjScfM0KhFv+lv5czzvpHzIQdjGgpMcNi4sMmUHUDtnVaTQEYhaO3oVl7TrVYfim2NWqZHDbVdYHtMzpckYOyb7yWTo2OwFZOkmvn/snqqKgWYRcxlJ9glh12LDE5jnu9nxLAForNjt1Xxi6FLbda0KBjoFNDvTRVRs14b7ZWM2TvdrLZbf0dont4vus/F0j7Pg1BN2e4VPg5MaW7iqtIdTLIspRcnXy3NGzmm5Nc5dpYrTmHMfctvoHsy/Lz1EzPZ9598fr+isjTPfr157uyrgKLC+SMwhAIdijA+mf9+D5qHm6RDCXgBIf9fwJRdCCCHEhSZs4n+bxXk/xMQYnwLwRAjhurTpTQD+EsC9AO5I2+4A8Nl1tVAIIYQQwmG9q5N+C8An0sqkgwD+PpoHoz8JIbwXwM8AvGud5xAJtsNnHwcLtXP43VIanA7Kan/2jXDsxRkL87o+H7SNC9x5Vuu5SCUd2wslM1Z4jkP2+ZyUdhhL6Z8446/esvA+p8562cnz56vzrdp/9TZesTOfQv6c0jhTAUOA/G9oH281lGfF7q344rbayrJOtaqoeX+J7oVqlVgaX05FWCpj2vPpoDQYr7oyjt1aCnZevNBOl1gKL/S6hnZv0z6eFX8uzMjpRE5B2f50/3TSa/7+WPqTU34r01QSIo053ysLZyhcWKUBHY+WifaQVdfQvkt8jfg4XtrOvu91KY/2d9fjudeV34K5H6XCn7T6z4rScl8tTWSr74C6vEXXWYHm/b54KHW0gQyZeGNdDzExxu8CuNl5603rOa4QQgghxFrIsXeAqArmkTjQPCZ4hmMzP/ZasFkTz4BP3FxEs1Y0kiMjZ5oheZEJgIraeZ4d5BthMzdPUAz0iDrYC3Y4TVEedhD2HIZZQOx5ddgxeebK/beZb6RZvs0uOVpi52ZBqVf0z/x2gBK9qApAptn+sbcX75yqYGeaGVfi03QeFidbPIyjEyHtU4u86Xo5RUWnvvIIAODkW34xb9t+sDkfi0O5+KLdSxcfKJEvz9nW8Nx3AeTr1a1ccxsPG/YlMRH0ilNIEyjXdtxx4vXudW5PFY10rrsJbb1ijxw1YaG6OSYHuoZLzvcni4856rbL76Mx5WzL7aL7g6NJdg/s/Gn7+8OO4J5PznM3Nm3c8wB9jgt6pvGrfje8eyC1bUWFGy8Iw1Z2QAUghRBCCDGQKBIjhBBCjApDFonRQ8ygwtbmybKbhXcWimbhXQ67k8DTKx3AaYXsp0JC2FLIrR02B8hvhba9mLxDWIDoHYdTOTl0zsLM1AcWYVr6gn0lKhv8M4kGWexqvjSUDmH/E0s3VUXtUhtjDzGwwWkZS7HMHClpOwvPV+mr1O/Zh54t27hQYkppcFrGUlUd8rcJKdXDaQP0SAWuhq+7WcPv+GpJaVi6hctbMF4KoVjfU5mMlBpZdnxygHI9q9SQ3e+XtMtpVJ5BND6lDMJka9ta9x5b8XviZTumV+yR78f5veXe3XHUSieUfcyK3/OT4fZUY+WUd7C0HRfxzN8RElB7qU4u6On5NHm85MGU8uNxPENKC6DvEpVZEeJc0EOMEEIIMSooEiP6ARa9dR54qHlBxRPz53i2lmasaxXjY0x8uu1Ye3bJUYHTVMDNWzLNER8jixUpqjQ2TVGQNDuPvBTXxLfUr1xEjqIBLFjNIl6K3lgkZ54cUDspWtJryXdxKS3ntpkxt8eiANUyX4rE2OyUC3p618YVwNJM/Nh1zfhd9HRpry3R5qjBDJqZdOXMmv6enqNifDTO7Aybj51m8Twzt754ok+Gl6BbFJGFqRbF8NxjAT+ik0ecRdpJOM7L7V+8qrTXokgsArdopRUSBYBOjm5SEUKKIlp762XQE+l8O1v7cGRo+wK5UltBSo5eOI69Y/nzZdtzry1juueBn7feN8FyVTzx5e17ge9Du47zND68f+7rfPsa2/0aeoiYzYahcpr+xsOt4whxLughRgghhBgFolYnCSGEEEL0BYrEDBGeh8TYwyUU7DlmjjmOvezia94x7vl2sWdHSWmcvHKmOd7OUkHDwt3dR39c9n/l9QDqVBQLCs3zg8PduV2UvrA0Ee/LWOrIK5jIDrlGFdpfo+CipetYVN1Jn6uKR9L4WMifx9nEl1XhwgXz0Wn3CQB2f73tw2PwdbPrzWJo8wdigWpV2DJ53VQiZUdA6xUpdAWpnDLc1U5V5bQMp/wcF+iqQOThhdb5OH1qsGsskriZUyR2XattC+1ju32l1Iml5lj4jJwmnKTPkUtyOmY1zqmP7jhS/1/yIBXdTOnD8YVSptHSf1UBUfuNIJE3f5csBcULAmxblW471W6bfQP4PquKaqb0qvxfthhFYoQQQgghth5FYoYInuFYFGCMZtd5Rk5LV1lwWZZGlxmXzdJ4my0X5hkcz7jMVbaztx1B6d52U3md/lZC2qq+TzNLneCluGmWx862NkNkl15uz0Kq88LYLPXk60u0xKISYwu+8HnJEf56586C5R4Rryz4pdmwRWAqoajN4qkNHMma/zuvBVALTk1AytfGq2WVowVcL4iiJbZ8m2f+Z4oMVJO7x0royKIuK/S2F9GysWUh7fJ0mWNlgex0+56qxidFxKroAkfEkqCVhat2Ho5imBswH6daqpyuFwtcre0sGvYifZUI2lmW7Tlwe/YInoCY97G2VY7YJpan9iw/cSi/tt+LymbBqetl7eXIl1fDbUVLp/sOaWKEEEIIIfoAPcQIIYQQYiBROmlIMQHfqTfckLdZymNsDbEiu8saXKzQPF84vO7hecOwA6x5kXAKgRM52YXUKQrIYXOv0B2LJy11dPzN15R90jG5jStOKN3EzkBJA3DRzO0HTzT7Ou6pDItmg6UQyGcnp/8W2u6pPD4dujYm3mUPEkuz8TZjzZQFOyebUNnxhKlEzE6hSL7G5kTLx7aUGaeVLJW5jVJaL1KhSTs3j2P20WHPoHTuypGXPFEs1cHuzobnf8PH4ZRh9nepxNtNCmr+MnLfTalFvif4e2Ni4udeV+6zS+9/otXX1ecFfPdrvndN3B+dsefjjF+xL782F2Ce3VoayS2M6gipOT0l+hClk4QQQgghth5FYoQQQogRYdiEvXqIGVJspdLUVx4pG69pF+lbq/ibrYaYeLJssjQQr1bgcPjcj5pQs1f0kMPq3goQDn2b9wV7nljwesWx+a+gdJKlozqL5dtrqQj2+RhLqYan3npF3rbzZ2UlkqVqKg8WW/lBoX+vkGblX2LeMr9Q/HEsZTRN49NNq0LcIp5AvjacnrDP8jjaudnnw1Ijp2jlFvukWHu8VU65zAUAXHt1s61XqQanYKelGzppX4DuPSoXYKk67gOzcnnbb8YrqRFoRY/dAZGul63y4fPla0ers8acY3MxR/OjmaU+PPe2awEAl95f7lG+njamu7/e/g5UqV5npZqXRuxwiQ5nFVh+j+57XmHVcVKdVixynFfOmYcRfa4r/xexBeghRgghhBgFIoZOE6OHmCGnKhSZZsU882LxpPmkVA6fKdLAYtYciaBZ6s6flqiLCT9PvLTMBHd/vRFcsjiQBaAGCw7tPN4sv/LDcLw2tn3zh/m1iWZd92GapVsxyD0PlFkxR5gsqtUlh2GbSY857rJeEUWgRDw6TqFEZir1h6MlHce9mP1UsqCZPmeiWRZA2+d4X56dW7Rg2Yl2cATF7oEOvV9FQ9K9FNmxNzk1c9HMLJp2fHuAEnXh6INdd76nLHpRRQHpPHbfPP+qct1NSFuJuNP1XCaxLwuazWmX22geLMduLUJZOzaPo9cHvlc8bxkvusfHtH55AuvKgZocvPM2clBecaJNFslkB+Xuc8+3PifEVqCHGCGEEGJUGLJIjFYnCSGEEGIgUSRmhLA0EhcmrMSTKQ3CIsrTKcTuiSzZV4NTQxbS3vXd461t7Hkyk8LqHBb3PFY8OH1jqS72fGH/DhNfcujf81PJ3iGXtFMNABBTmYBKiGwpGC5cmEL+LOCsCkmmfSpfkuTrw6F9S8FML/h+PJZi4HSb9YdTGnOpvZwusevFgm1ujx2HZzm2f5dTFm7LClk0iyIqN7EvlxCwtArfZ5Xo2vFtyf137hm+H4/fdGl+PfvQswCK+BwgwbYjMOf7o0r/OcUw7ftz8YFy7pzyolQU/+iWa9jN2yyl6vnEcGrIE/Za6hCAm+pbSqnQKpVLKdwsxOYUU7oPlyXcHXgChm91kiIxQgghhBhIFIkZIUzk6zmYAmXWyE+2NoNcccSRL1xfZuSz1dLpthDXZn62bBoos8cxx3GXj8OzWIuqcElHm73zLJWxYocsGs37LpCT7kJbKNohjaUtO33yva/K237hkz9q+sJF9JJwlceMlwNbfzgqNeW0+3SaNfPsmoWd2bGWjm1jakU4eZvnlswi0sqJNy/zLbP04obbjr/wdWUnWYuOVYLThbQ0nMSsJnbmY7NTc7W0PGGuwx1n2TlfQ46MlP6Q2NVxA7ZimAvkeM1L0G0yy8vbF2eb6zn7pcfyNo5u5XbTeUxgXRWsvNycrMv1sHuAt409X66dba3cgLOjcRlTOw/fr+zYa2PeVeHG4UWRGCGEEEKIrUeRGCGEEGJECHG4QjF6iBlB2OOBQ8kGp4lmnmrSF56I0ESSQB2+55C3YSE/TjXYMSvBKaVL7Dicntrx1SbMz6kGS9t4beTPsvDX0hZcKNKSP56PB4DseLz3K8fyJkvHLd3+6rzNRJqVs+0tN5bzpNQA+5eYX4+lvgA/fcMiVUuTeOm4Skjs+OhYasQrcMksO2kwz9+Hr2t1/dN9wS7QS69oxpELKlobezkIm19L5ficXnuFG/lzlU/Kqn0BEtJSesZSeSzO9gopciHJtoNPgVOC7FGz+3OPAgDmb74qb7Nzchvt2lWpxZn2GVkg7Dn22rbK64dShitKI4kBQw8xQgghxCggx14xbPQS+Bk2O+dZnbeklaMXY0m4WDnNOrN4EyHybJYjLJ5A2N7nY5s4tVdUwYSULFK12fniXImG2CzXE15y29lddSJFU1yX1STwBYBAY2YiWI66zODyqn+rz21UIlUTtNJyX+vXaWcsOBJjfexVt8rwojxeTSy+/kskLrUxXaBIg42VJ8TmyIfXjmrsUySHz2394jZy9CI6gmVbyn2anJitXxzRql130/7OUmtuo9efnT8t57b9Oerkwe01Vubbjs/sVG21jMZmZvI2W2LtfU6IQUTCXiGEEEIMJIrECCGEECPCsJnd6SFGZCy1NPsQu6K2UwyWDmF31cpbJfnQeN4nnseIJ9IF/LRVFlSSN4gJOz1hKlBSAtwXS0HseLztwlp5ozgeJJw68txVzaWWxa6gfhnc73K8Imy2IoR87Gp8UnvYo8XEy+yqa2k7z0HYazfgF8vM4+s4LPPY8nmsP1xo0pxkx5x7wRMk9zrOdHJgXna8WNaC+x0ON9epEiynNvLvPaetPLqP/hgAMMNC2ZzKLNeVBd3e94FTYUZOddK+XS9lSPfUuBWxpJSxic1XztgTIQYHPcQIIYQQo8KQRWKkiRFCCCHEQKJIjGhh9vpAKRbJq1QsjcSh7aVZSiekkDanJ/JKHFrN4a1S8bwxqhD6VBNqZ9+RXBxwob1aAyi+JPUqFTt2SY2UIoMlxH96rl00sfbEadpTedlYSqdHv8ZnbYUMpRhS2opX8djqGx57K7sAANvTdk7r5eNRe3isjJV0jbgNvFrKI6+GYQ8eJx3C12veCkByYcd07qqURfrba8wsbccpOruuXL7BxuzES8v9uJvSRHb86j5zxsKO3Wv1lqV8+P3ubTc1x36Syxw0x+Tv1Nh0KYZpq+zYM6dXWrQ5Xul/h75LuWSIU2hUCGbYNDGKxAghhBBiIFEkRrRYId+IXCySZn02K+Yn4M7RtpvpDqdoX1UIMEUIlshXY5qKU8IRvto+7NJqgstIbWSvDvOhWXBcUT0fFM+DBihRB3ak5SiAMeZ8jj/FrqqGOf/yjNz296JgQPGR4TaY8LUSXaex4uPkwoM0c4dTDLRyCL73YQDAsetKtMQ8Tzjyw+eZOVKfDygRsbGHS+THPFq8qBFQri1HULIwmI5t9+vuo23/FoCuCUV87P6pCkDaeSmaEWh7cVOebG3zPF2wr3jndCkCZfchR4HyuVlUn4TGXkFJoIy5iYuF6IkiMUIIIYQQW48iMUIIIcQoEIdPE6OHGHFGrFhkx7FXZxt2TiFYyoh9NywVw6JF8/eoUjaUQsohdgq/W9qF0wqeF0dVuC8JUjlVY+kNFvtaGon39Qpbch/Mg8UrkcDb2MtlfKFx6ahEsead4qS3mEApum2PpUKSSXwNABPNYSqB50q6TiyktbQN/555KTou8mmW9Va0EEBOM3JfvCKO7Gligu/tKALX1ccD/PIGPD5WSHHuRyQATvdHr9/p3G+6z8xHpbOwq5xvuhmL42++Jm+b/dJj+XVMxSK5CKOdm9NSdh04xTT2MJUYSEVFqzSrk5ay70pVnJRSXVzUVYhRQg8xQgghxKigSIwYRVgwaAXleHa9VqFAE59OOM61/Ln5y8qM3qIAHHU5cXMzI925vwiALQrA0Y5q2XGa7VYOwCnC4kUNPIEnUKI2LLi0fY7dWopn7vhJKrxHY7LjkfZyYcaEq54AliNMz73t2vx699ebqEw1O09t4z5Yv3mcx1PUwMYT8Jdqe0UauQ0XPd1ESFiszJE1GxeOYkymc3PBTu98nli4Wga9s5Ha8rLzyanmmCwQrsSwzhJrWxoNOp+9P+ssxQZKhIWjkV2nyKlHIJFvfKxpJ0fTjLrgZBKv073XJSdeIUYVPcQIIYQQI0DA8Gli1r06KYTQCSF8J4Twp+nfLwshPBhCeCyE8MchhLYblhBCCCFGlhDCR0MIz4QQfkDbLgkhfDE9P3wxhDC31nE2IhLz2wAOADB71n8G4A9ijJ8KIfwbAO8F8OENOI/oYzgN4nm5LM41aSQTngKU5iBPl7mvlRC5V3zSHFv5vReub9IkM0+VVAO3x85tTroMi3g9OO1gnikXH2gLli2FxHiOtEBJJ5koGChpqYnK7bVdXHLXd2kAE8++8Yr82vNtWXJcYe2YPCbsCTP7pSZV5aUJJ0+UfpkHz8nXl3RI51RJCVkaiT16LPXEourgOBZzisrzK9rzrfa1y67Ll5851ck+QvkeeIw8apJgN5B3DsOpntVwutDuU3bsZTGwOWKzp5ClvDhNuKzUkdgoYt+EYj4G4P8E8Ee07S4AX44xfiCEcFf69/vOdJB1RWJCCPsAvA3AH6Z/BwBvBHBP+sjHAbxzPecQQgghxHARY/wKgNWl4d+B5rkBOMvnh/VGYj4I4HcB2FRxF4DjMUabBh4C4FpMhhDuBHAnAExhZp3NEJuJOfqyeJJn4tvSLLieAZu7bLnlxq0eziNUq8lZnlqJGdP+XRKpWgTGm9kDRUjKjC00ERSO2HRS5KSaAdOM24u2mDCY+2BiWY5ysKjW4hgcBfLExF6dn0r4mkSuHJ3JtXpoyfOUE4nwHGI5kuXVm7JxGZ8tESSLVNiycWBVVMFxmM0ib26Ds4SfnYitPYxFm7hul/Wa7z23r3S9TGA8QYJbL1rG18uOb1FAwL8/7DhdEu7y+Nh3aJzuUYu6tBftCzFQ7A4h7Kd/3x1jvHuNffbEGI8AQIzxSAihrf5fxXk/xIQQfhXAMzHGb4cQbrPNzkfd2FXqzN0AsDNc0jfxLSGEEGJY2URh73Mxxpsv9EnWE4m5FcDbQwh/G8AUGk3MBwHMhhDGUzRmH4An199MIYQQQgw5T4cQ9qYozF4AvUu6J877ISbG+H4A7weAFIn5JzHGXw8h/AcAvwbgUwDuAPDZ8z2H6G/YJXTHIyUdYH4tO75aCvxNWsFBcrvNaaKjLFYtaRVLsbCXC4tTcztSeL4S0pKw82wnHpxGMjhVYf4nnNKxtASLaz3xLQtts1vwN39Y2rurSVuxC6ulGDil1aECmZZi4TG11Aifz/pViVHTWFXeOYTnUbOSXGqnD5YxsfN56Rk+d3eqbLO2VY7Ftu9sSSGxW7AJcb3rX6XlUr/4Xjh5fTv1yONjfa1SdelWqFKdz5f748W3/GJ1PADAN5oCmXF3cf710nI85tnl9/n2vSfEhhPR72Z396J5bvgAzvL54UIUgHwfgH8UQngcjUbmIxfgHEIIIYQYUEIInwTwdQDXhRAOhRDei+bh5VdCCI8B+JX07zOyIWZ3McYHADyQXh8E8JqNOK4QQgghNo6wsvZnNoMY43t6vPWmczmOHHvFhsA+GNvTa16RYf4nvNLIVux0ybODLestvM8hfYPt8nlljOGtTuH0ha184iIIlr6qCiVS+iK3l1bNjC00+1x6/xN5m61o4b5wCsH25vE5nVJinGKyVAPb6u84euZCnB425mut2GHs/aowob3g9F96n9tQFflM23nMPFt+O8/k8eINw9fL7oFqpVq6P/h6VSujEuzrY5+tShUcaxf2tHZ3Hi99PZ0KYAIlVco+MvO3v7pqK1CnkTwsjWQr/oQQ54YeYoQQQohRob81MeeMHmLEhsAzyfErmqJ/wRGhenC0g51UzbF1jDxUTOTrOc3OPFVm8VWkIUUOTpEb7FT6++JVO/O2xZ2NRMwKK/K+ANBJXiYsALWZfaAIgQlN2bm1EuemqMzYw0X4PJ6EvcfefmPeBe2LkgAAHVhJREFUZsLW7fd9P2+L15RxNHEqR1jcYo+pHTy2NuYcIfIiEewFZF4u7MRskQaOhnjeKotXFi+oqem2R4+duyoKSQ66iykKwhEduz9YpGuvK/EsXYdTqW3m/AwAx65rrudFU20H5RUSiHsRJPb3MfdiUHTG/IpYBC+E2Dj0ECOEEEKMCCoAKYQQQgjRBygSIzYcr1jdtmNNWJ49XyzVwKkIFsNmWEia9ufUSPYTOdr2ZwHqooKGJ2yd+1GTgmBB6elXnDl9Y8fhlIW9ZvExpy8M84YBSlqCC2BmcSlKmoMnUSZONWFqc4B2iYVsq09pO68ooutHQ+UAnntdcxwbJ6DY7rOnC8hbx66tZ8nPaSBrIwthT73hhvza7pXJJMgGisiX74Wc0qF2c79sDNgTyMrk8piY4JZneZ6XC99HVnQyUBuVRhJ9RUQ/FYDcEBSJEUIIIcRAokiM2BRsSfMyCWk9qkKJaVY+RkJJzzU3F0rscRzbx5yEgRJt4QiJF51gMaftw7NvO/f44baTLB+7KlKYnF27t91UjmNFEad50Xd93tWYuNmLRLCQ2vpgAmigLDvmCBJQxtT25/6bEzELcs2xlttoglugjOkYRScs6sRjwq67HiaQnaeomkVVOHrntdsroFkVGk1t5Cjh9EIT/VqhfrF4O0f9KPpn96kXiRSiX5AmRgghhBCiD1AkRgghhBgVhiwSo4cYsSmYKHL7QQrjpxRDFaZ3PFhWXMFp+ZyJNLl44jYnBbNzf/GtKU6y5StgQln2oOG0laUdOC1lKSNOT6w4KaHKdTj56ICErR52Pk5fcZrMRK6cTjn+5mua81FhQkv1sPjW0kjs6XLir5Wx2PNAk74xMS8A7P7cowCAbSjbrK+cLmJxsSegtm1TX3mkbNu3t/W5LNIFslCX006W1hqnlJilICunYUoteSlD64PnzsxCY07bzSy004dKIwmx+SidJIQQQoiBRJEYsSmYo2+Hl6Ra5IQiKF0W9qY6QtVSZHJQzcexSA5FdFikuTjbiGa5ho7NyDkSs/3gCQC12HVptpx7Ku0zeaztkMuMp6hE5T7rOPYyi3NpKfIjpY0WBWEHYY4MWL9ZVGt95P5302uOYtixL3q6RIMu+7NS/8muze6vlzaaaJadfc0B12pIrcaiF3YNAIoIkftwN0VDeGyic60ZGwuup2QC4ImFssSao2kmJv75nnLdLcLEy7LzfUiuwdOHS4RpWUunxQASIGGvEEIIIURfoEiMEEIIMQrEOHRmd3qIEZtK99Ef59ed3bsAAIF8YFiEGVIaidMy+X0Sz1r659it+/K2xZ0hv7Y0CYtYTWjboeOY++zc14pIdXm6BCtNvNpxhLucsjC/Fe4LC03HUvqHUyfjKc3Bx5k8sVL1D6hTR5aq8Zx4OXVkwlXrH1Bcd1noys62HlYMcpE8aExUzG3k8Zm/rC0qzr4+nFazQpqO8zFArsN8f6T3K6fh9LeXsNdGj8XQ5ujMY2b7dKmwKebbrsNCiK1FDzFCCCHEiDBsmhg9xIgtI84nYWYPAadFbbbR8uU64tFgs/TJ48Up9uJ7y/Ldxdf8dQB+XSYW9i5PNtEbjth0J0tEx7bzcSwyUjnypsiI11aA3IspgmBRABbk2vJtjkRxvSGLJvFx7Nhct8mEyFy/yKuNxAI5WwbNkZ/uy5tjcmTDlpubKHo1s196DEDtIOwtg/ZEukx5v7QnHkrL1p0IEouPeSxs+Twfx6u3xBFDIUT/oocYIYQQYlQYskiMVicJIYQQYiBRJEZsGeYdg+8dyNu4KCLS6zHyRjExKLunmvPrNvIdYQ+SnIo4VFxzuze+vDkepWd2JksQ82wB6hSMpZ480ajnJMueLievnMmvF+ea9AanYLJomNxuPS8bfr2U0lt8bkst8bGtPZ4HCzvqstNw1/qQvHoAoJNcdbn/XOTSa2MnpWh4nO08VvQSANpS6Trl82IqHMpuygtvuAFA7ezrpSa9VJf5yQDIaSSlkMQoMGyaGEVihBBCCDGQKBIjhBBCjAIRwMpwhWL0ECP6Ck5fPP+uVwIA5rhQotnTnyorkax4YJfSIVYUEqiLMxqWWmEvEuRUTDtFApCnClnRW1qqOnZqL6dnPJ8UxvNosVTPBKV8uL22DxdfHFv1HreH0zO5cCOdb+zhx8s/rF+UlrOfPk6T5T7SmCCtBgPK6iWv+Gblb5P64Hn5AMBkSm/x2NkqMU4h2Zjx5yo/mqPHm/dfXlYs4RsPQwgxmOghRgghhBgVhisQo4cY0V+skCvqzp8mvxUSipqQdoz9Quh13kZFJcNC4z1iQlCgzPL5cxa9We5RrNGKJk4mkSngC1vzPmnW336/2c4RBDv3EkUiLOrCkaQqcpTgPpj7LHvZeJEfiypxFCfuK+ee39tEPmaO0D4pUvPiW34xb8tFM2nfysvmMw8BAJZvubG0J11P/pwXieJ+22fZYdjrVycJdsdIxB24gGjyJlL0RYjhQA8xQgghxIig1UlCCCGEEH2AIjGibzGR7wqJZy2FwMJdI1BapbK5N7EwecuUVAWlaii14nHR001Kw3xpVrctnzv5qGyjNBf7kljBSxYir6R0Sl3SYLK1byRrfINFqmcqrcCpmHw8GrNI6Rv2YzFOpjSSlTEASpkEFuF2uAnXXp36UDZ2vNICKcU21aMEhZV1mHLEx3wvLKex4DTgCqWWVlTEUYihQg8xQgghxKgQhyufpIcY0bfYrDkXKwRw8vXN7HsGbSEoRxrmLytRkLkk7GRn23wOJxriRSwA4Od7kiCVlhDzcuPVPPPaEjXZ80BZJm0/IVw00hMa54KEFH1hEbO1k113DU/0Gpyl2hzZeeF6cuJ9qvls5V6cojPs2GtjyoUbWXzsLW/3sMgZF27kY+Yl9bTk27tO2eVY7rtCjAR6iBFCCCFGBAl7hRBCCCH6AEViRN/Tfe75/HrmyOWt93NahtIzFx94Ib82F1gWn1qag0Wh9rkO+dJwYcJL738CQO1pYukoTnmNJS+SPUfbni+8PwuEzaNlgXxiLFVTeblwOslxuTW4r+ZEzGkgTtvkfZ4q6aaJHzQOvJUDjyMqNmqH3LI9jw+lsjxfn+wq3ENobO97AmlmhYqJCiFWETF0ZneKxAghhBBiIFEkRgwWyWl1/Ip9eVN3qlmWa26+ALBAy6mPXdNEAxZnyz5zXzsEoJ75T+8/2ByPliyfniuzfathxMt3j990KQBgZqoITk0Ma262QB2JyYJUEqnC6iQdbzvycqSFa0ZZe6zdQHEBZkFtFrtShMmiQRyJqkS1KerC47g42wFQ14HK52htqbEaSkC9RDv3JUV+zHEY8MeCWX7i0BpnFUIwAUAYstVJisQIIYQQYiBRJEYIIYQYFVa2ugEbix5ixEDCqQST8y5eXdxeORUx91jz13xegOJB0nWKPVrxQwDY8dXiEGtCUk5B7fhJ20G4k47JHjReyLMW7LZdbG3/5emyN/fLBLKnyZ3Y0jJLzrZtKONjnjAXkwPuafK/MdgBeCqdzxMpc4qNse0zzjYukGnt5b52TlHhz9QHFnkLIYQeYoQQQogRQZoYIYQQQog+QJEYMfBYeodX15y4uawwmjnSvM+pGPNM6U518jb2h8mfo7RMPv4Z/FIYtsWvVgulNBJvs1VQ3AdL1XAxRl7ls+ORJi3DXja2OolXakWnqOLsl5oc28IbbsjbvNVA7OmS02PPlxRTN6XwxuhzvKLLxYp4UlrK2rvtGJ2PPF/KmiwhxHkjn5hCCOGKEMJfhBAOhBAeCSH8dtp+SQjhiyGEx9LfuY1rrhBCCCFEw3oiMcsA/nGM8aEQwg4A3w4hfBHAfwHgyzHGD4QQ7gJwF4D3rb+pQviY2HPsldfnbRy9ePq2Jlpw2Z89kbd1kpCWXWwtGjD54xIh4IjORNqHoxMs6M3tSREdfq9y+U2vWUBs0SL2hDFRLZ+P+2XbWSDsnc9g8S1HmDy84pLmurvkFMDkNixetTO/7k4GALW3TPGeKW0cSwJjK/ophLgQxKGrYn3ekZgY45EY40Pp9UkABwBcDuAdAD6ePvZxAO9cbyOFEEIIIVazIZqYEMKVAH4JwIMA9sQYjwDNg04IoZ2Qb/a5E8CdADBVLcAUQgghxIVg2KpYr/shJoSwHcB/BPA7McYTIYSz2i/GeDeAuwFgZ7hkyIZVbAUsBO1ce3V+Pfdokx5iIW3+XCosCJQihkuzJc0xvlCcoSwNwgJYSw2xiNfEuexbY2kXxoS5fG72ZfEKJbKw11JQHE5ddtrjCYktdcZlBSp/nNS2Kt2WvFo6VOzROHZru6RD04d22o7LJBhdpZGEEOfBupZYhxC2oXmA+USM8dNp89MhhL3p/b0A2uVyhRBCCCHWyXlHYkITcvkIgAMxxn9Bb90L4A4AH0h/P7uuFgpxPpAb7GRayuu54na5wGOKTkw/fjhv44KEU0deBLBKxJqiLSzitW0cfeF9LCLC0YkMRTksmsLOvxwZ8rB2VFGgx5oIygq7E1sxSyooyRESK4LJkaqTr385gFpcbBGkyePlOF7Ea9s3f1j2UdRFiK1jyIS960kn3QrgNwB8P4Tw3bTt99A8vPxJCOG9AH4G4F3ra6IQQgghRJvzfoiJMf5/aCp7e7zpfI8rhBBCiAtABIIKQArR/3ChwPEr9rXeN4Hs5LEigM0iVxK7crrFnGg7lN4xx1/2k7GUz8ThIgeL5PJr3iuTnGJ6vu03g2vaXi5eyocLUpo7b5XK2pUKUvKBUrptkos5vrz0wTxlupTe2rm/SbOxB42lvDgFx8T5ph3yfxFCXAj0ECOEEEKMCtLECDFYLD+RlvzecmPetv2+7wMAwr693i4FEgh7NYhmkpDWi070Oo5FUPCNH+dtnd27mnPMt8XAvIRwhdqQXXWnizj5ZHLLtagJUEdqMikytHLoSDkeCXItUrX94Im8zaJNtrQbKFGlamySkBhQBEYIcWHRQ4wQQggxKgxXIGZ9PjFCCCGEEFuFIjFiZLAigwCwcmPjebI0W7xjTMRrYl0AlcjXfGK4KKKlatgnxnxSOM1TFXY0cW5KITFhpuxjaTAWJnseNSw05jRSJqWOOiy+TdtM9AsAi3Ps2Nt4wbCjr21jf5tOSpOtkJBaCNG/hCHTxCgSI4QQQoiBRJEYIYQQYlQYskiMHmLEyMArZXJq6Q035G1msW8FHIG6VIEVZOQUy5Rt27s9b5t5pKz4MdjfhVcgZZInDKeqxlM6ilcXdcnLxcoksJdL9pshj5mQ/Gp4BZGdh/1tvBVNE3RsO49KCAgh+gU9xAghhBCjQMQq18vBRw8xYiSxqIyJdQGKWPAHKQoSkhiWIy0m4uXjWDSEPWiWuCBjimSwqBZJsOsVT+TaHizONeFw5/HiQbOQIkvTB9sOwBzlCcmpl4s5MtnxmCI/Fr2S94sQol/QQ4wQQggxAgRErU4SQgghhOgHFIkRI83K9w7k12OvvB5ASSsBq8SwaTtb/1tRSBPZAgCS10v30VJWYNv09fn1KUv5kNg3t4GyQCYqZnExp5a8cgITxxfTPhNlY2ovp5OsTILnbwMA42i8aZa/8XB5v3U2IYTYWvQQI4QQQowKQ5ZO0kOMEIks7OUl0FTMEEmou0IOubYcm6MleRk0iWLD0Z/n1zkCk4TCQFm2ba7BQHEOZpFuteQ7CYgrgXDiFC35tuhMhyIxWaRL+6xYoUwo6iKEuLCEEH4C4CSALoDlGOPN53McPcQIIYQQo0J/RWL+ZozRXyJ5lkjYK4QQQoiBRJEYIRLmjdKhwozskGt0KDWUOVq8Wqx85MkbdudtM/TR8eTRcuymS/O2iw80wuCquKTnEEx+NNmVl4pCmo/MNKWqDD7OTGpDJQ6W/4sQw83mmt3tDiHsp3/fHWO8e1Vr/jyEEAH821XvnTV6iBFCCCHERvPcGjqXW2OMT4YQXgLgiyGEH8YYv3KuJ9FDjBCryG61QCXOteXIlbjWWeZsEY/tB0+4x7d9Zr/0WNmWlkHz0mgTEJswF6gjNVbLqMoJpwgM11OydvOS7mXuoxBiZOgXs7sY45Pp7zMhhM8AeA2Ac36IkSZGCCGEEJtGCOGiEMIOew3gbwH4wfkcS5EYIYQQYlToj0jMHgCfCSEAzXPI/xNj/ML5HEgPMUKcCXKsXb7lRgDAySuLTHfua02qx4o+AkV86xVcBACkwo2VEy+5BBsmEIYj0gVKmoiddu2cYwun8zZrmwo3CiH6gRjjQQCv3Ihj6SFGCCGEGAliv0RiNgw9xAhxlljkYzYtYwZKHaVAAt+lVE9pkpY+swA4pEgMR2dWkktwSHWXgLpuk/HC9Rfn1zNPNVGXqm6THY9qQgkhxLCihxghhBBiFIgYukiMVicJIYQQYiBRJEaIs2Q5FUjsXHv1GT838YOmaOQKpYNOz5XXlv5hL5exJL61VBMAxFR88tQbbsjbJo+XApF2Hi5YKfGuEOKMDFl1V0VihBBCCDGQ6CFGCCGEEAOJ0klCnCPdR3+cX49fsQ9AnTpifxgPW5XUOUob06qk+Rv25k1TRxr/l+mD5YOcgrI0klJIQoizpV/KDmwUisQIIYQQYiBRJEaIdWBi37Hni4tv2NUUgORijuzlsnj1S1rbFm6+CgAw88iRvI0dfTPkIDxk+jwhxGagSIwQQgghxNajSIwQQggxCkQAK8MVidFDjBAbAItrzdellyC3O9WUdlz6hVJCwD7LKSQWEAshhGijhxghhBBiJFABSCHEGkzvPwgAOPn6l+dt3cmQX88+9Gzz4ujxvM2KPapwoxBCnD16iBFCCCFGhSGLxGh1khBCCCEGEkVihNhgus89DwCYOXK5/76JfEnsy/4vQghxwVAk5uwIIdweQvhRCOHxEMJdF+o8QgghhBhNLkgkJoTQAfCvAPwKgEMAvhVCuDfG+JcX4nxC9CPjh4+621eeb7ar5pEQYlMZQp+YCxWJeQ2Ax2OMB2OMSwA+BeAdF+hcQgghhBhBLpQm5nIAT9C/DwF4LX8ghHAngDsBYAozEEIIIcSFJAJxuKquXaiHmOBsq2JYMca7AdwNACGEZ78U7/k5gOcuUHu2gt0Ynv6oL+fDzzblLLo2/ckw9QUYrv70U19eutUNGHQu1EPMIQBX0L/3AXiy14djjJeGEPbHGG++QO3ZdIapP+pL/zJM/VFf+pdh6s8w9UVcuIeYbwG4JoTwMgCHAbwbwH9+gc4lhBBCiLNhyJZYX5CHmBjjcgjhNwHcB6AD4KMxxkcuxLmEEEIIMZpcMLO7GOPnAXz+HHa5+0K1ZYsYpv6oL/3LMPVHfelfhqk/w9SXc2MIl1iHOGShJSGEEEK0uXhiT/zly96zKef6whMf+vZmaI9UdkAIIYQYFYYscKECkEIIIYQYSPriIWaQ6yyFEK4IIfxFCOFACOGREMJvp+2XhBC+GEJ4LP2d2+q2ni0hhE4I4TshhD9N/35ZCOHB1Jc/DiFMbHUbz5YQwmwI4Z4Qwg/TNXrdoF6bEMJ/n+6xH4QQPhlCmBqkaxNC+GgI4ZkQwg9om3stQsO/TL8JD4cQbtq6lrfp0Zf/Ld1nD4cQPhNCmKX33p/68qMQwlu2ptU+Xl/ovX8SQoghhN3p3319XYDe/Qkh/FYa/0dCCP8rbe/ba3NBiHFz/tsktvwhhuosvRXA3wDwnhDC39jaVp0TywD+cYzxegC3APiHqf13AfhyjPEaAF9O/x4UfhvAAfr3PwPwB6kvxwC8d0tadX58CMAXYox/HcAr0fRr4K5NCOFyAP8dgJtjjK9As+rv3Risa/MxALev2tbrWrwVwDXpvzsBfHiT2ni2fAztvnwRwCtijDcCeBTA+wEg/R68G8ANaZ9/nX73+oWPod0XhBCuQFP/jm0b+/26AE5/Qgh/E03pmxtjjDcA+Odpe79fG7EGW/4QgwGvsxRjPBJjfCi9Ponmf5KXo+nDx9PHPg7gnVvTwnMjhLAPwNsA/GH6dwDwRgD3pI8MUl92AngDgI8AQIxxKcZ4HAN6bdBo2KZDCOMAZgAcwQBdmxjjVwCsrorZ61q8A8AfxYZvAJgNIezdnJaujdeXGOOfxxiX0z+/gcbkE2j68qkY42KM8a8API7md68v6HFdAOAPAPwuarf1vr4uQM/+/AMAH4gxLqbPPJO29/W12Xg2KQozSpEY+HWWLt+itqyLEMKVAH4JwIMA9sQYjwDNgw6Al2xdy86JD6L54bICG7sAHKcf50G6PlcBeBbAv0/psT8MIVyEAbw2McbDaGaPP0Pz8PICgG9jcK+N0etaDPrvwn8J4M/S64HrSwjh7QAOxxi/t+qtgetL4loAr0+p1/83hPDqtH1Q+yMS/fAQs2adpUEghLAdwH8E8DsxxhNb3Z7zIYTwqwCeiTF+mzc7Hx2U6zMO4CYAH44x/hKAn2MAUkceSSvyDgAvA/ALAC5CE9pfzaBcm7UY2PsuhPBP0aSZP2GbnI/1bV9CCDMA/imA/8l729nWt30hxgHMoUn5/w8A/iRFmQe1P+dHBLCysjn/bRL98BBzTnWW+pEQwjY0DzCfiDF+Om1+2sKs6e8zvfbvI24F8PYQwk/QpPXeiCYyM5tSGMBgXZ9DAA7FGB9M/74HzUPNIF6bNwP4qxjjszHG0wA+DeCXMbjXxuh1LQbydyGEcAeAXwXw67GYcA1aX65G87D8vfRbsA/AQyGEyzB4fTEOAfh0SoN9E02keTcGtz8i0Q8PMbnOUlpZ8W4A925xm86a9DT/EQAHYoz/gt66F8Ad6fUdAD672W07V2KM748x7osxXonmOtwfY/x1AH8B4NfSxwaiLwAQY3wKwBMhhOvSpjcB+EsM4LVBk0a6JYQwk+4568tAXhui17W4F8DfS6thbgHwgqWd+pUQwu0A3gfg7THGeXrrXgDvDiFMhqae3DUAvrkVbTwbYozfjzG+JMZ4ZfotOATgpvR9GrjrkvhPaCZlCCFcC2ACTSXrgbo2G8KQaWK23OxuCOos3QrgNwB8P4Tw3bTt9wB8AE3I8r1o/gf0ri1q30bwPgCfCiH8LwC+gySUHRB+C8An0gPyQQB/H83D+0BdmxjjgyGEewA8hCZV8R009umfw4BcmxDCJwHcBmB3COEQgN9H7+/J5wH8bTRCy3k0161v6NGX9wOYBPDF5jkT34gx/rcxxkdCCH+C5qFzGcA/jDF2t6blbby+xBh73Ud9fV2AntfmowA+mpZdLwG4I0XK+vraiLVR2QEhhBBiBLh420viL1/ydzflXF945t9sStmBfkgnCSGEEEKcM3qIEUIIIcRAsuWaGCGEEEJsBhFYGS4JiSIxQgghhBhIFIkRQgghRoEIxLh5RnSbgSIxQgghhBhIFIkRQgghRgVpYoQQQgghth5FYoQQQohRYcgMbhWJEUIIIcRAokiMEEIIMQrECKxodZIQQgghxJajSIwQQggxKkgTI4QQQgix9SgSI4QQQowIUZoYIYQQQoitR5EYIYQQYiSI0sQIIYQQQvQDeogRQgghxECidJIQQggxCkSoAKQQQgghRD+gSIwQQggxKkQtsRZCCCGE2HIUiRFCCCFGgAggShMjhBBCCLH1KBIjhBBCjAIxShMjhBBCCNEPKBIjhBBCjAjSxAghhBBCrIMQwu0hhB+FEB4PIdx1vsdRJEYIIYQYFfpAExNC6AD4VwB+BcAhAN8KIdwbY/zLcz2WIjFCCCGE2ExeA+DxGOPBGOMSgE8BeMf5HEiRGCGEEGIEOIlj930p3rN7k043FULYT/++O8Z4d3p9OYAn6L1DAF57PifRQ4wQQggxAsQYb9/qNiSCs+28FMdKJwkhhBBiMzkE4Ar69z4AT57PgfQQI4QQQojN5FsArgkhvCyEMAHg3QDuPZ8DKZ0khBBCiE0jxrgcQvhNAPcB6AD4aIzxkfM5VohxuIxvhBBCCDEaKJ0khBBCiIFEDzFCCCGEGEj0ECOEEEKIgUQPMUIIIYQYSPQQI4QQQoiBRA8xQgghhBhI9BAjhBBCiIHk/wdoor836IY0zgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAIzCAYAAAAakPP8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3debhkVX3v//eHppvuRiZFFAEFI2gMKmprgpo8Kg5oVLw3iULUiBqJuY5RY9RrQjS/5OYmjjcOSQsqDtEo4hS9ImoUvSpKozKjyCAIyDyP3ef7+6P2SY7nnDqnTnNq76pT79fz1HOqdq3a+1u7Gupb37X2WqkqJEmSxtE2XQcgSZK0tUxkJEnS2DKRkSRJY8tERpIkjS0TGUmSNLa27ToASZLUrSc/bvu66uotrRxr06m3HV9VBy/X/kxkJEmacFddvYXvH3/vVo61avef7rpYmyR/BvwxUMBpwAuq6tb52tq1JEmSRkaSPYBXABuqan9gFXBov/ZWZCRJmnAFTDHVdRgzbQusS3IHsB64pF9DKzKSJKlNuyY5ecbtiJlPVtUvgLcCPwcuBa6rqq/025kVGUmSJl6xpVqryFxZVRv6PZlkF+AQYB/gWuBTSZ5bVR+dr70VGUmSNEqeAJxfVVdU1R3AccCj+jW2IiNJ0oTrjZEZmUWkfw78VpL1wC3AQcDJ/RpbkZEkSSOjqk4CjgVOoXfp9TbAxn7trchIkqSRumqpqo4EjhykrRUZSZI0tqzISJI04YpiS43MGJklsSIjSZLGlhUZSZI0SlctLYkVGUmSNLZMZCRJ0tiya0mSpAlXwBa7liRJktplRUaSJDnYV5IkqW1WZCRJmnAFTognSZLUNisykiRphJaMXBorMpIkaWxZkZEkacIV5TwykiRJbbMiI0nSpCvYMp4FGSsykiRpfFmRkSRpwhVetSRJktQ6KzKSJE28sIV0HcRWsSIjSZLGlomMJEkaW3YtSZI04QqY8vJrabwk+e0k57R0rPsn+WGSG5K8oo1jarwk+b0kf57EH5jSEpjIqHNJLkhyS/Mlf22S7yR5SZKh/vusqm9V1f1nxfGEIR3udcA3qmqHqvo/s59M8htJvpLkmuYcbEry1CHFMtaSPDbJVJIbZ9ye33Vcd0aSZwNHAc8BPpAks55/a5KfNv+NnJ3kjzoJVCvalmbA77Bvy81ERqPi6VW1A3Af4O+BvwCO7jakZXUf4IwFnv8CcAJwD2A34BXA9csdxLj92l8g3kuq6i4zbscM+XhD0yTP7wSeCPwOcF/gH2Y1uwl4OrAT8HzgXUke1Wac0qgykdFIqarrqurzwLOB5yfZHyDJds2v0p8n+WWSf06yrnnusUkuTvKaJJcnuTTJC6b3meSpSc5sfs3+IslrZ76uuf8R4N7AF5pf+K9L8sUkL58ZX5JTkzxzvtiTPCPJGU1F5RtJfr3Z/nXgccC7m33vN+t1uwL7AO+vqtub2/+rqm/PaPPiJOcmuTrJ55Pcq9m+d5Ka+QXcHPuPm/uHJ/l/Sd6R5Grgr2fs76zmnJyZ5GHN9nsl+XSSK5KcP7MbLMkjk5yc5PrmM3h7n/Mw/Xm8McmVTaXrOTOeH+Sz/IsklwEfnO8YS5HkXUkuauLelOS3Zzz310mOTfLRJNcDhydZ1cT+s+b8bEqyV3re0fwbu675t7Dov8/m+UOS/KiJ4WdJDm62bwD+BXhyVZ1cVdcDTwYeNv3vFKCqjqyqs6tqqqpOAr4FHHhnz400rbAiIy2rqvo+cDEw/aXzv4H9gAOA+wF7AH814yX3pPdrdQ/gRcB7kuzSPHc08CdNxWd/4OvzHO95wM/pVYbuUlX/ABwDPHe6TZKHNPv/0uzXN8nJx4FXAXdv2nwhyZqqejy9L56XNfv+yayXXwWcC3w0yTOT3GPWvh8P/C/gWcDuwIXAJ+Y7b338JnAevUrP3yb5A3oJzR8BOwLPAK5KryvvC8CPm/d5EPCqJE9u9vMu4F1VtSPwa8AnFzjmPYFdm/08H9iYZLobb5DP8q70qlhH9Nn/bk3CcH6TXGy/QCw/aI51V+BfgU8lWTvj+UOAY4GdgY8BrwYOA55K7/y8ELgZeBK9isl+Tdtn0/vsFnxPSR4JfBj48+Z1vwNcANAkL79WVadOB1NVN1XVQVX11vneTJMgPYKFK3zSxDCR0Si7BLhrkgAvBv6sqq6uqhuAvwMOndH2DuAtVXVHVX0JuBG4/4znHphkx6q6pqpOGfD4nwP2TbJv8/h5wL9V1e3ztH028MWqOqGq7gDeCqwDFi3/V1XRq9hcALwNuDTJiTOO+xzgA1V1SlXdBrwBODDJ3gO+j0uq6p+qanNV3QL8MfAPVfWD6jm3qi6k9+V496p6S1MVOg94P/91nu8A7pdk16q6saq+t8hx/7KqbquqbwJfBJ414Gc5BRzZvPaWefZ7Nr2EYXfg8cDDgXmrQwBV9dGquqp5/28DtuO//m0AfLeqPttUO6bPz5uq6pzm/Py4qq5q3v8OwAOAVNVZVXXpAO/pRfQ+vxOaY/yiqs5e5Nwt5J/pJZvH34l9SHNMVVq5LTcTGY2yPYCr6VU41gObmm6ba4EvN9unXVVVm2c8vhm4S3P/9+j9ur4wyTeTDFSSb5KGTwLPbaoVhwEf6dP8XvQqJdOvnQIuat7DIMe6uKpeVlW/Rq8ScRO9X/Hz7ftGepWAgfbdxDHTXsDP5ml3H+Be0+e4Oc9vpDduB3pfyPsBZyf5QZKnLXDMa6rqphmPL2zexyCf5RVVdWu/HVfVZVV1ZpMUnE9vIPXv92ufXpfjWU130LX0Kne7zmgy0Pmpqq8D7wbeA/wyycYkOw7wnvqd7yVL8o/0qorPahJgaeKZyGgkJXkEvS/qbwNXArcAv1FVOze3narqLgvupNFUHg6h17XyWfp3icz3xXAMvYrIQcDNVfXdPq+9hF4iMB1/6H2B/WKQGGfFexG9L8v9++x7e+Buzb6nk4X1M3Zxz9m7nPX4InpdQ7NdBJw/4xzv3Fxl9dQmrp9W1WH0zuP/Bo5doEtnl1nP3bt5H4N8lkv9gi6Yv+O9GQ/zF/S65Xapqp2B62a1H/T8UFX/p6oeDvwGvaTuzwd4T333txRJ3gw8BXhSM5ZGWjaOkZGWSZIdm1/6nwA+WlWnNdWN9wPvSLJb026PGWM3FtrfmiTPSbJT0+VzPbClT/Nf0rti5D81icsUvS6fftUY6CVHv5vkoCSrgdcAtwHfGSDGXZK8Ocn9kmyT3uDfFwLTXTf/CrwgyQFJtqPXbXFSVV1QVVfQS2ie2wxSfSGLf2keBbw2ycObAaz3S3If4PvA9c1A23XN/vZvkkqSPDfJ3ZvP49pmX/3OJcCbm/P/28DTgE/dmc9yxvl6bJJ7N7HvRe8qt8/1ab4DsBm4Atg2yV/RG/eykKOAv0myb3OMBye5W5JHJPnN5vO9CbgV2DLAezqa3ud3UPP57pHkAYO+32Z/bwD+EHhi080lqWEio1HxhSQ30Pv1+j/pjXl4wYzn/4LegNjvpXd1yVf51XEOC3kecEHzupcwYwDvLP8LeFPTPfDaGds/DDwI+Gi/A1TVOc1+/4neL/Sn0xs4PN94mtluB/am956uB06nlwQd3uz7a8BfAp8GLqWXqMwcU/JiepWBq+hVChZMnqrqU8Df0kuQbqBXpbprVW1p4j4AOL95H0fR64oBOBg4I8mN9Ab+HrpAF9BlwDX0qjAfA14yY1zInfksAR4GfJdeMvEdeuer3ySDxwP/F/gJve6tW5nblTTb2+klpl+h93kcTW+80470EpZrmn1dRW8s1ILvqXoD118AvINeNeibzKiwDejv6FW1fpr/mjvnjUvch9RXEbawTSu35Ra7WaWFpTf52BFV9ZiuYxkHSR5Lr5q2Z9exSBrMrz94u/rwv+/eyrEeeZ8LN1XVhuXa31hNjiW1Lcl64H8A7+06FkkapmFcUdQGu5akPpoxDlfQGzvzrx2HI0mahxUZqY+qOh5YaKI1zaOqvgHYrSSNkemrlsaRFRlJkjS2xqIisybb1Vp/GEut2+/BN3cdwrxOu+ruizdq2TYLXYjekdWX3bR4I42kW7mJ2+u28SyRtGwsEpm1bM9v5qCuw5AmzvHH/6jrEOa170f+tOsQ5lhz3eh95+z5d4tOY6QRdVJ9reUjhi01np004xm1JEkSY1KRkSRJw1PA1JjWNsYzakmSJKzISJIkvPxakiSpdVZkJEmacFVetSRJktQ6KzKSJIkpx8hIkiS1y4qMJEkTrrdo5HjWNsYzakmSJKzISJIk11qSJElqnxUZSZImnGstSZIkdcBERpIkjS27liRJElvKCfEkSZJaZUVGkqQJV2RkJsRLcn/g32Zsui/wV1X1zvnam8hIkqSRUVXnAAcAJFkF/AL4TL/2JjKSJImp0ZwQ7yDgZ1V1Yb8GJjKSJKlNuyY5ecbjjVW1sU/bQ4GPL7QzExlJkiZcy4tGXllVGxZrlGQN8AzgDQu1G8k6kiRJmnhPAU6pql8u1MiKjCRJE67IKM4jcxiLdCuBFRlJkjRikqwHnggct1hbKzKSJGmkFo2sqpuBuw3SdnSiliRJWiIrMpIkTbgq2DKa88gsajyjliRJwoqMJEkiTDFyVy0NxIqMJEkaWyYykiRpbNm1JEnShCvGd7CviYwm0pV/cmDXIcxx/X27jmCu+33jgK5DmNc2W7qOYK51v6yuQ5AmkomMJElqc9HIZTWeUUuSJGFFRpKkiVeEqdFbNHIgVmQkSdLYsiIjSZIcIyNJktQ2KzKSJE24AqbGdB6Z8YxakiQJKzKSJImwxUUjJUmS2mVFRpKkCecYGUmSpA5YkZEkSY6RkSRJapsVGUmSJlxVHCMjSZLUtqElMkk+kOTyJKfP2HbXJCck+Wnzd5dhHV+SJK18w6zIfAg4eNa21wNfq6p9ga81jyVJUse21Dat3Jbb0BKZqjoRuHrW5kOAY5r7xwDPHNbxJUnSytf2YN97VNWlAFV1aZLd+jVMcgRwBMBa1rcUniRJk6eAKS+/Xl5VtbGqNlTVhtVs13U4kiRpBLVdkfllkt2baszuwOUtH1+SJM2RoYxfaUPbUX8eeH5z//nA51o+viRJWkGGVpFJ8nHgscCuSS4GjgT+HvhkkhcBPwf+YFjHlyRJg+ktGjmeY2SGlshU1WF9njpoWMeUJEmTxSUKJEkSW0b3+p8FjWfUkiRJWJGRJGniFRnbMTJWZCRJ0tiyIiNJkpga09rGeEYtSZKEFRlJkiZeFWxxjIwkSVK7TGQkSdLYsmtJkiR5+bUkSVLbrMhIkjThehPijWdtw0RmK53/8Yd0HcIc607avusQ5nXLPavrEOaa6jqAuba9efTKunf8Yl3XIcwrW7qOYK6p1V1HMNdlr3xU1yHMcc93fafrELTCmMhIkiS2MHo/pgYxnnUkSZIkrMhIkjTxCq9akiRJap0VGUmSJt74XrU0nlFLkiRhRUaSJAFTXrUkSZLULisykiRNuCrY4lVLkiRJ7bIiI0mSvGpJkiSpbSYykiRppCTZOcmxSc5OclaSA/u1tWtJkqQJV2TUlih4F/Dlqvr9JGuA9f0amshIkqSRkWRH4HeAwwGq6nbg9n7tTWQkSVKbE+LtmuTkGY83VtXGGY/vC1wBfDDJQ4BNwCur6qb5duYYGUmS1KYrq2rDjNvGWc9vCzwMeF9VPRS4CXh9v51ZkZEkacIVjNIYmYuBi6vqpObxsSyQyFiRkSRJI6OqLgMuSnL/ZtNBwJn92luRkSRJozYh3suBjzVXLJ0HvKBfQxMZSZI0UqrqR8CGQdqayEiSNOlq5OaRGdhI1ZEkSZKWwoqMJEkTrmh1HpllZUVGkiSNLSsykiTJMTKSJEltsyIjSdKEG7GZfZfEiowkSRpbJjKSJGls2bUkSZLsWpIkSWqbFRlJkiZc4RIFkiRJrbMiI0mSXKJAkiSpbeNRkdlvNfmXPbqO4les+sb2XYcwxy27VdchzGu7q0cvy79t59E7V1Pbjl5M6y8dvc8OoFZ1HcFcm9d3HcFcmeo6Ao2N8qolSZKk1o1HRUaSJA2NSxRIkiR1wIqMJEmyIiNJktQ2KzKSJE04Z/aVJEnqgBUZSZJEWZGRJElql4mMJEkaW3YtSZIkF42UJElqmxUZSZImXLlopCRJUvusyEiSJC+/Xookf5bkjCSnJ/l4krVdxCFJksZb64lMkj2AVwAbqmp/YBVwaNtxSJKkab0lCtq4LbeuxshsC6xLsi2wHrikozgkSdIYa32MTFX9IslbgZ8DtwBfqaqvzG6X5AjgCIC199ih3SAlSZowjpEZUJJdgEOAfYB7Adsnee7sdlW1sao2VNWG1TutaztMSZI0Brq4aukJwPlVdQVAkuOARwEf7SAWSZImXuE8Mkvxc+C3kqxPEuAg4KwO4pAkSWOuizEyJyU5FjgF2Az8ENjYdhySJKlRvdl9x1EnE+JV1ZHAkV0cW5IkrRzO7CtJklz9WpIkqW0mMpIkaWzZtSRJ0oQrnBBPkiSpdVZkJEmaeMNZ0LENVmQkSdLYsiIjSZLGdkI8KzKSJGlsWZGRJEletSRJktQ2KzKSJE24qvGtyIxFInPbzWs495S9ug7jV0zttqXrEOa426bRLLBddcBU1yHMsfby0TtXW9aO3ki7zdt3HcH81l45eufqjh1G70vgjnVdRzDXLc98ZNchzGvdZ7/fdQjaSmORyEiSpOFyHhlJkqSWWZGRJEnOIyNJktQ2KzKSJGlsr1qyIiNJksaWFRlJkjRSklwA3ABsATZX1YZ+bU1kJEmacEVGsWvpcVV15WKN7FqSJEljy0RGkiRRLd2AXZOcPON2RJ9wvpJkU5/n/5NdS5IkqU1XLjTmpfHoqrokyW7ACUnOrqoT52toIiNJ0qQbsUUjq+qS5u/lST4DPBKYN5Gxa0mSJI2MJNsn2WH6PvAk4PR+7a3ISJKk/xzAMgLuAXwmCfTylH+tqi/3a2wiI0mSRkZVnQc8ZND2JjKSJGmkxsgshWNkJEnS2LIiI0mSqNEZI7MkVmQkSdLYsiIjSdKEKxwjI0mS1DorMpIkTboCrMhIkiS1y0RGkiSNrYG6lpLsAtwLuAW4oKqmhhqVJElq1bheft03kUmyE/BS4DBgDXAFsBa4R5LvAe+tqv9oJUpJkqR5LFSRORb4MPDbVXXtzCeSPBx4XpL7VtXRwwxQkiS1YKVVZKrqiQs8twnYNJSIJEmSBrRQ19KTgR2q6thZ258DXF5VJww7OEmS1IasyAnx3gx8c57tXwPeMpxwJEmSBrfQGJn1VXXF7I1VdVmS7YcYkyRJatuYjpFZqCKzNsmcRCfJamDd8EKSJEkazEKJzHHA+2dWX5r7/9w8J0mSVoLqLRrZxm25LZTIvAn4JXBhkk1JNgEX0JtP5k3LHokkSdISLXT59Wbg9UneDNyv2XxuVd3SSmSSJKk9K22MTJLXATSJywOq6rTpJCbJ37UUnyRJUl8LXbV0KPAPzf03AJ+a8dzBwBuHFdRsq26DHc4bsfUtRywcgG22jGY6vea60ZuboAZaZaxd210zeucpW7qOYH633N1zNYhtb+46grmu22cE/+PDK1h6Ru+/q0Es9HWcPvfneyxJktS6hVLj6nN/vseSJGmcjek3+0KJzEOSXE+v+rKuuU/zeO3QI5MkSVrEQlctrWozEEmSpKVadNRVkgcBD2genllVZww3JEmS1LqV1rWUZCfgc8C9gR/T61J6UJKfA4dU1fX9XitJktSGhSoyfwOcDDy+qqYAkmwD/D3wt8DLhx+eJEkaugKGsHxAGxZKZJ4APHg6iQGoqqkkbwROG3pkkiRJi1gokbm9WabgV1TV5iS3DTEmSZLUslppY2SAtUkeyvyT4W03vJAkSZIGs1Aicynw9j7PXTaEWCRJUldWWkWmqh7XZiCSJElLNZqrd0mSpHaN6VVLI7iGsyRJ0mCsyEiSJDKmY2QWrcgk+XSS320mw1sWSXZOcmySs5OcleTA5dq3JEmaHIMkJ+8D/hD4aZK/T/KAxV4wgHcBX66qBwAPAc5ahn1KkqStUS3eltmiiUxVfbWqngM8DLgAOCHJd5K8IMnqpR4wyY7A7wBHN/u/vaquXep+JEmSBuouSnI34HDgj4Ef0quoPAw4YSuOeV/gCuCDSX6Y5Kgk289zzCOSnJzk5M233LQVh5EkSYNJ76qlNm7LbJAxMscB3wLWA0+vqmdU1b9V1cuBu2zFMbellwS9r6oeCtwEvH52o6raWFUbqmrDtuvm5DmSJEkDXbX07qr6+nxPVNWGrTjmxcDFVXVS8/hY5klkJEmSFtM3kUny3+e7P62qjtuaA1bVZUkuSnL/qjoHOAg4c2v2JUmSlsmYXn69UEXm6Qs8V8BWJTKNlwMfS7IGOA94wZ3YlyRJmlALrbU0tOSiqn4EbE23lCRJGoaVVpFJ8uqFXlhV/VbGliRJasVCXUs7tBaFJEnq1kqryFTVm9sMRJIkaakWvfw6yVrgRcBvAGunt1fVC4cYlyRJaksxlMnq2jDIzL4fAe4JPBn4JrAncMMwg5IkSRrEIInM/arqL4GbquoY4HeBBw03LEmS1KZUO7flNkgic0fz99ok+wM7AXsvfyiSJElLM8gSBRuT7AL8JfB5eusr/dVQo5IkSe1aaVctTauqo5q736S3crUkSdJIGOSqpe2A36PXnfSf7avqLcMLS5IkaXGDdC19DrgO2ATcNtxwJEmSBjdIIrNnVR089EgkSVJnhnFFURsGuWrpO0m83FqSJLUmyaokP0zy7wu1G6Qi8xjg8CTn0+taClBV9eBliHMgU6vh1t3aOtpgdj5nqusQ5rhxj0Hy0vaturXrCObasl3XEcy1zR2Lt2nbHXfpOoL5rbti9H463rH96M2KOrWm6wjmMXqnSdNGb2bfVwJnATsu1GiQROYpyxKOJEnSAJLsSW8C3r8FXr1Q276JTJIdq+p6XI5AkiQtn12TnDzj8caq2jirzTuB1wE7LLazhSoy/wo8jd7VSsWvFgQL55SRJGllKNqcEO/KqtrQ78kkTwMur6pNSR672M76JjJV9bTm7z5bE6UkSdJWeDTwjCRPBdYCOyb5aFU9d77Gg0yI97B5Nl8HXFhVm+9UqJIkaTSMyBj6qnoD8AaApiLz2n5JDAw22Pe9wMOAU+l1Lz0I+DFwtyQvqaqv3NmgJUmStsYg1+teADy0qjZU1cOBA4DTgScA/zDE2CRJUktS7dyWoqq+MT3UpZ9BEpkHVNUZM3Z6Jr3E5rylhSNJkrS8BulaOifJ+4BPNI+fDfykWUxyBKfwkiRJSzYiY2SWapCKzOHAucCrgD8Dzmu23QE8bliBSZIkLWbRikxV3QK8rbnNduOyRyRJkto3phWZhWb2/WRVPSvJaczz9tpca0mSJGk+C1VkXtn8XXC0sCRJGm9bc0XRqFhoZt9Lk6wCjq6qJ7QYkyRJ0kAWHCNTVVuS3Jxkp6q6rq2gJElSyyqLtxlBg1x+fStwWpITgJumN1bVK4YWlSRJ0gAGSWS+2NwkSdJKtdLGyEyrqmOSrAH2azadU1VOhCdJkjo3yOrXjwWOobfmUoC9kjy/qk4cbmiSJEkLG6Rr6W3Ak6rqHIAk+wEfBx4+zMAkSVJ7xvXy60GWKFg9ncQAVNVPgNXDC0mSJGkwg1RkTk5yNPCR5vFzgE3DC0mSJLVuTCsygyQyfwq8FHgFvTEyJwLvHWZQkiRJgxjkqqXbgLc3N0mStNKM8RIFfcfIJPlCkqcnmTMeJsl9k7wlyQuHG54kSVJ/C1VkXgy8GnhnkquBK4C1wD7AucC7q+pzww9RkiQN3ZhWZBZaNPIy4HXA65LsDewO3AL8pKpubiU6SZKkBQwy2JequoDehHiSJGklGtOKzCDzyEiSJI2kgSoykiRpZVtxVy1JkiSNur4VmSSnMX+PWYCqqgcPLSpJkqQBLNS19LTWopAkSdoKC11+feH0/ST3Afatqq8mWbfQ6yRJ0hhaqWNkkrwYOBb4l2bTnsBnhxmUJEnSIAYZ7PtS4NHA9QBV9VNgt2EGJUmSNIhBuohuq6rbkwCQZFtaLkCtueQm7v3X32nzkIu6+A2P6jqEsbHm+q4jmGvLmq4jmGvL2q4jmGvbW7qOYH61Kl2HMMetu41eXX6H87uOYK5rHrq56xDmdeWfHNh1CL9i86e/1+4BV+KikTN8M8kbgXVJngh8CvjCcMOSJEla3CCJzOvpLRh5GvAnwJeANw0zKEmS1LJq6bbMBula2rWq3g+8f3pDkvsD5yx/OJIkSYMbpCLzrSTPmn6Q5DXAZ4YXkiRJat0Krsg8FtiY5A+AewBnAY9c/lAkSZKWZtGKTFVdCnwZOBDYG/hwVd045LgkSVJLQu+qpTZuy23RikySE4BLgf3pTYb3gSQnVtVrlz8cSZKkwQ0yRuY9VfVHVXVtVZ0OPAq4bshxSZKkNq3UMTJV9dlZjzcDf7P8oUiSJC1N30Qmyber6jFJbuBXc6gAVVU7Dj06SZI0fGM8s+9Cq18/pvm7Q3vhSJIkDW6hisxa4CXA/YBTgQ803UqSJGmlGdOKzEKDfY8BNtBbmuCpwNtaiUiSJGlACw32fWBVPQggydHA99sJSZIktW4FVmTumL5jl5IkSRpFC1VkHpLk+uZ+gHXN42W5ainJKuBk4BdV9bQ7sy9JkjSZFrpqadWQj/1Keus2eRm3JEkdG9fLrweZ2XfZJdkT+F3gqC6OL0mSVoZBVr8ehncCrwP6zlGT5AjgCIC1rG8pLEmSJpQVmcEkeRpweVVtWqhdVW2sqg1VtWE127UUnSRJGiddVGQeDTwjyVOBtcCOST5aVc/tIBZJkjSkBR3b0HpFpqreUFV7VtXewKHA101iJEnS1uhqjIwkSRoh43rVUqeJTFV9A/hGlzFIkqTxZUVGkiQ5RkaSJKltVmQkSdLYjpGxIiNJksaWFRlJkjQyY2SSrAVOBLajl6ccW1VH9mtvIiNJkkbJbcDjq+rGJKuBbyf5v1X1vfkam8hIkjTpRmhm36oq4Mbm4erm1jc6x8hIkqQ27Zrk5Bm3I2Y3SLIqyY+Ay4ETquqkfnXpKDwAABBrSURBVDuzIiNJktp0ZVVtWKhBVW0BDkiyM/CZJPtX1enztbUiI0nShEuLt6WoqmvprQBwcL82JjKSJGlkJLl7U4khyTrgCcDZ/drbtSRJkkZmsC+wO3BMklX0Ci6frKp/79fYRGYrbVnbdQRz7XLOVNchzGtq1VKLicN3w96jFxMj+PGtvXJ0/s820+07jt7nt81tXUcw14337jqCudZfsLrrEOZ17QNG6z/AUfyOaUtVnQo8dND2JjKSJMklCiRJktpmRUaSJI3SGJklsSIjSZLGlhUZSZJkRUaSJKltVmQkSZp05VVLkiRJrbMiI0mSHCMjSZLUNisykiTJMTKSJEltM5GRJEljy64lSZLkYF9JkqS2WZGRJEkO9pUkSWqbFRlJkiZd4RgZSZKktlmRkSRJVmQkSZLaZkVGkqQJF7xqSZIkqXVWZCRJkmNkJEmS2mZFRpIkkRrPkowVGUmSNLasyEiSNOmc2VeSJKl9JjKSJGls2bUkSZKcEE+SJKltVmQkSZKDfSVJktpmRUaSJDlGRpIkqW1WZLbSfY78TtchzHH1Cw/sOoR5bV6XrkOYI5u7jmCu7a4dvZ9DN+8+ep8dwG27jN652vbm0TtXNYKDHra7ZvRiAtjz777XdQi/4qq6qf2DjuZHsygrMpIkaWxZkZEkadKVY2QkSZJaZ0VGkiQ5RkaSJKltVmQkSZpwwTEykiRJrbMiI0mSoMazJGNFRpIkjS0TGUmSNLbsWpIkSQ72lSRJapsVGUmSJl3hhHiSJEltsyIjSZLIVNcRbJ3WKzJJ9kryH0nOSnJGkle2HYMkSVoZuqjIbAZeU1WnJNkB2JTkhKo6s4NYJEkSOEZmUFV1aVWd0ty/ATgL2KPtOCRJ0vjrdIxMkr2BhwInzfPcEcARAGtZ32pckiRNGueRWaIkdwE+Dbyqqq6f/XxVbayqDVW1YTXbtR+gJEkaeZ1UZJKsppfEfKyqjusiBkmS1ChcNHJQSQIcDZxVVW9v+/iSJGnl6KJr6dHA84DHJ/lRc3tqB3FIkqRGqp3bonEscZqW1ruWqurbQNo+riRJGgtLmqbFmX0lSdLIzCNTVZcClzb3b0gyPU2LiYwkSercrklOnvF4Y1VtnK/hQtO0TDORkSRJbbqyqjYs1mixaVqmmchIkjThwmhNiLeUaVo6mxBPkiRptqVO02IiI0nSpKtq77a4JU3TYteSJEkaGUudpsVERpIkjdQYmaWwa0mSJI0tKzKSJGlkJsRbKisykiRpbFmRkSRJjpGRJElqmxWZFeTGe4/mouJrru06gnmM4KnavH70gtrm9q4jmN/aq0bvXN3rmzd1HcIc+e6Puw5B46KAqfEsyViRkSRJY8uKjCRJ8qolSZKktlmRkSRJXrUkSZLUNhMZSZI0tuxakiRJUOPZt2RFRpIkjS0rMpIkycG+kiRJbbMiI0nSpCucEE+SJKltVmQkSZpwAeJVS5IkSe2yIiNJkmCq6wC2jhUZSZI0tqzISJIkx8hIkiS1zYqMJEmTznlkJEmS2mdFRpKkiVeufi1JktQ2KzKSJMnVryVJktpmIiNJksaWXUuSJMnBvpIkSW2zIiNJ0qQriItGSpIktcuKjCRJcoyMJElS26zISJIkF42UJElqmxUZSZJEHCMjSZLULisykiRpbK9aMpFZQdZc23UE81t12wj+x1HpOoI5bjnwxq5DmGOfQ0/tOgRJWpCJjCRJk64AZ/aVJElqlxUZSZImXCivWpIkSWqbiYwkSRpbdi1JkqSxvfzaiowkSRpbVmQkSZIVGUmSpLZZkZEkadI5IZ4kSVL7rMhIkiQnxJMkSWqbFRlJkuRVS5IkSXdWkg8kuTzJ6YO07ySRSXJwknOSnJvk9V3EIEmSplWvItPGbXEfAg4eNPLWE5kkq4D3AE8BHggcluSBbcchSZJGT1WdCFw9aPsuxsg8Eji3qs4DSPIJ4BDgzA5ikSRJRZtjZHZNcvKMxxurauPW7qyLRGYP4KIZjy8GfnN2oyRHAEcArGV9O5FJkqRhu7KqNizXzrpIZDLPtjlpYJOdbQTYMXcdz6HUkiSNC2f2HdjFwF4zHu8JXNJBHJIkacx1kcj8ANg3yT5J1gCHAp/vIA5JkjRiknwc+C5w/yQXJ3nRQu1b71qqqs1JXgYcD6wCPlBVZ7QdhyRJ+i+jskRBVR22lPadzOxbVV8CvtTFsSVJ0srhEgWSJMklCiRJktpmRUaSpElXwJQVGUmSpFZZkZEkaeINvKDjyLEiI0mSxpYVGUmSZEVGkiSpbVZkJEmSFRlJkqS2WZGRJGnSOY+MJElS+8aiInMD11z51Tr2wmXY1a7Alcuwn9H0jmOXc28r+1wtn+U7T+9clr0sq58t7+78NzUYz9NgVvp5uk+7hyuoqXYPuUzGIpGpqrsvx36SnFxVG5ZjXyud52ownqfBea4G43kajOdJ0+xakiRJY2ssKjKSJGnIvPx6LGzsOoAx4rkajOdpcJ6rwXieBuN5EgCpMc3AJEnS8thpzT3qUfc8rJVjffmid21azvFNk1aRkSRJK4hjZCRJkmNkRl2Sg5Ock+TcJK/vOp5RlGSvJP+R5KwkZyR5Zdcxjbokq5L8MMm/dx3LqEqyc5Jjk5zd/Ns6sOuYRlWSP2v+2zs9yceTrO06plGQ5ANJLk9y+oxtd01yQpKfNn936TJGdWciEpkkq4D3AE8BHggcluSB3UY1kjYDr6mqXwd+C3ip52lRrwTO6jqIEfcu4MtV9QDgIXi+5pVkD+AVwIaq2h9YBRzabVQj40PAwbO2vR74WlXtC3yteaw7o6qd2zKbiEQGeCRwblWdV1W3A58ADuk4ppFTVZdW1SnN/RvofeHs0W1UoyvJnsDvAkd1HcuoSrIj8DvA0QBVdXtVXdttVCNtW2Bdkm2B9cAlHcczEqrqRODqWZsPAY5p7h8DPLPVoDQyJiWR2QO4aMbji/ELekFJ9gYeCpzUbSQj7Z3A64DxnNe7HfcFrgA+2HTBHZVk+66DGkVV9QvgrcDPgUuB66rqK91GNdLuUVWXQu9HGLBbx/GMuZaqMVZktlrm2Taeo5pakOQuwKeBV1XV9V3HM4qSPA24vKo2dR3LiNsWeBjwvqp6KHATdgHMqxnjcQiwD3AvYPskz+02Kmn0TUoiczGw14zHe2LJdl5JVtNLYj5WVcd1Hc8IezTwjCQX0OuqfHySj3Yb0ki6GLi4qqYre8fSS2w01xOA86vqiqq6AzgOeFTHMY2yXybZHaD5e3nH8Yy3Aqam2rkts0lJZH4A7JtknyRr6A2g+3zHMY2cJKE3luGsqnp71/GMsqp6Q1XtWVV70/v39PWq8tfzLFV1GXBRkvs3mw4CzuwwpFH2c+C3kqxv/ls8CAdGL+TzwPOb+88HPtdhLOrQRMwjU1Wbk7wMOJ7elQAfqKozOg5rFD0aeB5wWpIfNdveWFVf6jAmjb+XAx9rfkScB7yg43hGUlWdlORY4BR6VxD+EKfhByDJx4HHArsmuRg4Evh74JNJXkQvCfyD7iJcIcZ0HhmXKJAkacLttHq3etTdfr+VY335l+9b1iUKJqIiI0mSFjGmhY1JGSMjSZJWIBMZSZI0tuxakiRp4hVM2bUkSZLUKhMZaYiSbEnyo2Y1408lWd9s/85W7m/vmSsAz3pu96Wuwp3kXs0lv4u1+1KSnZey7xmv/eskr23ufyjJwJdGJPlGs2r9j5P8IMkBs55/aJJK8uQZ29YkObFZr0jSIAqqplq5LTcTGWm4bqmqA5rVjG8HXgJQVcOYsfXVwPsHbZxk26q6pKoWTSyq6qkdLvb4nKp6CPBe4B9nPXcY8O3mL9BbmJLeasjPbi1CSZ0xkZHa8y3gfgBJbmz+/rckX03P7kl+kuSeSVYl+cemCnFqkj8ZYP+/B3y52e/aJB9MclqzWOPjmu2HN5WhLwBfmVnhaWaU/WRzvH9LclKSDc1zFyTZtWl/VpL3JzkjyVeSrGvavLiJ98dJPj1dfZpPkoOSfGbG4ycmWWxJjO8yY7HXZvbb3wcOB56UZO2Mtp8FnjPAOZM0barauS0zExmpBU03x1OA02Zur6rPAJcBL6VXTTmymdb/RfRWP34E8AjgxUn2WWD/+wDXVNVtzaaXNvt/EL1qxTEzvugPBJ5fVY+ftZv/0ezjwcDfAA/vc7h9gfdU1W8A19JLoACOq6pHNNWTs5r30M/XgV9Pcvfm8QuADy7QHuBgegnKtEfTW5voZ8A3gKfOeO50eudN0gpnH7I0XOtmLPfwLXprWc32cnpfvN+rqo83254EPHjGeJKd6CUQP+lznN2BK2Y8fgzwTwBVdXaSC4H9mudOqKqr59nHY4B3Na85PcmpfY51flVNv6dNwN7N/f2T/H/AzsBd6C0JMq+qqiQfAZ6b5IP0kqs/6tP8Y0m2p7e8yMwFJw+jt2Anzd/n0VtokarakuT2JDtU1Q394pA0w5hOiGciIw3XLVV1wCJt9gCmgHsk2aZ6o+ECvLyqfiUZSLJ3v+MAM7tWssDxbuqzfaHXzHTbjPtbgHXN/Q8Bz6yqHyc5nN7aOAv5IPAF4FbgU1W1uU+75wA/pre2znuA/55kFb1K0DOS/M8m9rvNSly2a/YtaQWza0nqUNPl9EHgD+l1x7y6eep44E+TrG7a7ddUJfr5Cf9VGQE4kWaMSJL9gHsD5ywSzreBZzWveSDwoKW8F2AH4NIm5kXHp1TVJcAlwJvoJUELtb2jafdbSX4deALw46raq6r2rqr7AJ8GntnEfzfgiuZ1khZTBVNT7dyWmRUZqVtvBL5VVd9quqB+kOSLwFH0EpNTmkGtV9B8Sc+nqm5K8rMk96uqc+ld4fPPSU6jt5Ly4VV1W29Xfb2X3liaU+mtvHwqcN0S3stfAicBF9IbC7TDAK/5GHD3qjpzsYZVdUuStwGvpdfN9JlZTT4N/CnwEeBxgKu2SxPA1a+lFSLJfwMeXlVv2srXrwJWV9WtSX6N3iXM+zWXMw9FkncDP6yq+cYO3Zn9Hge8oaoWq0JJAnZatWsduP3TWznW8Td8yNWvJc1VVZ9pulS21nrgP5quoQB/OuQkZhO98TqvWeb9rgE+axIjTQYTGWkFqaqj7sRrbwCW7VfSAMfrd3n3nd3v7cCHh7FvaSWrIYxfaYODfSVJ0tiyIiNJ0sSrsZ1HxoqMJEkaWyYykiRpbNm1JEnSpCuGsqBjG6zISJKksWVFRpIkQXn5tSRJUqusyEiSNOEKKMfISJIktcuKjCRJk67KMTKSJEltsyIjSZIcIyNJkrQckhyc5Jwk5yZ5/UJtrchIkqSRGSOTZBXwHuCJwMXAD5J8vqrOnK+9FRlJkjRKHgmcW1XnVdXtwCeAQ/o1tiIjSdKEu4Frjv9qHbtrS4dbm+TkGY83VtXGGY/3AC6a8fhi4Df77cxERpKkCVdVB3cdwwyZZ1vfkch2LUmSpFFyMbDXjMd7Apf0a2wiI0mSRskPgH2T7JNkDXAo8Pl+je1akiRJI6OqNid5GXA8sAr4QFWd0a99qsZzAhxJkiS7liRJ0tgykZEkSWPLREaSJI0tExlJkjS2TGQkSdLYMpGRJEljy0RGkiSNrf8fCXC/ecjTNwwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -375,37 +400,74 @@ "# plot the extracted image data\n", "fig = plt.figure(0, [10,10])\n", "im = plt.imshow(image_data, origin=\"lower\")\n", - "plt.colorbar(im)" + "plt.colorbar(im)\n", + "plt.xlabel(\"Pixel (originally RA)\")\n", + "plt.ylabel(\"Pixel (originally DEC)\")\n", + "plt.title(\"Density of Sources per 5 arcsec^2\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# Step 0. Make datamodel file\n", + "# Step 1c. Set up datamodel file\n", "\n", - "Once we have our FITS file ready to go, we can start making actual progress. Zeroth step is to create a data model we'll be applying to our FITS data.\n", + "At this point, we have a basic understanding of the information we are working with, so it's about time we set up our datamodel file. \n", "\n", - "A data model file really only needs to be set up once for every field, so this can either be done manually with the datamodel.py file, or automatically within the beast production wrapper code. We've opened up the datamodel.py file in an editor and changed the following fields manually to match our data: \n", + "The datamodel file is a sort of catch-all file used to store any sort of infomation we might need to run the BEAST code on our data. We'll go through and talk about what all the different variables mean, and which ones would need to be changed for any future projects.\n", "\n", - "* project = \"M31-B21-WEST_cutout\"\n", - "* surveyname = \"PHAT-M31\"\n", - "* filters and base filters\n", - "* make sure ast_with_positions is set to True\n", - "* ast_density_table = sourd density map (like './M31-B21-WEST_cutout.st_sourceden_map.hd5')\n", - "* ast_N_bins = 26\n", - "* ast_reference_image = fits image (like \"./M31-B21-WEST_cutout.st.fits\")\n", - "* astfile = \"data/M31-B21_WEST_cutout.gst.fake.fits\"\n", + "Go ahead and open the datamodel.py file in a text editor now and ensure that the following variables match:\n", "\n", + "* **project** : the same as the field_name variable we noted earlier\n", + " * *project = \"M31-B09-EAST_chunk\" *\n", + "* **surveyname** : the overall name for the survey (this variable isn't actually important for the code)\n", + " * *surveyname = \"PHAT-M31\"*\n", + "* **filters** : the full filter names from the photometric catalog, also the names that show up in our magnitude histograms so you can add them from there\n", + " * *filters = [\"HST_WFC3_F475W\", \"HST_WFC3_F275W\", \"HST_WFC3_F336W\", \"HST_WFC3_F814W\", \"HST_WFC3_F110W\", \"HST_WFC3_F160W\",]*\n", + " \n", + "* **base filters** : shortened versions of the filter names\n", + " * *basefilters = [\"F475W\", \"F275W\", \"F336W\", \"F814W\", \"F110W\", \"F160W\"]*\n", + "* **obsfile** : the name of the photometric catalog (now including the source density information\n", + " * *obsfile = \"./M31-B09-EAST_chunk.st_with_sourceden_cut.fits\"*\n", + " \n", + "* **ast_with_positions** : make sure is set to *True* if you have the locations included in your obsfile\n", "\n", - "This file is also where you specify the parameters and resolution of your physics model which will become relevant in Step 2.\n", - "\n" + "* **ast_density_table** : the source density map created in step 1b \n", + " * *ast_density_table = './M31-B09-EAST_chunk.st_sourceden_map.hd5'*\n", + " \n", + "* **ast_reference_image** : the original photometric FITS catalog which is required if you use the ast_with_positions as true \n", + " * *ast_reference_image = \"./M31-B09-EAST_chunk_F475W_drz.chip1.fits\"*\n", + " \n", + "* **astfile** : the file of ASTs we will be creating in step 3, but since ASTs normally have to be processed by a specialist, we have already included a finished AST file for us to use in this example\n", + " * *astfile = \"M31-B09_EAST_chunk.gst.fake.fits\"*\n", + " \n", + "* **n_subgrid** : the number of subgrids to use for generating the physics model later on (with 1 meaning no subgrids)\n", + " * *n_subgrid = 1*" ] }, { - "cell_type": "code", - "execution_count": 9, + "cell_type": "markdown", "metadata": {}, + "source": [ + "This file is also where you specify the parameters and resolution of your physics model which will become relevant in step 2. The resolution of these parameters for your own runs will differ depending on what sorts of ASTs you want to model. There are 8 parameters that can be set.\n", + "\n", + "1. **Distance** : either a fixed value or a range with stepsizes\n", + "2. **Velocity** : what is the heliocentric velocity of your location or galaxy in km/s\n", + "3. **Age** : the log10 age range of the ASTs being modeled\n", + "4. **Mass** : the mass of the ASTs\n", + "5. **Metallicity** : the metallicity range of the ASTs\n", + "\n", + "6. **A(v)** : the range of dust extinction in magnitudes that could be dimming the intrinsic brightness of the ASTs\n", + "7. **R(v)** : the range of dust grain sizes \n", + "8. **f(A)** the mixture factor between the Milky Way and Small Magellanic Cloud extinction curves\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": false + }, "outputs": [ { "name": "stdout", @@ -418,10 +480,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 9, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -436,9 +498,17 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# 2: Create physics model\n", + "Our goal after this would normally be to eventually run a bunch of **ASTs** (Artificial Star Tests), but before we can do that, we need to generate the fake stars to use.\n", "\n", - "Our goal is to eventually run a bunch of **ASTs** (Artificial Star Tests) in the field shown, but before we can do that, we need to generate the fake stars to use.\n", + "Since the ASTs would normally need to be analyzed by a specialist after being created and that's a little overkill for a small example, these next couple of steps are just to illustrate how the ASTs are actually generated. A finished file of the analyzed ASTs already exists so we will end up using that in step 4 and beyond.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 2. Create physics model\n", "\n", "In order to generate a diverse and representative sample of fake stars to use for our ASTs, we need to set up a N-dimensional model of possible stellar parameters, so that we can easily and randomly select stars from the model.\n", "\n", @@ -453,7 +523,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -462,7 +532,7 @@ "1" ] }, - "execution_count": 10, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -482,257 +552,221 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ - "# see which subgrid files already exist\n", + "# set up the naming conventions for the physics model\n", "gs_str = \"\"\n", + "\n", + "# this is only relevant if we run with multiple subgrids\n", "if datamodel.n_subgrid > 1:\n", " gs_str = \"sub*\"\n", "\n", - "# searches to see if files already exist\n", + "# collects any physics models that have already been created\n", + "# if none have, sed_files will be empty\n", "sed_files = glob.glob(\n", - " \"./{0}_beast/{0}_beast_seds.grid{1}.hd5\".format(field_names[0], gs_str)\n", + " \"./{0}/{0}_seds.grid{1}.hd5\".format(field_names[0], gs_str)\n", ")" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: fits\n", - "Auto-detected type: fits\n", - "Auto-detected type: csv\n", - "Auto-detected type: hd5\n", - "Auto-detected type: hd5\n" - ] - } - ], + "outputs": [], "source": [ "# only make the physics model they don't already exist\n", "if len(sed_files) < datamodel.n_subgrid:\n", " # directly create physics model grids\n", - " create_physicsmodel.create_physicsmodel(nprocs=1, nsubs=datamodel.n_subgrid)\n", - " \n", - " # create grids with script/is parallelizable/writes out scripts that you can submit to a cue\n", - " # we won't be parallelizing the code here in this notebook\n", - " #create_physicsmodel.split_create_physicsmodel(nprocs=1, nsubs=datamodel.n_subgrid)\n", - " #print('\\n**** go run physics model code for '+field_names[0]+'! ****')\n", - " # continue\n" + " create_physicsmodel.create_physicsmodel(nprocs=1, nsubs=datamodel.n_subgrid)" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ - "# list of SED files\n", + "# list of SED files (physics models)\n", "model_grid_files = sorted(\n", " glob.glob(\n", - " \"./{0}_beast/{0}_beast_seds.grid{1}.hd5\".format(field_names[0], gs_str)\n", + " \"./{0}/{0}_seds.grid{1}.hd5\".format(field_names[0], gs_str)\n", " )\n", - ")" + ")\n", + "sed_files = model_grid_files" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Hopefully a lot of spectral grids and SED grids should have started generating. In the end you should have a new folder titled your project name, with a bunch of SED and spectral subgrids." + "Hopefully a spectral grid and an SED grid should have started generating. In the end you should have a new folder with the same name as your project, with a one SED and spectral grid if you have only 1 subgrid." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# 3. Create ASTs!\n", + "# Step 3. Create Input ASTs!\n", + "\n", + "Now that we have our physics model generated, we can start to generate some input ASTs. ASTs are artificial sources inserted into the observations we have, which are then extracted with the same software that was used for the original photometry catalog. So the step that we're running now is just generating the artifical sources that will then later be inserted. \n", "\n", - "Now that we have our physics model generated, we can start to generate some ASTs.\n", + "We need to make sure that the ASTs cover the same range of magnitudes as our original photometric catalog does, so to do that\n", "\n", - "First thing's first, we're gonna check that there isn't already a file of ASTs present in the folder we're working in." + "\n", + "First thing's first, we're gonna check that there isn't already a file of AST inputs present in the folder we're working in." ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "'./M31-B09-EAST_chunk/M31-B09-EAST_chunk_inputAST.txt'" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# only create an AST input list if the ASTs don't already exist\n", - "ast_input_file = (\n", - " \"./\" + field_names[0] + \"_beast/\" + field_names[0] + \"_beast_inputAST.txt\"\n", - ")" + "ast_input_file = (\"./{0}/{0}_inputAST.txt\".format(field_names[0]))\n", + "\n", + "ast_input_file" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Now we can create the ASTs if they don't already exist." + "Now we can create the ASTs if they don't already exist.\n", + "\n", + "The way that " ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 29, "metadata": { "scrolled": false }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "creating artificial stars\n", - "\n", - "Auto-detected type: fits\n", - "Auto-detected type: fits\n", - "Auto-detected type: fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/christina/anaconda3/lib/python3.7/site-packages/beast/tools/run/make_ast_inputs.py:58: RuntimeWarning: invalid value encountered in less\n", - " (keep,) = np.where(obsdata[sfiltername] < 99.0)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reading existing AST SEDs\n", - "Assigning positions to artifical stars\n", - "Auto-detected type: fits\n", - "Auto-detected type: fits\n", - "removing 94106 stars from ./M31-B21-WEST_cutout.st.fits\n", - "1 repeats of each model in each map bin\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "3066.00 models per map bin: 0%| | 0/22 [00:00Table length=24528\n", - "
\n", + "Table length=33418\n", + "
\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "
zerosonesXYHST_WFC3_F475WHST_WFC3_F275WHST_WFC3_F336WHST_WFC3_F814WHST_WFC3_F110WHST_WFC3_F160W
int64int64float64float64float64float64float64float64float64float64
0111.4003642.1861930.202235.4751533.6134326.0746224.4300823.05891
0111.4227942.2267230.202235.4751533.6134326.0746224.4300823.05891
0111.3987542.2229930.202235.4751533.6134326.0746224.4300823.05891
0111.3797342.2235430.202235.4751533.6134326.0746224.4300823.05891
0111.4199742.1938530.202235.4751533.6134326.0746224.4300823.05891
0111.3874942.212130.202235.4751533.6134326.0746224.4300823.05891
0111.4348142.1874830.202235.4751533.6134326.0746224.4300823.05891
0111.4423542.1912630.202235.4751533.6134326.0746224.4300823.05891
0111.3936942.2235224.4048527.1274725.5855222.3766621.6178120.91429
0111.4355142.2132624.4048527.1274725.5855222.3766621.6178120.91429
01408.03456897.5236633.9505538.1835736.9970528.9912927.2261326.11148
01419.17151897.3349433.9505538.1835736.9970528.9912927.2261326.11148
01427.91019897.0346933.9505538.1835736.9970528.9912927.2261326.11148
01414.32003893.1662233.9505538.1835736.9970528.9912927.2261326.11148
01425.36739897.7232533.9505538.1835736.9970528.9912927.2261326.11148
01419.51676899.5385833.9505538.1835736.9970528.9912927.2261326.11148
01423.49592895.0248133.9505538.1835736.9970528.9912927.2261326.11148
01419.74966899.334333.9505538.1835736.9970528.9912927.2261326.11148
01416.9429896.4933133.9505538.1835736.9970528.9912927.2261326.11148
01417.38656895.2986533.9505538.1835736.9970528.9912927.2261326.11148
..............................
0111.3864342.1991949.5234150.5926552.472541.6730538.2988936.17306
0111.386442.1992649.5234150.5926552.472541.6730538.2988936.17306
0111.4005142.2092149.4414150.5106552.390541.5910538.2168936.09106
0111.3864742.1990249.4414150.5106552.390541.5910538.2168936.09106
0111.3866242.1986549.4414150.5106552.390541.5910538.2168936.09106
0111.3867342.1992649.4414150.5106552.390541.5910538.2168936.09106
0111.4004542.2091449.4414150.5106552.390541.5910538.2168936.09106
0111.3864442.1992949.4414150.5106552.390541.5910538.2168936.09106
0111.386742.1991149.4414150.5106552.390541.5910538.2168936.09106
0111.3864842.1992749.4414150.5106552.390541.5910538.2168936.09106
01855.520531.2582949.5866650.4711752.3401341.5801238.1806536.0759
01887.7347386.3207149.5866650.4711752.3401341.5801238.1806536.0759
01877.4064394.6643849.5866650.4711752.3401341.5801238.1806536.0759
01858.7756638.2763349.5866650.4711752.3401341.5801238.1806536.0759
01868.7369741.4238749.5866650.4711752.3401341.5801238.1806536.0759
01862.3463541.5893349.5866650.4711752.3401341.5801238.1806536.0759
01878.780547.2002249.5866650.4711752.3401341.5801238.1806536.0759
01858.7905582.3600349.5866650.4711752.3401341.5801238.1806536.0759
01857.7440541.3158149.5866650.4711752.3401341.5801238.1806536.0759
01852.4100960.9922349.5866650.4711752.3401341.5801238.1806536.0759
" ], "text/plain": [ - "\n", - "zeros ones X Y ... HST_WFC3_F814W HST_WFC3_F110W HST_WFC3_F160W\n", - "int64 int64 float64 float64 ... float64 float64 float64 \n", - "----- ----- -------- -------- ... -------------- -------------- --------------\n", - " 0 1 11.40036 42.18619 ... 26.07462 24.43008 23.05891\n", - " 0 1 11.42279 42.22672 ... 26.07462 24.43008 23.05891\n", - " 0 1 11.39875 42.22299 ... 26.07462 24.43008 23.05891\n", - " 0 1 11.37973 42.22354 ... 26.07462 24.43008 23.05891\n", - " 0 1 11.41997 42.19385 ... 26.07462 24.43008 23.05891\n", - " 0 1 11.38749 42.2121 ... 26.07462 24.43008 23.05891\n", - " 0 1 11.43481 42.18748 ... 26.07462 24.43008 23.05891\n", - " 0 1 11.44235 42.19126 ... 26.07462 24.43008 23.05891\n", - " 0 1 11.39369 42.22352 ... 22.37666 21.61781 20.91429\n", - " 0 1 11.43551 42.21326 ... 22.37666 21.61781 20.91429\n", - " ... ... ... ... ... ... ... ...\n", - " 0 1 11.38643 42.19919 ... 41.67305 38.29889 36.17306\n", - " 0 1 11.3864 42.19926 ... 41.67305 38.29889 36.17306\n", - " 0 1 11.40051 42.20921 ... 41.59105 38.21689 36.09106\n", - " 0 1 11.38647 42.19902 ... 41.59105 38.21689 36.09106\n", - " 0 1 11.38662 42.19865 ... 41.59105 38.21689 36.09106\n", - " 0 1 11.38673 42.19926 ... 41.59105 38.21689 36.09106\n", - " 0 1 11.40045 42.20914 ... 41.59105 38.21689 36.09106\n", - " 0 1 11.38644 42.19929 ... 41.59105 38.21689 36.09106\n", - " 0 1 11.3867 42.19911 ... 41.59105 38.21689 36.09106\n", - " 0 1 11.38648 42.19927 ... 41.59105 38.21689 36.09106" + "
\n", + "zeros ones X Y ... HST_WFC3_F814W HST_WFC3_F110W HST_WFC3_F160W\n", + "int64 int64 float64 float64 ... float64 float64 float64 \n", + "----- ----- --------- --------- ... -------------- -------------- --------------\n", + " 0 1 408.03456 897.52366 ... 28.99129 27.22613 26.11148\n", + " 0 1 419.17151 897.33494 ... 28.99129 27.22613 26.11148\n", + " 0 1 427.91019 897.03469 ... 28.99129 27.22613 26.11148\n", + " 0 1 414.32003 893.16622 ... 28.99129 27.22613 26.11148\n", + " 0 1 425.36739 897.72325 ... 28.99129 27.22613 26.11148\n", + " 0 1 419.51676 899.53858 ... 28.99129 27.22613 26.11148\n", + " 0 1 423.49592 895.02481 ... 28.99129 27.22613 26.11148\n", + " 0 1 419.74966 899.3343 ... 28.99129 27.22613 26.11148\n", + " 0 1 416.9429 896.49331 ... 28.99129 27.22613 26.11148\n", + " 0 1 417.38656 895.29865 ... 28.99129 27.22613 26.11148\n", + " ... ... ... ... ... ... ... ...\n", + " 0 1 855.5205 31.25829 ... 41.58012 38.18065 36.0759\n", + " 0 1 887.73473 86.32071 ... 41.58012 38.18065 36.0759\n", + " 0 1 877.40643 94.66438 ... 41.58012 38.18065 36.0759\n", + " 0 1 858.77566 38.27633 ... 41.58012 38.18065 36.0759\n", + " 0 1 868.73697 41.42387 ... 41.58012 38.18065 36.0759\n", + " 0 1 862.34635 41.58933 ... 41.58012 38.18065 36.0759\n", + " 0 1 878.7805 47.20022 ... 41.58012 38.18065 36.0759\n", + " 0 1 858.79055 82.36003 ... 41.58012 38.18065 36.0759\n", + " 0 1 857.74405 41.31581 ... 41.58012 38.18065 36.0759\n", + " 0 1 852.41009 60.99223 ... 41.58012 38.18065 36.0759" ] }, - "execution_count": 22, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ast = Table.read(ast_input_file, format=\"ascii\")\n", + "ast" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5569.666666666667" + ] + }, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "Table.read(\"./M31-B21-WEST_cutout/M31-B21-WEST_cutout_inputAST.txt\", format=\"ascii\")" + "33418/6" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# Check to see how the SEDs and the ASTs compare\n", + "### Check to see how the SEDs and the ASTs compare\n", "\n", "The histogram that is produced should have both the SED distribution and the AST distribution plotted on it. The thing we want to test for is whether the AST distribution fully samples the SED range." ] }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -746,17 +780,1902 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/christina/anaconda3/lib/python3.7/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='ASTs'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='Model grid'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", " label='ASTs'\n", - "/home/christina/anaconda3/lib/python3.7/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='Model grid'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='ASTs'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='Model grid'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='ASTs'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='Model grid'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='ASTs'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='Model grid'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='ASTs'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", " label='Model grid'\n" ] } ], "source": [ - "plot_ast_histogram.plot_ast(ast_file=\"./M31-B21-WEST_cutout/M31-B21-WEST_cutout_inputAST.txt\", sed_grid_file=\"./M31-B21-WEST_cutout/M31-B21-WEST_cutout_seds.grid.hd5\")" + "plot_ast_histogram.plot_ast(ast_file = ast_input_file, sed_grid_file = model_grid_files[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 4. Edit/Split the Catalog" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have to remove sources from the input photometry catalog that are in regions without full imaging coverage or flagged as bad in flag_filter. This step should mostly just be removing any sources where one of the filters might not have a value." + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "gst_file_cut = gst_file.replace(\".fits\", \"_with_sourceden_cut.fits\")\n", + "\n", + "# check to see if the trimmed catalog already exists\n", + "if not os.path.isfile(gst_file_cut):\n", + " # and if not\n", + " cut_catalogs.cut_catalogs(\n", + " gst_file_sd,\n", + " gst_file_cut,\n", + " partial_overlap=True,\n", + " flagged=True,\n", + " flag_filter=flag_filter[0],\n", + " region_file=True,\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 4.5 Update Datamodel\n", + "**After making these cuts, we should now update the obs_file name in datamodel.py (~line 62) with this new trimmed filename: './M31-B09-EAST_chunk.st_with_sourceden_cut.fits'**" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "importlib.reload(datamodel)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 5. Edit/Split the ASTs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now for this step, we're doing things a little unconventionally since actually placing all the input ASTs we generated in Step 3 back into our image and rerunning the analysis would take several days of computational time. \n", + "\n", + "Instead, we've already procurred a polished AST results file (kindly provided by Ben Williams from the University of Washington) which we can use to complete our analysis. The AST file should be named *'./M31-B09-EAST_chunk.gst.fake.fits'* while the input ASTs we generated were named *'./M31-B09-EAST_chunk/M31-B09-EAST_chunk_beast_inputAST.txt'*.\n", + "\n", + "We will now use the same cutting procedure as for the catalog to trim down the AST file with the same criteria as in Step 4." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'./M31-B09-EAST_chunk.gst.fake.fits'" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ast_file = \"./\" + field_names[0] + \".gst.fake.fits\"\n", + "ast_file " + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "Table length=51549\n", + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
F110W_INF110W_RATEF110W_RATERRF110W_VEGAF110W_STDF110W_ERRF110W_CHIF110W_SNRF110W_SHARPF110W_ROUNDF110W_CROWDF110W_FLAGF160W_INF160W_RATEF160W_RATERRF160W_VEGAF160W_STDF160W_ERRF160W_CHIF160W_SNRF160W_SHARPF160W_ROUNDF160W_CROWDF160W_FLAGF275W_INF275W_RATEF275W_RATERRF275W_VEGAF275W_STDF275W_ERRF275W_CHIF275W_SNRF275W_SHARPF275W_ROUNDF275W_CROWDF275W_FLAGF336W_INF336W_RATEF336W_RATERRF336W_VEGAF336W_STDF336W_ERRF336W_CHIF336W_SNRF336W_SHARPF336W_ROUNDF336W_CROWDF336W_FLAGF475W_INF475W_RATEF475W_RATERRF475W_VEGAF475W_STDF475W_ERRF475W_CHIF475W_SNRF475W_SHARPF475W_ROUNDF475W_CROWDF475W_FLAGF814W_INF814W_RATEF814W_RATERRF814W_VEGAF814W_STDF814W_ERRF814W_CHIF814W_SNRF814W_SHARPF814W_ROUNDF814W_CROWDF814W_FLAGYINXINYXRA_J2000DEC_J2000
float32float32float32float32float32float32float32float32float32float32float32int16float32float32float32float32float32float32float32float32float32float32float32int16float32float32float32float32float32float32float32float32float32float32float32int16float32float32float32float32float32float32float32float32float32float32float32int16float32float32float32float32float32float32float32float32float32float32float32int16float32float32float32float32float32float32float32float32float32float32float32int16float64float64float64float64float64float64
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999997.3894843659727123.66996734304714027.3894843659727123.669967343047140211.14561473248584641.59773092319124
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999999.1886759032358864.6025429651330089.1886759032358864.60254296513300811.14895638513227141.599026017115044
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999997.485941299726475.802996432562127.485941299726475.8029964325621211.1457940446630141.60069345799913
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999992.1148949038763985.9022861171424432.1148949038763985.90228611714244311.13581829682567241.60083124801925
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999997.8305971919707964.9832604762775827.8305971919707964.98326047627758211.14643410345409341.59955491360546
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999991.85123880471971212.41622580929392371.85123880471971212.416225809293923711.13532911131690641.595989469915736
17.8547.27e-084.94e-1117.84599.9990.0010.071471.8-0.0020.0010.015017.0011.59e-079.64e-1116.99399.9990.0010.091655.0-0.004-0.0010.02023.0285.85e-102.5e-1123.08299.9990.0460.9123.4-0.0070.0550.004022.2081.29e-091.85e-1122.22499.9990.0160.7369.60.008-0.0020.006021.7491.99e-094.18e-1221.75122.3830.0020.43477.0-0.003-0.0070.004219.0852.33e-081.78e-1119.0819.1060.0010.151313.8-0.004-0.0010.00824.007235908804846.1955287337720674.007235908804846.19552873377206711.13933296345877941.6012386673917
17.8548.22e-085.21e-1117.71399.9990.0010.931577.6-0.0280.0020.003017.0011.86e-071.05e-1016.82599.9990.0010.961773.9-0.0260.0060.003023.0285.88e-102.81e-1123.07699.9990.0521.1520.90.054-0.0410.0022.2081.26e-091.77e-1122.24699.9990.0150.7871.40.005-0.0120.0021.7492.02e-093.23e-1221.73822.3750.0020.5623.8-0.011-0.0040.0019.0852.46e-081.59e-1119.02419.0510.0010.651540.6-0.0270.0060.009.2224281328151327.8083166416266859.2224281328151327.80831664162668511.1490195491168641.60347847678029
17.8547.24e-084.94e-1117.85199.9990.0010.071467.0-0.0030.0030.012017.0011.59e-079.7e-1116.99699.9990.0010.081640.3-0.0030.0010.01023.0285.72e-102.56e-1123.10699.9990.0490.9922.30.0010.1210.019022.2081.27e-091.74e-1122.2499.9990.0150.8672.80.014-0.0010.001021.7491.99e-094.14e-1221.75522.3870.0020.38479.90.0020.0010.009019.0852.33e-082.06e-1119.08219.1080.0010.151128.4-0.001-0.0010.00626.3195186226238470.83997497204197346.3195186226238470.839974972041973411.1436274657259941.59380042157581
17.8547.28e-084.92e-1117.84599.9990.0010.111478.1-0.0060.0020.007017.0011.6e-079.53e-1116.99299.9990.0010.11674.3-0.0060.0020.007023.0285.58e-102.48e-1123.13399.9990.0480.9422.50.010.0580.0022.2081.29e-091.78e-1122.22199.9990.0150.8272.60.015-0.0230.0021.7492.02e-093.61e-1221.73822.3690.0020.41559.4-0.0050.0050.002019.0852.34e-081.71e-1119.07819.1030.0010.191365.0-0.0040.0040.00201.2702921361582154.9152565920301581.2702921361582154.91525659203015811.1342497655112841.59946027756628
..........................................................................................................................................................................................................................................
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999991.4388127402699396.6819513114515481.4388127402699396.68195131145154811.13456246886052441.60191404109182
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999994.40228935849986952.5431062385315614.40228935849986952.54310623853156111.14006686930167741.59616587367655
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999995.8497054762367963.5991224988445585.8497054762367963.59912249884455811.14275500566084241.597632579100775
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999990.75009700140443015.52709235109574150.75009700140443015.527092351095741511.13328350068768241.600309979631795
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999999.7053139618865095.2881318461907859.7053139618865095.28813184619078511.14991603608954141.599978162934065
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.9999910.366443771989065.51668326637318410.366443771989065.51668326637318411.15114399438531841.60029550582017
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999995.1810237391715173.23168543070047765.1810237391715173.231685430700477611.14151311546117841.59712225014788
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999991.58431455983389267.3296274708306251.58431455983389267.32962747083062511.13483261555270741.60281360865252
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.9999910.499521610538653.143998637619927410.499521610538653.143998637619927411.15139068640609641.59700009092635
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999990.28819301490882948.049008523580210.28819301490882948.0490085235802111.13242507836869241.60381257215712
" + ], + "text/plain": [ + "\n", + "F110W_IN F110W_RATE F110W_RATERR ... RA_J2000 DEC_J2000 \n", + "float32 float32 float32 ... float64 float64 \n", + "-------- ---------- ------------ ... ------------------ ------------------\n", + " 33.267 0.0 9999.0 ... 11.145614732485846 41.59773092319124\n", + " 33.267 0.0 9999.0 ... 11.148956385132271 41.599026017115044\n", + " 33.267 0.0 9999.0 ... 11.14579404466301 41.60069345799913\n", + " 33.267 0.0 9999.0 ... 11.135818296825672 41.60083124801925\n", + " 33.267 0.0 9999.0 ... 11.146434103454093 41.59955491360546\n", + " 33.267 0.0 9999.0 ... 11.135329111316906 41.595989469915736\n", + " 17.854 7.27e-08 4.94e-11 ... 11.139332963458779 41.6012386673917\n", + " 17.854 8.22e-08 5.21e-11 ... 11.14901954911686 41.60347847678029\n", + " 17.854 7.24e-08 4.94e-11 ... 11.14362746572599 41.59380042157581\n", + " 17.854 7.28e-08 4.92e-11 ... 11.13424976551128 41.59946027756628\n", + " ... ... ... ... ... ...\n", + " 33.267 0.0 9999.0 ... 11.134562468860524 41.60191404109182\n", + " 33.267 0.0 9999.0 ... 11.140066869301677 41.59616587367655\n", + " 33.267 0.0 9999.0 ... 11.142755005660842 41.597632579100775\n", + " 33.267 0.0 9999.0 ... 11.133283500687682 41.600309979631795\n", + " 33.267 0.0 9999.0 ... 11.149916036089541 41.599978162934065\n", + " 33.267 0.0 9999.0 ... 11.151143994385318 41.60029550582017\n", + " 33.267 0.0 9999.0 ... 11.141513115461178 41.59712225014788\n", + " 33.267 0.0 9999.0 ... 11.134832615552707 41.60281360865252\n", + " 33.267 0.0 9999.0 ... 11.151390686406096 41.59700009092635\n", + " 33.267 0.0 9999.0 ... 11.132425078368692 41.60381257215712" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Table.read(ast_file)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# - ASTs\n", + "ast_file_cut = ast_file.replace(\".fits\", \"_cut.fits\")\n", + "\n", + "# check to see if the trimmed AST file already exists\n", + "if not os.path.isfile(ast_file_cut):\n", + " cut_catalogs.cut_catalogs(\n", + " ast_file,\n", + " ast_file_cut,\n", + " partial_overlap=True,\n", + " flagged=True,\n", + " flag_filter=flag_filter[0],\n", + " region_file=True,\n", + " )\n", + "\n", + "# so now we've generated the cut ast file" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can plot the AST magnitudes against our original source magnitudes again, just to check that we are within a reasonable range." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "# check to see if the plotted AST file already exists\n", + "if not os.path.isfile(ast_file_cut.replace(\".fits\", \"_maghist.pdf\")):\n", + " \n", + " test = plot_mag_hist.plot_mag_hist(ast_file_cut, stars_per_bin=200, max_bins=30)\n", + "\n", + " # and so this should plot a histogram of the different asts that remain after cutting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 5.5 Update Datamodel Again\n", + "\n", + "**Same with these cuts, we now have to update the astfile variable in datamodel.py (~line 144) with this new trimmed filename: './M31-B09-EAST_chunk.gst.fake_cut.fits'**" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "importlib.reload(datamodel)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 6. Split catalog by source density" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the next fitting step, we're going to have to break our catalog and AST file into bins based on the source density, and then further into sub-bins if there are more than ~6250 sources in the bins. \n", + "\n", + "We split things into source density bins so that we can later study how the actual source density of region effects the noise or bias. We further split things into sub-bins, just to make things a little more computationally accessible.\n", + "\n", + "One thing to note is that the source density bins are first sorted by magnitude (typically F475W if it's there) before being split into sub-bins. This means that the first sub-bin file (for a source density bin that has more than 6250 sources) will end up having all the dimmest sources or any sources with NAN values, and the last sub file will have all the brightest sources. This will become handy in Step 8 when we create physics (SED) models and noisemoels tailored specifically to each sub-bin file." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "# check to see if any sub files exist yet\n", + "if len(glob.glob(gst_file_cut.replace('.fits','*sub*fits') )) == 0:\n", + " # if no sub files exist, they can now be created\n", + " # a smaller value for n_per_file will mean more individual files/runs,\n", + " # but each run will take a shorter amount of time\n", + " \n", + " #split the gst file and ast file\n", + " split_catalog_using_map.split_main(\n", + " gst_file_cut,\n", + " ast_file_cut,\n", + " gst_file.replace('.fits','_sourceden_map.hd5'), #get full sourceden_mad.hd5 file from dust folder\n", + " bin_width=1,\n", + " n_per_file=6250, #this is the max number of sources per bin before it splits \n", + "\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So these are all the different source density bins, with some of them being split into sub bins to limit the number of entries to ~6250. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Rather than reading in all the files we just created, the developers of this code instead wrote this handy little function that generates a dictionary of all the files that have just been created (assuming the function ran correctly) and all the files that we hope to generate in the future.\n", + "\n", + "Because of this, I recommend not changing any of the naming for Step 6 or beyond, just because that then makes this dictionary point to incorrect files." + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n" + ] + } + ], + "source": [ + "# generate file name lists\n", + "file_dict = create_filenames.create_filenames(\n", + " use_sd=True, nsubs=datamodel.n_subgrid\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we take a look in our folder, we should be able to see some bins with sub-bins notation. We can do a quick check to see if the sub-binning generated from the dictionary matchs up with the files split in our data folder." + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[['2', '0'],\n", + " ['3', '0'],\n", + " ['3', '1'],\n", + " ['3', '2'],\n", + " ['4', '0'],\n", + " ['4', '1'],\n", + " ['4', '2'],\n", + " ['4', '3'],\n", + " ['4', '4'],\n", + " ['4', '5'],\n", + " ['5', '0'],\n", + " ['6', '0'],\n", + " ['9', '0']]" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sd_sub_info = file_dict[\"sd_sub_info\"]\n", + "sd_sub_info" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Hint: If sd_sub_info is empty, make sure you've updated the obsfile and astfile variables in datamodel (Step 4.5 and 5.5), reloaded the datamodel, and try to run create_filenames again.**" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "** total SD bins: 6\n", + "** total SD subfiles: 13\n" + ] + } + ], + "source": [ + "# - number of SD bins\n", + "temp = set([i[0] for i in sd_sub_info])\n", + "print(\"** total SD bins: \" + str(len(temp)))\n", + "\n", + "# - the unique sets of SD+sub\n", + "unique_sd_sub = [\n", + " x for i, x in enumerate(sd_sub_info) if i == sd_sub_info.index(x)\n", + "]\n", + "print(\"** total SD subfiles: \" + str(len(unique_sd_sub)))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Just another quick was to ensure that all the binning and sub-binning matches up. If it doesn't, none of the next steps will run properly." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 7. Make Noise Models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We're now on to creating our observational noise models! These models will be used to adjust the bias and uncertainty in Steps 8 and 9. \n", + "\n", + "The **uncertainty** (also known as sigma) is the standard deviation calculated for all the detected sources.\n", + "\n", + "The **bias** is the average offset between the input flux we have for the ASTs and the measured flux. Bias tends to become more prominent in regions of high source density, where it's harder to detect all the faint stars if they get blended together. If this happens, then some of the stars are assumed to be part of the background (raising the average), which gets subtracted from the detected sources. If the background is raised, then the detected sources are measured to be systematically fainter than they should be." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "# these are what the noise files should be named once generated\n", + "noise_files = file_dict[\"noise_files\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['M31-B09-EAST_chunk.gst.fake_cut_bin2.fits',\n", + " 'M31-B09-EAST_chunk.gst.fake_cut_bin3.fits',\n", + " 'M31-B09-EAST_chunk.gst.fake_cut_bin4.fits',\n", + " 'M31-B09-EAST_chunk.gst.fake_cut_bin5.fits',\n", + " 'M31-B09-EAST_chunk.gst.fake_cut_bin6.fits',\n", + " 'M31-B09-EAST_chunk.gst.fake_cut_bin9.fits']" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# gather up the split AST files\n", + "ast_file_list = sorted(glob.glob(datamodel.astfile.replace(\".fits\", \"*_bin*\")))\n", + "ast_file_list" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "sd list: ['2', '3', '4', '5', '6', '9']\n", + "\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin2.grid.hd5 already exists\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin2.grid.hd5\n", + "\n", + "creating M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin3.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Fitting model: 100%|██████████| 6/6 [00:00<00:00, 122.37it/s]\n", + "Evaluating model: 100%|██████████| 6/6 [00:00<00:00, 30.40it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Writing to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin3.grid.hd5\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin3.grid.hd5\n", + "\n", + "creating M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin4.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Fitting model: 100%|██████████| 6/6 [00:00<00:00, 63.10it/s]\n", + "Evaluating model: 100%|██████████| 6/6 [00:00<00:00, 29.23it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Writing to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin4.grid.hd5\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin4.grid.hd5\n", + "\n", + "creating M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin5.grid.hd5\n", + "Auto-detected type: hd5\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Fitting model: 100%|██████████| 6/6 [00:00<00:00, 249.56it/s]\n", + "Evaluating model: 0%| | 0/6 [00:00" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# set up the figure frame work\n", + "# have it scale with the number of filters we're plotting\n", + "fig, axes = plt.subplots(2, len(filter_list_plot), sharex=True, figsize=(5*len(filter_list_plot),8))\n", + "\n", + "# go through noise files\n", + "for n, nfile in enumerate(noise_files):\n", + " \n", + " print(\"* reading \" + nfile)\n", + "\n", + " # read in the values\n", + " noisemodel_vals = noisemodel.get_noisemodelcat(nfile)\n", + "\n", + " # extract error and bias\n", + " noise_err = noisemodel_vals.root.error[:]\n", + " noise_bias = noisemodel_vals.root.bias[:]\n", + " \n", + " cmaps = plt.get_cmap('viridis')\n", + "\n", + " gradient = np.linspace(0, 1, len(noise_files)) \n", + "\n", + " # now we can start plotting things\n", + " for f, filt in enumerate(filter_list_plot):\n", + " \n", + " # error is negative where it's been extrapolated -> trim those\n", + " good_err = np.where(noise_err[:, f] > 0)[0]\n", + " plot_sed = sed_grid[good_err, f][::samp] # only pulls every 100th point\n", + " plot_err = noise_err[good_err, f][::samp]\n", + " plot_bias = noise_bias[good_err, f][::samp]\n", + "\n", + " # plot bias\n", + " axes[0, f].set_yscale('log')\n", + "\n", + " axes[0, f].plot(\n", + " np.log10(plot_sed),\n", + " np.abs(plot_bias) / plot_sed,\n", + " marker=\"o\",\n", + " linestyle=\"none\",\n", + " mew=0,\n", + " ms=2,\n", + " alpha=1,\n", + " c=cmaps(int(nfile[-10])/9.),\n", + " label=noise_files[n][-10]\n", + " )\n", + " \n", + " axes[0, f].set_ylabel(r\"Abs Bias ($\\mu$/F)\", fontsize=10)\n", + " # xlabel is still in flux, not mag\n", + " axes[0, f].legend()\n", + "\n", + " # plot error (uncertainty)\n", + " axes[1, f].set_yscale('log')\n", + "\n", + " axes[1, f].plot(\n", + " np.log10(plot_sed),\n", + " plot_err / plot_sed,\n", + " marker=\"o\",\n", + " linestyle=\"none\",\n", + " mew=0,\n", + " ms=2,\n", + " color=color[0 % len(color)],\n", + " alpha=0.1,)\n", + " axes[1, f].set_ylabel(r\"Error ($\\sigma$/F)\", fontsize=10)\n", + " axes[1, f].set_xlabel(\"log \" + filt[-5:], fontsize=10)\n", + "\n", + " plt.tight_layout()\n", + " \n", + " #fig.colorbar(plt.cm.ScalarMappable(norm=np.arange(0,12), cmap=cmaps), ax=axes)\n", + " \n", + "\n", + " # Need to figure out if it's worth comparing the bias and the uncertainty to one another." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can probably tell, this plot isn't the most beautiful plot in the world (especially that coloring and legend) but I'm proud of her. It does, however, let you see the scale of the bias and uncertainty (error) for different filters and how the source density and magnitudes are correlated.\n", + "\n", + "The most notable thing to note is that the uncertainty and bias tend to be larger at lower fluxes. This probably doesn't come as a shock to anyone, but it's important to accurately take this into consideration when we make our fittings in Step 9." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 8. Trim Models\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have our SED and or noise models created, we can go ahead and trim them of any sources that are so bright or so faint (compared to min/max flux in the observation file) that they will by definition produce effectively zero likelihood fits. \n", + "\n", + "One thing to note is that, since our noise models are correlated with source density, we are in a sense 'convolving' each of our noise models with the original physics grid, meaning we will end up with a lot of physics grids trimmed for each source density scenario thanks to our noise models (and these physics grids are still essentially as large as the original physics grid, making this a very storage-intensive step). However, this trimming of the 'parameter space', as you could call it, will help speed up fittings in Step 9.\n", + "\n", + "**This step is very storage intensive so I'd make sure to have at least ~5GB of storage available.**\n" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 509563\n", + "number of trimmed models = 479060\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin2_sub0_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin2_sub0_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:08:41 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479060,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479060, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin2_sub0_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510048\n", + "number of trimmed models = 479552\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub0_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub0_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:09:08 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479552,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479552, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub0_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510048\n", + "number of trimmed models = 479552\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub1_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub1_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:09:33 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479552,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479552, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub1_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510048\n", + "number of trimmed models = 479552\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub2_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub2_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:09:59 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479552,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479552, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub2_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510040\n", + "number of trimmed models = 479552\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub0_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub0_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:10:23 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479552,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479552, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub0_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510040\n", + "number of trimmed models = 479552\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub1_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub1_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:10:46 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479552,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479552, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub1_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510040\n", + "number of trimmed models = 479552\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub2_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub2_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:11:10 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479552,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479552, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub2_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510040\n", + "number of trimmed models = 479552\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub3_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub3_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:11:34 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479552,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479552, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub3_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510040\n", + "number of trimmed models = 479552\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub4_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub4_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:11:58 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479552,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479552, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub4_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510040\n", + "number of trimmed models = 479552\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub5_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub5_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:12:23 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479552,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479552, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub5_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510025\n", + "number of trimmed models = 479530\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin5_sub0_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin5_sub0_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:12:48 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479530,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479530, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin5_sub0_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 323563\n", + "number of trimmed models = 293022\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin6_sub0_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin6_sub0_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:13:10 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(293022,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(293022, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin6_sub0_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 381265\n", + "number of trimmed models = 350814\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin9_sub0_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin9_sub0_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:13:30 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(350814,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(350814, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin9_sub0_noisemodel_trim.grid.hd5\n" + ] + } + ], + "source": [ + "# check to see if any sub files exist yet\n", + "if len(glob.glob(file_dict[\"noise_trim_files\"][0].replace('bin2_sub0','bin*_sub*'))) == 0:\n", + " \n", + " for i, sub_files in enumerate(file_dict[\"noise_trim_files\"]):\n", + " # pull out physics grid\n", + " modelsedgrid = FileSEDGrid(model_grid_files[0])\n", + " # trim for each noise file separately \n", + " noisemodel_vals = noisemodel.get_noisemodelcat(noise_files[i])\n", + " obsdata = datamodel.get_obscat(gst_file_cut, modelsedgrid.filters)\n", + "\n", + " # need to iterate over all the sub-bins\n", + " trim_grid.trim_models(modelsedgrid, noisemodel_vals, obsdata, file_dict[\"modelsedgrid_trim_files\"][i], file_dict[\"noise_trim_files\"][i])\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 9. Fit Models (WARNING! This step takes a while)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we're going to fit all our sources from our observational photometric catalog to our new trimmed physics and noise models. This will take quite some time just because every source has to be evaluated at each step in its physics model. \n", + "\n", + "So for every sub-bin of sources (max 6250 sources), every source in that photometry file is evaluated at every potential step in the physics grid that has been trimmed to specifically fit that sub-bin (hence the data-intensive code we ran back in Step 8). From this, we essentially get a report of how well every point in the physics model (AKA combo of parameters) matched with a source, what is often referred to as a likelihood. If we then take these likelihoods and figure out what parameter values they point back to, we can create a distribution of parameter values (metallicity, distance, Av, Rv, etc.) that best model each source. I hope that made sense (and is the correct interpretation).\n", + "\n", + "This function uses the trimmed photometric files we have, the trimmed physics models, and the trimmed noise models to create statistic files for each sub-binned source density bin.\n", + "\n", + "It'll take a long time though (~5 hours for me at least, but maybe you have a better computer (8GB RAM, for reference))." + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 25/25 [00:05<00:00, 4.35it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin2_sub0_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [34:16<00:00, 3.04it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub0_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [27:55<00:00, 3.73it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub1_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 985/985 [03:05<00:00, 5.32it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub2_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [26:55<00:00, 3.87it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub0_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [27:01<00:00, 3.85it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub1_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [23:10<00:00, 4.49it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub2_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [21:23<00:00, 4.87it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub3_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [20:40<00:00, 5.04it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub4_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 2587/2587 [10:27<00:00, 4.12it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub5_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 2769/2769 [13:05<00:00, 3.52it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin5_sub0_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 324/324 [00:46<00:00, 6.92it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin6_sub0_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 8/8 [00:01<00:00, 6.56it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin9_sub0_seds_trim.grid.hd5\n", + "None\n", + "time to fit: 212.80141111666666 min\n" + ] + } + ], + "source": [ + "#if len(glob.glob(file_dict[\"modelsedgrid_trim_files\"][0].replace('bin2_sub0','bin*_sub*'))) == 0:\n", + "run_fitting.run_fitting(\n", + " use_sd = True,\n", + " nsubs = 1,\n", + " nprocs = 1,\n", + " choose_sd_sub=None,\n", + " choose_subgrid=None,\n", + " pdf2d_param_list=['Av', 'Rv', 'f_A', 'M_ini', 'logA', 'Z', 'distance'],\n", + " resume=False,\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 10. Merge fits" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Whoo-hoo! You finished running the big Step 9!\n", + "\n", + "We are now onto the final step where we just have to merge all the trimmed SED model results together. This should produce one final **stats.fits** file which is very similar to our original photometric file, except now all the sources have estimates for what their metallicity, distance, age, mass, dust, etc. might be.\n", + "\n", + "Using these new columns of data, we can create lots of cool visuals which will be shown in the epilogue." + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "Auto-detected type: fits\n" + ] + } + ], + "source": [ + "merge_files.merge_files(use_sd=True, nsubs=datamodel.n_subgrid)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Hopefully there is now a stats.fits file in your folder. We can read it in to better understand what really happened." + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "Table length=50448\n", + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
NameRADECHST_WFC3_F475WHST_WFC3_F275WHST_WFC3_F336WHST_WFC3_F814WHST_WFC3_F110WHST_WFC3_F160WAv_BestAv_ExpAv_p16Av_p50Av_p84M_act_BestM_act_ExpM_act_p16M_act_p50M_act_p84M_ini_BestM_ini_ExpM_ini_p16M_ini_p50M_ini_p84Rv_BestRv_ExpRv_p16Rv_p50Rv_p84Rv_A_BestRv_A_ExpRv_A_p16Rv_A_p50Rv_A_p84Z_BestZ_ExpZ_p16Z_p50Z_p84distance_Bestdistance_Expdistance_p16distance_p50distance_p84f_A_Bestf_A_Expf_A_p16f_A_p50f_A_p84logA_BestlogA_ExplogA_p16logA_p50logA_p84logHST_WFC3_F110W_nd_BestlogHST_WFC3_F110W_nd_ExplogHST_WFC3_F110W_nd_p16logHST_WFC3_F110W_nd_p50logHST_WFC3_F110W_nd_p84logHST_WFC3_F110W_wd_BestlogHST_WFC3_F110W_wd_ExplogHST_WFC3_F110W_wd_p16logHST_WFC3_F110W_wd_p50logHST_WFC3_F110W_wd_p84logHST_WFC3_F160W_nd_BestlogHST_WFC3_F160W_nd_ExplogHST_WFC3_F160W_nd_p16logHST_WFC3_F160W_nd_p50logHST_WFC3_F160W_nd_p84logHST_WFC3_F160W_wd_BestlogHST_WFC3_F160W_wd_ExplogHST_WFC3_F160W_wd_p16logHST_WFC3_F160W_wd_p50logHST_WFC3_F160W_wd_p84logHST_WFC3_F275W_nd_BestlogHST_WFC3_F275W_nd_ExplogHST_WFC3_F275W_nd_p16logHST_WFC3_F275W_nd_p50logHST_WFC3_F275W_nd_p84logHST_WFC3_F275W_wd_BestlogHST_WFC3_F275W_wd_ExplogHST_WFC3_F275W_wd_p16logHST_WFC3_F275W_wd_p50logHST_WFC3_F275W_wd_p84logHST_WFC3_F336W_nd_BestlogHST_WFC3_F336W_nd_ExplogHST_WFC3_F336W_nd_p16logHST_WFC3_F336W_nd_p50logHST_WFC3_F336W_nd_p84logHST_WFC3_F336W_wd_BestlogHST_WFC3_F336W_wd_ExplogHST_WFC3_F336W_wd_p16logHST_WFC3_F336W_wd_p50logHST_WFC3_F336W_wd_p84logHST_WFC3_F475W_nd_BestlogHST_WFC3_F475W_nd_ExplogHST_WFC3_F475W_nd_p16logHST_WFC3_F475W_nd_p50logHST_WFC3_F475W_nd_p84logHST_WFC3_F475W_wd_BestlogHST_WFC3_F475W_wd_ExplogHST_WFC3_F475W_wd_p16logHST_WFC3_F475W_wd_p50logHST_WFC3_F475W_wd_p84logHST_WFC3_F814W_nd_BestlogHST_WFC3_F814W_nd_ExplogHST_WFC3_F814W_nd_p16logHST_WFC3_F814W_nd_p50logHST_WFC3_F814W_nd_p84logHST_WFC3_F814W_wd_BestlogHST_WFC3_F814W_wd_ExplogHST_WFC3_F814W_wd_p16logHST_WFC3_F814W_wd_p50logHST_WFC3_F814W_wd_p84logL_BestlogL_ExplogL_p16logL_p50logL_p84logT_BestlogT_ExplogT_p16logT_p50logT_p84logg_Bestlogg_Explogg_p16logg_p50logg_p84mbolmag_Bestmbolmag_Expmbolmag_p16mbolmag_p50mbolmag_p84radius_Bestradius_Expradius_p16radius_p50radius_p84symlogHST_WFC3_F475W_wd_bias_BestsymlogHST_WFC3_F475W_wd_bias_ExpsymlogHST_WFC3_F475W_wd_bias_p16symlogHST_WFC3_F475W_wd_bias_p50symlogHST_WFC3_F475W_wd_bias_p84symlogHST_WFC3_F275W_wd_bias_BestsymlogHST_WFC3_F275W_wd_bias_ExpsymlogHST_WFC3_F275W_wd_bias_p16symlogHST_WFC3_F275W_wd_bias_p50symlogHST_WFC3_F275W_wd_bias_p84symlogHST_WFC3_F336W_wd_bias_BestsymlogHST_WFC3_F336W_wd_bias_ExpsymlogHST_WFC3_F336W_wd_bias_p16symlogHST_WFC3_F336W_wd_bias_p50symlogHST_WFC3_F336W_wd_bias_p84symlogHST_WFC3_F814W_wd_bias_BestsymlogHST_WFC3_F814W_wd_bias_ExpsymlogHST_WFC3_F814W_wd_bias_p16symlogHST_WFC3_F814W_wd_bias_p50symlogHST_WFC3_F814W_wd_bias_p84symlogHST_WFC3_F110W_wd_bias_BestsymlogHST_WFC3_F110W_wd_bias_ExpsymlogHST_WFC3_F110W_wd_bias_p16symlogHST_WFC3_F110W_wd_bias_p50symlogHST_WFC3_F110W_wd_bias_p84symlogHST_WFC3_F160W_wd_bias_BestsymlogHST_WFC3_F160W_wd_bias_ExpsymlogHST_WFC3_F160W_wd_bias_p16symlogHST_WFC3_F160W_wd_bias_p50symlogHST_WFC3_F160W_wd_bias_p84chi2minchi2min_indxPmaxPmax_indxspecgrid_indxtotal_log_normreorder_tag
str29float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64int64float64int64int64float64str9
PHAT-M31 J004435.01+413540.9611.14587991456673441.594710659711372.6938229780643986e-219.227016583504053e-212.7366301117024876e-201.1307473476472241e-202.834051501297643e-209.345915577912443e-210.010.53456166142496430.010.43826086644179671.48046141450494660.8571.02832898251109370.79063154445482730.95067027692975491.27844891553961220.85805004841.02913538904224340.78197955570888980.9440315625055621.27811178639027646.03.74585256500229222.42159372648859073.57122178222140455.2065285670678646.04.0002894325957852.7894911428983643.90732578844482435.21096444696570.0040.0144282675103485270.0042187709121964490.0128541413385111020.026976716233826286907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818611.00.81077596687245460.498237965815047530.8614501690977431.010.09.7305510123295949.05185865929169.74335598421418710.0-20.67636129725098-20.6236537008216-21.0509735696428-20.64286101773007-20.256706515414454-20.678330849908075-20.711449908394854-21.113535322392185-20.709933659111115-20.34368071109016-20.980377715492033-20.91301124176117-21.316712892428228-20.937429738193238-20.562456775522598-20.98152257240765-20.96456690920686-21.34084568168185-20.97544015553115-20.6265449026026-20.493497753001503-20.78341194302714-21.54356800434706-20.809517111341446-20.12574372918582-20.499578985655024-21.205510187506228-21.969076273909813-21.26948971788478-20.420943309950818-20.209204563145295-20.356128902590655-20.97047753956093-20.353387689550278-19.846291582669707-20.214935104383855-20.719670141133243-21.346614909313963-20.740925996643867-20.102449153616963-20.0325403458445-20.046368231410447-20.578511367373867-20.064563927672037-19.586323818826365-20.037341419776936-20.316226964559053-20.836999121500778-20.332117355514576-19.800693067142216-20.36622352609169-20.32894352025428-20.77521370573467-20.33923764287305-19.942563121414988-20.369186946063625-20.47051295376766-20.89623779326875-20.45771989176555-20.077751630499440.2080.2293109126043186-0.268991343988197240.20817988318467140.65854931952862963.78813.77011934792464583.7147646831764443.76356011343640343.8179390041881094.2674.2379825225066524.00630215982120854.28759714157550854.5092073814579274.2494.1967476320132513.1228055905350224.2487065792953325.4416107000616321.12318982588888461.38882743966782730.8399501414894871.1989246679859021.7648568606536434-1.080334102553474e-212.8021647353763844e-22-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.022376224076914e-20-3.9921181535628153e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-3.0124820022351794e-21-4.477328062729628e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-188.253190878307196e-218.802754736035475e-213.979466120141786e-213.979466120141786e-211.917672252650435e-18-6.434665075977322e-21-5.741406475711803e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-7.337125257302916e-21-6.7303603403994876e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-193.5809198565301386205808250.1830088275045383884967256.90977146717074bin2_sub0
PHAT-M31 J004435.89+413607.1711.14955149842946541.601990303679221.9437781488778407e-205.790233078717116e-201.708360057840435e-201.4971932473477133e-20-3.838628834610639e-211.6586115608949553e-200.010.44358326044262850.010.36557407569475211.30292117915303150.8791.11929758334137990.82240954654086111.01576271834313481.50201089020364460.88030308491.12009120967160470.82205397699751151.01088189825426731.50464471520414136.03.7714571257976062.4385653924859713.5957919155217175.244211753675976.04.0242868841862882.81385918828352733.93274296577762965.25029984969630.0040.0141629682464226580.00416480561807692360.0126342810129921440.02634107881703608907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818611.00.81281025899146580.50269875147033050.86301025537572161.010.09.6249134725860928.84423766351779.6417035162688310.0-20.546854269070664-20.487852684627494-20.9041488621885-20.515810315705508-20.07899851208535-20.548823931018628-20.56220332584558-20.982091690402456-20.549231389189035-20.193287348717483-20.85136340514813-20.791283926485065-21.18808843928717-20.818533810061083-20.423381433969215-20.852508302210154-20.834743218171145-21.220211343961044-20.840357035633193-20.48874518862766-20.365542322728764-20.534108826772467-21.214816217723897-20.61970226989557-19.74702572662469-20.371623753395053-20.880234775386377-21.700237905736103-20.803209451294013-20.202052098245918-20.083403775624284-20.154369202454887-20.66424659880864-20.207707723987753-19.568647987347614-20.089134386109787-20.452550532880974-21.116845326365326-20.359975499506724-19.91770687582649-19.90091733537411-19.86435678647197-20.352465336888926-19.923550445942983-19.34144333929512-19.905718892291688-20.08823598865183-20.666174232301152-20.02543835480517-19.619513907271177-20.236599575328043-20.182432689327637-20.604825346358588-20.20853608165042-19.752619640014053-20.23956303248801-20.30121513554386-20.75442093037348-20.267786274280496-19.9064106691540950.3380.3935131748754666-0.0725008092863490.343973757328031260.88999813628272313.78843.78593861451637673.7239522312419233.7744230068502383.85349852294562964.1494.1699204138838113.93791421028716564.2295680699722734.4459208056431353.9253.7862253865113342.54419516406767173.9092287088458014.950394224319491.30272623972765441.5646036342750980.93408127455713761.34726686082623682.04463639899402734.7854891099829624e-215.0649868171672125e-21-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-3.524371708473542e-20-3.908735901386585e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-2.0258036566326566e-21-2.9050656618681958e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-189.739594208664853e-211.1272173344694338e-203.979466120141786e-213.979466120141786e-211.917672252650435e-18-5.705981122524013e-21-4.555428693135808e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-6.976186318710649e-21-6.134393109266214e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-194.719323879876735205810248.38407597222442383924971255.11927456073013bin2_sub0
PHAT-M31 J004435.03+413540.8011.14594280472428941.594667037176872.017726230628628e-201.4382191840684453e-211.3308938355366436e-208.43872557595984e-211.6171244877721415e-20-2.7403147527829693e-210.010.5385991530762970.010.4389583430604071.44946909363598840.8730.98235473795047720.75136746882513740.91768873001115151.21431054763112640.87309485670.98299760948233210.74827460048385470.91568171192480211.20018151478947796.03.77297694784644032.4384926470478193.5977584509210285.247330238767736.04.0247595813029032.81198588575629543.9341826653322865.2532134963005240.030.0145183960197587840.0042366360766105770.0129106027284750030.027272630808727057907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.00.81367394551281950.50419783378755920.86370006957763411.010.09.7606960137901979.0821574203381729.77195348534931810.0-21.06739988403348-20.733102199512107-21.139267308235308-20.745535175441695-20.342571197463965-21.06934353764487-20.82151251056995-21.182876302644786-20.851202958644553-20.413429006614884-21.30298325840933-21.016880690904607-21.394996250522908-21.03680019466336-20.649249899778624-21.304123820145684-21.06899046168689-21.41653967766587-21.090558214907574-20.70930614854087-21.908785297932866-20.959146818620418-21.718174193279353-20.9594574455786-20.240459881871722-21.91481390085925-21.36114215916725-22.02938247280449-21.448519702937613-20.540643219215358-21.189751135030548-20.5052141665963-21.119332550587714-20.474038374683513-19.947482161444537-21.19547382296284-20.86528331275672-21.3989308391202-20.926617454425173-20.177006942509173-20.68257532340904-20.180096415872608-20.702377562229582-20.17988507742792-19.700435215014288-20.687336700640163-20.450665993730293-20.900679092237755-20.49927480366198-19.87928859591284-20.818035727405633-20.443895276392755-20.87502281844871-20.447599979117644-20.02968925485091-20.82098770761431-20.58641342075565-20.962169775942286-20.626929007263257-20.135530105057303-0.3140.1065890440690902-0.37588959663140460.091290806657241850.54387447566750963.71143.7624528050317113.7113582715391383.75655283064188963.80868500188661234.494.3099016494091284.0877510478671114.346665710244954.5550890665738935.5544.5035529327611133.4094869451519964.5409234044552935.7088509669073970.87670434886576121.22587589584497980.77422251855404781.0903650636411661.6281819403590587-3.8296291743766466e-213.4278283808379603e-23-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.446228833693227e-20-3.9020895003348785e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-6.442405652434222e-21-5.023969623494162e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-185.4895250010597344e-218.004684230665902e-213.979466120141786e-213.979466120141786e-211.917672252650435e-18-7.679581017358345e-21-6.283639451187888e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-7.884138394729947e-21-7.118788717000403e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-191.0819167650310035162090253.0082879753725355761655259.8672967594927bin2_sub0
PHAT-M31 J004435.01+413540.6111.14589208784346641.594612970700052.471978732812037e-20-8.965522186400696e-201.0608102454399653e-213.1409648545756225e-202.1561659836961886e-201.773993234696343e-200.011.87707277339962750.011.05458841472432273.86444761079553921.0481.01024881958196060.40333371111562040.95724555425211091.59274873640433331.04996979241.01287783111736780.407875342689057060.96761658330967071.59890733047838922.03.71014667221131232.40390259818294363.53986076102508165.1354041031645312.03.96745916326208552.7641784118626053.87463678647427835.1365011935487110.0190.015775423101511870.00517717142282178750.014328985324034440.02848567548759949907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818611.00.8079433117284340.491622930925207760.85900096268617051.010.09.7166487559395889.038150554231219.73127444197098310.0-19.69186133545107-20.65149666600831-22.230588911621233-20.409817295500865-19.58119333040519-19.692907957053865-20.93438836933909-22.808177991334453-20.47022861932239-19.775850352743614-19.87966316593967-20.91218931036272-22.421188752526017-20.71145310328239-19.84464067597841-19.88026936038928-21.0852826504506-22.822137943344305-20.756346250998046-19.953367874662973-20.82862875462559-21.555327411129728-25.042996656486142-20.895511654603876-19.688717991249202-20.839841515270532-22.473675485602403-26.20195136382335-21.54906776425066-20.540238685735748-20.04430388063852-20.84101628255837-23.567247084262423-20.24766152920076-19.381924234138413-20.053102565307096-22.01422552273299-25.740254217307598-20.79556575835828-20.079963263797058-19.43136336181124-20.316462099027845-22.602139515719497-19.850663326950723-18.9825978953347-19.43687443099269-21.239362378845954-24.222581729697247-20.1225924410769-19.59088772406159-19.481815454059248-20.411065467035208-22.140813876670173-20.10972396633266-19.295384095288973-19.483877692076387-20.880917166443126-23.02899961070236-20.21303091862863-19.6260856919922061.0290.10318657991126835-1.72037967803758550.446446599551939941.30297189532710523.67453.705592970477113.5375596903267793.7110938156194543.8357752786442343.0794.0301251563146443.13981867198892764.1712021052438874.8342377479851952.1974.5120868865012341.51178149182854333.65305174595601929.070008696264394.8770045510986022.4689693676820680.399329909976897931.49997167836321624.6737651626983293.2227413500106193e-207.769004393919891e-21-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.811894990802553e-20-3.9702361915183306e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-1.6864111718050575e-21-7.147382352380974e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-184.1880530427349703e-201.5762563405233377e-203.979466120141786e-213.979466120141786e-211.917672252650435e-181.1749118479815233e-20-1.0130103318978867e-22-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-194.957030890163424e-21-1.7879113503345323e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-190.855922513657313275468248.6974369932743822962832256.70337816560055bin2_sub0
PHAT-M31 J004435.02+413540.8211.14590738154246541.594672446616963.005461322585575e-201.3336214252271036e-20-1.399228237850261e-202.1149163354142527e-201.621208135468536e-201.572075305543914e-200.014.7070922547444341.04657047283222784.63433137933689658.3853190465100860.20.41262099541833260.1777421811357630.31765778057265680.66103472947758560.2000000030.412937784901017350.178653715424074350.320494502399433170.66869472463889312.03.64042093268937262.36154322147988443.475413750291985.0092417681220642.03.9014099387458352.69881759434369253.80818558297530845.00920533944133250.030.015791626911289420.0052728904069241880.014338398506640980.028567239014896065907820.5301781861907820.5301781864907820.5301781861907820.5301781861907820.53017818611.00.80315931590041080.47862234162660690.8552856513885121.010.09.9088829644981819.2298799373068059.91276853055064710.0-22.695360677390212-22.199603697612975-22.811718576100517-22.39920091532786-21.50135509962169-22.696397784629713-22.883161436966297-23.71311468863416-23.02848591236596-22.11829232011442-22.911719242848285-22.411381347555764-23.033156155876565-22.597907042983355-21.674856799204417-22.91232352827978-22.838075580736167-23.548883356952583-23.015314233251143-22.118705130512573-25.545443154181353-24.622196379883814-25.665127670763294-25.22387151822748-23.20659145292515-25.552653282544842-26.205539142549316-27.454348330188434-26.521873180237368-25.267845573612043-24.06236610673095-23.312123527471442-24.226595565373756-23.748539151788645-22.087931320534725-24.070991690906162-26.107658298647795-28.189925672021356-26.50070061290776-24.051602005008895-23.13774595506965-22.434421864867762-23.229353855894455-22.77327582663816-21.41873249313129-23.143200745490617-24.718021530028373-26.715822830326104-24.81523166871432-22.948256007765263-22.620593928818764-22.07766837781717-22.745928187102134-22.32231075682519-21.31636298588381-22.62257373712634-23.226738438156637-24.361918139538307-23.336369680330474-22.239648999921112-2.5-1.7123255705960905-2.5302212624290665-1.9387097107417088-0.82654280340755483.45113.5472866421474913.46785444328775273.51865381233236543.64965678322336734.9964.8232615786786764.6137145693235374.9007524075137425.07214777011159511.0219.0509647288394626.8354613675069719.61582282098200611.0945720147867860.234667615744427070.53338762497533380.205510337639140120.33598147163246230.66316197677249024.503384990234952e-214.464722707323373e-21-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.019927688975977e-20-4.01361206903956e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-1.7505726047035988e-20-1.6936203817357627e-20-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-184.0032486933770836e-214.4062796238849116e-213.979466120141786e-213.979466120141786e-211.917672252650435e-18-8.511887768400036e-21-8.1775848553636e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-8.368352112107116e-21-8.045339810521697e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-192.175457188358515117877252.7601362520254312671632260.46615762377166bin2_sub0
PHAT-M31 J004435.90+413607.1111.14959236188068641.601975894490973.464995830608325e-20-3.1005764227969083e-201.5847073298443655e-204.0413747795539675e-202.6788728888346585e-204.802762171982783e-210.010.62115924693053610.010.54468326610142161.60115935084484381.551.4712414031291150.94442183250707081.45115655311010251.99178735805222781.54999995231.47280110245431860.95933695413417711.45649349271138661.98323877662220842.03.70622847508011732.40221604787093853.5365533539864765.1267207324993812.03.96333021741562772.76139909737016963.8702548342702045.1273571854303980.030.0171519047069621270.0057022110722043820.0157513209655383220.029920131244354695907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.00.80790818226168270.49172830875482010.85891745737615341.09.09.3429201301973038.446142796062349.36254337176485810.0-20.19510484622564-19.96059913193318-20.30612719127283-19.92227595422891-19.58394559834193-20.196195834837035-20.06143924611632-20.340723428413664-20.02654316850486-19.73312632623973-20.549282622139735-20.28319375238829-20.676661433172686-20.259902517752703-19.88440357659361-20.549891370715184-20.34189939581413-20.679241942853633-20.33349707161132-19.961822588804534-19.918223800439392-19.978977277928806-20.94146338276442-19.81541307340982-19.144613368124144-19.930053013958617-20.48382307493895-21.26606113524431-20.3191186289773-19.787171815611124-19.640476628223155-19.617509060694342-20.205920611427903-19.577259990846933-19.041146821542466-19.649362019861933-20.047873216876017-20.503217312633186-19.948111613181048-19.569079167161647-19.417678215819908-19.279385374492307-19.68593591460069-19.27803636157667-18.784148266557178-19.423390323912272-19.59671245334538-19.89395310021796-19.503237428759924-19.221685192010714-19.849550735247973-19.644225634097314-19.98582838147841-19.60686378676127-19.268392245358214-19.851650950682117-19.80710859774914-20.031180851316755-19.757100323492725-19.510868607837990.7550.97586253163703230.5989601001717220.99805682520150951.40550591557230663.83443.8109452025350073.6886801117744293.83325397147859233.89975352657903864.1633.7995261120702163.20354078933680463.96141314129293364.2547214817512372.8822.3303617075775751.25548266721783652.274053864770253.2717756484013771.7035432376013742.84991570122393251.4928124993285682.33077900790102444.2910510060271023.3538108105199917e-202.790170551454629e-20-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-3.3208138787456643e-20-3.603450135284845e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-186.552446940602217e-211.713440093120825e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-181.8502395937227747e-202.512096699275581e-203.979466120141786e-213.979466120141786e-211.917672252650435e-18-2.1669221975520064e-213.3285238745933494e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-5.561501178294643e-21-1.0862427147200517e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-190.2501448669933298200923250.442899158432710661430256.79127421677686bin2_sub0
PHAT-M31 J004435.01+413540.6011.14586077975399441.594610786429143.850582256880288e-20-1.0459775884134147e-19-2.1801928357201742e-211.9788078583826416e-208.657333116355908e-212.5528195328557133e-210.013.0136090906532220.063504504874776171.7896268574771547.1187462948612380.6730.67244337226924230.220185700154080760.63689775732672851.05865165108854380.67317253350.6728019037004520.221674851053888870.64045117963759061.05867272778376292.03.70189404086764062.3962496550189533.531806100323625.1269164143772852.03.9591211933245312.75133878337756783.86673276850725725.1279825866388960.0040.0151709382898116730.004892907234007010.0137256719698518970.027793604531471727907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818611.00.80778641247905330.49056741830362060.85900657526964971.010.09.8232036002336959.1448958293046629.83186616865643610.0-21.32532823678483-21.561201156293187-22.675314728468596-21.506674319843583-20.456380978037405-21.326388318461664-22.004221255587847-23.467998961850796-22.10515259867406-20.524114837909472-21.56018219077681-21.805610555402996-22.908283458214903-21.691498505975265-20.754666079587345-21.560789157550055-22.08060200379629-23.36398035805215-22.10516802680434-20.807431403302992-21.866310605783195-23.06227737503184-25.51840747567177-23.144387898613424-20.584662489807283-21.877896387219796-24.180270700464554-27.135552256640604-25.24560943742982-20.897755294096076-21.323177883931834-22.112762198843278-24.064200667690276-22.046930143244964-20.168518149097817-21.331998345442113-23.920195531588956-27.749296330308812-24.00991882791097-20.422410906483904-20.92025161445917-21.462812932506772-23.07550897353269-21.388545933371446-19.87314200409724-20.925824864182193-22.929247377529368-26.07490389855313-22.92086501678753-20.036406349787327-21.07478492779242-21.36845633774829-22.617969724175556-21.312433686823407-20.149027389813938-21.07685681288068-22.109820758984018-24.007066888139896-22.224633854155364-20.2528644501472-0.561-0.9227047314213337-2.352160173735842-0.82432714407341570.40983897203607593.71223.63907785431926723.48514887995046643.65114995323906483.7798965783338374.6284.5920921294306374.1783399632415074.646015576188785.0168157670987836.1737.0768622182342213.7445689775667416.82992233036601110.6494282291717970.65728415181642550.85892095886664480.24321052425861930.62766919910340471.4467718037624725.327709550452713e-224.442259047864839e-21-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.381249859209011e-20-4.0323202112963177e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-6.947173173377488e-21-1.1902129254548252e-20-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-184.8172075660811435e-216.617473466628315e-213.979466120141786e-213.979466120141786e-211.917672252650435e-18-8.060365433770735e-21-7.045874554657362e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-8.105666301500592e-21-7.517455556648203e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-191.62903177897805863228251.7670491549987740824946259.28608520147225bin2_sub0
PHAT-M31 J004435.08+413540.6611.14616255190440541.5946263905207453.9034023152737074e-20-8.218395337533972e-20-4.555626820907827e-208.334026747473985e-204.0754804010015076e-201.6730342701201285e-200.010.86967909378817950.010.78035020712374771.85170018486991151.0491.31720636870910580.88163514851550871.05595328461476922.0483390328134081.05043613911.33547727200541870.94944381835307621.11335439950956272.04176843965530042.03.6957137388634262.38836449580927823.5255662018924655.1251320234197232.03.9523053295698952.73715146822452443.86093301809171675.1262410050095260.0190.0169537999924167270.0061173449240694150.0155443267949407220.029247888709606238907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818611.00.80807567280702870.49035705607328970.85942206711307231.010.09.7217800191567219.0432540633033269.73474816507275310.0-19.636761027317537-19.330287969064397-19.693043786168587-19.29491604799616-18.985259426562795-19.637807004897336-19.46527713343218-19.743925376539547-19.44105587693523-19.19404044542893-19.822163256303618-19.54806941230371-19.923907924316005-19.491791758937683-19.177259951185135-19.822769409155896-19.628317251802397-19.953159762101276-19.593043016826034-19.32056892691437-20.79561517572881-20.35762070206784-21.013171677236866-20.45885596567463-19.702310080493465-20.806814695824713-21.039737100383526-21.497931925551217-20.980071434903074-20.598749268536555-20.00349488662563-19.592294064160246-20.04502377439001-19.61210172925069-19.140466244157988-20.01229220209362-20.200975372727378-20.50066658297991-20.13169720510673-19.843082255158915-19.38293833565753-18.993511238626912-19.39442786940602-18.958335000159245-18.650236710661645-19.38844707038205-19.431703664533575-19.678388908030115-19.404185953182424-19.16149326321764-19.428712602992977-19.099342881635334-19.459325378369844-19.064293240105854-18.788001320611507-19.430774338487-19.322750956821828-19.56765171755133-19.317899410715693-19.090402764195521.0821.43352022030053441.0533046414870351.44929698170983021.74161244918960633.67253.70253103031941063.65388855981617233.6840858437298453.7218055333525313.0192.85176632776318242.40336667950009762.83023795066009453.20802599888742672.0661.18626582912781520.41805964699013071.14731407308176262.1359370967060545.2318244227015117.4055249567066414.32232963923084957.51474054038609610.6471779272614493.7104689885949184e-203.694274883236897e-20-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.759432340308314e-20-3.9474200863746714e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-1.2664174592635125e-21-2.0292245585900058e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-184.516522322655732e-205.608161879961565e-203.979466120141786e-213.979466120141786e-211.917672252650435e-181.4492641195016916e-203.962689271485453e-20-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-198.704619108543779e-212.6552869530011744e-20-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-198.601933066333634123729244.6447136913055522972833250.7234999018597bin2_sub0
PHAT-M31 J004435.02+413540.7411.14591182055179541.5946511057497054.0777085079719925e-20-1.6063227250634582e-19-1.0087459389153045e-202.743109306329377e-201.9887364281440227e-204.211431093750669e-210.010.55835481539989810.010.45219010413700541.56467664998863271.0181.18478131713477120.84053183278825851.03773261174111321.68906746004337281.01913547521.18574562770670220.84271663680694841.03832480939095121.69187895938229782.03.7115496878422782.40380673919382033.5441290496655535.13218938652767952.03.9686382334706742.76047104160392733.8812857512976165.13309807056310950.0190.014373849389922820.0051641639124399460.013270059431613340.02520569854846135907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818611.00.80920943923879560.495697714293169560.85990227425422591.010.09.6256134618417638.8465096394776459.64168477103303810.0-20.480533719055046-20.32933468200931-20.787715722811484-20.371583122549154-19.78497432363912-20.481603752158396-20.42097044802942-20.89813073974005-20.413088428010102-19.945876919816406-20.753211712084653-20.630391561274436-21.081903578263017-20.677249945322338-20.103917827418076-20.753819270828597-20.683903553728044-21.138284791242423-20.711718183331527-20.199574654409755-20.6792294197491-20.442762235289717-21.070714885314246-20.62536695154307-19.461824643778957-20.690850297362044-20.888010734721448-21.70891452110661-20.777655833109982-20.362237741922577-20.245347379184587-20.03967889811257-20.527580208329613-20.144394368652957-19.319462276576612-20.254187859991273-20.421387598133364-21.081805082204713-20.302498211243826-19.943755756679458-19.949471085429686-19.716738223127283-20.224848494317712-19.778631303065605-19.068402945626804-19.955091518292736-20.000598074984772-20.61895239915505-19.909491596823056-19.520164209182987-20.197352605926724-20.02738616539259-20.498867408269504-20.07432995098596-19.48055155417639-20.19943389918109-20.174857760361004-20.692734485746943-20.13514009577575-19.7192703847825080.3360.55012591608307350.0246042638030567470.48797949017004541.15053354965730373.75073.78343305013253733.7082946110601033.76900927733376623.8651338259316944.0654.0236441752993463.58895050204540134.1198951274172334.3906795901202033.933.39470870405954451.89286970577993973.5492216037674074.7076364148807861.54615546869643381.9798418486793621.03328387633534221.58800198599089673.06745188706140142.5816449654128326e-219.205148270655048e-21-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.5401576307847165e-20-4.208952680926733e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-3.2662672759648592e-21-2.969355550690471e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-181.0297205411386088e-201.49699452756898e-203.979466120141786e-213.979466120141786e-211.917672252650435e-18-5.232900740379237e-21-2.381048440062279e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-6.617879719421357e-21-4.7321162753703474e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-195.9493083334479073228247.9536783216106822742810254.37167819782496bin2_sub0
PHAT-M31 J004435.92+413606.3611.14968548929668341.601767908721875.387645956128798e-20-4.109197668766986e-203.250765138633514e-202.4394827037203998e-202.7115420704058136e-208.422862187501338e-210.010.31974630511467040.010.28668890670416370.99266517763831521.5881.51204837461815941.0190180551608691.52517517810527761.90210138538586041.58787930011.5124231882041551.02599351008762831.52356311749992451.8683935329539776.03.77094903927372862.4340852810606793.5961416726701995.2488418304704466.04.0213874908278972.8028412192366993.9319954973731375.2548566953620910.0190.01580365570193340.0049669954219049570.0143494286922110220.028505310165605008907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818611.00.81464319586860860.50562392251011250.86454882103931341.09.09.1276473678846618.312006866209839.1401235286101529.869648723067895-20.131881864808044-20.15205315530207-20.43280678917141-20.139207558906943-19.778562603287966-20.13387408685939-20.206278605071436-20.45636884477554-20.154211207389526-19.893015200803365-20.504340424173797-20.51440457176326-20.787961305938474-20.520926534087636-20.16263422473638-20.505488741618382-20.545827921677187-20.812548094102205-20.52677243629086-20.24786629076301-19.618094840617818-19.809780493337293-20.513842162374026-19.64139860949332-19.224386068701985-19.62419277111549-20.06039953076785-20.679581161001114-19.78412075998505-19.45497981397492-19.480705333340275-19.593672076603596-20.05833070222295-19.495414281903468-19.14347234388858-19.486441870780407-19.808553401814724-20.211042194502692-19.63605139254731-19.341397389148735-19.283002633295126-19.34079458205498-19.728521143399686-19.266023561539495-18.902541839117646-19.28782540420385-19.50299245394515-19.82762025073626-19.36483037597527-19.109877809902073-19.773470905945572-19.803819315094913-20.073817541756526-19.77241494248958-19.425836917612173-19.776445476910673-19.889836999529447-20.13442195389409-19.806152594701686-19.5603313980408870.880.85389804481462640.51139541696232920.90335200076050671.26585837178335183.86083.8530591421931253.7633488769987643.8587230877352893.92137166176813164.1544.1091617286294813.90008840628188754.1724011612850494.360292860337382.5712.63526785406932571.604563438120252.5108111730460763.49068296193107041.74202009651667061.93051675641407041.24004595279361671.68772004750809962.51701225795268664.9012085769120567e-204.2285460639113553e-20-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-3.2211382264691606e-20-3.3819655145915936e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-181.6206365579906808e-201.0020312579246566e-20-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-182.1882655042858444e-202.2318723584545698e-203.979466120141786e-213.979466120141786e-211.917672252650435e-18-1.1847380400480102e-21-1.3740205958177756e-22-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-5.258025802125815e-21-4.2888463053513415e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-190.5077199666840535156702249.85188165479644363262577255.87952918447064bin2_sub0
................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
PHAT-M31 J004431.63+413612.2011.1318041403340241.603388910561612.56177283208085e-163.418105333565266e-163.807202414615826e-169.663701869244331e-174.0509785148231426e-171.629766142444608e-172.012.01000000000000021.332.012.6899999999999995317.832317.83200000000005301.63198675963474329.0980000000001329.0980000000001350.0012512207350.00125122070006321.4337178617237350.0043334960999350.00433349609994.04.03.324.04.684.04.00241802685430153.6605360587874154.0016695899708274.3416695899708260.0040.0040000000000000010.0040.0040.008419999999999999907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818611.00.99916520501458660.82916520501458660.99916520501458651.06.06.06.06.06.68-16.04855298687023-16.048552986870234-16.126134170674092-16.051514547246086-15.976894923818076-16.408512920563563-16.40850126573938-16.42888234961896-16.36512203112092-16.301361712622878-16.559251364392242-16.559251364392246-16.691791950642575-16.613644033210218-16.535496115777857-16.763311568502957-16.76330945168995-16.844218587787445-16.780411054684542-16.716603521581636-13.798928736327-13.798928736327001-13.9157629585656-13.782931022529482-13.650099086493364-15.347541769008426-15.347553937983365-15.432380483561117-15.315293858169044-15.315293858169044-14.123229395669263-14.123229395669265-14.270929146840995-14.162762693418738-14.054596239996481-15.440722154144488-15.440769969107004-15.633380025180546-15.506551801402765-15.379723577624983-14.624686701421611-14.624686701421613-14.737491483498443-14.648267509950706-14.559043536402969-15.649194724213332-15.649197850696982-15.768781021417647-15.652805490776855-15.536829960136062-15.520816931442322-15.520816931442322-15.597967918033047-15.521893383379-15.445818848724953-16.0776912311465-16.077684314058004-16.13616320638509-16.066300928701224-15.996438651017366.9676.96700000000000056.8176514285714296.9145306122448987.0114097959183684.62664.6266000000000014.6086937959183674.6275714285714294.646449061224493.4313.43100000000000053.37511591836734763.4420612244897973.5090065306122455-12.648-12.648000000000001-12.75901469387755-12.516795918367347-12.27457714285714256.6178222803888656.61782228038886452.35185778150284457.52129713740336663.477982616175162.250144208168341e-162.2501280641632804e-162.2265144186520133e-162.294357383591425e-162.3622003485308364e-164.500961080790764e-164.500835735783369e-164.482820652879354e-164.5500940152441e-164.617591661297239e-163.6322789747063527e-163.631885347058532e-163.554953668073007e-163.6215186510989556e-163.688305556136619e-168.364214375117416e-178.364347758765443e-178.242688347623166e-178.433851543805578e-178.625014739987989e-173.936140986221385e-173.936247259801078e-173.869716072171873e-173.962613543553066e-174.05551101493426e-171.7361986840877267e-171.736207150274602e-171.7136734284841638e-171.757942581460321e-171.8022117344364784e-171045.408901035386288316-319.813164413560588316642-319.8098196461156bin6_sub0
PHAT-M31 J004431.64+413612.3111.13183257065668641.6034194385187354.77493327876513e-164.669542805417029e-165.499292376667305e-161.66471137292508e-166.533836314230875e-172.596087660531234e-172.012.011.332.012.6899999999999995311.812311.812301.63198675963474329.0980000000001329.0980000000001350.001739502350.001739502321.4337178617237350.0043334960999350.00433349609993.03.02.323.03.67999999999999973.03.02.663.03.340.0040.0040.0040.0040.008419999999999999907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.01.00.831.01.06.06.06.06.06.68-15.877738480497358-15.877738480497358-15.906664690003478-15.832045066575468-15.757425443147458-16.192538376354626-16.192538376354626-16.241352001095308-16.177591682597267-16.177591682597267-16.385130957586718-16.385130957586718-16.461945134665047-16.38379721723269-16.305649299800333-16.562074135157925-16.562074135157925-16.6565493727789-16.592741839675995-16.528934306573092-13.66534375239501-13.66534375239501-13.720421876159543-13.587589940123426-13.454758004087306-15.51936363692911-15.51936363692911-15.604566697372988-15.487480071980915-15.370393446588842-13.982662948862325-13.982662948862325-14.111860832984735-14.003694379562479-13.895527926140222-15.460088916823162-15.460088916823162-15.633380025180546-15.506551801402765-15.379723577624983-14.469605229445543-14.469605229445543-14.606279757692947-14.51705578414521-14.427831810597473-15.539122528266887-15.539122528266887-15.598228770475306-15.482253239834513-15.36627770919372-15.354474939824438-15.354474939824438-15.48609360236533-15.410019067711282-15.333944533057233-15.86707433458782-15.86707433458782-15.930685919079604-15.86082364139574-15.860823641395746.9796.9796.8176514285714296.9145306122448987.0114097959183684.57214.57214.5531713469387754.5720489795918374.5909266122448983.1933.1933.07976897959183753.14671428571428623.2136595918367354-12.678-12.678-12.75901469387755-12.516795918367347-12.27457714285714273.7824650641192173.7824650641192169.5111617244709776.3749818508277584.284082792093872.89773208327004e-162.89773208327004e-162.825128815176235e-162.892971780115646e-162.960814745055058e-163.031594766513852e-163.031594766513852e-162.999179774042614e-163.0664531364073603e-163.133726498772107e-163.4737635884319637e-163.4737635884319637e-163.359501177491006e-163.426066160516955e-163.4926311435429034e-161.357847029338674e-161.357847029338674e-161.330289059951053e-161.349405379569294e-161.3685216991875351e-166.469214203997883e-176.469214203997883e-176.328766785203473e-176.421664256584668e-176.514561727965862e-172.7592423848346842e-172.7592423848346842e-172.69019886178175e-172.7344680147579072e-172.778737167734064e-1712569.3981431109180955-6083.89903562070580955646-6083.899035620705bin6_sub0
PHAT-M31 J004434.52+413626.2511.14385107101472441.60729097374946-1.3733215182289095e-20-1.7931044372801392e-20-2.3754339851876524e-20-1.361084770316103e-203.02189929533178e-203.490295632491992e-210.011.84689348825827060.190281704522907821.65428765739827993.5304950703763910.550.84542923581803380.63561971211017880.79826249497657451.0256681419554640.55000001190.84644903354160990.64266661068332680.80115626564146611.02675931872260586.03.6401643303933212.3689490153505463.47476070367602264.9960148986249056.03.9039135263275372.71730942623642863.80657336407973724.9969975894514230.0040.0162957877586969170.0053662835780303840.014829433782263980.029173675045171956907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818611.00.80056973524092990.473676993155652370.85284720770942871.010.09.8706622278820089.192181887546819.87688577755075810.0-21.723086913713882-21.032525090472745-21.53824609902833-21.146864054508477-20.576975388612425-21.725006202866158-21.31770717459445-21.653725348144697-21.40455813040668-20.997284688644015-21.88412652262523-21.264126694900977-21.706113835690168-21.37935205719452-20.860555359041797-21.88526191973585-21.435259717618237-21.766751503367026-21.535100344106016-21.12765640719761-23.489771091192253-21.9169339418805-23.279375714983665-21.762827423422067-20.781452447114116-23.49568525932897-23.33301847001913-24.13124427716369-23.39395722695622-22.59027772460191-22.406911565682726-21.178862675627087-22.178136397536335-21.157859452188937-20.313201317990696-22.412614837302737-22.464642797469967-23.109453919366565-22.48425257694475-21.845001522870778-21.650066021424532-20.671874472137326-21.403105182029254-20.728263651543603-20.00047110714066-21.654806364584523-21.59824289061159-22.059589090069398-21.63182996550562-21.15754784893315-21.54688861098329-20.78957350213449-21.354053345474743-20.87420474546141-20.273930999758235-21.549821576935987-21.26229680005745-21.59556584178674-21.329314640692466-20.93655386967302-1.04-0.2647747280462432-0.8444252973677335-0.363604160404527030.276919636213719733.63383.70983297174861633.64733815523050533.70906384414738933.76985735453506584.7064.40686047641150854.2146412907174444.52413587874411954.65432417470911557.3715.4319438158701124.07799076039344755.6793748702751126.8814837263290920.54331683343081551.17741887340244820.63085446229966190.7978543696070521.3080229100196505-1.3595986242125455e-20-1.3087312813401e-20-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-3.25321559565299e-20-3.353322374483019e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-18-1.3422079795006679e-20-1.1798436182506173e-20-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-18-1.039399874189321e-20-9.832379042153697e-21-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-183.1967497999623258e-213.912934533432138e-213.1715540226750354e-213.1715540226750354e-219.381164283310888e-19-2.20592449371011e-21-1.493547389803298e-21-2.2281849087323182e-21-2.2281849087323182e-214.411190713751039e-193.8870709962286973307925259.2053028361969364994941265.35543663894674bin9_sub0
PHAT-M31 J004434.54+413626.4811.14393716433676241.607356729264711.83285602625166e-20-1.7557480948368033e-20-3.0913181999017394e-215.1930618928983626e-204.246993604250068e-202.0768701284249874e-201.011.50456403014702330.491526754068299651.53528202340268832.50485828817056651.081.29963266853960960.85813914775672381.04963873216501422.01400789513337351.08264899251.32421127141441540.931493552334461.09885927188647712.03360822622025732.03.4601858472319872.3067786310485563.3297579161173184.6650242236716922.03.7435205973076612.63843117859069183.65415891233066374.73988767747093750.030.0154580540036057360.0049749388037782590.0139704156593947450.028339128788758296907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.00.78091949101637470.43660599209184860.8347820515005481.010.09.7391829127398519.0610023438205429.7516137104137810.0-19.28246725057895-19.15261130374897-19.350677828217272-19.12514556316142-18.974892031713825-19.386030779184075-19.378070852256215-19.474724760201237-19.369680177768945-19.27662804482838-19.444169886388828-19.35609947748035-19.540950548750487-19.32621904052648-19.17015312454773-19.505329987315896-19.49097550395703-19.609193285652537-19.473617464447738-19.362123344080377-21.253806156273704-20.328042347958267-21.02394060693458-20.325514873951445-19.695313148748312-22.188337807643734-21.523069048766462-22.018120836955603-21.514205451793-21.0161011251915-20.01529019042115-19.49949054762853-19.894203054920283-19.506997623286072-19.12983595308304-20.89657144877886-20.573792834180928-20.939362109335004-20.581828522573606-20.170730701971515-19.155643651663393-18.86349942840975-19.156260780079837-18.856649496005485-18.614080736838098-19.699756883979322-19.622415298525553-19.814939740967947-19.62673307245874-19.40184817827353-19.10414010494045-18.933403518998425-19.158266051043352-18.913117902370313-18.744292810326268-19.30976109956992-19.312220799762112-19.397352551711194-19.311642235047334-19.2076793938830231.4091.58941697180256151.3559613848438231.58271886808841681.78863843103859053.64843.68826343394193673.64719781739999063.6784034094696213.71321511864690332.6082.63007925605042822.3728536948765432.5991421879139062.85960087215592741.2480.79647142175413630.2985176644315940.81334056057251641.38026068497981278.5183045062717918.8888889907754847.15557820326608959.03380024558774210.7251465354970462.539668143122612e-202.96370969079529e-20-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-4.068791333324955e-20-4.3789862989267145e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-183.0136238784355522e-211.2270364013744571e-21-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-184.591506887419393e-204.5942835936122e-20-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-184.4120445907470315e-204.541056823182231e-203.1715540226750354e-213.1715540226750354e-219.381164283310888e-192.890088739328018e-203.079592075749793e-20-2.2281849087323182e-21-2.2281849087323182e-214.411190713751039e-190.746774857500789679724254.41401042317747382661708259.94374329900137bin9_sub0
PHAT-M31 J004434.48+413626.0211.14367870295883941.6072277208254065.968666598456414e-20-2.3534495739301832e-209.794597664951826e-223.423651691487428e-20-4.0836476963942965e-222.148983674550855e-211.010.74661672173355760.0222462347572670340.72954034715219451.60830920234676762.0331.72168838321401220.98926022903689611.8946029128800072.30711545774548332.03266119961.72258380911891781.00725005191070821.88048761108840062.26943559252916632.03.3881547242995932.2421409813872563.25160292727129364.5977547795980462.03.66701127887238652.50525864718137873.58364604553822154.6905890278149570.0190.0165969821273205980.0053549200984697370.0151535478754495980.029460849452124103907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.00.7819702500920530.4313632702596550.83760565378694221.09.09.2752592157035838.4163097891444129.2851591763066259.986929091944432-19.581842325947736-19.616777500420458-19.757822074717367-19.609849456558344-19.469458011173636-19.691647892978985-19.730184832730007-19.838848387856387-19.718961043254247-19.613211130681336-19.962735260430463-19.951705360338742-20.09267456147304-19.940274814988836-19.795968483517427-20.024222228151757-20.01709478894593-20.166798954477056-20.00974270164858-19.863608712618944-19.10151603148278-19.55931995341687-20.535088163507066-19.340339494415556-18.977289019778457-20.299261734114605-20.231098957725287-20.624779435723468-20.15869427843202-19.85870527043984-18.964323843913192-19.23752815566815-19.844491952910428-19.055598887120553-18.826029854107045-19.859789899497176-19.787336651558313-19.999309715912563-19.766729505185303-19.563489173343438-18.713055742779154-18.896804582531843-19.347371856683484-18.797933287042795-18.605791730886224-19.28585542235525-19.288863267662144-19.451730194753132-19.27451379539409-19.11466270588921-19.221882851935934-19.292561941451712-19.47910177087278-19.28303930114179-19.11866148840054-19.432355208955084-19.480356365447047-19.60078500015695-19.471584878271727-19.3536366147798381.4331.3365174834602241.06236303801334581.3584167365442591.55954981060921673.86363.8215290480606753.69457716515861943.84593669142947723.90285119231357853.723.54886494592011833.10222236738063063.64717866674824933.85514916602175051.1891.42886202461867830.87126590336854591.37412201969054732.1142907550321043.25052238255000653.6459097315179392.72358291455467773.5541900124108854.7344969046746544.9445947506078046e-205.139463506139579e-20-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-3.5137570208305006e-20-3.522342394922159e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-187.641700325131997e-211.2111613779631108e-20-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-182.920822362404232e-202.509992609436065e-20-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-182.3348441836196606e-202.2103799828806414e-203.1715540226750354e-213.1715540226750354e-219.381164283310888e-197.121368361736452e-217.773483768941656e-21-2.2281849087323182e-21-2.2281849087323182e-214.411190713751039e-195.17889960367138739872253.58432046379187390042608258.7604390619035bin9_sub0
PHAT-M31 J004434.53+413626.2211.14388391738543841.6072836291592341.6743958510714009e-19-1.3448283279601044e-19-1.7897105367852176e-201.8531692641996174e-198.984024932067452e-208.30748051369995e-200.010.0105118987586994130.010.0105118987586993920.69051189875869931.0811.05721989655389170.94615801905227671.062485198790391.22248647481222681.08479928971.07339977504365610.99284402471229671.11220221199418611.26398909388781846.03.6711717934169962.3791040082732753.50414725242264475.0675349465389666.03.9302023692845692.72531340571210563.83787396652564945.0675830467152710.030.0272653606606711630.0237236234922094950.028895013983458030.03907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818611.00.80563117209465880.48527046627764390.85719321383859031.010.09.9995500477608389.3195500477608389.99955004776083810.0-18.831774137085002-18.87800427022069-18.985943471013574-18.86913358863811-18.76585162796398-18.833676141298426-18.879625677109647-18.990973312765842-18.88491784244975-18.78855103469769-18.960472972488578-19.01834875715259-19.137152815361013-19.011038682238578-18.901900854308224-18.961606146490023-19.01931545777823-19.1362495679498-19.029814043680684-18.933158647417134-21.43494573230589-21.256697504386434-21.59649660061805-21.361160846143264-20.908379746655974-21.440097739519164-21.263994347316824-21.4647383709646-21.271535055868-20.882868867266268-19.894423069961142-19.828365807325863-19.998278309684576-19.826704699721525-19.64012098793635-19.90011649839133-19.83568821937638-19.940711279437558-19.782883250217544-19.65476216163529-18.833834284045675-18.83418363159709-18.958945688289482-18.828655114672408-18.685173538355997-18.838550246645486-18.83944090243339-18.952197659223383-18.83331763890152-18.71504568501638-18.686988027295918-18.72162950073329-18.81046876954554-18.715426838101756-18.601721443017563-18.689918264186115-18.724330908279487-18.844185971156858-18.73631375734867-18.6300221448791671.8421.80226038479680281.67139916097699911.79261378522218221.91983315657939073.6233.6319175168082483.6031626525018733.6273115832564593.6488340675054882.0732.13902631756224932.03056374708685052.1497846788078892.2583327630548110.1640.2640060451280654-0.0294844330557211260.28857881586052480.591629497468850915.76351850308370214.52986521151597512.40675847360320614.4312721110124516.8392841436820541.3287371913370048e-191.3380357541223436e-19-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-4.127926023231756e-20-4.288268509190453e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-186.1399700301966e-219.019463352110728e-21-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-182.121417518247452e-191.978393084949051e-19-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-181.494013288689578e-191.3605133823428362e-193.1715540226750354e-213.1715540226750354e-219.381164283310888e-191.1332658702939834e-199.935861843649883e-20-2.2281849087323182e-21-2.2281849087323182e-214.411190713751039e-1921.0375461254757933945240.94273592054884339451721244.64134368096688bin9_sub0
PHAT-M31 J004434.47+413626.0411.14362352933326341.607232049268331.679677856910743e-19-2.988507395466899e-20-1.5293890041619133e-203.790097591187918e-193.438431360363998e-192.596087660531234e-191.010.97490062327084290.29490062327084290.97490062327084281.67835962970439720.9111.33105221102499050.84716480842853771.00787285125392122.40032101130504350.92229610681.35353970076440570.87737556340672671.03691115002015842.17885909857916763.03.3940999721830352.30228384239230353.25882737623672244.4973709150172714.1938775510204093.71362846326537672.68413644518796043.60969504270755874.6198206506352350.0040.0122747943465264480.0040.0086243103807933410.028436042596331907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818610.250.74536936232102340.375925873119204670.80230545681668091.010.09.7052188460451939.0252188460451929.70521884604519210.0-18.34454778305779-18.34514596886508-18.47032074650687-18.356710826497146-18.26477096806103-18.486806646231962-18.489358941599694-18.55313821915494-18.47522757410825-18.390647319124174-18.480617431505813-18.48518801755628-18.607108399649633-18.506145934048114-18.411930409159574-18.567428489690474-18.571977062224263-18.677393948583408-18.582340069008488-18.506132578777606-20.20215333719786-20.43799219177489-20.831602281508236-20.273868994374954-19.99630502722957-21.007731368666512-21.150853691580856-21.430287554050125-21.09905947060173-20.872797258617627-19.11779568785308-19.211404565671934-19.389035588466196-19.192796112690193-19.002278618506736-19.867997409264152-19.907537882717726-20.05712131837717-19.899444800284677-19.732477366787837-18.251516461991955-18.272926217068974-18.39250864596669-18.275479603872366-18.157058868139597-18.761342341038404-18.76195208729984-18.92807103139964-18.78825300471971-18.67413263223474-18.18089915325129-18.184470128238708-18.25002390737981-18.152880889946285-18.046347942085415-18.42788019540662-18.428997222030844-18.50967033216678-18.425991992065608-18.342382032488562.3442.3396135678008652.20179168651227772.32101331486189542.44426194362968063.63513.6342534003214143.62018136177101953.6396481243379983.6623442341181671.5461.6671171719817091.48962637320510871.60018254556749941.9562066941498235-1.091-1.0793292842646105-1.3406174944357623-1.032481564567934-0.734413604874183626.5737693308611126.58131787762169724.42492908647462427.18226510595717530.8872794879908061.5987150456699575e-191.6021149084756076e-19-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-4.6582440434433046e-20-4.4800256978089625e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-187.324654710313677e-216.214956356216739e-21-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-183.7845516862609264e-193.779605579395363e-19-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-183.3464574653628153e-193.3298664209840716e-193.1715540226750354e-213.1715540226750354e-219.381164283310888e-192.6810812132671347e-192.660989218064506e-19-2.2281849087323182e-21-2.1906618178017277e-214.411565944660345e-193.10900671870808559885249.33713801569425453465026251.7238312227992bin9_sub0
PHAT-M31 J004434.54+413626.0511.1439128562587141.607236016682842.677976960546373e-19-8.965522186400696e-203.0490159508504524e-203.0257961432411827e-193.8917162546637646e-191.903797617722905e-190.010.0115487404103568670.010.0115487404103567970.69154874041035690.9791.00375822049008720.86202109860051080.99375392514298651.11341858674504171.05919814111.04826431040394970.9833292266356521.10291279282394041.25995624657737062.03.67157441990442.3786725643854723.50425790955401475.0701856050192132.03.9303140897536672.7242446925940543.83783323486382385.0703302311107420.0190.0176365431208439330.0115793167285491330.0161657173001300770.021491060263940626907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.00.80582238169529090.48564228306334050.85736859141718781.010.09.9976661977985399.3176661977985419.9976661977985410.0-18.587778822732048-18.580140586129584-18.636553805702306-18.54772298941494-18.44406017019738-18.588807730849904-18.581957139010814-18.663391410662086-18.582566841361384-18.49960517323177-18.713488269004678-18.70375586642771-18.763716980796225-18.673353604678955-18.56798818687838-18.71409339784631-18.7048398761363-18.796438522001697-18.694877502056258-18.60770712010707-20.804071668041523-20.872904150732715-21.06351422366998-20.871035060515855-20.668641379625427-20.813941451292067-20.88114854550803-21.01426143232847-20.84758776444845-20.67691054863898-19.4718135286374-19.517722872409745-19.645391709070704-19.513166746234113-19.376468487700613-19.48054192139061-19.525638646384188-19.68645744665447-19.529973784757335-19.36576524205168-18.539411913349575-18.550650999065663-18.709319396004737-18.592086101487613-18.479196458314185-18.544842477384368-18.55639910162421-18.623552976188066-18.509460125325823-18.388224560783023-18.435459770936887-18.43177028778741-18.502671477399083-18.40879272551435-18.314637628697724-18.437506787381007-18.434774268662768-18.509494725031587-18.426420615506334-18.343123264629662.0972.1008244200353292.0219361497351092.14124582741345962.26756474400975663.62783.62455524813091223.60014262156694283.62199618732927683.64107262402706771.7951.78848377039197651.69742478240704921.77867830728877261.8517595452042426-0.472-0.48193980492929467-0.8988539109032374-0.5830419037884739-0.2847538105155142420.68012506490255521.1211760749861818.86906233591678421.6556887217734524.1652166099551842.7436827091574524e-192.671198252217394e-19-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-4.7413039960478154e-20-4.7115834955912954e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-182.7598613360107134e-202.466098831698802e-20-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-183.7040727422292555e-193.729779298005612e-19-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-182.641548518285481e-192.688352915261054e-193.1715540226750354e-213.1715540226750354e-219.381164283310888e-191.9590306126647444e-192.0042246156737256e-19-2.2281849087323182e-21-2.2281849087323182e-214.411190713751039e-1919.642648983296022322241.3094695709981723282944244.80122395959603bin9_sub0
PHAT-M31 J004434.52+413626.0811.14383203869067441.6072453021890144.801343307961841e-19-3.3994271623435975e-202.4828166173947658e-207.402207173949884e-195.145396097456814e-194.2402765122010153e-190.010.0101432620952933290.010.0101432620952933620.69014326209529330.9640.97256375162008620.84013381420221060.93941517326739781.0565593413333050.97584813830.9851289802282110.85439455005935370.95622541356854251.07642187653162256.03.6778398271955822.383114950442483.51023797980398645.0798762089352276.03.93635968729698772.73142356708850283.8438705889151175.0800313215337160.0080.0081671474745699160.0060957711612397590.0105512512448395720.015004297419543821907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818611.00.80616572028799730.48670218641811290.85761106658873781.010.09.9925789732673379.312578973267349.9925789732673410.0-18.24766015288705-18.253631572796408-18.351280555133243-18.262574606520687-18.17386865790813-18.249556533911672-18.25519553285275-18.314491088038316-18.236585752500915-18.158149457093273-18.365636791580226-18.372389227778694-18.473497009724003-18.383264361764866-18.293044638000893-18.366769173285665-18.373325607542213-18.470547598033818-18.39458261212486-18.318677719740908-21.010829245948003-21.007756167891717-21.174328581951286-21.017188709062236-20.859940125135267-21.015642225606793-21.013746582418-21.103548544303752-20.97093214914452-20.83822400855049-19.491235783634767-19.488116787865312-19.637497394529266-19.502950727084436-19.370983474557946-19.49692273743676-19.49512884972419-19.588502575915278-19.460509280176527-19.332434262959296-18.304868768951078-18.30731129152037-18.380169205452-18.26743824895783-18.154629303987154-18.30957516878668-18.312353113104418-18.44491186786532-18.330819017003073-18.216726166140827-18.117856783264372-18.122967455547503-18.22664183641542-18.132895047986064-18.03914825955671-18.120783931404485-18.125575561048137-18.17221767176472-18.089151841306723-17.9890196567112042.4192.4133887784138712.3577783876057742.4769203540927132.61190494486069643.61263.61320848143941033.59839619001111453.61744585788195843.63650597384499941.4051.41533768761714221.38612690938945171.45685885751202431.5276429669611957-1.278-1.263971040270585-1.7597445272198744-1.4222673251611988-1.124398529404416832.1331396052145431.84490416732107629.00593765388168432.2027550586269236.3158526213494644.840644668117536e-194.809849522243468e-19-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-4.643061227283805e-20-4.646726358286693e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-182.638317567654483e-202.653774583942033e-20-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-187.602131839931891e-197.522202680021029e-19-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-185.634671509584809e-195.567768738607468e-193.1715540226750354e-213.1715540226750354e-219.381164283310888e-194.315518985265441e-194.2518209772367427e-192.064058180483671e-196.497530743322034e-191.0931003306160396e-182.116664130037098535753249.13977763829718357533961251.4799237559774bin9_sub0
PHAT-M31 J004434.51+413626.1511.14379429649718741.6072652244003154.980931506499466e-194.557473778087021e-202.3949581001344e-204.8999051731379715e-194.2469936042500693e-192.307633476027764e-190.010.010904257663356580.010.0103015101020589380.69050653697145892.3932.2807144071806622.23770171791817642.52820679185900852.86683285905253672.39334988592.2854376709172511.93801200492643382.19140364746740432.48622954330482676.03.68564771407195042.38859054093154553.51740482717091445.0927263700073716.03.94446454080876132.74097392371955943.85192954817909835.0929406548744560.030.0282033466586782240.0246493560535228220.029446045269954060.03907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.00.80617067975297560.48678840343919470.85761089035120531.09.09.0748865678951428.345690341739839.0749091469518719.755114173821271-18.436508594647943-18.435508839370893-18.482953688816497-18.394233706496035-18.30466796558686-18.438420944333842-18.437232541867914-18.542824881823293-18.464885176072407-18.386979840535-18.597193240451-18.595286891227442-18.735632447075684-18.63927205093343-18.549025125011337-18.59832847069289-18.596309982581225-18.693805793665536-18.617858860281753-18.5419539678978-20.53555991393377-20.531617830274374-20.721610974715418-20.55985965547256-20.38972582477465-20.54128868033189-20.53970211499126-20.721482707079083-20.584974534609177-20.44139203764663-19.25276888034134-19.25381054867478-19.442883641609125-19.30720594149043-19.175217811109594-19.258474149220994-19.261315013718903-19.39845934751976-19.26686598183644-19.13885598347095-18.328487704086555-18.328759347690266-18.380538244880587-18.267789453806664-18.154706241506602-18.333211342993504-18.334204707397372-18.44491186786532-18.330819017003073-18.216726166140827-18.263474974302596-18.263025679647516-18.364478030659907-18.270716411037533-18.176954791415156-18.266412477637896-18.26586486939244-18.38698072594279-18.30386944341261-18.2208036129546152.252.2510053740913222.20625594360715032.3254167589264752.44571352220654743.64463.6441552983163263.62642719231095523.64547987393091953.66453255555088432.0972.0623266871239071.99120743566275652.0671951817326752.1432281981610957-0.855-0.8574738330496734-1.3442466099807455-1.0434906877121488-0.745574767678593822.82722717257507522.90260122987412221.77584538013381324.1239079618467626.881265157090054.575075387587903e-194.564700126947421e-19-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-4.170730720878932e-20-4.172054306826738e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-184.9516679335322976e-204.931429616628205e-20-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-185.44326850481521e-195.450331588668004e-19-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-183.7248556321291615e-193.7347253065607364e-193.1715540226750354e-213.1715540226750354e-219.381164283310888e-192.5080549991810754e-192.5193854876322776e-19-2.2281849087323182e-21-2.2281849087323182e-214.411190713751039e-1924.58100797594983148245235.976712604482338141577238.2342555608859bin9_sub0
" + ], + "text/plain": [ + "\n", + " Name RA ... reorder_tag\n", + " str29 float64 ... str9 \n", + "----------------------------- ------------------ ... -----------\n", + "PHAT-M31 J004435.01+413540.96 11.145879914566734 ... bin2_sub0\n", + "PHAT-M31 J004435.89+413607.17 11.149551498429465 ... bin2_sub0\n", + "PHAT-M31 J004435.03+413540.80 11.145942804724289 ... bin2_sub0\n", + "PHAT-M31 J004435.01+413540.61 11.145892087843466 ... bin2_sub0\n", + "PHAT-M31 J004435.02+413540.82 11.145907381542465 ... bin2_sub0\n", + "PHAT-M31 J004435.90+413607.11 11.149592361880686 ... bin2_sub0\n", + "PHAT-M31 J004435.01+413540.60 11.145860779753994 ... bin2_sub0\n", + "PHAT-M31 J004435.08+413540.66 11.146162551904405 ... bin2_sub0\n", + "PHAT-M31 J004435.02+413540.74 11.145911820551795 ... bin2_sub0\n", + "PHAT-M31 J004435.92+413606.36 11.149685489296683 ... bin2_sub0\n", + " ... ... ... ...\n", + "PHAT-M31 J004431.63+413612.20 11.13180414033402 ... bin6_sub0\n", + "PHAT-M31 J004431.64+413612.31 11.131832570656686 ... bin6_sub0\n", + "PHAT-M31 J004434.52+413626.25 11.143851071014724 ... bin9_sub0\n", + "PHAT-M31 J004434.54+413626.48 11.143937164336762 ... bin9_sub0\n", + "PHAT-M31 J004434.48+413626.02 11.143678702958839 ... bin9_sub0\n", + "PHAT-M31 J004434.53+413626.22 11.143883917385438 ... bin9_sub0\n", + "PHAT-M31 J004434.47+413626.04 11.143623529333263 ... bin9_sub0\n", + "PHAT-M31 J004434.54+413626.05 11.14391285625871 ... bin9_sub0\n", + "PHAT-M31 J004434.52+413626.08 11.143832038690674 ... bin9_sub0\n", + "PHAT-M31 J004434.51+413626.15 11.143794296497187 ... bin9_sub0" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hdul = fits.open(sed_files[0].replace('seds.grid.hd5', 'stats.fits'))\n", + "Table(hdul[1].data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can hopefully see, for every source, there are now several parameters assigned to each one. These are all the parameters we originally had set up in our datamodel and specified in Step 9." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Epilogue: Visualizating!" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "from beast.plotting import (\n", + " plot_triangle, \n", + " plot_indiv_fit, \n", + " plot_cmd_with_fits, \n", + " plot_completeness, \n", + " plot_chi2_hist,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Triangle Plot\n", + "\n", + "This first plot displays a posterior distributions of the parameters of all the fitted stars. " + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "plot_triangle.plot_triangle(\"M31-B09-EAST_chunk/M31-B09-EAST_chunk_stats.fits\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### CMD Plot\n", + "\n", + "You can also make a color-magnitude diagram of the observations and color-code the data points using one of the parameters from the BEAST fitting (feel free to change this from the example, just remember that the param must match a column name from the stat.fits file). \n", + "\n", + "Inputs are the photometry file, three filters, the BEAST stats file from Step 10, and the parameter to use and apply color to after taking the log10." + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_cmd_with_fits.py:97: RuntimeWarning: invalid value encountered in greater\n", + " col[col > 99] = np.nan\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAF/CAYAAAAirDIZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeWycaX7g9+/zXnXfLN6XSN1Hq9Wt7p7umfGMZzxjG9nxxPCZtbPGJrCzcAwjSP6IYyC7wcII4kUSYIFdbHYc23C8MbzOOs56x/Z6bPecPT19674p3lexDtZd9V5P/ii2JEokRbElsVv1fICCWPW+9dZTFMlfPcfv9wgpJYqiKIqiPEjb7wYoiqIoyseVCpKKoiiKsg0VJBVFURRlGypIKoqiKMo2VJBUFEVRlG2oIKkoiqIo21BBUlEURXnshBA/JoS4LoS4JYT4jS2OB4QQ/3bj+FtCiPGNx18WQpzbuJ0XQvzkbq/5RN6HypNUFEVRHichhA7cAL4ELADvAP+ZlPLKPef8KvCclPIfCSF+HvhJKeXPCSHCgC2ldIUQA8B5YBCQD7vmk6B6koqiKMrj9jJwS0p5W0ppA38MfPW+c74K/MHG1/8O+KIQQkgpG1JKd+PxIJ3guNtrPnYqSCqKoiiP2xAwf8/9hY3HtjxnIyiWgQyAEOIVIcRl4CLwjzaO7+aaj53xpF/gaenp6ZHj4+P73YxPDM/3kYChqc9JivJx99577+WllNnHdb0e0S9t7D0/v0rpMtC656GvSSm/ds99scXT7p/b2/YcKeVbwAkhxDHgD4QQf7XLaz52z0yQHB8f5913393vZiiKojx2QojZx3k9G5tXtC/t+fl/6/9JS0p5dodTFoCRe+4PA0vbnLMghDCABFC89wQp5VUhRB04uctrPnaqG6Fsy7Edauv1/W6GoiifPO8Ah4QQB4QQFvDzwJ/fd86fA7+08fVPA69LKeXGcwwAIcQYcASY2eU1H7tnpiepPH6VQo38QoEjLx3c76YoivKYCW2r0ctd8nc+vLEy9deAvwZ04PeklJeFEP8UeFdK+efA7wJ/KIS4RacH+fMbT/8M8BtCCGfjlX5VSpkH2Oqae38Tu6OCpLKtzECKdH9yv5uhKMrjJgSIJzuQKKX8S+Av73vsH9/zdQv4mS2e94fAH+72mk+aCpLKjoT4CJ82FUX5WBJ8xJ5kF1FzkoqiKIqyDdWTVBRF6UZPeLj1WaGCpKIoSrcRgBpu3RUVJJUtSdkC2UBo6f1uiqIoj53oLN5RHkoFSWVrfhX8NVBBUlGeSUJV29oVFSS7jPQbIHSECOx4ntCzoD+2KliKoiifSOqjRLfxFsBb3fSQlDbSW9unBimKsi+E2Puti6ieZLcxDj2Y+ygb4K+onqOidAshQA237ooKkl1mq+IAQkuCpirrKEpX6bIe4V6pIKkoitKNVArIrqj+tqIoiqJsQ/UkFUVRuo0AoSru7IoKkoqiKF1HqOHWXVJBUlEUpRuphTu7ovrbiqIoirIN1ZNUFEXpRqonuSsqSCqKonQbgSomsEsqSCqKonSd7isvt1cqSCo7klLitB2soLXfTVEU5XFSQXJXVH9b2dF6rsyN927vdzMURVH2hepJKjtK9iaIJML73QxFUR431ZPcFRUklR0JIdRQq6I8awSqmMAuqSCpKIrSjVRPcldUkFQURek6AlTt1l1R3yVFURRF2YbqSSqKonQbNSe5aypIKndI6YOfA61XbaOjKM86NSe5KypIKvdwwFsFLQ2oFa2K8kxTQXJXVHdBYaVc5fpqHiECCOs0QqgAqSiKAipIKkAiFKQvFr1zv5QrM3V+Zv8apCjKE7ZRu3Wvty6ihlsVQpZJyDLv3A/HgiCT+9giRVGeKLVwZ9dUkFQeEAgFCIQC+90MRVGepC7rEe7VUx1uFUL8thDishCiIoRYEkL8jhAifc/xfyCE+L4QoiSEyAsh/koIcepptlFRPoqZy/OUcuX9boaiPJQUYs+3bvK05yQ94BeBDHAaGAZ+/57jMeCfbDw+BLwPfEMIEXrK7VSUPYlnogQjqheuKM+KpzrcKqX8zXvurgkh/gXwR/cc/5f3ni+E+J+B3wSOAh88lUYqykeQ7k/tdxMUZXfUss1d2e85yS8CFx5yvAHcejrNURRF6QICNSe5S/sWJIUQPwX8MvC5bY4fBv5P4L+TUla3OedXgF8BGB0dfUItVRRFedZ0XyrHXu1Lh1sI8TPA7wA/IaV8f4vjx4FvAv+rlPL/2O46UsqvSSnPSinPZrPZJ9dgRVGUZ43Kk9yVpx4khRD/EPjXwFeklN/c4vgLwLeA/0VK+c+ecvMURVEU5Y6nOtwqhPh1OqtXf1RK+c4Wxz8NfB3476WUX3uabVMURekm3ZbKsVdPuyf5z4E48E0hRO3D2z3HfwtIAP/7vceFEJ99yu1UFABajsviemW/m6Eoj5eg89d/r7cu8rRTQHb86CKl/OGn1ZZutVats1yu8txw/3435WPL9Xxu5vJM9KRxPY9aq73fTVKUx0/1JHdlv1NAlKcsEQpiGfp+N+NjTROCaMBC1zQCpsGRfrUoTFG6lQqSXcYy9DtBslqqEUmE0bQuGz95CE0TjKRVgXflGad6krui/jp2KSklM5fmqZcb+90URVGeMsne67Z224If1ZPsQqVGk5lCidOfPqJ6kYrSjT5cuKM8lPo2daFowGI8nULTNG5fmKVeru93kxRFedpUMYFdUUGyC5m6TirS2VglkghjWGpAQVEUZSvqr2OX6xtTKzcVpRt129ziXqmeZBeR0kZ6azueY7dsbp2bxnO9p9QqRVH2hfgIty6iepLdRNbBz4G+fe9R0zUi8TBC67LfBEXpNqonuSsqSHYRoaVA62wK7NgOQghcx6NZa5HqTQBgmAYDE3372cyPLSmb4K0hDLUtm/IJJ0CqccRdUd+mLjV7ZYEffP09qoUq66vrDxwv5ysUV/Ncf3cKz1NDrwBID7D3uxWKojxFKkh2qdFjwxw4OUp6MMWBU2ObjvnSJb94C7tynlRfQuVSbhBaFGEc3PGcWttmrapSapRPgCecAiKE+DEhxHUhxC0hxG9scTwghPi3G8ffEkKMbzz+JSHEe0KIixv/fuGe53xr45rnNm69j+m7sS013NpFpJSdL7wpTGuIoUMDrK+Vcdou2eHMnfOqzgrJwzFS1jhCSyH2MHfh+m00YaCJ7qoT23IcKq0W2Vhkv5uiKDvaebuJj0YIoQP/EvgSsAC8I4T4cynllXtO+y+BkpTyoBDi54HfBn4OyNPZb3hJCHES+Gtg6J7n/YKU8t0n1/rNVBehS0jZBOddpLQB/Z7HQfr+pnNj5gDJwDjCmwL54FDsbpTsaepu/qM0+ZH4vo9/3/vYDz3RCJPZzMNPVJR99RF6kbv70PwycEtKeVt2/uj8MfDV+875KvAHG1//O+CLQgghpfxASrm08fhlICiECDyGN70nqifZNYJgTKJpAdAO4DouTrtJskeC6Nl0piZ0EDrSfA6w9vRq6cBBtF1+BpNSgl8ALY0Qe/vcNn+98zs1dmx4T89XFOWR9Agh7u3NfU1K+bV77g8B8/fcXwBeue8ad86RUrpCiDKQodOT/NBPAR9IKe/dr+73hRAe8KfAb8k7Q2RPhgqSXUIIASINQL1cJ79YZOb6NY6+3KJ38EtAcIvndD68Ld9eJZaOEk3ufghRF4/yo+WANwtaBAg9wvPuGjiwu6kJKeWeho8V5Zny0fMd81LKsw95hfvdH8x2PEcIcYLOEOyX7zn+C1LKRSFEjE6Q/M+B/2t3Td4bNdzahcr5KoZl0PuCQdVII0QnQLabba6fu4rtPt0VnEJYCOtFhNhbgASwghZWcOder912uPjdq7QaahNlRXnCu4AsACP33B8GlrY7RwhhAAmguHF/GPgz4B9IKafutFnKxY1/q8Af0RnWfaJUT7ILDU724zouKUJ4Lbj+7hQHz4yj6RotI4/t96C7afSNfSeflbxJK2AyfmKEQGhvQ8iK8kx5sl2kd4BDQogDwCLw88Dfv++cPwd+CXgT+GngdSmlFEIkgb8A/gcp5RsfnrwRSJNSyrwQwgT+HvC3T/RdoHqSXWvq3Ay1FZdQMHonzcO0TJ478Rn8apArb97gSQ31SymRzlWkX3si199JPBNTw61K15M82Z6klNIFfo3OytSrwJ9IKS8LIf6pEOInNk77XSAjhLgF/LfAh2kivwYcBP7H+1I9AsBfCyEuAOfoBN/feXzfla2pnmSXOnBqFN3U0XWd3pG7C3eEEERTESafH39iwUQIgRQxEB+vHp1050FLIrTYfjdFUT7xpJR/CfzlfY/943u+bgE/s8Xzfgv4rW0u++LjbONuqJ5kF/J9n0a1ydUf3MRuO5uOFUurLK1dJxzbPD8onYtIv7TjdV1/93N9whhGPIEgWcqVqa13kvmrpRp2a/P8qpSS/FJxm3QRf+OmKM+4j1LcvMsGYlSQ7AK5ao1c9e7QZjmfZ/riHJom0I27PwLra2Wuff829YL74EW0QRDbr251/Ca51hU8/9EW/RTrDZbL1Ud6zoekO0u7PrfpsUalQaveAmB1do1KYfO1XcclN5fHue/DAYAwxhBaYk9tUZRPGin2fusmKkh2iQ+nF6VskkxMc+SlEQLhALc+mKbV7PQAg5EgR188ypHjpzY91/cl00WB7W7/42JqIbLBY+ja0xtC9WWImYvnqJXuBsqhgwP0DHWS+Q8+f+DO1+1mm1KujGmZHP/UYQKhnXOTpV9FSlWzVnmGPeGydM8KFSS7QG8sSl88CtBJs7BOE44lGT4yyA/+w3us3F4FIBgOkO7v7BJyfwUbiaTu5ml55W1fx9QezLV8mHQkzEBib3OAutnL+MnnCMfDAHiex6XvXaVefrB2aqPSpLi03FkwJH2k9DaqD23DvQFy+/eqKJ90qie5O2rhThfyXANwCQQtfuJXf5R45sEgNXNpDtescPDocTTNYDKboeos4+9z78r1WmiyiND7EELHCkrwi6D3oOs6I0eHCMUezLdM9SVJ9obBWwUEeIsgq2AevzOXamj39C7NM3uu/rOVD1cKq5W1ivLJooJkFyksF7Gbzp3FOpom6BnO3MmH/FA5XyE7lqYmGvjSQ9uonhMzB556m+9XaN8gRolQKA3ooI/y4WIb6S0Sz2TuBDcpJU7zNmYwi9DinYVCRie/WeqDQCfgV51lhNBIWnf3iXzUAOn5PpoQ2wbBsjOPlD6pwPgjXVdRnhj1eW1X1HBrF5m7usTy9CqDk330T6ZpezXs5oMrUhdvrSBdwUD8+Obe1cdAT+gYodBn71QJEkKnk1cM+DWQdxfkrK9VmL4wx1Z/DTrP68yfJq0xEubIA+c8ipu5Agul7YdnI0YvUbP/I72Gojw2AtDE3m9dRPUku8iZL5y883XdLWNlbW5fmmX8lQzJ4CBCCCrNFt5IHCspabolQkZq2+tVSzUWbiyRzCaeWlUe/cOAuAVhHtl0P5mNE469BsKi6qwSMTJ3esWbnrdN78/26njSIWQkH9qu8UwKbYeh1L3M1yrKk9Rtc4t7pXqSXWL2yjyNavPO/YjRw2j2FP0He1iamaNlVym2pwkYBq2FdSqVEqViYcftp8yASTgWxrG3SBn5GBBCEAgFkHi0vBKedHH8Fo7f2tXzHb9Bzc1Rthceem7QNLAMHcfz+GB+iYb9YIrJTqQ7h/T3lgqjKMqTo4JklzADJmKLYZLSYo3pb+dYvPI6N96+hXRcRvszRI0s+Ws2rfr2BQKC4QBjx4cZPTq07TmPm+M3WWtd27SAqObkdszPbLhFEtYophak7uaoOaubj9sOpUbzgedFzCwJcwj5wOYF2zM0jaFknJo3S91Z2/XzNgqFPcL5ivIRqWICu6KGW7vE4OTW82GHX5igVa1TLxdY+KCB0bqGoev0jZ3i1GePfexWY+rCJKSnEdxdnNPy1rG0CPo2e1+6soUhO3Or9849VuwlJJJWK0Gl1SIVfnBVrKVHsPTdbxEmhKA3FqXl9aI/QkUhYYzt+lxFeRzUcOvuqCDZxaSUOLZL/8QAty86lPM5KmtVCsslesd6SGQTROJhmhsVbEKR/Z9X04RB1Ly7d6QQgp7g4R2fs3nVqsDxW9SdNUJ6ipnCOgHd4VBvzw5X2FqnhrO25UrYoB5/5OspylPThUUB9koFyS7iSxdX2lhaJ/m+Wqoxc2meUCxIvVTn0AsH+PR/+jJLU6tUS3UKzRYnjo+TXygAMHLkwWFV6dwEfQChRZ/qe/kofN9HSp+AHmUosXVvb2m9Qk80gnVPeoyUHsjm3ffq3uyU6jNGt7yGonxcdXYB2e9WfDKoINlFmt46dWeN3tAxAKLJKKNnxnFsh8DaOulIuJOQf3gQ2/W4spzD9rwtgyN0KtxIz3wgz3I/tL0qphZGE1u3xfXbCKGjC4PLS+uMpbMQgGjgwSAppaTSWCIeSGMZnV6r9OtIbw38JUTgtc6JxiT3T9BIvwG4CE31JBXlWaCCZJcorpQwA0F6kp2hSd+XLKyXWS1XSNqClpBMPDdGYbmE03boH+/l+ZGdiwcs385hNwUTzz04l/e0ldozhI0sISO5Kd2i5ZWpu3mQEkMLkbCGONSbIWxtTiWR0r6TNymEIGy0KdaKREMbQdK5AO5tMO/Wtd1yFxNZAr8BKkgqH3eqJ7krT3V1qxDit4UQl4UQFSHEkhDid4QQ6R3OlUKIX3yabXxWtept7JaDQOPSG9dYWM6zVC5SeWuWylyB2ECCiu9gWgZm4MFcRM/1WJnJbUoJGTjQy8jRQey2Q3Fl5220dqPUnqHm5Pb03L7QSTzZfmDlqi4CBLU4MXOQiJ7B8Tzytcamc6RfBufcnYLmUjbJRur0xIc37rtgHITgVxDm5uLv9xP6EMI8tKf3oChPk6rdujtPOwXEA34RyACngWHg9+8/SQjxMvDjwPJTbd0z7MPVrbO3l1lPGEQCBpYzzeipXhzXx1isUrq2zLW3b23aPgs621nZtkNuLs/S1ArFegPfl+iGjmmZtGot8ovFh7ZBeisbi122FjJSBPRHn9uUsoUQgqQ1ummRDnSS+CNmlqq7TN3L07RdbuXyeP496RYiDuYpxMZQrRAhgqGThAMbbZE1hDeH0GK7Wu1bqjdZ2WL7r6a7zlrr+iO/P0V57ARqF5BdeqpBUkr5m1LKD6SUjpRyDfgXwOfvPUcIEQB+F/ivgEfbnFDZkWHqhIMBDo/1o/ka3lwCQ4Y4cGIUYehUogIj7uNL704eou26TOdLeLrGxHNjOK7P7XyRlns32MUzMQ6/OLnja0vpdYqLy+0T+YN6AnNjUdFuSb+GtN9DSgexTe3UcrPF4lqIuDlE0NQ51NeDqd/90e88b/OQ8b1zikJLgnkc6T+YS/mhG6t55ovrAPhS4snNOY+VYhUNE8tPkZt7lPxJRVH2037PSX4RuHDfY/8T8LqU8s2HfWoXQvwK8CsAo6NqheHDJHrumSeLwUs/chbHb1Aor3PktVGuFz5g4EAGoVco21UoJ1meWuHFVzfKvQUsoskIB/bw2kLoYJ3e8ljNyRHQY5ja7uc2pWyBexOpHwRkJ/huU7IuZJoMJBIIIbAMg/HM9qX27l5fAu7durDeMleXVhnInMYvtyivVRg/OQISdENnMBnH0DqBNxMNs7ZQ4PbcLCMns+TqN8lf0kgcdbG0CAuLC6SGXsPU9z+lRule3TZsulf7FiSFED8F/DLwuXseOwv8DPD8bq4hpfwa8DWAs2fPqnIlj8DxHEqNOvOrs3zn669z9MgkfYleevqOMXd9nsHJPqx0EN3qY6V5iZ7AoU3Fzj3pom9RB/VepXqTSqvNWGbn2qe2X8fQApg8ygIgA7RMp9C5+QJihx6oZehkYw8WBJBSgjeL1LIIfIR2z5Zh/mqn5/thYNcPkA2nSYSCuJqO03aYuTSPEIKJ58bwqi2sWKizulWEiGeitGotps8tYcQDpPti9GWSrDavcPCFA+ja9jVoFeWpUEFyV/YlSAohfgb418BPSCnf33jMojM/+V9LKWv70a5ukquvcGFxlp7AKIfPfp5PPz+J7hvouk4gEMLQLXRDJ5ZIYHjepsLinnRYbV4mGzy84/CorgksQ0dKueUwqGM7GKZBOvDofVMhDNAHN+6Ekf46kiiaZlB31vCkS9x6+NZe0lsBJPglsF64e0DLgpbE98rgr9ComSxfbpJ+LUogFMBpu1ghi76xLM7GfG1mKEUqdROMIwRCCfoO9NKsNlmq1fFMwY035xg6foBU9NELF2yn2mpzYzXPmZFBtC7bnUH5aKQqSrorTz1ICiH+IfC/AV+RUr5xz6FB4ATwf9/zBzUF/CshxI9LKX/h6bb02dae9RlYj9P0phgfjSEcCCeDCKExfOhucOmkQ2Tu3G+6JaanrzKQOYQZDiOlT9VZIWL24nliU/J9PBSEhsPlN65x8jPHHmjDzfdu0zfeS2bg4cOfO6k7eSqNb7Luw4HYj6JrATT54I+275XALyD03rtzjsJEaBnQN5eFE0KnXm5x8bvv0ztkM37qFMc+NYJhdq77Yb3a9bUy89eWOPXZzvuT8vk7qSFWwMT3fNJCEokE8aMRIolHm3N9mLBlMpFNqwCpPJourMG6V081SAohfh34J8CPSinfue/wPHD/xOKbwD8D/ugpNK+rCE0QCARoR0s0yz43Fr/HwIk0Vji9qczbQqmM6/uMZ1LUKw2WpguEo1ksPYzddnAcG8doUG7UubVW5cXRQZCS8lqFdH+KSDLM2Imt92ocOzVKzfvoO4g4fhPfOEhaBNExMfXNw7a+OwvODXAugHUG9N7OrhvSRki3EyiF1hl+dS+CfgBXhjHDAYLRLJd+sIgZlowcudubLq6UCMXDWCGLgy/c7Qnfnzs5fXGW1dk8pz9/glRvgoZbwPCCd+rBuq6H76xiBvsfeaNnAF3Ttqw5qyjK4/G0e5L/HHCBb947/CaljMpOktqmPYmEEB5QklIWnmoru0D/eC+Xvn+RsJUnnTzJfK2GFIOEjc4fed+XrNtzhIMJ9I25QsPUiSXi9I93EuxvvD9Ffb3BmS+cQkrJiYEQuqbRqDZZmc6RyMbRdZ1Yauu0DmEZLK2WyEQjGPrWAaIzx6fd2WR5KxEzg65ZrDYu4uPQqx8DBMvrdYQQDEQkeEUI/SzCGEQIHQkIBBIdIR0QIYQQSK2P6Uur/N03LzMw0ceLJw6Q6Iljtxw8z0PX9U7O6HSOUDSEa7scenHivjaXQCQRQqDpOgOHkyw3ckTtMIvzcwyMjNwJkrnZZeqFCxx86QuAWsijPD1q4c7uPO0UECGlNDeC4p3bDuePSyn/zdNs4yeFlD5Sbr+N1cMYpk48laI+f5DF61VOPncEUYSg1llkM5UvMLOaxxcF4sFO4JSGTmYwRWG5Uzgg1Zekd6wzvyaEILJR4i0cC3H81SPo+s7l6sKWyZmRwW0DJAD+Eng7p8uaWpio0UvCGkcTOqvFW5y7+hegVYlYFsIYRgTPAnXwljrt1eIILUa7aVNafBO58RpC78MKhclmE/gNm8JyiYGJPlJ9Ca69dQvf99F0j2Mvp0n2xckvF3njP36HuVxnkbaUNri3QDZZt+cZfj7B6NEowVADz/XQailC+t3h5b7xAcaf/9KOHwIU5YlQeZK7st8pIMpe+Wud4GHtaiHwHfVKg8tvXCMYDXL0pQMMjq1y4XsrrOf6aVRaSF9iyzrZQJDSJYGTbCMDfqdSz9IKoarL9MwKX/6xs2SHMg99Pc/1EJpA0/b4eUzfOf/yQ0IIUoERPOnQbLhEW9foC2uY5kbwMSbBrwI60ssh/RrCGMNxBqnVJSntbuAaPjRI70gPS7dXWV65zfT6Mj2JEYyAxvy1RUaPJpDuLRKpQYYO97O2vEw6OownHXRhIc2znQ2ftTaaMAkEexgLDFBtevgD0U0fHnRdf+iHiftJ6ePI1p1C9YryqFSB891T65s+qbQsmMcf+WmtehvDNFi8ucz3/uxd3vrrVSprS1x98zLRZARH1LlV+B4L16dJppJEGKDUnkNKn15b48J/PIfn+YCgWuosQp69unCnd3m/uasLLE2tbnnsYT5cFXv/yljpreLbFzfOaSOdC0hpU24vcqn0/0K0xuEz/wmGMbCR7wi+/Q7S2xi1F0Hw13CaU0RTEXqHTC5+5wLNWvPO+yg0p3D8GkNjY0SCSdbsK2QOmiRHQ51eqHmCeqVOpF8wdNYmZNa4Vfk7KvYyUnZK9+laAMdvbKwGvgRam1ggsPm9ODeQ7hyuV+7kfu5CyytTbE3t6XuqKHeoTZd3RfUkP6E6izx2v6nvhzIDKdL9Scr5CuVClfxinETmDO1Gm3hPjJqzSHnKJ22GKCwUaDea1J0Co6MhEtkY+liK1147Dq7Hhe9c4bkfOk48EyMYvtsWKSWu42JaJkOHd5+acG9e5fLtVVr1FgdObV51KqXsVNnxmrTcArpsUbTXSWs+UauPYCveyd+U7U7Qca4g9UFw10DeRJrPI/QkwjrD1Nu3yA6XSPcF6TsUp+00WJ7NEcsGiEV7yB6Pb+SGjlNzhqg6K9iUicsMQotTXI2xMrfKkRcGEAGLTGCS1cZlyuYCI5GX8KVD3c0TMbJkg0c66TL3jaq6pKk4eVz3ItngEYR58KHfp075vthDz1MU5aNTQbILCSFIZhNEUxHKuTLpgRTX3rrJ2997l/FTMcL0M/n8OAMTfYSiQVr1NjNX5rCCJiePjBKLhrGCFtnhDK7jkepNbLp+cWWd1Zkcx189grVFsfTt6Jq4Uy4uM5jCc71Nx6X0KNf/PaZxilW7jOmeZ8DKYBljGJqFEBrH4l+G5p8i3Z5O3qO0ofV1CP40yAJtO4EuFjFCCSZPH6TVaLM8YxMcNkE08A6d5/LiDUKrx0meXCFljRMwYphahKq9gifbJK0RwkaaseMjxNJRwvEImmERIUjNyNMX7KSDmCKEJ21c2aJiLxExswT1zveqUW2ycGOJwOEiEofB0OcQG4t56s4aCEHE2D6fUntIIQdF2VEXFirfK/Wb1kWkXwYRA9rg13HaUQpL60w+PzdeY7oAACAASURBVI5vacwuX6b5eobhyZM0qy2mL8xx9JWDaIZOvjpHb9Tg+ODd9JAP67XmFwtYQYt4ptO7SfUliCYffb4sHgp2cisBK2h1CqI7swjzKACucx0NgYWP8G4Ql1Ec7QWazgxR2Ych2+DOdQIjoU7Kh4iA6IHGvwG9j4XrhxDem/QeeRvhfZX3/2aW3iMRpOvjyDrr7QWGYy9hBtqsNC4SNfqw7Qbr9hyaZiCkRlBL0naWqDW/QTL5CmtejZR7tLODifSx/SaedAlqPv1aHYFN0EiiE8DzbXTNwgwYpPqSpCLD6BspKB/qfL23v2Ce77NWrdMbi6rcSWVn6sdjV9ScZJfo5ADeQPplVmZmqZRmef/dG1gRCyRoHmizCVYl2L0OX/+dv2EuX8IMWORm81z9xjxO/sF8PM/3abUdps7PUCl2dr7QNI1AKICU9ra7fjh2J6Wi0zYXab+D9DcXWpIihq/d7U2ttmZoksSwhhmIfJ6yu866M0dv8NjGZssmwsgggq+CdQi8PDhXQQyAFgEMBsdtCvke5isGpVonTWXwaC8hPYrrtxiLvUoyPEQgrtFsRbiRm2Wx/h7pwAQT0R+iJ3iEkjODoaWQfoTr1dep2Mv4SGy/Rm/oCBIfiUfNKbNYLrNSLqN5QVqt75JrXgLAdTxqpRpX37hNq2Fjtx0ufvcqrUabsJEhbNzdQU5KSanevDO/uhPX88lV67j3bGmmKFtRW2XtjupJdgkhBNJ8Edfx+NZb56gurdMq1Hn5h09ye62I73vU1tuc+tQwLNsc/8xR2uHOj4cm4IUfeZHhiZFOAYG2Q369hl9uIgZi3FhYwbm1xsTp8c0v6t7G8yyazd4HciXnri4SigYZnOxHCANpTILY3PusuWVsv06P3oP0S4TNYxh6mLpXZ61dIGoNkLKGKbanKbZvMxQ5Q8wcBH0Q6VUh8AL4Psg1RPi/AL+Ap02hHzfI27MMD75K39ABLOHh2re53V5kLPoqmeBBcs1rVL0ZbFGmbdfxqg49wYNUnRWWKkX8xvMkY4eIRtKEjTT51jV0LYDtN0laIzTaN1mpf5tKM0u+tMDhTIhaqUrYd5FHOh8cDMtg9NgQetBHCBg9NkQg1JnbtdsOru0SjoVoOW1url7n9MgJAubOw9cB0+C54f6P8JOiKMq9VJDsItVinVypwvjZAwxjkZ8rMHlmnNe/eZ7KlRXS/UksP0rPaJ30gEErN0K71eLCd68yfnKUaqlGvdygmK9QimhMJmOENJNo1SXzwgTRRJjiSolGpcnw4UEwJpi5PE9x+QYv//gLm9oyemwIjVWkcwVhHkdom/felu4MIa/N+lwIb6KJJm8hRBwdH91dpO1OoWkpevQkEfs8UrfQ/XWkH0B6ebAvgD4K+OAuIM0KQkTAb6PbYWrLAxQyZYLyNj1mL2t2g5ZXZKH2Lpbm03TmiAcDJM1+mrJIUE/SdNdBaPSEemhbSxyIv8i6Y6ILjZa7TMw83Xk9oO6skrYOEouWCQUtemJx0sFPYfmdFbahSJDeg3EEGiV7BkuLkurpFJzypUtxuUR1vUr2uEVMT3J2WEMYT37gx27Z5OYLDB3s39XemconmPrv3RUVJLuI5/kEPHjlUOePsWnoVNcbBFJhyqUqYwcHWJ3O0XcwQ3He5Y3/59scPjvJwGQfPYMp1nNlRo4MEYoFGfQ76RmVtQrxZBQraKIbOgWnzVKhSP2dBkdeOkg4HiA9MPFAW0zLRMosyLuLfqQ7B/gIYxy0XoTu4DnlzopW4iSsA53cUPMoKU8joGcQQiMcPE2o/nVwVpDihwG9My/p3AYtjLReolLwSWajxIJjHBhxcRLL+JpLrnmZIC6apnEq+bMs2xdZqr1DQASJGn00ZY6xyGdJB8fwpEPZnsc2muiaSa71Ad+fvsRXDn+VGEV82SRpjVNs3yYZGMGgApFXSDk+FxfOM9Y3Qig8gRAGl9+5jJW1CQaCiFiLpNVZxdtwi1ScJfrHT9LjJ6k4C6CF0PTncP02hni0nMpH5fsS13a3LUqvPDu6bdh0r1SQ7CKp3gQ33p1i7toi8UyUWqnB0OEBRLNCu1onlonSM5hh7VaT6cvzVJw2iWwMDY2e4TSm1RnqazdsPNejvt7gg9cvYgYMXvxyZ0spWxM4cYtgtDO82j+Uo9nyaNYChKL3bWwsAiACnQ2ZcUFL00lzBqGFMSw4cDLRmdf0LCQSQR2p9aLpWSpegZgzjdB6O/tJ+kVk408QwU8hIj+LlA74LZzyXzB3rorzwjCp1Bcx9BoJw2U0dAI39Dz59g1i5hEa7hrV9iIhPUXVt+kzBL3Rr6KbnQVJs4USEauHUnUJXa4xXYkRFy9T9yqE9S+StHq5vrJGMgaJcB+SGIIgjfYUxzM3aRtpXBnAd3yWxN8Snhkmrh9n4swRAhsrW33fv7PjiidtZtZaDMaaJKOSYnuagdAphNAo1BokQsGdqxU9hPSL4K8jjLsfYoLhAOPb1NpVniFdmO+4VypIdpkDp0axWzatehvTMrj+znVWK1cJRkzmC+ssTuf44s9+GtvzGJ7MMDIxzMqNZXzPx2476LqG3bQJxUJERl1e+OIw8ewYiZ44vu8zoFskB/uo2w6F5RKFhSDBmIZpVR4Iknf4OaS3itCHEXpnoY70GwitswUWIoir9eNLm4B5HKQko7tUfR1hXwDzLAgPX3+B1eabJDxJu/k+Qc2kbi/Qoy8y8ZLOuj9F23sFRzZIhz9FG4nvt1hvz1JuzzMQPkbW0HC1MHW/jNv+Aa3QBGH9GMgKHlO4jBKyUswVW1xZWWA808ti0SYThkxUJxYMETNSyPZFhJzH1XqZLQ+RjL7MmDWJY7vcunCLgfQA0Ug/kVgvkehG6oebZ611hbDRR75WRzPXqLmL5Gtp+uJ99AaPUm2vY+oh5krrHDQyxPTA1t/TXbEemAdWuodUIwW7ooJkF1mdXePS964ihOALf/+z3Hhvive+cYnsSIa/98uf5cr1Ba6cP49ru4wc6sduOlx/8zqjR4dpVFsUloqYAZNGpUmyN0Ek5hFLZHn37+axAgZHXznE8u0ch89OYKZMHNshEBojmuwEASmbID1wp0AfROhZADyviCCG8OaRWppS+ypRmcPWD9Fs/oC4FcfWT7LavErIyJDRj3B79hxecoHDloOpZ8EYR/MrpKxRTM3Ely1M2oSs0xSas0gZJqZXsVt/R4AYldb7nG/XiFuTuJ6DS5uo0Yuv9aCLJLV2gTU5wCm3SVhcpGIHEW6GUChKoXaFwcRB1urguTqzaz6kHQ5mJQOJGO/NLjISnsPxqiy1XCayHro5QNtxmL48RdWfZ0i+hhYwCEY6Qa7u5qm3KwT1BAsFh1ozx0sHejjWG6LVCgItdPcSV3JtspEhzox0dh7JLxZw2i4DE307/t9/+L0X2t0FVJ2vty2drCgKKkh2lVa9xcBkH9Fk5w+jFTI5+ZkxNE2nUW4yMZxFvniIS9+7Rn6pwOBkP4demCAUDXD7/CwTp8fwJbh2jup6jUiiFyEEk6ejSCAQCnDitSNAJ21BN/Q7ARJAujmQLYRxoFMabsOavUbcmiRinQHAFEEEJnW3QMGpEQkcJmoOdBIrpI3nutj2ABPhA5jetztzj6IG0iUoYpRyNzHCKyxqMdKRQWzjENXmB6QCR6i0btDwAujGBGFxFcdbBJElYQ1TaN8mpcPV4nvkq6MMpkNUynnCyc9xbqlEwDRo2HW+dWuVYEBnoifDaqXKrbUS/YkYhVqdm7kil3MXaaTinOpZIdJ0qayH6Mmc4dziMvlijTOnj7O+ukxfduTOqt+Kvcil1VscSp1hKJ4l2OOBcAhpKc6vzoPMMJya5MWhBLrQ8HwfXdMIhAPoxi7mKb01kG3QDj2mnyblE091JHdFBckukJtbI5LoVMnxpcRu2SzcXOLa27cIhVzqtSYzl+dID2Z4/ounCIUtzn3zIuVijevvTDF0cID+A724jkdhsUi90uD8ty/z5V/6PNFEhHR/Csd2kFLie53Vncu3V7n+7hQHTo1QXqtw5gvPITQDfA9kDfx1fG0Yz/XIhl+9Mw8npSTiT4ExRq+VpdcMgT7MUv0HhM0BkuYYde8mBw9lCMsS+CZoYSAF3hV8+lldWCTYcxkROAjWB+h+kBh1llqL9AVfYq72XYKeSYsIQRHD9ho4XgvPtyn4LTQ/ygvpUVbtKDfXe/nmze8jRQbflxzIptGMfhq2y59+cJlTQ/0c68uSCocoN23y9Qa2HeA7Uw2kfoKTvcepNDwKc+ukEiHsWIRYOE30MISNzo4rdssmGzzKSwNDmIZGxIxRbKzy11cv89kDLzGUraDrKYSWwQTaTptzC8s8NzS07TZk9xPG/Vu1Kt1MFTjfPRUku4Dddgm6PnbLJtWXJBCy8D2fYy8forC8jlgrEQyF8HtCXFxaYSIcxQyYDB3sYeXWDVzXw2m76KZBOV+hul7nx3/5RwgGHHyvhJAF3v2rFXrHh/E9HytoEghb9AylcdsO9XIT1/XQRAahpwAXhEd+oUApV+HQi2P40kUX1saejjEQmc4KVS2F685Ra1/B1MJcmPkb6pUrPHd0Ep8S680GEeNNAuYx8OvUW1cJDS6wap9FL9xkuX6JSOYV+oKnGLVO4Ng5LMIENDDNMA27QMNvQmuFtDXKcrvMXLXAzNJpSs0Mx7Iea9UmplGh3M5Ta7eJhoIMRqPU2zYT2TSVRovpfIkfOjROb9xgrRZgMJ4gZvTRcA3KjRKi4mDGMqSG0sQjYdq2AE/Dkx5X37pJ31iWtlMnODBPyPOJB36IydRxImaA20WTZOLur6olVjjaUyVk7b7kn6I8QAXJXVFBsgsMHxoAOikgsWSESrGGFTAYOz5Cokdy4+2rrCwkaOaKNCI6AbOOrgkmT4/QN9jAMCXruXVEXqPVsGnX2wQCJtXCLJEoCNNg5Pgwmh5g5fYaB188gNNyGDo0gK5rmEGLK9+/TmYwxdDBTlvyS0VC8RDJ3gRVZxXXb5IJbhT3Np8H+43ObhrmCTRhMRz9HK32OUKBLOHEGW4s5emPlllt6EzEemiV38SLhnFJse41Kcnr2EvXSfeGcBKLzNWPINrvs9D4AboWoi9wlogRZ9H+Dqv2GuFAhIVynVbzU1TWqhzPVnl/XuLaeXytl/nCOi+M9aGLCC+ODtKTaDKYDVOqLzC33iYV7OEbV24SsKocH4oSMQYI6AaVZptb5RVOj4+QDcc5v7hMcXWdt9/5Bo0lg8//9KcZO5Ol0sihewkygUnKre9wa2WBVDhM0DI5PXAMkyWkWwItSctNE48O7Or/3rEdbrx7m8nnxwmG7y7y8aWr6r92M7W6dddUWboucf3dW0ydm6FZazF/fZHZq4tI6ROL5+gdG6NZaSINwZGRPqIxH+m1ufrmLNnhMMK7iRXyacsc/QeyvPCl0zRrLW5+0ODtv62QW4zSe2AYvSfGyc8eY3kqR7vl0jOYJtyjY1sF0v1J+saynRJ0UnLu9QssX/sOptUmqgmSZoaKvUS1fQPhXgT9EOCBO4Pwlgj5U6R0ODQ0xshgiPPX5li+ukqyHMPwGjTWmxihH6Egw6yZETQ8/EiY7GAQz1tgqvZd5mpvYbsthO8z07jMrerfEtBfIpfrp10dwiZMT9IjX7O4tAKeDwOpk9hOgNm1GvhRPnVghOVKjeqKjluMIPwIq+U2qXCQ6XyJd6frtFoxUvECq82rpKIeLw4fJxNOE7JMxjMpSqslhhJJXv3CKO3AKjLQwo9USI4GEFoAI/DDDCUS1JoLOO2LCFml2LRAS7GWP8f5+Ska9u7+3w3TYGCiFyu4ude52rzSKY6gKMqOVJDsEpnBNM997jjRZISRYwMEhxq0vCpT61O4YZOJ58ep31xBq5YxxetEei4yN3OV6Rmdhell+ici1JwPSA14GPEg3794k/X8Kp5TYPHmChffvsnlyzPU1+sEB2Isyjae5yF9QUCfxY++jTAA5zL4q3zmJ2JMPD8GIoTwFhHebQzZxPCXkfoR8HM0XBe3PUelrXVqsLY/gOrvETCDfOGETn+vze1LkmJ+hP7Jk1Tat8gvVtBbTVxrjdHDcRwtzKLjEg40sLQAIT2GBfRZGRLaAdYbEUwR4FuzFWZzAd64WWSuUOLiaosj/T1YpoVhWJwe6cPUdH7/jfc4P7tMueHw/kyOpZKgVPd4e2aRtWqNU0P9PD88wFLJp21HKTVcAqZJvnkdxy3jLZT54O8ukeqbpH/iGKuFFMI1GY+9RsRIoHnTRM0kg6kEzw1YGEKj3brMarVG0w3z/fNhou0EkcDutkkTQpDuTz2w6XVP8CBBPf74f9CUTwxVu3V31HhLl+gZTNNwC1RaRbx6jFqpidG3QsBPUKtptP15Xv5ii+OfWuTid2ym8gHK2jrVwk0M7QimNcBg/Et8608u0/f8m7Tn4/SnoySyBumhETRNw3NqWCGL8vklBkZTLFy7BVoE4UYxRAXhV5HGMI1WgPXGCradJiWnSJjjCE0nJFLACEJY1L1+qvYbOLbOYjnDK4N94BeQwke6C4xmHEgbrMxdoLIapeC9SHZgjWMDi9SEzbKfZdFuo0sdzWtQ9aZoYxPiBE2WKFZ6McQBTvcPsrp+mpl6gaVGmGurZXqjaQyzSUCs4No54sHnmas3SQVMWo6L0Op8a3kWK2ZRb7X5dE8votTimtMkFQryZx98wERPglcmxik7MywuLyFnq7jReUKRGAdOjdI3PshsIYcvHULaMlL2IUQAaZ69U+lGGCMgDBrFGkszK+QrM5wYazExsf0WWjvxXA9N1xBCdPa2VLpblwW7vVI9yS5SnGvQWjOxeiQ9o2kMc5zRgc/hOR4L03PI5EEWa4cIxg/QT4gzk0GOHq8xPimxAibpoX6qpQa5q1WOHBpj/LnniCQP0qy2SGbDZLKLhKM+B18cI5CZon/oLcIRl+zIIP2jryH8HPg2mhGgxUHy5TYBHKSsslLJUS2XEcLCky4Vt4QV/jKm5RNZf49GYwVEgao2QKX6xzS9FWp+P0veEOVmH7m5AuXFHKVim5Y+gOaV0HDxZJO2FiBrDqGjU20ssrY0yGoNlmpXOLcwRyQ4xe18jeVyGYCeaATpx1muG3x72uVmLs/cWpHf+5sfUKjU+MrxPnzPplRrElyqs/wfLvHCsXH0UpuZS/N8eug247HrhI0YfaEjBAouertEI/gBtvE3GEaO8tJ3sRf+jMlsikDoZZBNfN+/EyBvnZtmebrG9MUcFy7MUVxbZzwQwyvqaFsUEJi7tkh+qbjj//+tczOszecf/w+W8omkepK7o3qSXaC2vk4kPIsVTlMVK6StIzTXW8wVZxmZGOPQsRMcOtJHizYr+RC3r47ROxnFjyzy1jszZLMf0JftZ/7aRYSTJ5U4S3Z0FN+ZI5YM0qpMI50+0I8iZJNgKIVjj6NbR1i7WuD2xRaHXwoR6UnQan6PaOAYEz29xMx/j/BfBX2SavEy5cYC8WSSqrOCj0syMAHmLxKdvEowooHxFaIk8WWFQnsB5Lc4eyZLOnKW+fnbVOtxrMHj2HaDWrnJULyHnGhgE6bst4hwmJiZYpkogegtNCNHrpTkB+fD2DLIsViJ98uS+WIFTdOJWRaWFSAeNJnsGWNmNsdzA32s5CN8990ZBkez/PpXvsT70uTd/+9djo0lSWrLhP1F1haSDGdvoNHPcH+D+PFDvH+hRi43xeHjccLRCLWqRUgP4joO7dYHLNxYZvTQWfTwCLFsDF8IVksVPv3p4+iGTiBowUQ/KzO5Tq9Q0yhUaiSycYJhi3Bsc0Uj6TcAB6F16uOOnxjGMJ/sr3y9bTNbXOdoX1btZ6k8E1SQfMa1m22mzi1w9KU0Pb0DxPwo6/M2b33jHP1nV0nkh1i6bhMISUaOj1C/egXfHSAe0QhFh/H0LOvLt7H1i6Al+cn/5ue4+tYi1UKNWqmM066RyPZSvlgkO5YmHi8AQSr1IBUMjr96lKtv3aC0WsaKJSi6DmFxDU1PkNBMKtVb6NUrOMWjBAcFq7NrxPqKtP0Sq/8/e28eI1ly3/l94p358r6Puu8+qu+e7jk4wxHFQxIlimtJ9Mq7a60WsgUYu7ABA/7DBmQsjP1jF/A/C6+xWO16bcuWYFiiRVESKVEiKc59d08f1UcdXXdWZVbex8uX7wj/UT3NnoNiS+QMNWR9gETli4iMfIV4+b4vIn5H5fdQ5ZChPySimeBpoGTRxJC0CtVgFE+NcLP7x+TyBfq9MgfeKN3AZtvWaemreG1oGB7JSB6XbWzvBnWOY/Rs9ivHGQ7CtPoe3b7D606Eoe0RlgPyuQSWYbG9G8GKDLh1uwKmRseE9coac9JGbPfoNrrMnpuhulWjeXsd4/Qe5e0nGDajOD3o1L6K2+tgRROIUBVXW6C+O6Cnt7nzmiSQBxiWQTMY4dbSPqUpg516i/39GjnVYGQyR/h+OL/2sIylJYilIgSB5LWvv8Xyxh6zZ6ZYPDH5PpFEtiDown2RNK0fJITdo6GrKgkrdCSQHweOhuiROBLJjwEyaIFfQeh/82gppmVy6ukTKCoge4QUk2xxi5HFJPXVdba7B1x/boMTn11kr/Mdur0yRniIohiUxj3aPYERjxLNKcw+dp7Keo29vQPu3niRz/7SHLZ9ktGFArWdJr6n4gVhVP9l4mocX19ESknp+CgvfucFrEiMSPEcbnAXRB9nuMvW8g5augS6i0EU194hpIQJgDo+fe8amueDH2XouzS8gBQefeoEMk3L7VEPYrSVDLVOmbx3QCjkMVqYpDpsUatvosRCdJQG7bKKHzfoDV0avThhuYjt98lYfcJaFlVRcIyAXq1Lq+2QmBlh2Oiz/+oOwlJJLxSROy2a6/e4FE2xe7PL9b+8weM/f5HcRJb4MM6wWcRrZbn50nUm57ukcnEGZhp/uIVb3sX3t+lnz1Mz01z6fIp0YRQpJVf+47cpZjx6vS1e+bMGvqmSefIkO29tUHo2iu8HHNQqjI5GiSQOA66ffOoYo/MlZCCJJt69x9jzDtBEDFN/NFeRHxaGpjKaPDII+jvPT+Cy6d+WI5H8WKCDEvn+zb4HqqYigwbSXaHfzRO2Vlk8c5LKyA5Bt0sqe5fR8ShK+BILz7xIrd0mVSqihnOMz/0OO46NDAo0BuOsV+8QzDnMz4+AOku71sVol9FiIbbfVijNFMiMfJIYz7Pvfh3b/zSxWIrzz5ynEFNZq0NXnCQVG6CEn6CUa3J3N0XpmEGuUMJNLdML4PrtG0znIWSoDI04jSBJY/g8aRV6pPBlE49pVp0rpBWfiDnFWHGBmv0cviiQ0gIawy6h2T7SU6ivBdQ2DHKPqUStGnV7kpXlPeLRPNFGDz8lWKk1KYQ9SnqI5noDseMwNfRxMlFS+SQ/dXmSnaVbpM5kkTWNrcE9PHeSr/7bP2XmzAipQp7A85k+M0mnUUEGAyo1hXptyOSIhqnMcu7xLF5QZGv1DtnjFnZvl+p2CysWwswe50pdY35eJxqNs1euMXG8hBEy2Fkus3W1i3muy+j8oUiWpgoM+0MUVSGeib1rzB2/gxQeXVshFjIxHiV03RE/WRyJ5CNxJJIfA4QSBn4wa0ShpOjbU6xefZ2TT3+esNFC80rI/IBP/GefJ9CmqDuvIVSdWOkyUrTo2is0PY+iPM5re3Wed/9vfvrYBU6Yx8FfJa73acguYTZo7fZoeccppX18z0BRT5IWAwbDVVRjjmzcQsgqM9kxhNCpHGzh2bP0ezsUjoUxYxrbvTfpOhtoXg43ZtGx0kTUDGubXycpV9EzCoaSQYgNAq+NoVxh2vDxiNF1buIaF2m40+SMU0SVJRx6SE/S7loMhYYy6rJVTbK6OY4iDNpCsFatMKVHybnwTHGEprOMrNSZGKjUhWDv2hbTI0kirT1eXq7iDhy6lXVmfv4C5ZpLfrdBc38He84jns3TbfXptRssv/EGN19Q+NXfepbJfIxh9QBJAj0ygSXfYGLuOAFRPLeNa28yeXKOkdkxNu06I9NNouFxsrtJcuMZAPSQjqKqbG7fITsTxVQPRTFetIgnUg/G2bEdBj2HKjVSeplKZxE1VURXTYRQH+TETBoTR8EEftI5EslH4si69ScIKx7n5NOzNPZbuP17eJ1NVE/HV0x058uMhM4zHvsMaT1HoMTpOZvUO2Gq7TgZZYKz+VniCsSNY2wN9qi7+4wVj6EoBrFSieSxEl23iu3ts1yts9OJI2WTnlum51aQ7irYf4b07qAHYcTggPHjCoHucrARUO2vovgbuM19Bu0+w36Vt958FcuzYThJVCh43MVza1SGIbygQkx2CYZ9VH+PZu/b7DfarFc7rNYkOln67TRRGSWa9Wm6ESoHJY7nThKTFrYToArJgeLwRqtOq7EFWy4xPY/h2ww3qiRjYULWgPREmuiJEfZWqwyGfbx6n/G5SarbdYonpgjPJgn8JtX1FTaXKuzvhghEBrs9SdpqUBzrMH4sx0t/tMT2xgRv/MUuzapOIrdAOHWB0vw4V2vrBKJMPH4BoaYoTObwGbJbXyKSDPHEL1zk+OPzKPcTL/e7fW7cfoG+892gAN1mn+r2AZVuD08ucmpshoRZOcy8AoBAETpHd8gjjng0jh4lf4IQ9FBlg3ZtQDh2nLHT87y5dYV8J0cuMokR7FNz9+mLMIXIE2zaJsmIizAdZkKL7Pa7KNooIthFFWFUEULxlrnVu0beOsN0zqTtplH8q5TCYTRrlkjocw++P/AEDK+BtEnmopCewpUeduc17izVOPeJTyP1Mj0joDRq47b7CC3KzPRprmwuYdkzmOEIQ7mN1PpUBho3diwO/IDJMQ1bKEyk+gTaDTq+ypA2ltmlOwjTtS0U6dB1fN6qbaF7XQwlSdwVuLZHdKtDdfUAE4Xir8zRsxxClaUqUgAAIABJREFUQYXBwCNwfa58bY3c6E0yeWgywc3n73DhiWPcW6sy6Y7yxu/uksl1iCRUMqU0lz4zwv6Ww9rVdYKBx8zJEJlSl6kzc2TGMqRKAbH72Vhcx0NIiBsZpBdif7CGlD6l8BkECndf3EX3O1z6ufMkrRGEEHQaXZqVFpcf+xym8d1VhkwpRaaUYiIooov7hjzqCO8ks1aFRtI4Sqp8xNGe5KNyJJI/IUgpEUqafbfN+NwSeuQ4BBX8vRZ7nRWyj8fpD2/Q8zX6lSka0a+QTGXJxhbxlBFWml+m7VZQBoK1fpeMVaRh1zFTc8wmvkSYHpriEY2co7UX8MKdu0wu3ONkLkNt6zbR3ONY0RnQZgjcZVr9v6DSTZIxhlwYu0g+9Rq67tF0AsJWiMbuGG/fqJNbEHzzTYWEEsW0yty5WcNXY7gZl1x4wHS4RcpTqIkoNh61rT6GYRAvStyBh3At7IFLo2dR6WQZ1AR6v0d+zKHe9yl3JdGejzISIzGWxeoErF5b57jYoK5HEf2ARkUjO5knP7JJYTzB+nKKbsNh5swU7WqH7HiGZCHJ9e/cYnt5yKf/8wJTJxbYWXZQzRKdVpNKdZJULk5mrsNb336FXkNijCR49qnzlI4n6XtVTo9OUh0s0xruMxF9Aj8YoikGT33uWQAq3lUUT2ckco5us0e73mX82CiO7bzLctVzPQh0hHk/KIF4tOg8R/yEcSSSj8SRSP4YIqUL/i6o4wih4Lh1Xvurlzh1ZgzCWfbbFmbwTcKBoHnnOtPHbuL18gyss7iKiZaawlNus9/9Bjpt0olfZzxyAaP7Te6t38UVOcKcpRfcxVb/Penoz6KEzmASpT/Y4aB1k3MTc+QSAwLndfrtOqHkY8igB8LCdna5s9cip2/Q01J0u/Nc3YFi9EXCoR7xepRuv8Tuyy+jtht88+Asnzw3j6zeZTS5QVtCpWvRdy1GkwOEK4lIj44AdcJH68KwXaAdGBidCIrdprFXpN9N0ev0kTt1pvpdGiNJ9EBD0QTRjks6ZDGlGdxQB0gtTatWp17ts/j4Mayoy+mn+7z89ST5MZ+ZM8dJ5RM89jPniCZ8mjXJhc+d4cRjYTTNZuNmhcXHqhBaQDrXePFrO3hqAkPX0cMhJh83eeFrV8nIENFciMJ9Y5ysOUfGnMEN+uzY10iZM8TMPIH0cQZdkuZhsmUrGqJZabGzUuZgp86pp48DsH37BgiF7bt9zv30IpH4UVLlI96P5J21hSO+H0ci+WOJBGkDAaCgBneZOmEQCW/j2lOs39zlzKU9rNAMP/Wf/gaD7i6RRIF67yvEzZM0lQMUt0JJG6Pl65SXXiMTmeKACLnxAtnoHGsrdxlLl+iILL5j0G0GBJll2k6Let8mPRiwb/tEc9/ByCywv/Yy5tw1sL6Ao8wz9Gv0winyOtj9v2SrcwvcS6yuv439yiqLP1enMDHgxnaYGl262xUGmXUark4QBEjFQIRsWihUlABLCnJKQHtggDFk7W6LXtygWlZor2YJzdoYlQ5KLcDbcTFiNspSF7Xl4gSSMTcgMt3g5dcdOmEFMxKFaARLN/HzYTavbKCnThOLOyTzFu6gTjyzSK+xiddb4bP/8B8yaK8TiuWQsk3icg436OD64LTPM+x9DSXfYe9uHFXROPfkp8n84gT796qYWpioXqA93MWTA9LmDIYSxVLT2F4de09BDyls9suoiRIhrYYbq3H66ROYEYMgGOAP3sIPxtHVMunxk8igjeM8z+17Y8wW5kmE+kgZIEQIoRwJ5088H0EWECHEzwL/GlCB/yCl/JfvqTeB3wEuAjXg70sp14UQnwX+JWAAQ+C/k1J+6/5nLgL/B2ABXwP+Gynlh6r3RyL5Y4gQBlIdA1xAQzUuYGXu4WhxUpEUxx+P4PcvosQFA6fMwFwiLQaMxn6Bcu85qncatMwLWKU/o1F2UTph3Po21bpHbHyIn4my2XeRfhlHzeNaGZzK20SDCDv3qiTyYbRMiEK4S693mXpHxQr1OPB0nMEeWesYschx1iqvYGSOU4ylyblblOsqJxdSvGnv8NzGPlNZ+NQnWjR/O+DOdZedpSRRfC4/VSeRqFO7aWCeCJjJ20gkt4M4ng1BCNKlLhE7Ss2N0GCWwWs9ErdrWGaS6GyM9Q2b2m4FVYJMW2jTaQZqF3/oEqm7FB8f5c5alYipMV/sYP3KcfbWfUaOa9y7uYll7dDYS3HpZ89T33GprPw5sdw0qOMcdL+OLhtYkS8w8PYYhG1OfurTpPMTdBffxHZGUFWVVCFFr2kzMltECEFYy+BLl+Zwk6hWQFctpBzg+AGBhNHIabKhSUxFQdV1QpkYw8GQ1/70OrGMQ2FcMnN6DDOco7jg0x76JDyNjXqDM/kyoNLzk3SHkuJ9X8vOwCGs61S7PfKx6IcSBEBKG6SDUJI/9L6P+LuJEEIF/lfgs8A28LoQ4qtSyqWHmv0G0JBSzgkhfhX4V8DfBw6AL0gpd4UQp4A/B0bvf+bfAr8JvMKhSP4s8PUP8385EskfV/wyUkqkbCGM8ySNcYTQUBUD00+zvrlMKmMgndcInDJtfQxLzdJZHiVfmqLZshnYCwg9imsdsKtsM7NwionIZdZWh/SWbdQnmhzTXN5cXqJWvcIXF/4p4yfP0GzuEzZDSCvPXv07DIIOc3MzqMopGh2TfnuLyegUWSXC7o2reKln8bw815oVTvtVommd3p9UqRkBrqmi1HtU9y28go4ceLQ8jfa+ie5LKnWfQOrsNEyqhRBuPcJ4tokZ8thfaeH3U5SyBuVaj+KUgRpVaK+HKL8xRE+CjkK049F+ax9HaJjdBu0a3Hp1mUQ+ysh0Hk10KY1Xef4PDhid0CmMNNnbzqGrOzR3bmGoIULhAZo2C7JKRM0wEKNYWhoz2GYnWKcZN7DcBLs7NkL2iWY6RFMWsQWbndVdpO8wNudSGzroSgg06DhbDIZXieYuYxoTTCpTmOqhMY7G4R7kwU6d7GyJquhTnA0Ip04ivX1MMSQf/STJkIftegijhADcnk1v2AfA8wNu71WJmgb77S6psIWpfAi3hKAFQROORPLvFh/uTPIysCKlXAMQQvw/wBeBh0Xyi8A/v//+D4B/I4QQUsorD7W5CYTuzzrTQFxK+fL9Pn8H+HscieQRfyu02cMb0/AuUkrUYAtECJRJ3HAFY/4GnjvGrtNltWUzLldRK3ep9MeJ+hGuLl/n1LiB4hapl6vECk9z0OjQyXyLvPEpxlIWudwMm3dv02g2OD3y8wjD5M7mNo8dX6C8do+16v/HzIVRRjJZ7H6TeHySres32bl1l8WnDCaOP8VecA/Hb9LwdGbVKFvVFLHqn7OOTmVP5fb/2aeph8imuwy6Fn5E5d6mykgJ9BkPM6uw24LoVEDH1nBjPlIX1LeitOyAollle2+NxBtQGU1zsDvErB6QLVnsWAauomB4Dp7wUCYy5Fo21R3wqwHDfo9kJsKVb3dpVB2gh6rtc/rxBJ75LOmUTibxHIp+HIen0aOXwLuN6V9D0xYInLfAvUXBTKLKMYTu409m8JUatuUjvCyWmkYvKfi+R2u4ze32i5xOfQlNMbG0LC03RxgVLxgAPPCPfAfDMrjwzAl8U3CjvEnHcdh6s8n4iVHi6QCXFoauACEAUhGLVOS+0KoKFyZGqPds8rEo5t8irqv0K6DEESL0/jrpgRwg1CKoxb9x30d8uPyA1q1ZIcQbDx3/tpTytx86HgW2HjreBh5/Tx8P2kgpPSFEC8hwOJN8h18GrkgpHSHE6P1+Hu5zlA+ZI5H8McTze1QG18lZZ9GtXwAgkBnwyyAlCWOM4SDO3uA6CfUxjkVctsq3iAUR0qUeaW2UaSOAlolrmohEhFanQTLh09mNcfpTKdTgp7l9Y5OwdZ7FiSRqNMwLz73Gt9bKZDSLZm2bYmaBkHC5vrtLTNlnRouROVEmUcwQK22x3/wTZh+bYa+qkVzb5fipZ9hfr/DnL8VpKFHaqo/XP8BIC1qqS38nxInP1DE8n4ZtoNsaMCRkejhNBV94BH2NSs/k7doI3SBMeADFYgvzXJr9FRdd9Rk54RLbadPq5AhJhf6+g9CGRIYH7JDkxJMdhnaCZ35xEqlkWX27hvRqzF/KYbtFhgSU5t4i1D/A1AsMCbh3vcb8hVfRjZv0ZALHE2SDFfpijpA+jeG3iOsjzKTjOEEHTXFxfRtV1XH1FgO1iSITnEh+geF+mJrZIFtaIKxnaQ93SBjjNPs2vDt3Mql8gkFvQCwc4cnpY6iKgnZ6gnq5QXO/RXbBpO+3EELBkDZ9d41w6HEUoVLpdHFcj/H0DzDDC2ogtMMHsPfVHUBQAeXM377/Iz48fjCRPJBSPvY37P29e4d/bRshxCKHS7Cfe5T2HxYfaTABIcS/EkLcFEK0hRC7Qoh/L4RIv6fNrBDiD4UQrfuvV4QQ+vfq84j3o9IhpYKKIBh8k8DbQSgxkF3wN9EVi2L8ZwmbF6lX9rFqDgEhynctgrVpXnr1JrHxIqWzeRYuJMjPrxAfjWGFfdyDPquvbJEqhRkZ6fPqwSYvL6/w+otvMdh8nXMyTj2okDqhsLPbY79hkhGTzI//Em9WrrDvaExPZklY5ymvPMWVlQoddY2z58vs1L/OxvU3WQw5PH1myNi5JkZUQRwM6awolEbr9G3J5h0D3VNoLxmsf0Pn9ksJFEPBb6h07Dh1dHqehXRUpuQeqzc0tsOCYcYiHxki9DDbTonA9og5ewjHJ55WiXdtnGt9NBFh9tQ4u/civPRHt0kXspx4fIp8qcQzX7jE7EIUpdXlxssdfG8FQ6xw/OzLdNUy/UBFenfIaXWGSoJ64GJLHyklbmCjaAMyVgFFUQnrabpehdZwi7R2nKg2R0wromgSVTv8aZpqnJTSoDeo8K3nrrG1usfu6h4AUga0ax02lg4frtX7iZWjyQjZySxkwphKkmo7YODaSMViIDWk9Ol3bBRfEtJ17K6N53oMPR8/CB5cRw+//14I/QRCSX9wnVoEbfEHupaP+NiyDTzskDsG7H6vNkIIDUgA9fvHY8AfAr8mpVx9qP3Y9+nzh85HPZP0gX8E3ACSHFo2/e8crk0jhMgBzwO/Dfw60AXO3//cEe9BSh9k6303KaEWCSl5wEUqaVCS+P4BilSRUkf2v4yvLcJwHSupsrbXYrfqMJlNEtLaXJzMceOF5/FGLfLHY+y+sUZjz6G/kiJUTJNI9rEbW1T39ghtw8BdxlTGOfe5Zynf9nnu68t88deeRLHWub09RN/tEgmvkLFKZBNzfPnN28xNScrGFrZmE1IGBF2TF79RZ25slMXLA3x9m+2/imL7Ho2my9iUTfoi9O6auNWA57+aZP58Db9jkTvj0rJ0LNMhMWjjDX0uT61w62aCtzZyWHnYvBdFdQfY4zEKe210R0PLx5kMrWNvh1C7BZqNGm5fUttPMhwe0K3dJJrWEdYemtVjQIZMPsDSNzFT/4TFBKjWq6CNokmFsDqLpZcQg2+DSCC186hyHT9wCWtpKoPbIAPaYodi+AwgcTUbTYS4W19C+Hmm05skcjnC5vihbysCwziNIWJ88rJH2+5w726X4nSend4Sew6cfez4u8a/79XwlBD7zj76YI/AzxFS06iKRjp0iWq3R3ulSjwTpTCZ484bq6QKCeq6JGzoTKSTVDs9tpstzo+P/EDXqBBHMWP/rvIhBxN4HZgXQkwDO8CvAv/gPW2+Cvxj4GXgV4BvSSmlECIJ/Cnw30spX3xwvlKWhRAdIcQTwKvArwH/y4f6X/ARi6SU8n946LAqhPg3wO89VPbfAptSyn/+UNnD695HPIzsg3cPqScR4t2LAofHJsI4D0DNWSUUtIgoMdDPs9ZZ5u0VBXVd0NArRHwTVwi60SQvfeUvaJYPOJ64yM7yFksbU5zMQu6TVdpah5YxQqcjUdRjfOqiy07fx2zlaCC5ev3bFI1zvPqNP+byk0/DMMvmwW2u3bpHMnUC3WgwZhRIaxbRgoIMn0V4VcrDcfqRP4VoluU7e2y8WmBq3sab7POJ81Ve+0aErS8ryL5k6pJDeSPNxksm45/2kYpKqDogXPAZNkxu38yQnu9jRhV6hNiuJdBcl0TcIVK1qCVG0GNNJtoBO/0TdNw9aDsoAw3SHvXaLoFrclD2EPEI80/2ySVPYIzG2FneJZUfIzd6nXjyAohLoKQIghZCBuDdQSphAgxawzuYSp6qc4eonsOXLpaaIGlMsNl9BUMJkzInCSkJ5jIJhsEASzuBriaQckh/8DK7Tp+J2NOYioYZDVFpt5g/O42iKGRD02gJF/09wcu7boWEMcaliQUC6TMaMdmoNQlpKuVWB4RgbD7PQa9PAZg7P4WiKAQ7NSKRw8ADqbCF9dfsUXYHDhHTeJAk+oiPGR+yC8j9PcZ/xqFlqgr8RynlTSHE/wS8IaX8KvC/Af+XEGKFwxnkr97/+D8D5oDfEkL81v2yz0kpK8B/xXddQL7Oh2y0Az/6PclPA9ceOv4UsCyE+CPgGQ6n1/9KSvm7P4qT+7uOUGJgXPzAOhl077c59IlLh04inC4IC6GNovnw7LFZzOkmQytPr1aiXxngd9Z4/FyfP15Pk1XG2dhZI7WYQ25IFMWm0WgTKZYRrmDtzWWWbZtnv3Se84+f4eWrZUaSjxOeS5NNjmArglZrG+eUSjH+STa3ffapszA2TT41RWu/wdCZZ8cecPf1FzleOMXynmQ+/1Po57cJp5sYtxQCrUuy4JOfFdx+y6LWE8QWPYy2znB3yK4bJmZ6JFJ9BB7ZkTbVVor2rkJye5/0aI2Gk8CSPcxKD29/n+F0nP2hx4nsKJZusr5SRgx9QlYILVAxLJ1Ln1EgaBJxFHr9MnvOMqfOV1G0zOFenPcmUkQIrAt4g9+j5fWxjTP46iz50AJ5GaAqBkljDE869L0DQloKU41SsE6iChPbq9Nyt8mYczh+nZbbIm3OkNBHCemTJKWNIlVaw2126gqmmqDS6TCWimOIEIWYRbvZRIkOiekFAPLWiQfXwTtBzPv2Eh1ZoBDPU0rGcFyPtYM65WaHUjLG3b0D1td2uHxiCmKHRj3b1Tb1Xp+nZiffdW35QcCtvSrHClni1gfsRR7x8eBDfr6RUn6NQzeNh8v+x4feD4AvfcDn/gXwL75Hn28Ap364Z/rX8yMTSSHELwP/JfDsQ8VZ4BKHvjK/zKFo/rEQYkNK+cIH9PGbHPrMMDEx8aGf88eK4L6B2H2RVOQAR51ifW+FaH8NNZkG6dJUy8SUPOXqCiGpsXjBZGXtPLnRO+hC4nkaIUfFyEeo3ouhDnfJzyu88pbOyIkUopBn/Y5EDP+EWzdbSJliv7HDcJiivLKBtpchfCxKWbtHfS1G7bkWL2Y3+aXPSYxuEU/tMLUwymY6SaKlsjPRZPHMFGxW0bQpZh9P8vrLNfY6gtiei6kE9K0EObVGZVtFuagycq6NY8OrWyly8SG6EmBsOjSMEsGUJB30iAY9fKnhKQMiYyZ6v093Y8iN8j3OnM0gWz3siM+5T4W4uxwiqA9J5vroGrz8px5f/I1NCiMlwloPQw+B/hT4Lh3nOq56l5CIMQyaeISIivChu40AN+hTdZYpWItY2ncNZMLa4RK5qUbQ1TCWmiCq5xj4ncOHfKEykDGqzjUiRhEvcFiu9DheKDFwPSqdLtdevsOJqRLVyh6j5yNsViEbjeD6h7sTY6nEg+/Lx4sc9Azy8cOUa6auYbse1W6PUjJGx3GYPTFGItVC+l2EOkrMNAGJPXQJ6dqDWaOqKJwfH0FTj/IjfJw5it36aPxIRFII8SXg3wG/KKV866GqDvCylPIP7h//hRDiz4BfBN4nkvdNjn8b4LHHHjuKsvQQQpt6d4G/Dl4CS58mkgiRzKfYa/U5aLYZeN8hHDxDKpZCN66TyfgYM332xTqlkslaQ6M8MHDMIacuTxITJhF3mVb8gGjrOCsdk90lBSfw6MccEpqFveMzNZ4n0CxuvLjLwuIsIR9SI20WZ1qUO0ucyxyjW9coxqOcXRjl7Ve2mRgp0ZVxBnaJ139vifmwgruXwZM2ra0AViXhZoPNjk5oxKF2XcOZNklGXey9MJvtgJwYoKIy1mlyZyuBp0OvY+Em43SdPhEfrHqfaMgiSCikCvvgFsCMIqMbTMzWiZ16lnzpbTw3xJkFhdGZPcob0JAjpHIDZOQc9uCPCPnrRGmz6lv4YpoFcxxFidL36jh+F4FAQeUdI7xmf0AsZDwwsgGIaIfpsFzfR5EWhnb4swxpcaZizxDWUoS1FF88C51hlRt7O4T1U5y9OE8uFWN0voSqqljaAOu++D2M5wes1g1OFnP4QUDbdkhFLD45P8XAbwFwcfLQkl4GKqBQtzcJhwPy0TFeX99mcaxI4qFZ45FAHvGTwkd+pQsh/gmHAvkFKeW331N9lQ826T0SwL8BQ8+n5wzfXagt0vHS9KRJqpjDCwTbzQbzKRfNO49uGbz9rausXvfw7GnioWMURvKM5s6RtgawtQyVa2y96uLYY8Smwxg7Js07daIx+MQnJziWiHBayWA6Ot+8vo7byTN+8jyxiVnu3W5x79omn/lPPsHJJy4ymtxitfVnXAluU7U3mJo+y4lLKrHuDfq9NtnYKE1lSGyhyUgxzcK0SaIIStijb5ukngCRCUHBJON1EJU+x3IVLNFh67qBp/Tp1CCdtqlXBcbQJnZnj7DdIxEdgBEQTYXRogZ3NjXWrg4ob1W4fsVB92H0p8e40xuh2/Cp7w1oiYtk58aJJPPs75/BUwJ6IoujLaJoI0xEn2Ys9gSq6CHo4QZ9JAGaYmCqUVrDHdygz3KlSqVbOYxjC6zXGqxWawDsNNvcqzXxg4ArW7vYQ0lYS71rGHUZ5kxhhnrfxoqGUDUV5b7gJqwQhqaRsEIkrBBte8BLqxsIAdOZFKqi0BkM2aw3qff6LO1t03DW8aX7oH+hJBk6JuuvVDG8BAfbNVIt710Cudfq4LxHiI/4GCJ+gNdPEB+1C8h/DfzPwM88bLX0EP8OeEII8feEEIoQ4lMc+sh85aM8z48z0r1BpbXJvYMqDbvFZr2JlJJASup9m/G0SWu4g66qzKa6hEIFtPEo8UyZ/OSQt5d0djs6c/ECllej02zyzPwlLl46hX6gkRBFtne2iTNgMv9JLlwYYaQtee2FJQZKBds9YGquxxd/fgzCFe7U38Tv1Zi7UGDiC0WW9iuoO9PEO89iv53hWKmIN4yx2+pwECgoIYXa/j3CUZ2f+y+K2KUwbsGlOVQIDQMyF1xIq/SqOsnMgOmn6ughSSgt6CkqtY0Qd74T5+ZfjdLpa+gbA8LVLhouWlIhL4bEohEmUikiow69xpB0SEHR25gyRiQoMuASd+69wfDmOolklSd+Zo+0+iqWgKi1wdjYChExxA2q7AUGTX+IInTK/bfpBFE6vqTrVgmkR0hNEtFyKEJBAqfHkqDeQ7o3kDKgEItSSsQBGE8lmM2mqXR69AYu2ntCxPm+z8rrm9TXbXRVQRUC3/O5/vxNuq0GALbXZK9/nb5XQxEK/aGL4/nU+zaNbp9MNEw2FmGj3iQRilMKn0UVh/Fw3aGL5weYlsnUCUGltkJuPMP82al3nUejb+N4HyySD4fRPOj2GHqPZpgugy7S23zEq/yIHwpHIvlIfNTLrf8a8IBvP2wVJ6WM3v/7ihDiH3DoQPq7wD3gH78ThuiIR0AdZTQdITqs0rLLBJ6K72ygGGcwNRURlEHRkTJgt7lL1c5yeWaCLbuJsRCnubXDqLMKTghHOHRra7x+ZQNFwsGW5NKXLJbe3qEUO6AfvE0tbPPcV/pMzE0yefkc6ekQw9Rd0vkWX/nyFulBQM6Ios9EKHWGaP0NblRW+OnP/hJNv0bjlkowc4CpdjlRXCSbnkH343z72lUs3aO6lydQriHTMWrVBIYbIOoOelygRHwYCjo1lU7XYGRqSMtLIU8mGLR8uvE8RneAodcQdRXNHtCL+BwcdNA2fYrNMHOlMLPzIdxKm0/+skmjOU2+UKd1UMZdNLj4mRCZtI1PDBmU8YJVDBEDr8xE5Cx9MUPb3cRUBihCpedWCOsZHK+NpSWx/ToNZ4O4NsPQ1YiaYUrak0jpIoSCZShIKfGDANcPcDyPdt/mzn6FU6N5Qvp3XYTtzgDfDyhO59GNw/JGz0bKOsIfAI/R8yqYahyDgPbgbS5OniJs6IxZYd5++TbOpRBjiRkKseK7lkyrWzVuXF3DL0T4zOWT6PE5bn3jLTLRAfH0uwOinyjlv/f15y0hlQxCLVJuddAUFUP7/m4gUrqIowWjjw5xtCf5qHzULiDfd1iklL8P/P5HcDo/lgjlcHkuYYyQMCSDoc3b5S0WR1xGUyGC/hD7IARjAjMUJaruovg1SrEnuX71Ok53ie2mzeT0aXy1hYePOehT8RQyizqabFM8fYrlbzqUJnYZmfgC6Qu3iBb2eeOFLcKFSbQn7zBd9BgJ56iuNcg/PcrOG8vYPZPST7XJFYvcvnUDPd3hYPsAzR5Q3QvopyMsOQMa3xzgomF39+l4e/RFiNZKl1PTHunjXXZe0dj3dSpvRdnbguScZMuYonmvBk2bkGmQHffYq1vohsfJJ4d4nsbm8xK77OPKAb6uY85FyBZNhobL3DPT5EdbFD6xR/VGhPFTn2Fs/A57mwHTxwM6fpX9IEAXx0krOjERI9DGqfXfxpc+jmxTsBapDG5j+w00xWLoDklFpqjYd7jXukngFrg4dvJwnO7Hxxj4LW5X1tApkg5HadsDjpXyTGRSWMa7Y2iEIibhZJiW7ZC9X7fbakOsiBo63FMcbEZRVIXkTJKOm0F6PeqNBoankjlWwPYaKEJ5sCdqd23Wrm0yd3GGU+dzDNEQ3ptEQyf47Oc/gW7oNPsDwob+SGKdt/mjAAAgAElEQVSHOgHiMK7s6dHvhqKzewNCYfMDXUakHCL8ZdA+UqPFI45E8pH4UbuAHPEDIoM+yAYoJcB7kGD38GYksMwIC8VppNLjYLBF1B2nXdsiNy6YzV8+9BEUJrghLDPD4rPH2Fm7xcz4HHdXXb5x9wa/+YUvsPZHL7C6sU7smw6J+RZX1mvc3h9yevcWsf0W8RmdXszjle8s03/O5dlfmCGmK+TTLlLrs/zWOu2GIHcmiWPF6FcbZPs7WJE4C9lTXL+7hFi4R6qSoh3eI3MsihgmWL/n42345MK7oCvU3lBQkj6ioaMrLrm0T3HCJaWsISdDlP9QoWQdoEqdvqMziIRYuxlB3GtTGhtihH1qK4Juc0jTs+g8d0AiDeMnVeKZBPmRXRKxp0gr28RjdaSWoq8uYHg3SYoihjFG0+9R7d/DkbeQAhSpUe5doxQ5Q0TNUxsskzRmuL1fJchZSAnFaIZ2N8a9gwax6AEhNUG1pSOEg2X2iGkupXiM0v3sHO8VyHfGtOd59Bot4hGLoeexOFJg31XotYaEwhFSxSRCCITQOeib9DoraO0Wg0GewvER5tPHUR8KYq6bOrXdOvWowoXZLuHQGIg5EGF041BItxpNSokY2WiEoedzbafMyVKB8AedoxJ7X5mUkuU315haHCeeeX+9EAZSO4lQwn+bn8ARR3yoHInkxx4Pgj5QQfpl0I8jhPWuFlFTImWMuJdj6OwzfaKPbT9HZZAjYU4TskxeWV1DKYVxVxLgWezd3kCr7xO9vUvjs7ucPVMkEsBE6hoddY+ZWJy7bp3l+qvEohFOGJ/k0j+aoVv9FnvlJn1/m73Xd4nLPDOnzmFu7zMe3yKghGMnke4a284QEiGaTgXp9YnGkpxUv4VxKUu6MM/yc03SqSW27wr0qM66X8SKRdFknYO7OvFYn4NWhOxBh2Y9xP7rBhfONrAbBvfumMiMSqnoMbAU7IZJp+Zz/ITL7qZGkNWIJWqUTnRo7+okVJ8Xvyp57Bd6hMav0XCjpMQ2yRGTjogSCv0ySWnTcpfpBxo9b4NS9DIZcxw9OKDvNYgoFhX3FglzlLHoWdKmy0bvz4loGSJ6jngyw26rQ63j0xu06Q80AimZzi7S6rlkjSGdRo9MKfWBI61qKucuzgOHxjM3dveZz2eJGhqafjjLC0cDpLuElBcoJWLUegUi0TyZMxpLe/vUOyGKD7mGaLrGhZ85y9fuXmfbjpEQ+0T0HDo+X79xjVREoxDLY6iH/Ruaykw2/dcGGngvQghOPDH/YIm45wyJmMa72xzluPxIkRwttz4qRyL5MUcocVDiSBmA9MFdeleAASl9cO8g1AJ2c5fy/gAvvEjK6uIH0LRttu5eoyjiZPNJlDM6tfazbF49wG4GPLZYIlxZYV+ZxNaX6bkpXv1/D/Bdlac/H8URQxRvwFsv3Ga97OGVAs6fPsXEzG3eOgixU43w4stvkpsdcOnXF3j1bg2n8xLUqljhcdDXsNsqkZxGajhgpZclNKKgaB3UkyayOcLMZ2o0v9NHD5UJ+h2slsP0SYV2T4O9PptCRYT7DK0sByt9tK0B6azOWtlDrjcpTIE+5bJ/RbDbCTEcusQVj82/0jEXLZ74rMqNlxXyxzoMgiLjYdjf3cHLKEhhEVNsIqHL7Pf+EkuNkFQmDpedjVHs4asI/QLxkIWUPQrWSQwlRs+rYWpRYnqRlDmNqUbRFIOoorJTqTMxMUMylEMIUIVCICX9Vo/GXvN7iuQ7uEGfeMTl8tQYQghiGfO74x00AR8hNEaScUaSh0ZB0i9zJpdk5eo22aciaLp2mKUjqBCJlvj8mRmadp2VSpOzI4fLpKYhSURc/EA+cEsBSEfCSH8fqcTf90D2vXhHIIeex43dfU6PFj9wJnrER8iRSD4S31ck7yfDfFFKufX92h7xo0MIBdQRUHMPymRQB+8e6GcAjexEETvaYqvRZWlvyLFCjmIiRkXNsvJKhatfe5OTz8bYsDVGUzu0HR0zFKFR99l/e53dWx5yskd2tMjqrR12XnRJL6QIe2G8hsfSi0vMzmxBUxL3M0xMQnmtjxbRyJ+K8fzv93AOXHKXz9LsxLDiTULuKLXlCqk5nc32Gvt3ouy3WsiD13FKOt3NLnK5Q6GQJrnocPuajgjDXKFL68Bh5VaGUKxL78BnMrbJ3jBJVStRaLcYUbqETqn0mwLpq8w/2Wb5WgjDlJRKQ8IZE0363HgrxOnHJd64QTBoI4ZxMmYUQRkpu5jeVYQbI6PF8Jy3iWsagVIiEB6eP8BV6oTNcwAkAp/mcJNA+lihJElzgs5wl4Ogy2TsSeKGgSPHyUcPhcj1fbYaLcZTCeLpGPH0+5cj34sbDHD8Ninr/YHFhZoH5f0iK9QSkQQsXLTRdI1yq0Or10QTO8wW84ggQSaUwMqOEzMOlz0/NXWCju/SHgwxxTbSNxDq/ViuQROEDo8oku9gaBrnx0e+5/6mdG+AOo5QEh9Yf8QPkSORfCQeZSb5e4AUQuwALwEv3n9dlVJ+/zQBR/zQadkDes7wwSzhHQ73IR9axhIJ0BZAdkCEkVIS08pcadloWo/lbZ+1rU1Oj4Robjc495nLbN3eIaoHhE5eJjK2xf6rK6jpAjdXlghFNIYdiWlVOf9pk/pqj4OVHsqoytkzKks3u+w3BPt/cZs7r4X4+X+a4bFPhFCagnBQJmCaoZfF39xl6Hr0wgr3Xthg4RcnCUezuBjMn6wjylG0iGBns0/i5JDYhElIvUdfBGRGoqzetRi8ZNARYaotE7etkoh16C4JOn0QMR//wOby0xW2ZIrxgs2tF6AV1YhPKaiTCkEFSrNQHO8xkCrTMzaGFcXuDFmqzPDEgoLDPHHzNH33Cqoygi67SGWUipcjouxT711DSoekVqfv1tCUEJu9V2m7ZYLAw5cOCXOcTGieQXDoohGJh4ksfnfvLQgkA9flzpsrFCfzpPIJDro9mv0Bc/nMB46/pUaxlA+ehQlhgHj3Uqbjeqzf3qY0mnkgwgPXIx5OEA/lAcFWo0VU3WU0nQMOz2/1yj1GF0aYy2fuBxn47u1C6Mce4Ur9YHRVIL01UMce7KE/QMn9jYX3iCM+TB5FJBeA/5+9Nw2SI03v+35vnpV1333fBxr3DDD3LGcPcpda7oqyZNJmSJYs05LJsGzaliPssPiJDsqWQ/pgRlhmhGVLpugQbZ5e06R3yd3Z5c7uXJgBBvfV6Pvuuq+sPF9/KAADDBqDBgZLcnf6F1ERXVmZb2VXVuXzHv/n/7wKvAy8Qs+tXQAdIcS79ALmm/Sccuo/qBP9tBCEIefXtpgt5ohHzD33CcNe3uPH0ctXUxBKgtC9CkoOocRIWirHBodImTc4e+kWV9ZKHOrPkx+IoGsam7e2KY6paBmHxT9rMpUc5Pm5FkO/OM3GlVvEssf49m99l3BzFGkqFHNlnGoLY+w4x74cY2WpBFaFTrnEmd+vM3RIY3Fpl45XQxUKLbdLdqTL5NBJqk4JqSp0vC7VG4JYvkFVbxLLBFQ0H/e7WfJ9GZydFuV8CpoNop2AcNknNeZRueUzZu7iRgSjk5LqkEJ2pcz1jkk7mWB+xSZzOmS1rBPJKSRiDtGwTBedyFiI4to4gY6JYGVxhuGjL7NVeodT06soxs9gEYLcRioZhHGcmpPCViNYQlIPGgSaiaJOYJmnuFr7GgjImbPENb+Xo0kWTZhoiomuDtxz/UIURcEPQnZbbWaKeZqaiZXoBQdL15EWdDsOuqGhfnTUFZYhrIJyZF/fqVK7Q9lxGL6nnYl8hk7LxlRsvPYVhiPHiCXHubdg5dizE5hm77lQPkHNyb2QAXt5hAi17+m+zwF7c5ACsm8eGSSllPPAPPAbAEKIJB8GzJeB/wz4ZXqjzStSyoMKq58AVVEYy6b3VDfe4d7q8g9jfreMrqqM5zKsLSSR0mV0ViC0SSbzKqHXZHDkJqODg6QzL/HCV6Ks3djg+S8NMjxtUi1FGHBWkX0e3/pGh9SRz1L1F1g6v4w2NMypl17k/PevUV6P4Gse1z9ooBhNHKXFxOko7sUkN98osXa9TOaURmVJxRyvsvotn0uyCazQqJt0pc/hlwZpjGzy/hvD5ApNFHOT1opDftiDjE4sbvDWb+jM/aSCo4Uc+SseE5kWsqjQEknUUOPMWZMjI1WqRpSB1W2cqTwIjZ1ShNZWSLbToRXqlHc09HzIi6/adEsOzraGq8boH19hs+3gpnxSGYPN1ct0nNPMHJkkKQQVbxknbNKROjGWiBqH6I8cpoPAUC36oscQUiGuF7GDBKGdw1CSlFseHbdDOlRolBqMHRnh5vsL5AYzJPtSNLoOfcmQVP7DWYGYaRAzjV4Jq2KS4mjhvmsr1AG4J+g+iqF0kqHn7p91KG9Wee8bH/Dsjx9DBn3slHeYPDZK1FC4ceZtcsOHKAkfy+mVznqaCKGAPvNU2zzgCfiUBEkhxLiUcmmP7WNSyuVHHf/Ywh0pZYNe+ZNvCCEywGeAXwC+DBxUWH0K5OIPl8JXd+oEnk9+aO+pOCklYRAynE6h3M5J6xvL90QawXUQMRBRWm6cRjXD6qV1lM/ViJmb9A/dJJXZZOnaBNFUEVMInj1e5Pcu1zBvbjI68hqvv3WOdbuEefE9tE4Z1Q+o1UPUbJnWgsnxFzwy7UWWO0fJzxXZXPCxtx3iaZ2rb+gUBiGUTYioDB6zyIw5xHWdbOIWF8wMmbSOSETZXRaIGZvF1QaoBjP/TotqOYKwdWqtIt5KQFfR2RYWkRtNinYHHxdbMxkakzj2LuuNOPaZgNnxOsef77A0bxLJCJJpn+YOdBsqmUkDK91he9Wmf66PydwMVlolDBaIW68BDrgXaIczRPQMo5HXaDtpXG+TqnONbOxzuGGbnDlJtVNlrbHGaHqMYn/+7jXRFIUIAnk7KX9kbggjoqNpGkc+JjF/+plxlI94pPqej/YRZakMW+BfA/0ZhNjfTzqVj/LSXz2Okghoek3M6ADVjo3tdiBVJZ42SZspkB2kdBBi71mNO3hBgK4e1I484C8lF4DkHtvPAXtXDL+Hx7KlE0LMCSF+XgjxvwohrgAl4F/QK4r8y8AXHqe9A54AKQnDh0+13vpgkT/7nTexDB1T17j27k3a9Q6RaAxhnLqbi+Z6dfRIlZnTp2ncqvIH/+L3uHlxjaqTIDduksmc44Wf+gqm8RLPHVUYOOaSLozws7/005ycGyarlbH9LY6/WmF0WmNk+CiOv0V5Q2LvZChO9ZGa6vLK59LULxmce8fEMgaZe3WW7YUCGxccPnjX5ex3AhYvzXPjjRLhezWihkqn2iH2YpuGEcXe6VKfDwgaKRQ1TiQqqSw2KasaiwspOo6Fflwnd1qSTrnEAo+RiTbxiEf/YJuxsTbFOZ+matH/jMCcVfBmoti6wZWzUdq1kERSY+pwwLOjgtr199hYO4cqQGt/h6b9Jr7+MopqsNW5QMO5ReitcHO7DN46F8u/yeXq1zCUODWnRNUuo5Ph0vo2tU6XeMQkF49ixS2y/T1BTTRhPRDo9kLV1PuS7wM/4PKb12k3OvfvKKKgTT40QIbyQWs4VeySiJ1nfvcChGlmi329qiHSI57tx7SiqIqCEq7Tsde4sV1CyoAgDHFvW9JdXN9ip9lCSsn5tU2qbfuR/5OUIdK7cNe79oC/OKR48scPGQ+csei5eezL4mk/6tZ/RG9q9SUgRS8qvwX8d/TWIW89ztke8MnI9H381FduKMvazU1qzQ7pRJShmQEiMRMpJb600ZUovueTjat0Nw12txpU19aQqwGl1QJGpI/k4Ajnvv42ufFpAneDpXkXdXqBzprO1Q8WCJducuK1MWKjHa42dEZedOnO1xFVnflqHUPaBHKX3Q2PVQ0CU+PwTId8Zh3N0Wk0bNpeSHa0ihVPQLfK9WWNyFGXzSWfndIYLb3E9Csule4I9V3B8Mwuq/NJZNLix39ik/lzCQrpDo3Ap1D0KDouK6/rZBM22/U4DamR0G1Wmib+CohOhLmxFmpcQ2l4nH0jythIFzOwqS4rnP58lERmgdHPSOKqQrd9koWFBfyZNcbENEPWKNlQxfPOInAx42PEYyeZ8G+iKkN0XI9DuV6B6416k3K7w3g+w1q1jqXrHzs7sF9UTWXm1CRW/P4ajkIoIPbuEIfSZ8u+RN6cwVBj9zQ2CNInZ0hiWj+e66EbOvnkKHBP2TltFiF96p1VKtVLOGKO1UaZ2f4Yo9l+LF3v5UH2F7H0R6d0CKEgleID4qIDDnjaCCH+lF4gNIUQf/KRl0eBsw8e9SD7mZv5VaAN/Gvg16SUNx7nRA/48yWVTzL5wjTXS2Vmux6JdC8nzgmalJ1b9FvHeev1D8iPrWG6E0ydGKMbhLzyC5PotYBIPIMekcT7P4vnhXzv91ZITEQJ5jfw1rZI52LMvtLH1XdqhMVZgsVNkkM7qOE5jn0OypsF5m9E8MQttEwf/dk61ZJF13IxjV0uv6cRBhbpvMVYsk3TrtE30cH3MkTSHfqSVzn/Z3HGXzFZOqcQpk0a7Rh/spTBwMO4WmK9EuH8mxFUR+DHAq5ux1lyTLQBSOckpVshoR2w6xSoNqFpeUQSUTZ3PVpbGk5Nw1BCClMeTV9nZ0cjfdGnb6xB6BXoaCrl1joxY5akqRNTFFBz+CKCK2IEwmSuMIsi4ihKCtu3WCptc2p0AE3VGEwlGEgmUBRB23FRlCfvepc3q2i6enfNMpp4POWnIjRy5jT6R9xshFAQ+jijBfBcjytv3WD29CRW3PrIfgLbdbm1UkHJpHn2aJF0PI6qgKl+GKw/ag7wcQi1/9E7HfCD54dvRPi43Cmv+Fl6AtM7hMAW+7Q/3U+Q/Af0BDpfAn7xdirIW7cfbwLnpLyn1s4Bf6EoisLoeB/9fsD8mXmUmQFS+SSmmqDPOkqr2kGRCpm+z6C2BZ6pYqQsAg+S0W0qa2dxmhFalSR6Ns8X/s4hqkqbjbURVlsmVrJBfiyOdtFHUkJxPC6/2UenHqAUobGiELoOsXibRmmLUq3F3JxHtSIhLahVDDzFxHJsVt4vEg40ee9tC2fNY6Da5ZpjsnUF1K5J4ctpjBWP1oLD6nQae9cnSKS4teKh5l2E7RKmNPoKLbYvawyM+diah+UFbG1p9A+3iAzrxCIeYbODpwXMzLXZ3jFwdiTn51M880KL+koIg4KtTcgXLRSjyaVKm+O5bWLGaxiqwVZ3hZz5LFbYouUuUumcQxERSt1dBiIhw+kkVWeJtt+iLzp+t8ByX/JDJ5lqxyYZMe+rJel7PmEoMcy9R2HBHiWpAj94UPH6MZjqx7vZ6IZ+e4T6YYDstrtUVl+nf/olbE9ltj/PcDzB5a0dZop5TPXBW4frB1zf3r1dNLo3uvwkHYQDfsD8iF8aKeWvAAghrkopf/tJ29mPuvXXgV+//WYFPlS2/g3gH/c2i7PcDpxSyt9/0pM54PFZLFUpJmIP9OQNTeXIy/fnsqlCJ5ZSGJ8aQOsobK2tE7oWdtNmdmaQSDSNrg9Q2vCZO73FcsPDaQVcf2+ZTsVBy1r4t5rEDo+TmEyjNBe4udvBCR1mjhe4cLFLuhgyd7xJW4fuJZvNt+PoKVD7Xa5dNdhZ9ckO6mwt+xx/cQfbhIjnMffTNleu5CnXIaj7rK3atL/WpVWTqHGF/HiCnZqLl4HopEf9hobwIVrvMDXb5oN2jKsX00STIQWtw3IqwvPjt+hsdwgiKm+/H8dYVEj0SbIZD9uymF/LUusInn22hluyWLNTdA3J7IjJ8ZEQXynQ7LxPPPEfk/Yvo7qr3LQbOKFAX/LZbGwx/cxfR7pVlj/YYHh6mrXAxsgFWB/J5w9DycJuhZlijqQVIfADELC1tIvXdZk4Prbn9f2osrVVa3P17Rv0jRUYPTz8yb9At/noCFXRVKQ6CUqS4YzGcCbVq1bSaKE/pOCypijk4zFWKlXaXY+5/gL33olv7pTIx2KPVGYf8OfAD+fa4pNyTghRkFLuCiGiwH9FrxrVP5NSdh918GOpW6WUu8D/c/uB6CkFPgv8F8A/vL3bgcTtL5Cly6uk8om7a5e261FuVRhKNkGdQlVVNEOjVWuTHvPwQ6iWO9TSDQI/JJaIc/3Md5k9lWSyeJy33v2AiFLg4sI1ZFVQLER58+tXaIZJokKhL6vghDu4ySIUo1TKLfAUdq+YtPwoQeBy44zg8BGbylqAl0pQ2rJJj3rcugChqZGPuwSGzkrH4ujJGsuKyVrDpLLRxq/7CBOyQzYqCknLJiFcKqNpBlWPvnKLZkWlo0dIVDp4gcpq0yA56LMdiWNmXd75IM3LL1WZX4myvarx7oUE3bIg9lmByAYsLmlUdqJ8+ec8VjdtKm6Cl6YVFK7SrJ/GaXaIp5/DczdAuURU0UgPD9MomQjvLEb8OF39Gun0SRJKlfNLV8jFX8a8R5yjKIJTo4N3hTgr19bRDY2Bqb7HKikeS0WZPDGG3dr7ty2l3LPSxuNimDpDM3P3bRNCMJBKIMMOMqiBUqDrSS5v7nBiqB9D0xhIJTBUFT8M746YW45Lq+uQjETu+0wehpQu+EsfK0Y64Cnw6QmS/wb4D4Bd4J8AnwNcYBj4xUcd/NjfQCHEJL2R5J3HUXqB0QbOPG57B3wyJvL3D1nMqIlufnhZvSCg4wV4gYKhCbYbLW6t7WCvbLBx9XUOv/oVDr0wy41ymUIuQWO7xcKtJo1IwGsvq6gqzB3JM3Hii+zudrh1ZYWOb+CUNik+U+TICxVKQZTLbwxhlnfQLI+VxTiabhGuq6jmNvZ4ina3TSwdkBzzcesKoQ+tqg5dgdO0kGWdvsE6kViAWtWJNTy8iIqigoKKTFZIbkCyLXDbgkzJQz+s0BjJEnRCFBHipgy6gSA94uMkEsh8k2qgEx23qAzCUNLBvaEQMyXpcWg1XOyaQiQisUyHty/FccMhxkZ3eaao8P73EyRicPhVGynSaLzDocSrhNJhJ7iECBPsLLXpO+TwzAsvkYym8f0Iyco1/I7D7s4uqXyCRKY33XkneC2UKqRHsiSjEdR70iYWL62QLiQ/VpwlhCA3uLdIxws7lLo3KVpHUW8Hl0B6qOJpe6R6ELYhrGGKGJP5wn3pHx8VKXlBQNNxmMrn9jn9KnqWd5+iu/gBP1CmgMu3//636ZnjNIGLPI0gKYS4NyC+DPR8rODO2uT/Tm9R9JyUcu9y5QfcRxiGLJxfZmh2ACsWefQBj0G71kYIiKd7N+akFcEL0lzcqnK836O0WiLoumT7+9lZzRBmNd568wrNdp3j/9Zr2MkY0+5z5PsbLN66zImfXqK0uM3ZN5KoYgeXKW6eWSQtFHLDcb7XSDA9WWRnpcbmlW2KOSifKhDVtpHLPs3lgDDXxdNDSBrgCbyWirseIFUdM+cTNX2quyqLVy0qmz4BPqEWcPh4h5s3LXzpY2+bZAoerZZG2UrRqPiItsD2LJotC2VGIbq1SzymMnBUYft8h5vnUnhFg7bQMRZsoqh4Zpq5z5So1CJU5hUaiwq7YYrtBYvRssfgq7tsbWhs1+PkBjYZHOwQWB12uwYGOdJqClVYmL4FW2WOf/4ouqaxXKkR031MPcLJ146jqirNanvPoKArCkbEuJsGEoYSNwhIF5JE4k/+fdCERdoYuxsg3bBDqXuDPuvY3W33snp9HaEoDM/s35gA6PmqKqleHUgUsrpGGEo+OoC9vl0ibhoMpZPsNtssV2oPdOr2bF/ooE08sF1KD8JdUAaeymj5086naLpVAKoQYhro3DEWEEI82iiZ/Y0kv0cvD/Ii8Lv0xDpv7sep4ID7sdtdli+vMv3sBIls/G55o0+CDOsQVhC3byoTJ0ZRlAfXjKYKWRYvLXPj+9f5a//Jl1EUhYkXp7ly9XXc9QYvvhYnnW6zeqHLH/zhO8weyvPFVw+zdjkD0T706nWamzB5Ks/mUJkTJwdZ3dlk7rkizx3J8/1//l3UigODFmGjhhI0iQ3r2Csez72yy1t/HCFlhuRyLcYPu7TyGqtvWmiGT99AFyVUaduCeJ/C+pZC0NXRIzWSwwq2aWFIG82K43QtPOKY41ALIFCiENfQ7QayGtKxBZeWkwjfQyvbWJqKsmyzLWIYLkTrNRoRjcauQFRd0kmHyxeixOI++YE6o7EasdlBdqstlOQYfvEY+DXyegFVGUcoMRx/B8PwaccVzr5znoS6ybu7cV576TgThRza7VFVfiRP6AdcfOMKs89PY0Z668YjH3GwKbXbrFUbnBod3Pd137i1RSwVvc+pRwhxVzAEYChRCpHZPQMkQH7owxGpDBuARstVUYTYl1pVCIO2X0JIg8vrDeb6CyTusVIcTCXujjDHc2k+8chQehBWQOnjYFXnKfDpCZLvAP8c6Af+GHouPEBlPwfvJ0j+BPCOlPIg+/cTYpg6+aEsqqbSN1b42H2r27XbgfRRl0i9L+fszvTd2o0NkrkEyVyCzUaTvniMwlCOuRdn7gZRLwg4v2Hxlb9+ipHJPFJK5k6o/GTnZTaub2LoGRbeUtCjCjWtD5nNMHt0gOZ2CbfZYP3dDUYHZhn98pcojiyzdOE8BBqhlmO5quDWVabGt4n6NmHLotzQYSMkFVMIhcBXYXa4y9Fnbb7+hxaurlCvBEwearJ5K8LVr1n85H9Y4+p1h/PXsqgGZPQakeM6jbZO9N0KzS8Moq7W8HMxxn/CpFsN2Jq38UKJn9bpNj2ilQ5GxqT4kzq19TzvrCsgFOL5Dhffh9ZawOyPd2jYUd5/HcQHLoePutQ3PVafF8ydOklM/RbJ+ByhOE6p8zYZK8fxZ3Ns7nYwGgNoy3VKOzWubWzz+aOzAFzZ3GHcsLj27jy5wSyDU/10HZeW55GPf5izWIjHSFuPFrPYfg2QWFoG7SOerjJsgYghhKDbcdB0FU3XHuyd4YAAACAASURBVEj9uJf70j3CHSDCTtPC1DSihgqyS4hFud2hmNhbIeuHXQxFZbYvT8y4P7DeGzDvLbUFsN1oYekaSWv/I2ehREE5tu/9D3gE4jEWw3+4+QV6ef0V4L+9ve0FemuVj2Q/6tbXn/jUDrgPVVMfaid3L1JKtpZ20U2deHrvS9Swu3R9//bN68Mb2B3zbMMyEKqgG9QZyXusvbdKo9zmxa+curtvPh7j8xOTaAgWL94ikVojlnuBnGawVG5z5dtXSBYSiJE06tkmSd+lHF5gcG6Fb/7LGomoRqEwya1z73D4lQjb8zY31w2spE40F2AvuayUFWpKElWB/IDPmh2ltCRQ3ZBwKMK1edheM0gmuyB18mmHFD6JySbVnMH1qxZ9Y12slYCJw10iwsfprrJ01cSphUTf36EzkkSxO+wsStpagki0hRMziW46KJqGPxHD6Ei2mzHaaYNIo4XsekTzAV0sbE/jjZsKWtsmPWaglYG6wXhB0q1UuF6fJxsfY2O7zlThJv3WEQSS0CmzXKnxyswJ/r0jp7j27k3WVnap5goMjxY50l8gauj8xN96gXhiDbsd4+xbtzAnsvcFSSHEQ0tH3Usg3bt/F0c+tL2T0gf/CmhHQMRZubpGuvCg5+vHIbRpAKZuHyKDXQjWsOVRNmpNcrHofakrd0gZPYWt9ZjqBsf30fZor/f/SKSUe86IHHDA43J71vNvfWTbbwP7SgvZz5qkIeU9v87etlHgPwdO0dPmvUfPaGBtn+d9wMcghODwi/cbQEsZQLgNSj9CKLhBgO0+uAR85c3rjMwNkR/Kcvn71xk8nMVMGYAg8CuE3gKK2bshLl5cZqPVIl1Isvp+hUtv3mT2tE51q8ZsMc/pr5xitVqjLgNejlq8+a++xZv/V5vMKZNjn51i6XyVlbPrvP4bZ9hqBtitFKgh5kqT7qaCqiu0Eim8Kw0CA9ITIfoVn4lXOgQbsFSPILsh5cCgrlgcn6qzsayz/EGcUAERSEQ84NpGBt/1qa9JmJRQiNG/3WFHUYlqDcKFEEVVcOMq7oCJWpKMmG3kgMJacZjE9g5isUndttC9gGLKwYo2qdciZEYVmpsqWizAjaXwym2KM5LdNZUjcw7901HauKCdoLyjMpgbIK2nkVLiBQrZdpVOq04+McTRV+aYOD7Wy30MwrtVXNJ9RQgFmhLnmedniKV6AdL3fG59sMT4sRFM6+O9UQHi+t4+r0JoSP0UtZ0Wtd0Vpp4Z/8QBRqgFpJIhLjSeGXm8NctH0XZc+hLxhypdtxZ3sFtdJk/snRZzwCfnh9Re7okRQnwG+DvAgJTyrwohTgMxKeV3H3Xsfvp/thDiZSnlu7ff7Dhwp+E7LgZ/D/i7QohXDxx5flAEvRJJSh4wyMdj5PeYARs/NorTcQCYOD5KNGmhKAp9J2K0ViVXz+4Sel0iVoTiaJ6VzQ8QboRjrx0mCAIc28H3fWaeneT17/wx3X748olX8LUY8b89w8J8g24yYO4Vn2Y8R5pbVBcMjpyeYf7aBpXtGqXtDn3xgGjdo+aG+KbO9Emb8rwg2PIoFw28doha7yLMEJlSGDrlcPR4A/FGnPKGgWG5aFKj5pmIXYWZiTbHT7c4V4tTudrF6o8w+5rEEh7v/L5NrZjEmNNQ1mykqdJSNbQA1HoHJ1TpZpIkrm+TMBxa6RTbYZTYxS3aVgF1RMcp24hGl854jrJjI5Y7XHgvxXIJTj2XR41m6W5u4QzDjWu3MKMmrtbkuZdfRfoqt84vMXZkmGjC4spb1xmY7LurUu0VxO6j7bhcr9c4Ho+gqyqqppLpT6MZnzzNQQiNSDxCWoj7FLP7xQmaBNIlqn040/GDSr9YqzWI6toDa7N3yA1le3mkB/xg+ZQESSHE3wT+J+D/AF67vVnSm3r93KOO309386Mf5T8FNoA5KeVXpZRfBebomZ3/6v5O+4DHRQgDoR9/sEjtRzCjBuvzW2wv7RBPx+6OKJKRCKOFAYK0TbxfvXsTP3HyWVpVWLu2QX4kT3VzhZ/5T5PEUjZHhjKcdOd5+9+8gW6EtFt53HYMrdvPhd9bJuUsYsarpIuSyekCfrtMwS8RHTLpOiblDviminw2y4bIs6ulcRMRWnqO0S+qOCMmrYSFg0llU2fDNlmeNwFBalCQnXQx/QDDbrHWMHnjT9PU3lEp1rtsLxpc+WNYf0ugiZCcV2XIr9DfrTEZL1FLWFQjSXR8imMOHMrQfzJkeK5LwawjNUHjeB87ahRrTiFq+gRJkyaw29Jx+mLsbnUor6dYW0wRBGVeeqXIhe9/m+tnXqfjLJJLjKKrUereMtVSBc/pGU8dfml2zzSOxVIVQ9PuilmEEBRH8k8U1PbCikXIFFNPdKwvXfzQeezjup6PH/QCmhcElFrtB16vdu43Pp8pZB8aIKG3dv9JVd++57N2Y4MgOAi2D0V8gscPF78MfElK+Uv0LOkALrHPqlVP0lX8MeDvSym372yQUm4LIf4J8M+eoL0DPiFhGLJxa5O+EYFmDjD1zDjLV9boGy/eDZKqABoOiXCMkckRut0OjVqd997ZoFluMzc3wsjcIIn059HUVaKJEC0/ye7mOpWuybd/9yqu7WE3bQ5N9NGdTLNiX6aZH8OtNPjuty9TyI1w8ZZNJBHiFeMMzHboNAUlP6RjmXg5INDpXGlRn4ihD2gUElWCfJR1t8CV6y6ZEQfXVlirxNBqHuG4TugKtHmXatRAi3s0Y6De7JAfdnFrKmEX9J2QctsknI7RpYuWUPE8n9CDzaBI4EtWSxm8mCA3GKCuKwTDSdK2i3sD1JKEiRhOTCHwdY5Ob5PdaVESMZYXL/GNb6/yU39jmpMvvEAmE+PytUtc2lxi2pxANaE4YOMF5wm9KWL63muB47n0vtYe/yKIaY9eK9+Lq5s7LJU3eHXcIBKZZb3WIBeL3k3RaHS7VNo2mWhPJLS5uI3dfHAq1Q9CarZ931rtJ0FK2eu0fGq0KY/Pp2i6dVBK+d7tv+98I3z2KZHeb5D86Fdtr/SPZWBfeScHPF2klGzMrxIxamQHbWLJKbqDMepdBwuFtRsbxDMxtpd3kcB8c4ml3bPE9DyqjPPiXzlJNhEnmrBIZhNsVlpEjSIjwzH+8H8LUUQLo11j4dwyJ378MMVXJBd+s8LmrSjXr7bYLdWJzyocHokykBE4hkJjucGtIEO+KCn4LYKqR6xgsVkskCs7rC6q1PQ4RX8Hud2gLxOy3MrSr9apmzop0yaT8HD6fbq7KkpeUspFYDtk46bAtEL8lEBXAoZnOmyej6D1SWp6BDYCTKVOtGPjDcfhrTp0PLrPDLDiR9heddEHFTpRFXPBJ7rVRjoBGoK+UgMPk9bYOOlpnUjbZ2AqghQzrM6PkYt4JBMpLGeUoaEV4tEO9TBk4NAx/LCF95BUYdfx7q5RSumDdw60wwjl431VnzZSSnzPR/+Yot6Pw3g+TdtpkozGiZgRZop5rm+XmC3mURRBMRG/TxlbVkKKgw+OIm3PY7VaJxuN0nIcbu6UeXZkcM88093uNaJanpiWf+C1O+iG/lCrvwM+ddwSQrwipXzznm2vANf3c/B+g+R/L4S4k1PiAdPc76oOMAaU99neAY+gVWuzen2DuRemH5k4raoqU88cwjA9BBWklEzmc8RNAxkExFJRCsM5cgOZXlsCxpwMmmJR3e5QXa2ROpHAsR0a5Q0qrse5966SsSympkcpbdTQ+wxeODlKab3EO9+rcu2NCJfeWsYOy5x+wcYQZQwzTaeloKV99KSDfsnGlQHtFDgVgarbFD9Xpf+4ZKttENMkSjLF5ls+zq5CMKgw2N+lKi103ad7PSQS8eg70oEdhcZ74GTiSC1AajZuRyGSCRi2OrQGNXbLOomgihOJcMRdp5ZKUJMuctQgMaSgWnXmW3kKbhNvSTCgNQiSBjJmEOYs5FyBMSeKl02T1Zrs7oSsexoLl9sMaVd5/+wtnp0e5TkLlt66weETQ5z47CCWGAJAV1PslcjRbnSYP7vI0VcPoelaT2ijTfXqQH5CpAx7a5638UMHN2zdt7Z4L7WdOuvzWxx7dW7P1x+XTDTKZ2Y+9AhWhEAI8YCxwN39UzHcepeFjeW7o0kpJYmIybMjvTzRmGkwWcg+1J0nqQ+hKU/XhONTyadnJPmrwNeEEL8G6EKI/5Ke8PQ/2s/B+wmS36U3LL0zh3QOGN9jv5+9/dqnGiklW4s75Iezn6i3HomZ9I8X9uUsEgQBmb7U7anVngIyHb19E1EVBib6gF6FkCCUqKKGpc0j1BEKIwPYHYf/9xtnkMs1EkbI8z81xZJTRx2JcuYb7yIkvHbiGf7k99/i+c9HkQu7OC2HofECqWKamRclm/MXuPxNl1olJB4NGZtwsQZVzqzl6IgQkYWc2mDn+x1K53S0do3IMYvy+yH6gMkLrzUYsDZYWo4RIHBLPqWagbduYcQV9K02fkwQ+B5hRMVbV6jqEdxalzVvjEY+Qbxa5chnbTa+2aKMSuC6mIFGJdSJDWp4aAyX1skOGiy28ngoFIZDOmOgLvlkfEE61k+QaKO0t1i9pNIoJog6Dpuuw8mpURavrhJNl0nFBskNF+9en3ajQ6AImr7HUPr+IuixZJTZ56dwu97dih9CeXhB9Ia70TOjf8i07R2klOCdRWrTCKU3OvNCG9uvPTRIpgpJrMcst/U4dD2fhv2gr6yUkjAIGUoncUwT554czetn5skP58jftttTFeXu9Oy9+J6PpmuY6sGE1Sfmh3Nt8YmQUv7fQog28Ev0Zjy/APy8lPJP93P8fvIkP7fPc/lvOBhJIqWk07TxveATBUlN1x5ZYPkO85dWiFkmw7N7O7bc3CmRtiy8IGCpVGW64JOPDSOVQTZ2a/iez4szo2wqJoXhHGtbLuXAxV5bp7SySzEWQ1ZtpotZBqMhHyzWmX52nBtnbuEUo1zcaTJ/pZ9go449Ege1w823AzIZCyWqooaS/G6JF14q883VflKHVVrf9ag1klBUiCstlpZ1wnQU24rj7irUW1Gckzq5OFg7NUqYuBkdGUI4kMK0u2gZn3heZ7duoIcdRJ/KxfIoVrJKJ2eilrqYVQ890iXYBTuMEcspeOtgxgzScYPALBGuekSjJmE+ytJGnU7D42TeQtUc0terKDETcSRF3WiTUl0MAtrOLmuda6i7Adu2hlypEssmILf36NCKRbh1fol4OvZIIwldsVD2oSwVQiC1GRAfTmdaWvo+152PoigKkeij002elJS+wDPDffd17gLps7q4iFtVmD09hWmZmFavEHjgB4zMDWFaHy9Ia1SaLF1a5fiPHT6wpHtafHrMBLgdEPcVFD/KU9N4SykvPq22fphRFIWpk+P3bZNSsnBhmcGpvgeK2n4Ux3YIQ4kVi7B8dQ3TMugffzA/bnt5l3QxidBVShHoH3y4qjEbjWIZOoaq4gUhjicpbfgItcq3vvk+f+1nPgNtl0QqjmM7fPC1S1z/7nmmjvik2yGzp0fom8jSlRt8/5ZDqi+O7miMzoEn2zS3YXZ8EOfkBPPrW0QWqzieQmO9jRmRhHFJVU/xp9/TyAkbLjkQMUj5HVptgVLt4juCMzJFqtthbLhDu9+kmdLBDghMjciPZZjc3mR7w6Tk+DjZCK4LTszC16NMxLYpLWp0FR+jqBNZacGqS3soTuKIj7bkYZVaNA4N4AyGxC4tsKVmSR+XTB2O0lxLUCm1cWVA2ojitNNEWcEf1nCrNgXfR49otNs+F88ajIzFqG9GWFrbYaW6xYkjs+CHzPbtvU62UWvAYIK+wqMFMpb2aH/TOwjlydSsPzCUPJoSIwhDlss1cvEoEcPHLDj09fXyc6W/AmqBylaX7aWdB0q67UUiE2f62YmDAPkU+RQJd+4ihJgDvgx8IKX89n6O2Y+ZwL8LfFNK+akfJT4JQRCgqipWIoK6jzJBpfUKnuMzfnSE3EAGVds7S6fT6LDl2iTScZ4ZH/pYr817qzKM5dJ0Ow4ry2v4js+oGSVhGLz7rctoWVCzeQ49N8X0qQk6lfd44Svj7KzrrFxexW2vorWLxAqC7ZUOsWiclbMb9I86mEGKzZs6mU6XWlMngoMPCLfD8dk2169YRAcMnptucu57MWzXIqwIYo6NlYTCcYGuC/wFSSIMuaVl8FdCnLaCHzGJbHrsLOo0VQul26EznETd7cJCiGp1icYhbXVxL2/jRU0S0qaWilF7tp/upk1iuUIkGiJuNmBApdOB+OYu/fkY030GZdWivLJJdypFOh9joeYQmS2QtyLstNo0bQ/Fsai0W0yFId1Ml8qVMqd/7jM0z63gZlXWah1GXA9rjxmEpBUhajzaD/WHHaH2OnS26/L+yjqDqSSvTo8xkLjXTs4FGdDWITPVt792hbiv5qWUkt1Wm3wsdnft0vUDqh37vkLXvX1DWv4uMS2PIv5yqosPePoIIaaAf00v1eMN4FeAPwM6QFYI8fellP/yUe3sZyT5W4AnhPgmPa+7r0kpW0985p8igiDg8vevM3ksycDwDsLof2Cf+XOLDEwW77qwDE7oSHrTYfH0w+XwE8fHOLuyju16+zKj3lzeoaoEzAwWiURN+ieKaLrK6NFhNF1j/MVB5ssXGS6MMTozgqZrfOf/vEVp5RrL1xKMHh4lmf0xauVFEpFB5tUNDs2dRtMGubZwkbrt0W451CttJga7BNKj6apUWyqLZ6P4rkrZM/k6Qz2xieUQWhk6qsbgUJ2tchLnUpOYCd6Ywtxwk6VbPnoV7IJFux7Da6r4iQDNActp4AsFRQmILdZZ/QDCooI5Y9GxNbZtA2PY4lBrh+1lCbs+g8/ZxE6GLG7k6BbiOIbDdtulcksyNbDOzKRB12vjqj6nJrJMdMa50GxxVBlmofQm0UKTTLZAsZ4jlrD45v93hvzhQardPHOxLE23xk6zRTERx/Y8srEPOyfxfVyjH3Z218rUdurMnJokbhp8+dghmt0Hcy/vWOBpWoPIEy5JeEHIeq1BMhIhotyueuL7tz//2H0jzpCAblAlqmbgIEh+mvgfgVvAP6ZnS/cHwN+TUv7W7cHfLwNPJUhCL1A+B/wmPQeeP7q97Y+llI+fgfwpQVVVJk+MEU2awN7rRMl8Aj1y7w3UQTzksuyslhBCUBjuTdmdGh166Hv7nk+91EQ3NAI/4MzXz5M5MUifaWFZsHT+LWK5Q9gNh+FDg6hdnWIwQ6QDl69cpzCcI5EdQUqDzKhGyxBM9udZvraG1/UgobO9VWb2VI4lP4WyW8fbDRG5GM2mT22zhR2NEnohXsNFDULMThvP1Si+COEFj/LVKkpSYamqIytNctmAYtHDb6ucntzkxUHJB69bSN1hre1T7kui1x0SgyFNW8NFwYhbyIIg1Bzykwq13RZG3QRNIC47tERAIinxYhq1VY3iUZ/BoMqVEmCFODsCLWWyvupy+rNF1ta6LFVUPLfGdjNAGBatosVc7jSNTol3ahXe1+r8XDRJcSTPt9++zKmfOEZ7pcJUJo6z1WJ+vYZRjN8XJOF+E/I/L1qOy/xOmeNDfXt6rz5NUoUk0cSHqtO4aXxs52DwIwKnx8HQ1Ltq2LvvFzE5PvRgR1QVOoXI01Hz/kjxoz/d+hIwKqW0hRDfo2dwfsev9XeA/2U/jez3V/M/SymPAc8Av0bPs/X3gG0hxL8SQnxJ3KtDP+AuPdcbjVBaNKu9Afj1925R3akDPaNqw/ywNy3UIYS69xSUbur3FVSGXv7dXq4iTsdhZ6WEYzu4XY+f/Luf5cdePsrFqyuU6y2OvhgwNqvz/jcvcP3MLYQQtIOQxWoVp+Nw5usfsLveIJkbwLUrDM4MEImZDE73sdBsEtnq4JQavP3u6+gtm9GYwth4H5GGi5V2UCIC1fYpGm1kRCKzOk5UJTvg4gUa62oCBjS+9NVdjAEDNaZiR6MsNZIslONc+G6ElRsGAyMBhhoQb7dJX69gbdgktZB+rYnZsYl5TYiqRGIwMtjmhddaWMMCTJVEVtI3aCOGDPRCisMvh0S0EFV0SFXqJLKC2IkRrOEI8QGPcyuCShemx7McHTxObEzFjQacPb9EJJehOJFgqn+E8UiUStdhXQ8prZZQbJ+R0TrZgRgDk0UOHRqmkIjdp/KU0qO8+j1K66uf+Dv1OFi6xlA6+QMPkNBzyrkzI3IHKUOcoHn3ec1duV3N5PGRUtL1DkrWPi3u+Lc+yeOHBFNKaQNIKRtAU0oZ3H4ess9uwmMJd6SUF4ALwD8SQrwI/BzwM8C/D5SEEL8jpfwHj9Pmp4V2rcPK1TWOfeYwAxPFRxbX9VwPu9Ulmf1Q7r6X5djSpRVS+SR9YwVatTZGRMeIGJhRk8Jw9m7Vkavv3KQ4mqdvJEcym0WxvgjojMwNYloGbtcjFrcomgalus2xn0mRkBPYaocJOUHSFXz/j84QiRq8MDfJuaVz6AmLTjNOUg/x1YC+8Qhdu4hGDV26qKaPsF3ijk8Yd1hftpj6nGRpCeThDJ0th/PvthE7XU692KARRHCqCqkZn+FBlz/62iDZoMXp11q4nZD8sMflM1F2LzvkMi7pZkCrHsErCGxb5crbcYoTHYxUQLQeEuoS29DQfQcrYdNpSryNkEY0iR9JkW+aVMolOksKdTsgdbjC7IhBrbXMdkQjbKrkfJfcXJrXjs1ycSfOq8dVtq9uog0k6GxscHhqEM2dZ2styuQRE8U4SqvWpmp3iEUjd0tBCaGjWc+jaH++066qolBIPB0Xm3uRUoK0e+WrPgYnbFF1Fum3TiCEQBMRVOXhn8FCqUI2Gv0whekeanaX+Z0yz40NHQh4DngSnkjO+8TqVinlO8A7Qoh/CHyWXsD8WeBHNki6QRtNiTzR4n8yl+Do7QTuZO7ReV6tapvt5V2SLzy4b8PuoioKUa3OxLEhFE0nCEO2lnZI5hIUR/K4XY/yRpXsQAZFURg7Moymq2zMb7G2VSc/lMdzfA6/MINhmfh+wKWVVYzFGtuX1/nqzPPgrvL9r20ghcLos1Fs16MrQrqXbuB2ba5cLJFJ79AOFBYXI7jtSyTTJmFulFJlCyMiqS526Zt1OHqsiSBk6Zs6Zc2nf6KDd63KrqOh5ySJOZ2Nr0uqG4JczOHmgoVRcQhjgvSwj5c30QOba5eijE11+ds/v8O3vpXi2pmQoO3QdVTEjsvupoadlaSP6DgRndqaTf+IQ67gc2MtSbemYsQlgjq7m2myIzGcQCEWr2KX1lndSsFEHk2t0Z+zGMxEMaIprm3s8syJGc5dWUaZyrC+uMsXnz/G6REDY9Cnf+w5Nha32Vw8QzLTIj1whL5UAiklrh9g6hrp4pNZv/2lRNbBv4nUT/Nxk0gRNUmfdexuUHtYJZN2o0Or2iaSMtHUvdtLWxFODPUfBMingeDTkAISF0LcW8FK+8jzp2pL91CklBL4DvAdIcSPbIAEqLiLJPVBotrDE8EfRuAHVLdr5Aaz+/qRZ/rSD82TPP/BLfqHUkz376Lps+y2fTZqTZ55ZoJWrY3nekQTFtOnJli6tMrQTD/RhIWUkmOfmaNbfQthJNlYCNhe3sXturz41dOkyhb9L+V55QsnKa2vUV6+SXm+xuDRfsrNDie/eBwMje7iBwReyJbi09WKZAKFybEI567YqJ6PVWoxMl4HS8fZCLBXBKWkjr8laKxqhKZP6JWRQqD3K0ST8PYfGmRTEkTA0nULW9cZHu3SsmHhmolfNNk5Z2HaEtmS/Pav59ncNhl7ySFeC1lciNDwNfyMiql5xJtd9AWoezqlmo6T1iiaVW5aYxjdLkpMwelKrMU2ruKROFJnOGHjGzYxRyAPWYxkrlLZjpCOPE/95jI3FJWg6+K5PgMTRfo3HN7a6DKTG6V6s8SzE6Ocf+N7DE9nKAzl6Nhdrr0zT6sQ4dT06I+UeEcoaaR+8mMD5B18N8QwP/5+FPgBnuMxnH54DumdupulVvs+f9gDnpAf/Y/v80+jkf0Eyd8AdvfT2J353ochhPgfgK8CI0AL+CPgv5ZSVm6/rtKrIP036SldloBfkVL+7n7e/wdNMXL4iSXkruOxu1Yh05e+r6L8fvBcj52VEmbUIBKNMDNQIJ1PIW4XvM1Gw7vpBevzW+QGM/z/7L1nkBxpeuf3e9OWN12uq9pbNBrezADj1xtyucu75YnLIzck6njShXSSIhQh6UIRlCh+0IU+nOLi4sgLkqL2QhTFPd5RuxztLrl+xw8wM/CuAbT31eV9ZWXmqw/VwAAD1zOz4I7BL6Kiu9MDWZnPa57n/w8lw7Q7HTx+E0VVKOUqLF1aYerxcTyR/SA8jO7XGN0/xJWT12jVWsRbYJXLzNfPEEn143gmSO49TU+sQyPsYf+hXaxcXOaNeZXJo4fR9POsz62Tq1Qxe6c5+MWDyIbF+TPzjMUNFI9NardNOw8nz0f5pS9vEZ1zyPqDaFLDE29hmuBmvDT/VjA4XiWmKwjg8mUVBl0md7UouQEufcfAbDnoigRH5eqCCZZg9pLGeKpGPG2hrEK9DjQk/qhNftNAShfCUJ6XVEw/8b4ysd2wvqEQrFQIT+uIBQ/N7Ci2LVCWKuz/4m62IgXquQbRhEZeW8IplIiWMzQDMBrvZf94hnNn5lh64Rz2UpmB3hjn5ouUfDpXVkzceIN8rcH4/iE0v4nvIxQgb/AgRxp4WwRg79NT9/W4DPUEb5tauJVb9WbbtsNSoUTIY2JoD8fK62PDRzxISilf2Om2Qog/lFL+F3dbtxPFnd9+Nxf2ABzgt+jalETo1rB8A/jK9vr/Evg63RbA1e3lfymEuCClvPJzvI73xPupsfL6PXcYKe8U6UqKm2VWr62TGk6w/9lpFEXBdV1sy8bwGARUg8JGEem6+IM6G/lLVJ04e8bSOLbDwoUl4v09vH7qKiOpGANjb9eSjewbA4zlxgAAIABJREFUxPAY7I8FaTQttq7VqRQsGpUWDTIsX6qz8cNX8S1v0D+e5PAzOXItnVK7w+VFlUrbJNJeI+TzMJzpsO/AINdPt7DtLCITomWrRDo6F163aRY7aP0QCtZ57Kky/983Y2Q8Nfbuczh9IkRmokmrquC2FMIBF1MVzF01iHqbNG0DqTgs1HoQSotgr4XegVLeIB7sEB+18DYlw+kyltTIxwTeoIHSbpEtG9Cx8ZZsIi2JOqgiQi6u5rLhSdDflDQaCoOHdRb1FaZKHtqal1hokJeuWPRfMBkdW2IkPYm9lKPhU+nRl/itzx9ic7aEOdzD1atrDD8xDppK2OMhEfB95F7kTatD3bJ25NbhupKWJpg4Mvq+TKDz60WySzmmj0/i0bX7ZnU/4l3wEQ+S75LfAu4aJN9XypsQQhFCPCmE2JGYopTyf5RSnpZSdqSUW3SNMD9xyybjwM+klDOyy7fpSt3tvcvh/k4pbpZoVJsP3vAhYHgMpp+Y5PFfOowQCrVyA4DCRom3fniOuXNdU5ZgTwAranL53Dx+q87u3u4cWDlXYfzQCKnhJMF4kHDi7dR7KSUnvnuKwkaJueVNzl5fZvTgMeYv5Fi9uMqXvnQcj9+HGpb0DMxy/cxlZk45LL5lQytCPWngjoaJj0H22gLLC1c49/0LYNYRZoB4u8VQrEhHWmxuGAhFobgAq2t+vv9CL3sPt3GLLrUatC1Ym/GQ3dJxFbh+zsfmssm+/jL7PtPC1sBuCpSGha47pCMWag2yV3UuXfSTFQZ1oWK1odNWwDLQOgYtYRCfArPXpNTUya5oVE9Fqc0ZNFdNVLvFwGAPAa1DMLRMxbYouVH2TX2SYmWEYKnD8V89QFNp8L1v/pQfX3iRUycvs3tqF24qDAkTn+4y9twuNFUQC3gJeIz7BkgpJc49HEM+yDSsDvn6zp4Dy3FYKVVQzffnOBJNhRk78MjR4xEPlXs2Gd5vMzdIV8ngE9s/3y2fppste4M/Af5cCDFN18bk721f44t321kI8Z+xreQ+ODj4Hk6/cyqFGkEpb1P9eL9cOzVHtDdyU9j5XpS2ykhXEk1FqBVrWE0LohBLRzGf2Y10uj6iVtPC5zFJHZ4k6H07O7CwUSLRH+PyhUXWly+zOz0G7MZqd6iX6ph+E3/YSydvo5heKvkq4USYUCxEp91ibF+YzO5jWLV1Ir0G8+eXkZ4crlVgMhZhw7RpGjqVxwJsbpQRnXVaVyA87EFXXJYuqDi5GkKVZAYsekMdZMrHnokisy9pBL2SpVoQGfXQ2Woztb9BcVnl4BMlrp4J06gbjA+32XW4zeJ5HREDfd1lbsaDZgoU08HVFbKndQy/4I3zMfSQSjwJI+M13vypQWUZ3KiCUm/jt3yEBqMsLpYpz9pMfSJINNYkHtdoF5MYsyVeWC5y0Wzymf/kKzz7+WeJqx5KC3WCao7QQIiAMMhtefAgCGtVdk0YZLcsZl5bRdmTZsvvp9q26AkFuLS0Rp/mYWj87bq+hlOg2lmn1/vza/9J+zoovQ/VfisW8N2m4HTHNUiXmr2JX0tu9/rurif8blBVFdV75yiOlPLRvOR7Rn4cEnfeDff8z9iJLN1f3me1TjcC/74QYgtASvkf7eSKhBBfBf4x3czYG8zRDbYX6DpIt4GvSymzdzuGlPKP2S4IPXr06EO940O7+3/ux+wdSWJui01bts1GpcZANHzHg29bNq7b/ef1T2ZurhdCENxW5WlaHV566QJJr5fxgbfrLFeurVPJVRjZN8iIV6dVq1LKB7h24izZy6vsOjzC4FQfuqmTbTbx9vjwBj3seWoSj8/DhTPnCPlzJOPHmHmrweXXZph6fB9qQKO4cIp4NYf3apNAJkxdBFhTCvhTNorfT6HsoNQCBIwaIqZh0WEt58fXaOPx2WgRgdGv8+rzXvbtbyIGOmRtnUURoalJzHCJg58pcOp8GL9iE5+2yec1ju7PogiXs6/72NwyGZyyKGQ9lOoKzpZFIuXS8KqsKGGs1Qa1gSBqsUZIb2JEBXnXjy8BxoKJktbYOFVFHZnFTY1hhk2sep5OyGD3QQ8e/3eJq0dZPuWhYjTJeCKM9tdJ7rd5+c9OEp4KESzrNJ00ZWOGVtqDu77B9VoDNxIgPGGil9vUPG+/1JcKJXTLxdRT3OqtJe15UJII5b2WbBi8z8Gh942LS8up4lV7HroE3LnVDfoioduGfi3bYS5XYDTe84E1uP5A8DFyAXm/7KQn+WtAFrh8n/13ZlexjRDiHwB/BHxZSnnqllV/CEwAI8AyXcWEbwshalLKH7ybc3wYCEbfbvE7rqTZsZGSO7z4btQ6AsxuFdBUheFYVwR7Y3mLpWyRqelBPBEfSuf2nYsbRXxhH6qqEvR7efzpgzSqDSoX1gj1RSltlhndP0yz2kJu1AgH/MyeW+TqG7P8yj/5HNeulxkYGeSt66exNxZRdC/TTxzix998mTevCzIeg/KWgWfvJNa5i+xNmqwFRwi3m7RqLSpLFsF4gJG+LTZKJsWSTjvn0mO2efkHAbYuquAzWXcUhg62IaaQzSlYMZ0rV8MEohYi6aHkE1x+Tac0q3JiPYgdkKTjFj1tm7nLXowejUCkg2U59E108EZdzl82aNsKMUNSBGwNEjGHhuqneWUJ3XXJpCK02xEq7TKyukkz38YbTBLweeg/9DhL5WVSdpvAoSXceT/J0TH6g2EunG9i9fmJmQY1bZ2zL53n8U8fZtezWX78/17E8SvsG5lEKDYhw6Qc0qm22uguNMsNrI7EEQrRniZC/HxGJ4T2cEdTdoIqNBKeyb+Tc43Eonfo5KqKwKvrKI96mA/kQyQK8AtlJ0HyvwV+F1gC/pmUcv3GCiFEhK7Uz38jpbzrkOg7EUL8NvAvgF+RUr7TuPkI8AdSysXtv18VQrxEV7X9AxEkCxtFFFUhknhv7gvSLYOzidBvf5F4DZ1dqTjFbJlwPHjPRIdMJHRbA1D3mQifht80OHZ0klxtlrK1Qng789Xj95AcfNuZwrEdXvyrE7hNiz2fO4Av5MUb8GC1O0wcHuGVb73A1LFBnv3qMYQQfPVrz7GaK3G5uoWv2SAYsKgXr4CqYIW9BPv76ekpow946E+H2T9exV9KsXpli/EvTqJf3cJyZhgcMJhZzlC2LExZZKkSxFuQOMsO+qjKBj6WXndRR70cGVll+RWF2XiE2ppBfyDHyeUAzbwk3G8h6w7NZZNrkRBKpQ11SXywjS1c3LTL6rJGou3S15siX26iBRwCmxrtps5axY86qqN2DJqtKjPn63iVFtFEnj1Hxpi57GPv7l3Mfv8sr+tzjD8xSSS9hRVv8FzvLxGNDFBqt3AuzDHaa3B4/zil6iqXXryG3ZKEQ0EOPjdMZX2Nhfl5WukSR/c/Q6PTIWAaZJdyGLUSI/umkW4DaZ3BUicxtRhCG3lP36kPGhVrHeGuETCnH9gAaHVsDFW9p8HyDZq1JqbPvO25CHnvFBxQFYWh2Ltqsz/iI4oQ4qm7xJhb1/+GlPIvbvx5r+12kt36L4UQfw78c+DKdhnHv9jWbH1XQ5xCiP8a+J+Bz0sp37jLJq8AvymEeF5Kubqt6vMJui7SHwhsy0Z5P8M4woB7zBk5tsPqtXU8PuOellq+d7ScY7EQsVg3EWe1UkMSIX2L4e7E4dHbz+G4TD0+TnZ5i1qpTjQV5k/+j+8RaEn8qsZjn+tFOnkUbYDiZgnDo7N+bR1vWyMzcoR2s8jffOsyVHQ+OWTS23cWdzxKqxHhmseHFRkmv7CAYzmohklk0EvZClNteLEvNTHGAwQCZWoXbcR+P4QtlKUmWqsNLqjY5LwOVakgvCpKzWJktI3Vsbi84seIGXj9LYqbAmvZwVOTSA8sL5pggxPVabYsGoUOZs8mIqRQ6EQQVpN4Jkpy0INevYIDRJ6MM/MD2FrKoylBDn/xV3CTlyjPL3MgrWF6TZy5PNVOgOaySX3CIS9WWK9kGXJD5NeXqU37MSIlBoYtbEvQIoQ/WSXZO4WqTrBa6kqwXV7P0mMLRkZCKOkaUloIxYelTpBvvELK/zSq+u7rbz+I6IoXpIaUDXC2bvZwpXRBlm4znL68kaUvEiIZvP886vXTCwzu7iMcf+96r494Bx/9OcmXhBDPA78ppazfZf0f0dUgB5i+10F2NIEhpdySUv4O8Bngy3SD5Vff5QVDV/c1BPxUCFG78bll/X9Hdz7ypBCiCvw53YD8Zzs9QVfb4OGRHEw8MNHmfgjhRah3T2ZQNZW9T0090HPyXozEo4zF01S3mljtzs3lTavD5fUsjuvSaVnU8vNU8luUcxWKjSZa1WL3/hGe+tXHSA7vQ4oxGtUmZ169gqKpHDg8zuoLM9iKoNrWsdQQQ3sG8CXjFGUPm6sGf/tvT9FZKGI1iujFZaanSgQLHQb2ZnDiUWqaF8enYSseorYPN+xDkR0OPVkjcQwGR1scGGlglOsENZdQWjI+Vieqtjn3lp9LuQgiLShugmlCYJ/JwDEHNe6idroNDNdxcOJe7JhOy9bw+ho8eXQL/3IWPWEiYybXT85RzlvEEx7qCwa9/T0MTiV57Av9dOoKpZzGhg0rGw2uvPoK0Yhk6c0sP/vfX2Rl8To9/jCjiV7spM26dZZzJ2bxaP0M7XkG02fgyA44YVYummzmrlJv1dioVNnbm8Qpt3FsD+hHbtYYmlqclO8oygPk3W7wsL/fPw+8WgSveQCBCbf6H8gG2HPcWk69J50isYNykt3HJ24LkFJKpHRZn9ukXmn8XK//Y4N4H58PB22gF3hFCHG3pJKb/xIp5T1Fld+tdusbwHEhxH9Kt3xjiXfRm5Ty/qPg2yK0/2T7865p1ppcP73A7uMTaDvwbvxFYrU7GKaOYzvvWlzgXtwQsc6tFlBU5aZwuqYqBD0mihD4w37GjiZoD60xFs3QdHWSIymEK9FNnbWtIh6/wdmT16hp4NoOAkFmIkMsE0XtC9HfSFNeylMt2swU4uweHaZnt4lVt9lcsZk+sItL8wuMfLqXlTdmmPuLNTrSwTNoIOazONECiceC9FFj7jsKbS1ClTbe3QoD+9ssrYQQczVmz6jIko1mKLRaGilvm+hTguVFLy2/QXC9TrusYjhg+sG1QCmVUcoSFMHGoskJXaXT46GpqyRrC9gDgvWtAK3VEPUChJw6YwdTRPuyZDeu4m1KJg4d5We1n8GCzo//+gxTQ2FS6T4Mbx+ltTzrxSVMGUV3UuiBBAE9Sba0RHYxz+74Xk7OX0PLWaSTFkZHsHmhQd8z0+w6OgaA67p02hbGtvuLqr2LDNDOGaQ6iFB/sRJ39baFqih47vOcCSUAysTtfxtHb9tmp8k1dzzP7hq4ZRwnCh+ChsMHkY/BtG2HbmLoN4A3hBBfkVKevGX9jr447ykVbtuochddObrngdx7Oc7PG9NnMri77+8kQLabbTYXdyREdAdWy+Lya1eplupceOUKzdp7r78s5yosz6zetmzi8ChqwMTeLg3RVZX+W7JmNyyLwlaApXNF/DZEhcba7Abf+aMf8uprlzjzyhU2Lq7y5MEJVF3Dtmx2jWcoLeR5fPcohguKKti1d5qwESCUDrMhK2wsLbJn2mVyzwEmJo4yuqsPT6zI1GN97H1yF55GC38YPNNpwrUIm+sm5UwMbTxKZ1+MTK9Lb6eBZ72JXRWIIQ96UBBLtXErGtW8n5i/zcizkuiwQyHiRx4N4SQV2hNh/E+ZHHyighnuQNvBEg5bax7i8RZpbR1ptfDXTfwhjaLTIZk0CY2oXL+6xF/+WYdvfXuWq6fnaK5XOTJ+gD3PHsHjEQzvUsns6ePFH55h4/QqSTVM+cwWgWqG3n6HSmeNQNTP2KERqu0Cg3GX4cEUNAL0JfsZ3zNw8964To384s+4fvr6bfesVqpT2Cg++IZro6C8t/nwnyerpQrZ6i/QVlZJgDpE/0T6DueRR+yAG9qt7/XzIUFK2ZZS/kPg39Adwfzauz3GTkpAfgD8V1LKmVuWfQo4IaX8H97tCR8miqL8nc1Z2JZN4z0O8xgeg8nHxrYdO3SUewg6341yrkJ+rcjo/m5x9er1DUrZ8m2lIQDn51dJeLyMj6TvOMZgcDdDhzTsjoPruGQm0ziD0C+SZFJ9FDfKPPPlx5i9tEx5s0y11mDX0XE2Fzb55r/6Dv5YAN1yGZhS+I3f/iyax+DkKxeZ+LJCrK+fv/rmq9irVcYOj1BrlBCeOpXgGOgajz8XYdMXYbOcY2iwAws6a6ZBj1ll64pL70AbRuIErQY5y0O4z8GqOigRhU5RsnpBEB1r0O/vcHleQ+QtXEPiWa/Tqrks5wz8GYmeMtCNDlvzLrW6h2bRxal6CAR0JvYFuHixQGCwgAimMRQNs23w7OP7aBW2aBs2uWIFq1omOZRE0R1a2TKZ6T6Ez0+mb4Kf/MkpAkNRnPMdkokRIv4YrY7NtY11DvTvoSbLXDj5Mpn+AYKRtx+z2WyDtpIkuacrmXdD+9RqWTRrrTvu1TsRH4AACTCZij94o4eIEEZ3fv9dIKWkbnU+Uhq6j9gZUsrfF0JcBr4hhJiSUv4eOxw43snb+TPAzSdzW1/1h3R7kh9b/GE/I/veuwqI1++5+VPcJZM1W61xbSXLpdev0rHenl/0+E0iybcbAv2TafKOxUqx609Z3Cpz9oWLjAZD+Oxs1+j3FqTbQHGXUZTucGyuWGVlaQt/LIjWGySeiTF2cJjF5S1OnZvDmwzyysU5bHuVcPBFPIaGPxWkJhzeePkSW7ZFeXEWXdVo2X4or5PZH0Dr7+rJqvEnKbQHUUWZ0CGdQg0uvFZFVkLIwG5UTSdybYn2tRaleTj5cozmvEllRTJZW0HxuKw0Axh2E38Slus9XPipB7No40ubBGMSQwU1ptKo6xSvetmY8RDOtFBGg9iPpannNdTeQXp2pWlYAtks05tocOqcTXlToJd0vvCJg5i25NAxP+Vrc4jVVfp8bTprba6+1cQbCvDJz+xhffYSl64tcuSz+/nK1z/Jrn0Z3rqwgOO6NPJVBgwvVqNFRUiOHv8croBC+SyW3aSSyyO3ZmmtS8qNFrc+oz29UfrG09Q7W+RaV9/z9+oR96bWtri0PTf/CB76nKQQ4gtCiBkhxHUhxD+7y3pTCPHvttefEEIMby+PCSFu5K3863fs87PtY57Z/tzdVuYuSCn/Pd1E0N/Zrv//+ftJ3sIHejS7UqgSjAY+0GocUkryqwXarc5tpss38GgaMuhFHdRuGz5uN96ey3JdF1/Iy7Gn9yDNPE0bOs0Oc+cWmX5iEk2pUG5UWC7X6Ne9mF4Dw7QpbZWYs5bY15dG8RtEpnqpVxqsLG4S2+fvWmdtVvnULx0lu1rgiT0jXL5QZfLoMT71Gwl0r4ezr17m3GszfP/bP2UkfglfLYVDghNNm2ePZVg95uHq0iwBFXY/nuEHL87RUy9T7S2T1EymJyosNPoZmOzgjCu8eTqIOVyGjoLXqNOeVNHTKilvjWY+ANkOZkwSGlXwHlIptzQqKxIrlSATq6GqNn7ZIed6UZIalXKL5rUK0Qkd1y8x6mUs3Yft2MysaQynTZSOzdrZJSYODtPTE+Diq5eJ9e0nHBdUi1UG9+5GC29R26px8EuTRHothkfCXPzuWSafmqRVb3P9tTyFUo2FkR6sYpVz353HCJokPjGJbmgM+3qo2xPMr+ZhJcfYcBEznuL0G5v0f6p9s7F0A1MNoSn39xp9xNtItwH2DOj7EOL+r7Ogx+TQQPrvxID6Q8FDfD1ud6b+APgssEJ3TvB5KeWlWzb7R0BRSjm+PQz6vwG/DrTolh3u5e6SpL8ppXxzJ5fxzgVSyje3qyb+mtukPO7NBzu75T1gd2wWLiwzcXjkPWeJPggpJWvlKqlg4J7edw/i6mYOr09jaPruSj4h77Zhb5jbkntqpTqqphKI+Fm+soqiKgzs6qPe6aApBj3pAIc+vQ9FURDaKD6PQ4Y21ZUibY9OfrXA4pUi+784hEfXyERCBEyd88t5juwaoicdRdM1GtUmc9fXaOTrONkq507PMrvSh8Mao4EAsWiAf/Tf/z3+zf/6l5zfTHNweoJUX4LF6wucfOl7xNL7KcwWOfPCJZ58cg+f3j9OnQAn3ywxHG4h2xWCJclaxY8MppBumY5hMOCTdEyH5qbO1ozAM+pHNnWcjs3KRBrZcXjcWiI67DA/4+I6TVKRErW2l2zCg1ZpEwq64POTH0yjY9OTqpLMqFgVHzXDg1bv0K4lCZoVCILmM3n+j/8Dh5+s8NaLTWZKDmOZGOG+CK/Or6Cakn/7L7/Nc39/ktHkIUaOlHjrzCzhsB/Vb9C/b4Jr19bwKy2MAJiqyiAmxbUqnmCEaDSG7RQYO74fRUaIKBHEuMHC1SWuVFY50j9FojfKRrOJz9BJ+ptIV71paNzu2Giq8ujlvo2UEpxlUHtBmKD2sUNrQHT1kQrP2zzUucXHgetSyjkAIcQ36RpW3BokvwL83vbv/wH410IIsV2u8bIQYvx9XsMX77Zwu7zwGWBHFRo7feru9r/5gZy91XSNvU+/9zKKneC4kmKjif0+hm36omFS4SCebVm65ZnVuybwWO1ON7mn3p2vyoz1khrqeu6lR1OkhrujDX49ga740HSNgcnMzaBqaCqxgA9VV1mf20SoCo99/iAhj8nGQlftz2l0yOcq5D2SM2sbWLbN6dPXWLi+wdpbc7i2w2NPTxOXgpF9fWQODDK6f4jZs4s0dYtD+wYgqHHp7GnGxm1CI1PU1R5sj0YoFSE4noCqJJ3Zz+7D4xz9eoae5BhOOEzeaVEzWihNB7+ikosE6KwYeOuCWs7HxqyBUqnhjAcJV6p4ZsosntZ48yWT5lQPiqKQzfkIGhLnkqQpTcrLDrlVh4y+hbRbFPM6izUfuesSQxoUAgHOqAr+ARNfRuEqZay+XmbmVVaW1hDFOvmZDd54+QztYh4dwcjYBFOPfYqDz+3hk3//CUZ7oixfWScS8LO/P81njx3HkAreBCQOaDQ7BQbGUvjDPhzXRQISlxYRhBKhdyRJ71AMUaliNVq88TenMQG/oYNbptuY7nI1m2Oz8gtMkvkgIhsgbYRQEWryAz1q9IHl4Q639tFVTbvByvayu24jpbSBMrCTtO1vbA+1/q64z42XUr58n3VNKeX/vYNz7bgn+X0hxDstC358l2VIKXc8RvyweD+2PDtBUxX2ZlIP3vAuOLYDgjuSB4QQOLZLcbN0m9myYepEEiE0/c4W8I1h11spZruWWnufmrptues4BCI+Jg53yxAqherNF0s4GuTgs91a2kqrTatjUxIuh3cN4PlEDByd4YHdvPjCD9DdLRKhPmqlOptzmwyEopTzFb7wJS8vuRl+dH6OpBlD81rkpMORzx9gZT5LKhFms1am1rYpzqa4sh5EtWukAm1yS02ScZW4GWJuuYQxrNEZ68HzRgdZ2KTV4yOl6pTnW3g8LtWRfpxLBfrCRfQ+FUsqRPUqagimjii4VYdGU8dnNzAslTYqlVUFPa1Dro0sN/FEdDbLLkYmRCcZJNUfpPyCwxNfPERnq8bVC8sMHOyjJ9JH9UqbqGLQ3qjyp3/8FwwfHyU93ce5C/N4Wi2k63L50iJGaJhh3WboUIJrJ5bRMhr1apP1fJnJsT5q9ibZ1kXGgp/E8BgYnhjPPf4sQlWwahaZeHT7bt1uqbYrlUC7z3e6YXXQVeVj00sSQoA+9eANH/EwiQshbh3y/ONtLe0b3C14vbNjtZNt3slvbvcEg8Bf0bVW/L8eeLXvg50Eyf/lYV7AB4FGtUkpWyYz1vvQz7V0ZRXd0OifvL02rn8yQ61UZ30+S7CnO5+qaiqu69JqWHTaXdPZB+ENmKi6iuM4qLe8NPsnMnQsG9txqdSb9Nxiclsr1si+tURmLMXesV4WL69weCBDbqXAUCRFu9FhVckxUzVJ1SXLi+eo5iv8ym8doLm1j6XmKmeLOTa3bHb1Rjn/0zN0MgNMKTFaMke506TXo1E7dw6vL8nmpk7xwgaWksefivJYUqOVbFPMreJtQijjoyMb+NJR9n2+w5U5C013MTotvLRYEr3YcT8ercNmU6U20yQ9oaBLh+olhXzbJBozqIyMIwxwKzmCdZeeYVgQHsy1PBFF0LRMRLZKr9dPI7tFKajyxvIVfvlzuwg9dpzZ19eJmiZmws/g3jR9/Ql+UtjiW/9+heOfO0x/NIxuufz1H3yfXc9OMfzYCGrZwqOG2f9UBKtlkV0vsLCcZSATw+MJkvBM3cxoBYgkvWDPEj7+dmBsN9vYHQd/qDvc+qBawvlcgYjPS1/kkRrNI3aIAPH+SjlyUsqj91m/Agzc8nc/sHaPbVZEd0I5TFfm9J5IKVe3f1aFEP8P3WHdX2yQlFJ+5IOkdF1c5+8m461/Mn3PoaFAxM/08UkWLy0jFIXBqT4URblZhL4TVE0lGPHfdg4pJfPnF6lXmvgHezh1dpavfukJpJQoioKUksRAjMRAd6TDH/JipiwGdk+iqz6spoWjCUbH+hlTvFy2qmRP1dhYXCfUE2b1zRyVjQajY320y4sIPYjf0Jg6FMQODtOj5TCcJuFCnPOnNrBLRVRTobqpowqFkc8r/KQ5yma2iF5botcK0cxXmZsrUG9a+JpNViZH6NgdEkj2BRepmVBfEQR6A7h+waLWS6NQohVOolotLLWDvZSnPZnG2wDPSJhqHbyXNolNgtnbj79cx1TypA8dYxWHzvU1gk6Zn/zZm8TGB0gYcWZOXMM/HKNQqTN1uMWurwzzXHAAodjkZiuMPjlO/+Ewu/ccpLRV4er1JeqVJv0TaebOLaIbKlOpBMW1Ev0TaQz1nTV9Koggt86pFTfLNKtNRvYNIaUNsn7f0o+p3sRHVtBbOmuAjlATv+hL+ejxcL8ybwAnXfemAAAgAElEQVQTQogRYBX4GvAP37HN88B/DLxG10jjJ/I+klLbgTQipcwJIXTgS8CPHsbF38pHLnHnveAP+3+uBclNq4OqKHftAdyrN2h3uiPXmq6RGe99z3MsCxeWifZGbhtybjctyvkqYweGCUYDJHp8zM5epFmwmT46zYbdpnc4jqpp2I5LvC9GsV3D1E0MxWQ9P4Ou+/jcvkk2FrJMOg6JgSHWT+VoDs/QY88zNP0V5jbyrGwKdn/pOcZ2KeSbPq5d3GLpjet0PBYHnxwkFumn3dshFNTYeGODwvplrqz10+fX+MyXvWzuGcBXmufKKyahcBSrbZL0qyhlm+p0jJyloy3USO8S+LUO7XCN9JiX2ZoPf0zFqwsKZ11aJRtP0MberGG1WuQ3oRP1Eh5W6XvKIibWObkwSMzoYWMhT67ZIJKQhBMlzPHnaJpetkpN+g4OcehTe/nRn/yYhVqHSrHOwK+Oofd2aFwtsCAuMJQe4vzVZTKRIJHBGKojWd8o4M9EqJXrjIwkbquBvPEeEEJ0MzK1AXK1Ovlag129CXqHb5mxcMvdJBXj4D3v+Uc7oUeFh2y59fFEvt+e5P2PLqUthPinwPfptgD/TynlRSHE7wNvSimfB/4U+DMhxHW6Pcibhf5CiAW6EqaGEOJXgc8Bi3Sn/vTtY/6IrgfxQ+VRkHyfdByHfK1Bbzh4c9lCvkjQY9Iffbv137E6qJp6z/nStdlNpOsyND1wM5AuXl4h0R9DmBqGpu7oZXirR+UNihslgtHAzeHVmUKeUEASDgkst07Y68HUNFZKZRpWh6neBFHz7RpQgxA6BpfXs2w2KiTrDslMjMlDowRC+yiszvHm1TKdRIuRRoDcZomV15aZfuIQuxQve77+Sc5VC1hNyeiBDqdfOY93cpTBoyWOx/J8e3kad0OgB9sM7/FSnosTnMgh1yV2VKFUNegXJsr6HKWcwlrdIHvdIKRDo9AkLFySiTaGEUEJRok+0WbxQhFRbhH3tqj6DIw+E1/ApMdMUV5P0GhbeHp8yIiPVkEydWSaVKjCajlMY7FGdH8YXbMJ9fpZCdv0/kaYtDrM2tUVfLsSuIUgAa1JrxzEWwpzdXYRbRSqAZWO4+A3VHShUJE2jWqLreUcgYgf3dCZP7+EN+ghPfL2vLbfMBCBOxtGQo0hlY+G8Pl7Qajvbe7/Eb94pJTfA773jmX/0y2/t4B/cI99h+9x2CM/r+vbKY+C5PukbTts1eokg4Gbdj+Tqfgdw19zZxeJ9kZIDtxdqaRv/M75UE1XUVSFK5s50uEgqdCDHefNoBfLtrk1pSeajtDyKlSbbQIeg9FYErUTJxzpHs+7HcvT4SD5jeId85l9A8MANDZzFK5sYGgmQ3sH8Ad9QJjUaC++0nkOhgdITPq5+OoVljt+GrUWomGzN5RhMN3Da997i9dOnSK7nufYlz7F2fMuwd1fY2J2k/kLNX54ziU4GSTiNviVL7V5y97DyuIKPmFSrW9R/JnC/k8ZTB8PcX6lQeFkC6XPT8WrM1S1YGOTTsdlSQ/jRL047Q4VXSW2J0rJstEDGu7gEJ35Ilm3jXc6g1lbgLrKyIEBzl1foVRtYc6tsXfXAPGpBCEZZG5llSvuCrnNGIPBEKLc5ls/eYsR3UOkrbJ27irDh0cwoj46r82S3Sjyq7/zGVqNPPMrCkuXVoj2Rnjr1SuMT/ZRrzbo33X7nLTX0PEaOnbHZvnKKv27MjcbS48yNx/xUHj0tdoRj4Lk+yRgGuzruz3A3ejxdRwHXVXJrxeJ9kaIZaJ3O0R3n7sMzfaNdyXl9pjJ+2Y33kqh3uD1+SWeHB0iuR1Us4s5Vkol8u02iWCAhGFy7ewiU8fGqeZr9KSjKIqCIiG/mCcc9uMNeKm3LepbFYobZaJ9UZaWNrG2qqSeHMDVVS5dW2FyJM36co4BJUC8Tyc/1yIUCzP6aZtrdpvRnji616C4mafZWuXQl57j+uoixrDO8Z59BMImRvo6PU/XOfvyRZSVNfK+GNktHy0XvJ4MUduiqoaIHm/QVCssLVZorBr0xWrkmhp54lxvdxg7BI2ii7m6hllSqXpN+jIKzZk8jifAZn+A9uImyoUs40/3U5jfYBMv1QurhHwXUdM+3OvLKHWHyycuUTXLfOHpT1Jdb+LKXqK1Bk6nSmtygFGPj2qzTUTotFwoLWTxF30MTKZp11oUijP0BKsER0Y5/dpVxo+NsaE6NJotSptlhOjeq6jPe1sQFIpA9xgPzNB2bAfXdXeUzPWIR9yNR22vnfEoSD4kXFdyZnmdyVT8phiA+h5T9N9Nar/HcslUJfnrmyQPd4Nk30QvffRSKtdp11oYoQDTT0wiJWytFAhFbVQjTHapzNSxcVRVxXUlP5mZI+HxsmcsxY+eP8n88gaTQ2mGpvoo1pucOHEFxdSouhajyTBnfvQq4UiGiUPDNPU4pdUtShtZvvu9K2xWHcYTSQqFFpmhHk5tzHLyxxscibc4fuwAK7bg+NePc/rEC1jZBpV2ANEsYCdiFIpVRhIKpu1hab6JxxwjHNXYWpG4UZvE+gq1gk7V20O80eQrv7bEi3/px1f0oG0mUDIDPDO6zpVKFW3IT3tNQV0rYSktQlqEeCLCylaR+FKRRKaHakSjvGXj0ZKMH5lg/vkC+8IJ1qfCxDsCbyrME5mDvHL2GltrBfom0/y7P/ge6dEU//h3fx1XSLKVVVRlkvlCiWSmB49pcGxyCMdxaFdanPrJBcR4jH2Daby3BDpVVemfuFNv951sLGRpN6ybGr6PeMS74obA+SMeyKMg+ZBQFMHudBK/oSMG3rvM2DuHPh+E1bHJpHroSb/da72xv+pIatkKW/Nb7H16ClVV2X1sAmmdxrYV6pUG9UqTar5KfCjBaDxC0ONB+Aw+8YVDPF5t0ay1EIqgtlzg6Wf2MJiOIwRUNudwahfQR+qceaVMZEihkS1QvJDH6PHz+BPT9Kgm8XQPUgVXtVlfOE1tLYtV+SGZ3WF8vk/RXB0kM1hhY1UwHU2zXFyj4PgoLUHEq1Pu6TC8J0x5TbCwIsj0DdEUqzz5TJKePTE28wF+dsVH3VvHFjqBQ6OMagZydQ37Wg53w0N8dASXGvGSxbX1Kv0DKYajfjyWZOjZQVZfnaGDn75YmO//4Q/Y/fQEwUiWLemSn1/nhavz7N67j0je4sXnv094PMnYU7t48gsH+NFPz+AYCiE3QHNulePPTXPqrau8eOISu1IJ7I5DrVgjHAsyNtgNhq7rUivW8Ud8d9xr6ZYAHaHcnljWO5JEuo9ecvfDdttoivngDT+GCN53CcjHho9yWtwvnIBpvK/5pGatyYWXr9wmcP4gVp02RjqEL+hFSsnFV2eolbqm3JFEmIkjY0wcHsUFio2uwo8wDqF7EowfHEHTVKx2h9lzi9SqTTbLNdodm2iqK8A9sn+ItWoeLegwkOjB1DUMTSMcH2T/M19gU/NwsVakZoUZi47x3GefRhch9sRSrC5mKVxZJxkN0+OLcGTfKNHeBC+e9FO87qWTvcjhpxyefvZpDg6OY6sq7WsNhpo+OppOxePhmV9O8enPDuEqGhWh0FA6xIY8VHo9dPwu1fwWa6c7yIhA39ODd+0SnbUTXF7wMnkkRbtUYfn1y4weHgElhaapFM8uUynUEWMxdCXH3r0KhgOpgThlTfLCuetcWw1SP7HEyPAcB59sIXoMfBMJPvlPn2Xg8SGe+/IYjneJ7FoeveUQUDR0j8bM61fRFIX6TJZTZ2dp+BTGD42QHkmiGzqzZxbIrRa4ePIapy4v3im+7eZAVu64z6qq7tgSrmKt47jWjr9DHwVaTpls6wpSShbyReZzd9qQFevNR2Lnj3ggj3qSH2A8fg9jB4bf1bzTdG/y5vCsEIK+iV68gbd7skIIfEEvhXqDc1eXmYpG6R1OIu1ZQMUXHGZ4eoA3/vY0bk0nvW+AWMB3c3/LdlgrFxhNGXi83VZ6s9YE4eDvKbEr2M/E5zNQd+ibTNNutFm7tMqpH75FreOyWbIoewR7poc4MgibIXj9+2OsLdVxZZDWsuCt0ipapYUdNqi3HZyNIrFYCJ+r4fUNc36uyHplg+EDw0RqFjJiY5YbXPzGAsKx2XN8nEbUZe/wAIt/lef0hSqJ0BZS1FCnepHLBnOnLhD1R1k7t0ZHCzKQjBJWNJYuSzrLUK03eOPKIpkvTrGUL7OarTLgehgJPUNPaoCZU+sM7Ruk0GiydyTGqZfeIBYa4HOfOkRxs0LWyFHflCQ8QWTMRzDoo38iTSIU5NKrZ+kbLhGKfZH+XRlyqwX8IS9SCKr5KqbPxPRpONJG1969fKW7Xfer6RpSSjpuA5cwKg+2iLJaFvPnlxg9MPShnu80lRAJzy6EECQC/jtkXFxXMp8vMJ6IdTWSP4Y8mpPcGY+C5AcYIQSByP3rN8vNFgv5IlOxHoQQmO+Qqosk7l6E3uP3cXgwg2M7SLeO6whcIuha97yxTA+O7TDYE7ltP6+hc2zodkmw2bOLFLMlJp4aRfHCaseieX4FzaOx2mqSmk6SPXeC537tS5w+ucDCjy9zeGKQWLyHKycWOfrMY4zEImxtlrm2uE4o4DLc6+dPv/kT0k+O4lzMYhoGHl1n/m+ucXlzndB+L08fHcGoO6ytFViq6Zj+OOGjk+wKa3z/G69R+uVBWpP7sZrzJAIKVq8P9TzE+02SI3D1ep3hr00zOXoUe6lELruJHvPR2TOAWmywtbyO9+pJCuUIyZEBQkmdN9/Ic/qN1zmwZ4Txp0ap5+vUsgLLSnH+5WWm9u3m1MkraL02E73DTB8a59qpecpNi+unF5CWzchkCd0osHhphcx4V1xi6rFxdF1j8dIKqt9Ej7dRtQYJT9eRznLqCCHQFR8PIruUo1qoMXF4tHsvPe9CjEJXifZG7ppI9mFCCIEuusHPfxf/SEGVQ30qQv14Bkh4NNy6Ux4FyQ84ju1w+cQ1xg4M3VW03Wfo9EfCbMxnUTX1Drm7+xGKdesmpZMjt7pBraowdqAbFMcODANdB3pVCDRVIeb3kVsrUFgvMjTdf3O4b/exCWbXt1irWByMDxDItGmoXmbenKXSbuNLBsk8/gQdadB7ZJgjx6cIRQMsXlllavowSxdW0HtjZDI9hHsCvH5xjni6wu7hPFc6XkI+lV1HRlFNi5cubWJZfnR/mHDHodW+iOFNYRci7P/qINnFVex0m4HHxqHfpEcRpN7SMW0vbiPA1NEwsfEkeq3GarmArphsnlzkN/7zTzK/us7575yj4LYYmUxTDzVZLK/ja7jEhUrRlLR7fUTTEUoeyXdefQW13mLq2c/SWFpjcM8Aq1c3GdnVT2IoTsg0sZoWw3sHuHzyKo7lsLAvSUxNsDv6GFrQh2HqpHf1UG2sE9X6Gd4zwEqxTLWuMJZ8O4Gn4eSRriDquXeQXC9XKTdbTPTH6OmN3HO7+6Gq6j3LlD4qrJYqSCdPX/jD3RB43zzqSe6IR0HyA46qqfRNpO8QCLiBrnZdPqJTntvmP11pd4fr3uFNWMlXUbUyvlAfQggs20HKCPGhY8TukgjScRxajosQgpCmszGfJbucIxQL0mnbuI5LfDxFSGjUN4so46Jr8zXswes3EXqF03N1rHAAf9BL3Ahy6bWrjB4YpubYXDyzyMJPrpBdz3P8q8eJBzX8MT+eSIb9h4/yhCfFgr5K7xOjLJw+QUBbZdwbIe338PIP3qDkxoi5GkeeHMBtQaivl7MvXOXpXz/Oa8//FMXVGRrrEDAUtt6qoyXqbJgF1C0P0aqkcP46+XqBf/V7C/QMDCHHe9kfDFD12ow3+/DZHpqaSfHSBvGpXhJSRxwcYsus0xNNsXZtkRf/9i0i+zIcPzzFuVMvMza5h+p6mY6hsXRtg61Wg0NPTpEZTjK3tMlgYg/egJ/lmVWqhRqxYT9LM8s4CS+aoeEU60zsvt1CTXGSzGzmODzo3lNUIurz4jf0bib1h7wn+DAJmgaO7EVoD88p6H50nzmJucM55YfC+9du/djwKEh+CIgm763beQMhXOhcROqTCOGlbudpOUUSnu7QaKVQpbhZRlUdfL5r+EIxwMt6uUo+V6bf5yeaCuO67m01esOxbpbsVrXORqPBvqd3Y7U7aLqKdCXlRpPL61kOD2ZI3JJRuza7gdcPkfAGid4UPsXD/JtzTB4dZe/TU9StDo2wQVwaOEdGuLqUpXPiAkf3LuKKIQx3iPF9n0Ztb/Ctf/5jrpXa/PrXPkFIyxD5pTirWxVKuTq1hcss5f0ojT4m9w2T/e4l1LyLkWuza49JLHGA+eIMjdZ1gu4AXi1K9vU1NufX6envEA3ohAcdGok45UCNHr2H0pUNito64YkUz37FYPmsTWlGUndcIkEf5dkcU2xBTWOkP4HYaNI+u0EunSQcTHH95DLSERgeneHdfcSwCQT8XH1rlnA8iKw0eev16/hCPiRd+7M9ex9H01UKa4WblmnNWpNGtUUsHSVgmkz1Ju6ruuTRNTy/yBfvh4T7zUE6tsPq9Q36xnsfWkNjrVyhbTvsSn20e+wfFR49UR8ZVFBTsJ2cEdCS+LW3rdl0Q8Mb8JAciCNlBpwlFmZUPEE/mYAft+Myf36JUCx4Uzv0hpSedCWb85t4wj7o6dp3ATiug2jaHBxIo4gOp5cXGE8OEfJ66GgldC2Ire1lPKnz+plrpP9/9t4zRrJ0ve/7vSdVztVVXVWdc8/0xJ3NuzeSvJeZEimblAxKACEBCoAB2R/8xbJh2B9sfzBgWBAgwZYoAhItCZREG6TJS3H37k27926YPNM5p8o5nDrBH2qmZnq6p6cn7uxu/YDana7z1jlvnao6z3me93n+z0gYl9dFqVJnqVDgTCpOug4TkqDx7TOsvn+bD38gMTsZZL9QwXIpTMYmSfzW6ywu7XDtp4t8dGuV//z8MB7bxHB4kAoytmXhzlfZ+WCB+PkUr6QucPn96xAxaW4v4pFMSoU+NLcPG8HwcAB/JExEbJPfV/EMnCIWVdnJ7eOX86gTQSaCDoZnRln8Xp6ByRihM3BtaZ+qV2VgMIZX9OML+BieTjJ/bY1gIsSfb24y19fHmbdHWbm+wfL1DbSol/5oAFWROf/NOW58tMAn719BaduEMw4q+Qr9Q1FWV/ZQh0KMerz4Ql5s26bV0KkWqkQSISRJ4HP2yhmeN7ZtY5kWVnsDSYoiJN+jX/SYDIWC2C9BO95etPVk9IzkC8C2bbDrh2rdHvWaplnCKQdOVEYihOh0ar/vb3Hfx+vyurprmrZtU82XCcZH0BxOrudyTMejhBMhlj9bRdEUoskwK1c3CMX8WJbNwnu3OP32NAxDrVxna36H5GQ/W4u7nO7zg1Viv7jNgM/E5xghmPBhWi2W1y+T8J0maMkkokEa1Qaf/OgWjX6Zc323GJr9GpKkoTd1Wq+NsvJ+le1yk2+cjVJtZ6lVK+jYvPa101wYGuTjzBa5UpHPPryN0NyMvjLBb//6efLbBdK3mrz1tRD/4t/e5OrmZS4145w7P0Y626RP1PF6PSjCREm4OTOY5Gf/wYF/SGPDsLhEhGRYYnH1J+xt+IjHU5RViXx5h/3tFsMRPyW5jNfQ0S9XCP/cHLGwn7/4wWcMJKPMnh7Gk/dxbnAAp6rw6eVldlsNXLkir39tjkatyfLyDqtX1pHOxHDaMs6qQWI0jsvvwqkoeCUZRVNIjFhg3CLYd+qhiVc9ng+KqjByehDbWOd59ZXvyFd+viZKPGeB8y8TXxojebeLxovCsiyK6RKhePDRRswugbGIrb5yoJfgcZi2TlFfp885gyKerQdhtAXr806mLrlxuBycccRxqgpCCIZmUzjcDmy7zch0BdmVBFvlO3/rG91OKQ6XRiQVplFpUi3XyefLbNTbfPPUuyjWGpZlENBS2LZNpamQLmaZuzSBYVlYNrz57mlajQKZjTViEx3BhM/+8hq2LDEXi2JaHWm/hewqZitM261S3yhwdbvKr369n5inTuRCAeKv8t5faHy0aXPWlAkG9pBoM+mTKQ0N0zc1ScUr49m3WP10gzO/NsNi9RaRvTFuXF2g0N7HZft5/c2LrLx3i8XddSJTEr/8y9NsVnz4NSfDX+/nn//+VRaCEb71i2dIBfysOqrcXNrGGDLxhRqYjXX2c2GGE2Y33Pn6t84yMDdE2JK49dEC129vwmiQqdfGqeVrvPmd8we+N8GwF6/DyeInK6QmwxgtN7FhGyHEgZKOB7Ftm2pLP9LLrBZryKqMy/PVzeB8UoTy5Vcy6hnJk/GlERN40YkKerPN7kr6RMZZSEFQz3UNZLNtsF08XCB+P4rkIOE+91wUQzSHypl3Z3HcqXN0aWr3gu0JeO5cjGU0VxRZ1lBUBZfPpN38EZaxiaJ2PM1QPMhVvcJPPl2g39nEocgsF0OsZlusXF1jfz1DYrSftWub5HcLfPLZEvObe7g8TrJbTRauxrBMQTFdxga8Xid6qYGUb9I2TPRmArNoM664OP/qJJn5dT76g3U+/bN9hmZ/EdMOcLY/jnwzy5VPM2TlBEHPeZz1Jv6WC7e7xIj2n5CcTebemeXV1+e4MObGGdJxqQ76gwGKO2VM2yLdqNHwB5Dbp/ngny/z7qlRmvkfQ7HJ28NzRKsSXtXDn/z+j2moFnWHgZry8faFt2iHx9itQ6McvtfyTJLIlitk01kUn8E737nAL79xlpHxBH6fG8u0yGylSa8vAB2d3kDEx+wbk7j9QSpFu9tSK7uVY/nK+oHP0DAtLMumrrf5ycoGuWodgJK+RaG1BsDND+dZubz2zL8/PXp8lfjSeJLPulNCtdlio1Bitr/vyH073Q5OvzV94v0Jca9WyzBNqs3WY89p9do6kWS4W7rxJJQbTYqN5qH6x0p7F92qE3GM35mvBMq9DMvFm8v4onn6w/eSDVRN4Te+eZ7s0h4BOQMkGY0EufnjefpSEULxAJpT49Xvnie3WyDh9dLX12n7NHF+lPGzQTCukS5FcQ6GmZ0dYubVKIgQkiwzFYtiiyp7hSx7S/u8+1cGWck72LtR4NMfbjH4+gSnf3WY8r/6AJ+7D4fXzU//LEt0cJJvnHWD2yCg+VlfaJEc6+sY5K1JHC2dd94ZZHu7xHe+ESfnsDn15iD5Kws0NrZJTCdoeiv09UeoFRos1xu4Bn002zV2pBbW0jYukUXKhJH8ASaScXYX9sgVLDL+LNWaxPRgHL3Y4Mb8MqX6BufOf5ud3Txvvj7D3NszLH22iqGXaVZWcfUFsRUTv5ZA1VRUTWXs3CACQaPaIJIKE+jzH/i8FtNZvA6NwXCQ8Wi4u8blViLcDRPOvDqJJH9p7oNfOA29zc3dNGdS/Uf2hv2i0xMTOBlfGiP5rNEU+VCHhmeF1+lguv/xO637Ij401+HC6LbeppzrJHg8is5a5WFcchiH5D9iSwe3GiPonULSDq6rWuo6Y+eGcSmdLFpNgelXxnG4NCzT4sr7N/AEXKgOQXTUg6reF+IRPlBG2avusprJc3Vpma+d0Snv9BMc7GPJWqSvEYNgEfOncLXsJTAZ5q1vDfLJ1hX6Sj6ciRjf/a23qBarVIt1Ws0gSxu7mPV5bqyXadacRJomaqtO9vufklX6UYvrlD9YJb8Oi5bE13/nXQJWi++OSXheS1LWh7myvE4tD0rRxGGrVK5kWDXcOPCQrjbw9CfAGaLWaOENeXCG3HhG3TQrn2E1R1krlWC9iCw5Ub3jbG+kafo0vNHODU5qOsFSxkG7BpYpsIVFrVxHcWkYVpuSOY+rNcDG1X3m3p7pev13GYuGu5mu47H7ErSke2UNT3Mz1QMcisJoNPSlNJAAUi/ceiJ6RvIhaIpCIvB0F5mbP5knNZkgEH248bmftRubBGP+hyZrRJOHm+/WSjWWr6wjOSwCcfdDw7P75SqZao25ZPzI9StFcmBZKnqr3c1evZ/B6dSR+404JroX5r1ShbDHRb5dY2HtChdTp/GGPLj9LvpTGxStKpbVhyZ3DK0QCjZBvnkpxFttg/WNfSRbYBo5anWDoD+J5vbQdJzlu7/Xz+52lu3NfXRL4d1TF7CNztfXMk2u//A2IHjtNy5xrbTLxs8ylJDQ8DB7aYb0ThqzLTF9NkPDB4UFm2CkTTA+REuvsJWDmcl38Y1G8DT3cTLLfG2HwnKR7OZ1CMVpLmxw8Y0ZcraJcCtkFvfYLKxw4dcuYQUchD2QWR/l3PAQmsfBrc0SAZ+g1ihjtn2c6Y9Qb+ksFgqcH0jg8zjB7UQTXurFJrsb2zjHo2wv7DA+FCWYiuB9M4CsyKzf3MQf9ROKBdhd2adZbzE6N4RtpkHyIcTnU/P3MmMaJvVKA1/o0X1Yj0KSBGHPoxWOHnp802R7cY/EWOzEEn/Zao3tYplzA4/uBPM0iF6d5InpGcmnwLZtsq1FAmqqe+G/n4GpJJ7AyX9k3pDnoaIBR6EbJrlWk/7RGHJfkYZZwCcdbt4MEHI7cT2ihi63UyC3k2fmtckTz+Hu++7I4xVxaypuTWV9OUNE32V8LIkn4MG2/QRxHvLMr+/sE/N5EcD4aAJZkgiGfWytpUn6U2REjYTHj8vjwhVTCTlKnBo6R63SJrORZSNX5Ed/8AMyS3t866+/i6YonJ0S9GVduCKXWF9J40m1eW18hNUPM8gtidyCl61qk3qrxbuhKOffCjAwqvLBv10m3MyyXNhgJHEKs2Ew8vY0rcsSyWScqVCIxc/WqPhkxFQfslOw0q6x+t7HvHFpGofUZPa1USzhYyNf5NJ3LiBLgmsfL7DdbOAN+/C5ISUpSJLESDRMw+miWWsR7POT2cqScLsIjCVxuB3sraXxBj2omoo35MXp7kQRwokg+b0iq9c3GJmug1CgZyQPUS3W2JzfYe7tmUcPfh7YYD+mgHrA5USRXozn2jOSJ6NnJOFA4K8AACAASURBVJ8CIQQuOYgsjr5LfNxw14Oe4ur1DSKJ0EP3o5smZcNgcCAGRI4NDWtKp1vHcUSSoUNrX3dp1JroDf2hXnGl2SIV9N0p1Hbyu7/ySxT2S2zO7zB8ehBFVVC1w/MbiYRotdv86c0lfnluirDHjT/s41TYx8rWPj++tsRvf+0i85t7DMYjxP1vsbWQZnczw8+uLvPaL16kbziKW1Nwhr3YNkylLuJ6JcWPtnOc/dZpVMvA2ZQIn3IjOUcZeDODz7bY/MEilmnzZ/MmHl3F4bPIXd3kws+HaKJwyVPhex8W8LUk9OUcyb85R1bXqS9uYmdyOAZTGMNB1N06lYU0681+4uMGbn+TD/+fj1n1uQnFwxTqdW7upjk9kKCeWye7niX+ThyAZq1FOVchGAsQ7AtgCh0rmMHlGKecq9z7bO4LpTtcDoKxAPVyA6EOHTqnW4u7RFNhnI9xw/VlJBD1f64hZ1mRGT41+FivUWWZoPvLGd79otIzkk9Ju+Bgd2uLyYtjz3zfvpAH1fnwMI3XoTGXjD+TY+2XqzQbTaIu95Hh1lqpTrVQe6iRHAgdDBFLkkQkESLcH2T58hrekKcrUnA/PqcDn9PBb54/hfsBIeqgo82bSRftUpGNhX1SfSFsW2N7aY+R04Pgd1IoVhkY7CNnC37ykxvomuDUWIq+RD/nXS4ikoYmSwSiflqZHKah8x//5H0mEqN8/ZvnaBom169tMDPuYdvM4Gk68ZhOXHabfL2BYShUDIP+V0f56NZtYqEw42Nh5H6J5Z+s83f/9s9RWc2TGI9x+6fLFNyCETXON75+lvVsgbSuM5py4VKiFLby5DUHydHzrN3eQtNUhICh2QGEEJiGyc5Chv5TPgQSoXgQ0zDRW21kRTrQa9Llcd6ptzuM2TYey4NpmybVlk7I/eXzRp9HTsGXhd6pORlfCSN5ey/DQNCP9ykUS0zDxGgbhxIoPAH3c/uyRVORRw96RqiyRC5fwzJqjJ4ZPiRPF02Gj1wThU6N6q0PF5m4MILs1Kg0W932WkIIxs4NI4RgYT+LS1VIBnyUMmW8UR9Xt/cY9fkJh1zYxho2bgQVhDKOUSuTDEE4vMm3vjbF/kaBbLPN5MUxgjE/br+Lm5dXmXl9DOnSBL7v38CHjGGaLPxsmdG5IXZX0zSqTebeiTIaWGe/OsVv/M53GEoNgN/Blb+8hsOwGInEuLJ3G1ciwo01B5cueFlTE/wXf+MMjdU8E3MhPv30fQrNIO54nFgywrXQZ8SCfobfjSNEm4nzQeq6h8ZmgbpbxZUIMujz4GQJqdkmbcAP/vIyv/ArrzF/dY2LU4PddlaNapPYUBTbstHUzs1CYb9IvdLA0E1CMT+xoXvJXqZh8un3rpGc7Gf4AZ3Xx/Veqk2dtXyBkNtFtloj4HJ22631+LJi9xJ3TshXwkj6nY6n/tFntnLd9kP3ozlUtOegilLX2zgU+VitzkfRqDVxuLQDxu5hhD1uwrOdAup6pcHSZ6ucenPqRI19FVXpihCUGi12SmUiXjeWZZOp1ujzehBCkAz6USSJVl1nby3DWMANu1V++P9e5+d/900cWgOhhLEti9xOHtWdRJZl3l9YY2JAEE+GMA0Lt6/j8fjDPi6+NdN9f+e/fprLm7tUbn2GP1DBFz6FrEjozTYlI4OwXPzsxzfxItMfbrG4n6ZWqKEu5Pl0r8nf+of/GduVIvniElrtBn7dwO+aQXJo3PzRDiqTxB0qy1dWGQgF+Bu/+CalTIXvf/8azVKWppXF5xil79IIM/0RLAAhiHpfwTlRxV9pcPrv/wputxPbrTAymMCpqeyvZ9ic3z5QuwoQigfJbOYYOzdMfq9Iq9HqbpcVmdGzh0OtT0LI4yLk6TTp3iqU0WQZ1dUzkl9mBL01yZPylTCSyeDJskuPIzYUpW/g6T27ht4mU60dqlN8kPn9DKmgn5jvyTLzAJY/WyU1lTyRQPr9uLxORuYGT2Qg7xKI+qk2W9R0nTOpTvKQYZnslioEXU4ckoL3bjhVVTj1xlSnI0mjjT/qpZRrkduCuXf86IaLrcUFZl4dRwjB3nKRkb44ezYMBHwHMnBVh8rSZ6skxuN4/G5OJ2Ms7xbA48U0TDSXhux20K4rrFxZY9QfgKibj66uYFau8Nrrl0jEBtBcMoMDfVSvVegLhNm+CbEBQW5jEbNvCkmYlIs1VMnGMRFj5epVbEvH5RlA0gRBd4RazY2o6JT2ipSCPoIeN1uFEk5FId1osPz+DcYujSON9pGIBFEVGdu2Wd9IMzI72DWA28UypZ0iatNgZG4Qj99NbjuPdadLS7Peot1qozlVJFnCaBvYtv3QDErDalEzMvjV1LHhRyEE5wefb1Zlj5cH6SXQj/0i8MKNpBDifwL+OhABmsAHwD+0bXvjzvbfBf47IAFcA/6ebdufPO1xS9kyWwu7jyUAcD+SJD0TfSLTttEN85Hj5pJxlMfwIg3TQhLiwDrVzOuTj2Xo7iKEwB9+eMJDraUjSxKNQo1aqc7AZOfCureRwfSocGd9UlOUYy+6/oiP0+/OsrCbIRQP4bvTYFpzqCiKzM5KmgYWP//NC1hqgY38NhvXJUJOJ3OvT3fnmrXalFZ3ODWewuV1ER1KcDufZ/Ont3G1LBp9LjSPg8Hxfmi02S9UyKgWupbCHRoh3NonEPVg2zaLS7uoQoKSRq1kUy3UiF0q8MP3rvLar11i58YWDcNgzyPj0C3sG+ukJmKU4jW2d9aI2IPom5uMjrioynFOJWJsF7fY3y2S3S+yd3uFNyIupuJRyrkKmt+JMhzCF/ejmzVkSaPabLFtNLgwnOh+DveHULPbOW7+eIFTb01RK9a4sV2gf7SP8XOjR57n/Y0Muco6Z+aSfN6aoT16fNH4PDzJPwD+F9u2S0IIN/A/An8IvCWEeAf4J8BfAb4P/JfAnwghJm3bPl7H7RF4gx4Gp0/ekPh54XVoTMQe7ZE+bnh4OZPDqaoMR+55qE9iIE/CdrGMU1WIOFRMz73wYD5fwaV2vPbcboFA1PfIOUhCwu9xoSoyBWGxn8kx3hdh6tI4W/PbzN9YJ5AIEvc6CPQP8L2ry4yOJtnbzbFVr3F2OMXc3Ag7C7u0GnonvNkfYkIV7LtrLP/5dZQVwcXffJ2wx40mS8SH+5gTY2TWMghLZfzcGSzL4kcfXOPimzOk4mHausHS5RX2ltMkfB5+5zdPkxxPURxJorfafPjRJ4T0DJXTYcxBmUBcYX8twuJOkfBAlN1Gm7iio+ttNj5dRGOHX/29t2k7+gl73NQbLVavbzBxYZSLQ53v5UrxNvmKxOn4FMPhIM6HeIb+iI/h0wOkJhK0W21C8SBbi7sPrXGNxvsIhsMn1g2+S7Pe6nirTxHy7/GSInqJOyflhRtJ27Zv3/enACzgrnv3t4E/sm37zwGEEP8r8A/oGM3ff5rjyor8hVcgMU2T9RtbDEwl0JwHM0FHIqGHZjs+ayZj98pNPAEPpmXRaBucvjCObppYlkVmM4vTraEEjv+KKbLUDT37nQ5caucirzlUxs6OMHqmk/RjG0sokpdf+aXXWc0WWLy9RTIVRZUlNEVm6swwpWyZpU9XmXtnmut/eoXUVJLv/s67tHUDt8eFaVjImspKOsP68h5fe+MUrYbO9dsbpMsVyhjI1SoD/RE0h8rMq5PMr+3TurHKyGgGTbEoZxO899F1nJYgGp7Eo9XYvtrANdpHIJLgzakoll8lv5vHHZD53j//FI/fzfAbl1gqm0xFbLL5Mv/mB58yPZFkXLt3M5TyzOCTdW7tpRkKObn64Qa+VB+z453EHNOyWErniEoq/ogPIQSaUyM21Ic35D1gIC3LwrZs9KaOy+vC8QSJq0ufrZKa6CcUP35poMcXD0FPceekfC5rkkKIv07HY/QDBvAP72w6B/yLu+Ns27aFEJ/def4rjxACh1tDHGEMX2SX8wfXtfK1BlvFEhcGk9yVVHgcQYK7eO4rASnnK+yupBk/N0y93MAfmehui/u99L8+i/sBTysQ9TPzugvanzJ5IYQnHMHQTQIRP9tLu/z0gxuc+fop4okQGYdGoVrHrrVxtC30fB0jW2F4qpO8VCvXMdsmQxMJokEvn9xepb89zcCIk1ca42ys7qNFg0yEg4yPtllZ32coGaJwO8MHC6s4XC0GXEk8oRCn3pzCEfXxw49vsvfBFi6nymzAx0gs0glb15osFookAj76fJ5OQbm1yMfrKzj999bTBQKnquIL+NBiBw3X3WSmuyx8vIwkS9iWzfSrEzwObb3Nxq1txs8P43T3Ooh8Wekl7pyMzyWOYtv2v7JtO0Bn3fG/p7P2COADSg8ML9IxpocQQvwdIcTHQoiPM5nM85ruS4MkSaQmEt0EDdtYxjb3n+kx9svVxxZf7/N5OJs6qPSzt5YmvZl96GtabYPWnY4Z6c0stVLt4PaGji/kplqssbW4e2+/pQpt0zpgIFezBbYKna/NZqbAbrWfzLZBMV3i5ocL5HYLlIwWVY+M4nPgc7sIDob4/ntX+MHVBdw+F9/+1nkmUjGckoxtt6hmPqSQydA/U2PXKDI1msLv9pKp1snpOpqqUFvPs7Wwh9vnIhj1c/vTDzn9Rpzf+1vfoS+c5Opf6Hz249t8urRN2OPmojvI8HSKRq2Fz+ng5rV1yuUqCz9bJunzYFda6E0dTZER6hSv/+ov4HBpFNIlNrezWLbNcCR4rJaoaZq09TaDMylGzwwxcfHodcrjkCQJl9eJ5tR6dYY9vvJ8rtmttm3vCSH+GbAihBgCKsCDqZhBYPkhr/+nwD8FuHTp0pfytsg298AqINTZwxtFEJ5Rr0nbtrFtqOk62hOUyzxYquL0OI7tQLFVLCEQjPWF0ZttHC4Nw7So6ToeRWF/LU3/SIxgXwCH28HG7W2GZlIYloX5QKF82ONCFoJauc7a5XXGzg7jDvnBrbF5e5t6pcEtpUV8rI+BSIjFdBaXpjE8N0DU4SLg96JqKqffnr5jFGRiI+dACpNv5Nhv7jE7GUeWJDx6jXg9Q9p0UlBs1FqDSCrE/7eyghaScQSzCD3CsOQicqYfu21hbxa5+eE8p96YppQpYTRq7LeaFCWTnN5i5o1J2gJWbu2gqTLFTJlwf5BcpcbWfgGPJPPZ6jZuv5Pyeh6X13mkMANAej1LrVRn4sLjG8fuZ6nIJMePljfs8WWhVyd5Ul6GEhAF8ABJ4Apw8e4G0blinQf+6POZ2kuAFARxdMhLyM9ObGCzUKKht4/sTtI2TfK1BnH/yctRJK+DjUKJOTrrwFsLO2gujdhgp9XWaCSMEB3P5252bL5WZy1XZMLrw7BsfPeVrtx1aB5U9mnobTyahiJLLC+sobZM+iMBWlE/S+kcv/b3v0O2XMe5u8tw1Eer2sDrcBBw2gx6M3f6fHbCvNuLe0jsMzgzTKXkpJzbIzEa45zaIF0qI0kCr99J3Sfx2qtnufy9q1y/vcbo8j6Omzle+folrn50DW8oxIVvn6F/NMapd2Z5/w9/xP5WjgnDwB9uMPemRN92EvwOSlsFdor7WFE3/skYLWeeraVdvMEL2A6F0VMDmBWdym4Rq6qzv55h5rVO+FRv6mwv7TE0m0K3yzhkH7HhKJb5eHqhD6Pa6twwfVm7YHzV6YVbT8YLDbcKISQhxD8QQsTu/D0A/GNgDbgN/DPgrwohvi06V67/CnAC//5FzvNFsZEvPrL5shDOTtPm50y/3/vQ2s1W22C/XO3W6Z0Ep6rS570n+u6P+A6IvUuSoFlrcv2Ht2nrbaAjaHBhsFP24JmOsVPqaJe6PM5DXUgsyyK9keHK5g5XNncAGJ0bYuLCKIoqE3A5uTiUxOF04PY66R90ks9v06g2SQR8uDQfKOMH+nwOTidJTg6AUJEVGVXr3EPu1Wr8p/kVru/sUbNdDA2fYeXjVYZmUrz666/iHQpz4Y1p8ptNZs5+m4uXprn90yUuv3cdp8vB6bdmMAMOlvdy5Gpurqb9eBIBfnx5ga3VPfKajWXpXLm+yq3NJlMX53D7XIxGwgyFgjhVhYCqIdnw6nfPU5QsdMMgt1voNnkutbdpWw1kWWZ/PUt2OwdAfq+AeYKSo6NYzxXI1epP9NoeT8aTLHc8CUJ0Enee9PFV4vPwJH8J+EdCCA+d9cb3gZ+zbdsAfiiE+Ht0jOXdOslfetryj5cVv9PJC0pIPZa75RraQ0oOvE4HZweODr9VWzpuVe1m1m7ki/R5Pbg09YDn2ag28UcPZhc7PU7Gz41011h1w2QhnWUqFmE8Gjk2Rd0yLYqZMqMjAapmZ6AkSSRG72nZ3l1PC7ldhNxjEB7Dsk3qRh63EgZxUGZPVmTy+052lvY49eYUbl+nn+jZc+Nou/u0TRtVlthutoiPxYgnw+yvb/Px/DrKeoHIaIy8ZJFUZYZmUlSLNS6/dx1ZlQkKhe0PFnCcG2ZsLEG2Wme4L4QvKBgZVLHa21S9AfzBEK22jM/RyfwFiA9EkRWZ6+u7vNsfom2aWDYYuoHm1DB0g37X3L3PK+hG1RRM02RvLYPT4zyU2HMSZvtjSJLAtm10q4pD/mJnh38RqOk66gtqlN0TEzgZL9RI2rZt0TGSx435l8C/fDEz+nwJvgSZg7Ztk944ulzDtm0ym1kiyTDyQ0Jut/fSjEXD3b57umFi2vd+fIVaA5/TQbPewtM+2DZMCIE3eM/bVCSJkNuFLEldo2sa5pHHVlSFyQshMJaJa6+e6L0upXME3AJT3sEpB5CEfOd9tsGYB2WSSq6C3tQxDZOfvn+d8QujaKZNq2WgqjIbn6yiOyRur2QQr09xKhFDifXRSDaIJEJk9or8q3/9PqfPKMy9dZb5j3cJ9AdQHSp9yTDxkRiSJCH2q/SpTlSviqbFQAty9pzGVmWflcISTvUiHk3Ftm0kSeLbf/UNqo0W7ZbOZCyKbdukJpOsXF2jXm7gcDmwrSoIZ6ebiGFimRan3pg60bk5irufgWE3ybWWiTtPIUuHm34fh23rYJUQ8uM3Gf8qMhY9Wh+5x+dHr0r4c8C2bUzzyUJgzxohBLOvT+IJHO6HaVkdb62tGw99/fmB5IHGtBOxSFd+zrZtVnMFarrO8OzAAYN4FJIkSAX9B5KA5n+2RH6v8JDJh0A5feApo21QSJcwDZP0RgbbtsmVLqO31vE6NIRl4pKDXQOZ3sxSKDew8FNrmqSmU1z89lnyxSrLlRK2KrGxuEnl1nXapkVwpI/Tsx5OvTHJarMKgMfrIpoMI4QgGPXRaLX48b+/jm3L1MtNPvjzy3z003lSUwnWb27RrDVRHSrhZAhJlrj6/Vs06vD+v/kRXt2B3xGnWG+Q2cqx9Nkq0FEvaufrrN/cAmCvXOXG7j4T50fv1TEaS2DlO9vX0mze3jn2fN9PIV2iWb8X5rNtm7UbmzSqDVTJRb/rzAEDWa80TrZjuwHmyefR48UhhP3Ej68SL0PizleOzFaOwn6J6Uvjn/dUjkWWZaZeOX6Oiixh2yZY+yD1d1VdCvtFfGFvV03mSRmZG8LhPtp7EUKAOOid1isN9lbTuH1O9tYztHWDstuHrPjpD/j49PuL9E14ccUNFEmimC6RrQlmBvvZLJRIBCxiPi9Op8bZ6SESQT/mQJBye4uk4iCZ9CGMDfqHTuHXQ7g1leVMrqOx22hjmRbvfusctfwE2a0tfIE9Cvkyia9N0jQtQvEArVqWaCoJisT6XoZiOo98WaJZbyFJCjN9o2wv7bG5nmbqPkH9stNAHewYxJDLgetBJRz1DOKO8e8fjWGfcA251WhR3C+CHej2oOwIFajdDOW7NxXQqaNc/HSFqVfGcHmPD+MKKQBar8z5OOz2Ikg+hPziMopFL7v1xPQ8yc+BcH+QodnUowd+YWiDlQM63rFt2+ytZWjWHi8BoVBr0LyTiGJZFpVijaXPVtGb7QPjGrUmazc2se3DP3J/2Mfs65NUCjVMw6RV15lNjhP0dJoWz74ySyoxwdXtPYqNJlOvjBOuWsgNgzPJ/q6gfMDvYXokQaPWJDGUYrDvFAs/mKdtyHy4GqLStEkv7rG1s8jGrRVs0yK7nWNzfpv2ZhErU2NrqUJsZIZXvnWWqKXgUhWCcZWN/Z+Qzua4sr1HMhbirV98hVA8iNEyWLu+0U1K+uSzJTKVGrXyneQZdQev506izm6J/fk9dMPg+s4+umF0DSR0bnBOIktYLda4/dMlhk4NHFLWSY73H2oNB3TKZd6aPmAgs9s5Nm+v0FlR6fFYyFEQT9+E4XHpJe6cjJ4n+TmgqMpz01U9DttuI8TDmzg/CW29jaI6EOqZ7nNCiG6ZwuOwX6kS8bhxqgrFdIndlTTDpwa63s1dZFlCdRx9/m7uphkKBQj2+XF5nXj8Bz3NliQoVmrM9vdR2ipgDGnEB6MsfbZKcrKfxEgn8ce2WxR2r2ExwMBkkuREgkgqgkNTsPerLGzOU85WmfpmlLFkBK/LQdXj5OaP5/GGfegtnYGJBJIc4vzZBKVchUK+TDDkp2/0O6RCIaKG2RVFsHWTd3/zjU59qSRx4VtnmH5nhlomz+q1NebePsWg7zQ3drK4FJ2+wQilbJn06m2CQQeydPSan26Yx5ZweIMeZl+fPNDQ+SQ8+P11eZ3I3AA7eCghqsfxCCn04o9JT5bupPSM5FcE28yCuQ7aK0+1H8uysG27e1Fd/GSF+EiMSOLgD31rYQfbhqGZk3vMM/fVaIbiQfyRowXSNadGauLo7iJBlxNNkVGUo29EbNvGtCycisJupYFpmITiQWR1C+n+dFrbJDESJLOrsHR5lYnzo12v6vW3TnHrowVuzi8wNJ3qFu4nR+P4/tqbSLIMtn1gnXdpaYdMVudb0SBDkU59q1uT2CqUSJf2qcyvcOmNd3H73OiGwUa+xGg0hCuWJhzrnFun6mQkEsatqpiGQbtlkNvOMhrshLQ38sXumm5ut0Cj1WbbbnF+IHGsbOGDOsBPgifgwe1/40BJTY8eXwZ6RvKrghQ+tH73JOytpmnWWoyd7Wicjp8fQT2i80RsKMoR0dBjKecrWKZFsC+AEOKJvO1H9Q5tpstk1zKkvnGa4VMDtFsGbb3N+W/MHRgnJDdIUwRjOp5gJwRr2zZCCGRFZu7tWaZfnThUuO8Ldcok6tUqlqUDCoufrjI0HicuHzwhi5+u4Onz4aiAK5U4YFQFnTIXSZlGuu9nqrWtTjKNpuD2OYlPvonb6UA3TOp6G9OykaVOHZzLoXI6HOwayK1CiYjHjUtTqRSqeIOeZyo71zOQXyBEz5M8Kb01ya8IQkidC/9TEhuKMjB1z4tzuBxHtlJyuByHwqSPollr0ag2n2p+1n2SdXpTv+PR3rsYqA4Vy7LvlLfkuPr9GweyQE3TZH89092P5tTw+N1UClVu/Oj2gf03Kk2MttEt3L9Lsd7gZ++/x97mFYQQhPuDmDJsFSsH5hIdCBPpCzA4FSI8HKFWbZDdyVOoN6HcYunTVYTQDrS4KmXKVAs1NKdGdFxjM/1HGEYbTZGZ6e/rhlbD/SGCMT+O+4xgo93GsCz0VpuVq+sHsll7fPWQsJ/48VWi50k+Y2xbB2MBlKkv5Z21oirwbJc1u4Tiga6wwJNgWRY3fjTP6JkhvMFOE2WjbXY9QIBoMkw02VkzS4zFiQ5GsE2rW4/ZbOrk9oq4Il6W8nnmkv1oiozb72Lo1MCBG4LMVg7NpVEv1QknQt1tNpC48Arbeh1/q4w35KGYLnFxtBMWrettbu7u4043icQC+FMql/f22XrvOmNDcQbfGMfX58OX6MxzJZPDNmwaK9k7nTkc2LaNR3MyFBlElo/+GafXs9TKdSbOd8LBk7EobdNkPVdk5q0pHOpz+iB7vPT0sltPTs9IPnPkjvB479Q+Fm29zc0fLzB16XBZgWVZrF3fJDnRf6x3KkkSI3ODuP2d1ztcDkZODz50vBACTVPZnN/GNCxGTg+yValSi7uoGm2GwkFUWcK2WwgMzAcM7vi5kUP7tG2b3MIeyZE+RGkRw9hDmBcopstYto0dchH3eYkpDpbTu4yeGcQpw7jiZ9erERyJkroTMm41WlSbOUr1Jm5NJTXRT13ao6kLauudVl/t6BgXPZ357O7l+A8/u86vvXuBVNDf1XE1rI7HqEgOsE0EbWTpxeuxFjMlFFV5ZL1sjx4vE70r+TNGCBmUgc97Gi8UvdVGlqWHqvKcBFVTmXxI3Z0Q4pFdRe6S2cxh2zb+8Mkl1BJj96Tsxvsi5Gt1FFnqiiTYxg56o8H2koQ35Hmot9uoNSlmyhT2S/QNhGnVQ5hWAKPWwp0KUK00qZZbRJ0bxCNjbA0EO0Uz5iYOuch3f+ESgei9NdXVW6ssrnzGmdfeRXJoBEMBTLtzflwD4DeCmErHQDb0NqulMq+ODNDn7cxblmVkWabQWkMImaA2iEKasVDphdbk3aVebqA61J6RfEnoeZIno2ckezw1m7e3cXmdh9orGabFSjbPSCSIpjz6q/YwfVEhxIlbN/kjXhyuk4e5bbuFzAYonaJ9RZaIPdjtRB7B4YW5t+9J5RX2i4TjDQQmQukkMa1d3+CDP/mE6YtjuP1uxs7OUtzJs7u4iTQVRXgUVMkmW1NIRZy8dW7yzhxGiQwKNgtlyhtp2sUGY2eHmTgzQWI4ScU2+XBti0TARzlTp5yr0HBKCLdG2OPm6vYeCb+PiWQfQU07dK6D2vB97yUJdG4Ksts5ZFUhFHuwO93joRsG1ZZ+QHnpKHrtt14eeiUgJ6eXuNPjqRk5PUh85HCdnhCgyvJzbdxbzlW6XUQAoqnIkQXwD0eAUDr/f9gIIQ68B72pk93OY9tekO4ZmIlXxhj/xizevk5/yk9urHD16iqD00lSkgN3psFwOIxO/EDhvxByNznH5XUSige6CT7lbAWHbjPckKhmK9za3QiJywAAIABJREFUTrO1mycgKbjrJks3NsCGlmHQTle5/oPb6E2darHG0uVV9KZ+YP5CSN1aWdu++58Oud0CC58c2br1WKot/ZHdbHq8fPTEBE5Gz0j2eCxsu4Gtf9xJULqDrMhHFqPLksRoNIT6BE2cT8ruappq8cnbOQmhIZTRAxmkj8LldTHz2iTlPKQ32+ws76E3dW7sZjhzYRznYJitQokLE4O8+uYMgUSIYCxAajJBwO3qilhblkXbNFlMZ2mbJkmfF6ll0NYNstt5Pv7J99F8ArfXiUdWkBSZmZEE/X0BkiNxwmEvpb15Uu4WqaCfSq7C4EwKzalhGib7GxmqpYefm76BSFdlZ3dln1a9Rf9ojMxWjlL25EYv7HFzJvV8vcRqs/VYrdp6HI+gl916UnpGssex6K02rcb9pQIOkEdfmszd6UvjDw0XNuutAyUbzxpJlpBkiVZDp5St4KkZRHweRmMRYj4PXp+bhiK4vraD0Taolerd3o7Z7RwLHy9j2za1Qh2BoJStsHZji1qxRjgRZOL8JNFEHx6/u9PKzKHgcztwuRzc/MkCQpI4d3qSgNd3R+Vokr6BjlBBIOrHH/Kyt7JP2zQxH3EeXD4nvrAXf9iHbVmUaw22CqXndu4eB9u2ub2fodR8uvKgHj2ehJ6R7HEs6fUMuyvp7t9CSAg58vnNZyNDIX2yi/fSZ6uUMg/3iBq1Zrdp8fbSLrVS7dj92bZNq23QarS4+ZN53H4XfQMRBmYSeNy38KotzLbB2se3sdsdY5gM+Am2bPI7BTZub3Pth7cBCMYCDM0OYDbbKJkaWBaRRIgL3z7D6JlhZFkm6h9CvhMaTY73IztVHC4HA1NJkuNxXF4nqak5FO1oGTh/1E8kGWY5k2ercLxnWM5VUdSOxx8b6sMfCxypjft5IITg/ECSkPvxe2L2eAhPEWr9qoVbe4k7PY4lOfFyJVsISTq2GfP9TL86fqxqz+btbYQkmDg/2qlxfMSOi/UmS5kcFwcTxEdi3X1f3U4zFh6hfyyBbZWJD+SQVYlqS8fr0Bif6yTO9I/GqJc7LaZkRUZRLTSnxtw7s/fe3/1rn4ZJ2zTxODQK9QYr2TyXhjuZ0w+KkR/F8OydsYZ5UHLvCCRJHHj/AZeTgOvz73d6F+UFNSL+KiGJnhj9Seh983ociyRJRyrqfF70DUQI9p0sG1PV1GOThoZODdCsNmk1dBJj8UNi6A8SdDs5k+pHlmUiiVB33zP9fQQ8KYSQKWUFtjxLtdnm5m6a9n19QxVVwR/plKYU9otc/XCea9t7tNptPl7fonFfAlK50WS/XGU9XwQg5HZxqj9GMdPxopv1JttLu9i2zfzWPj/70c2uV2zbNra5i213emvmNrKPNDIDU0lcnpfHKPZ4vtzNbu15ko/m5bn69ejxgnG6HJx599QhgQLbtklvZLrrh3dZv7mFcUT7L49D63hiXVQ2Pl1jwu3rJi2ZlsViOotudAxZKB5k9tVJYj4vmqIwHo3gvOOZWpbN/H4Wv8uBv2ayfnMTIQT7S3t88r2r1Ct1rv3gNpVCFb2p43WohCM+pDvCB7a5A1YWbB1FlY/smLK7ss/S5dUTn6v8XoFGrbcm+GWil7hzMnrh1h4vPXulCmGP+9iWT88Sy7QopMsE+vwHBBJcXieKdvAnU6g1qOk6Ec2BqindMKgn4Mbl7XhmumEgSxKyJHG31EQIgcfj5G5ZfcjjYnNxh9xWjlPvzjIVixBwOdESIQrVOvN7GVSvRjAWQEgS06+O4wt5ufzedYIxfzeka1sthF3qti7zhcAXeqDuE9hfzxBJ3uvc0qg1aVabDw3jlrIVhCT1vM0eXzl6nmSPlxrLsslUa10P7Hmxt5buJu7Iisz0pfFD9Zbx4b5DXqcQAkkItuZ3yO8Wus+7fS6EEFiWzSdrW2QLFYbDQTRFppyrsH5r68B+yrkKa9c2sCybbLXOdqkCgMvjxO1z07YscKsMnxpAc6q0jRY35z/EEXCQk0x0w8AwLW7vN9GZOvT+jLbB7sp+Nxln+rUJUpP3hOoblQa313bRH/Ces9udcpDRuaGnFh3o8fJwV7u1F259ND1Pssczw7QsdksVEgHfHa/p6ZEk8dxr8KCjovMkdXhBt5Og24l5znPk2q0kCeKWyt7iHhv9FS4OJVEdStfLvIs35OHit89022UlAvdk9YJuJ25JOtD3UZZVXGqQofPjbBRKgGDz9hamKii46jT3ygxOJrr1q6ZhUivXsSwLWZYPeYTBWJAQxp1SkXves2lYyEovwePLSC9x52T0PMkeT4RlWdz8cIFa+V6xumnZlBrNR9bkvYykJhJHhiUfRaHWoKG3sYD1fPHI9z46meTUKxNMx6PIkoTL6yI2GMW2742VJOlgP0khaDVarFxbZ+3mJrc+XDxQrxoI+xkZnUaRZcaiYTRFJhDxMZ6MspUrUSzXsO8z+g6Xg4nzo0eKPnSOL5jp78P1gC5tfLjvRJm0Pb5YCAGysJ/4cbJjiO8KIeaFEEtCiP/miO0OIcT/fWf7R0KIkTvPR4QQ7wkhqkKI/+OB17wihLh25zX/u3iecl536BnJHk+EJEn0jxwMP2qKzOlk/EQ6rbatY7fnse32I8e+jDRqTbYWd0lXa1RarU4NpWEe2WhaCIGqyvjvK6mwzQy0rxx7jMJ+iXq5TjAWYOrVg+Hf9EaW5ctrB8aH+0O4vC4ujQ9y/rXpJ2pa/STorfZDayrL+Qqr19ZPtB/bttla2HlAvKLHFxHR0V38x8AvAqeA3xFCnHpg2O8BBdu2J4D/Dfif7zzfBP5b4L8+Ytf/BPg7wOSdx3ef/ewP0jOSPZ6YcH/oKTp/SCA0vrBfQdvGMi2m49Fuhup0PHpkqYVpmIcFEKQQKJOHx95309A/EmPk0jgL1TKK86CHF04EGZhKdDVanweVZotP1rcfGYZe/GSFwn7xyG2aU8P7GB66aVpH3mj0ePY85+zW14Al27ZX7I6G5R8Cv/7AmF8Hfv/Ov/8d8G0hhLBtu2bb9g/pGMsuQogE4Ldt+yd2567sXwK/8RSn4ET01iR7fC4IoYAy+nlP44lxeV0MzaRONLZZa7K1sMNGq8ZELIrHoXXevzhoPGzbZr9xk5A2jEu5kyWrqcz29x3Sv1U1FVVT0Zt6t/YSYLd+i0xOYcSfxB94upZUbk1lLBp+oLylQylbxh/pyOFNXBhBdRzdPszpdhzbA/R+hBBdAYQezxv7ea9JpoDN+/7eAl5/2Bjbtg0hRAmIANlj9nl/xtvWneeeK1/Q2/gePb44eAIezrwzS9zvw3FMKFoIQZ9zCqccOPCcz3nPyOhN/YD4uObUiKbC3U4oXiVBaV9nb/WelGAxW+aDf/djzPuEDZptg6Z+ONRtWVa3HnL9+iZUD4c+23qb9ZtbNOudbQ6X46USnOjxaJ6BmEBUCPHxfY+/c8QhHuRBF/QkY55m/DOh50n26PGcaOttJElivVDC49DoDxzfCNpoGwhUhPrwXIRaqU5up3CgOXN2O09hr8j0qxP4tCDvXgoeWCPUHDoe7zam0UaWZbYWd/nZ/gLhUImvzX4LIXlpNVpoTo1Spsz20h5zb88Q6g/i9h2ui1Q1lTPvzj5Uzcg0TPbXM8RH+h6aKPTg+Kdp2N3jyZCfzr5kbdu+dMz2LWDwvr8HgJ2HjNkSQihAAMg/Yp/3hxqO2uczp3f716PHc2JrfofdlX2Cbicex6O7pmwv7bG9tHfguUqzxbXtva7RC8WDTFwYxbZtDKvjyUWSIUbPDB143f0GzOWNcPEXfgHN0TF4/rCXt6dGOjqwonOfvPjJCsVMmVA8yMxrE51jxQIP7c15XFKhaVrUK40D2bX3c39ijt7Uuf6j212vtMeXhp8Bk0KIUdFpGfTbwB8/MOaPgb9559+/BfylfYyqvm3bu0BFCPHGnazW3wX+47Of+kF6nmSPHs+JwZkUpq2jixJeNfHI8QOTh8c4VYWYz8vm/A6SLHXHtKwK+dYqEWkGo2UcKB95ECEEiHshXH/Ehx8fMNx9burSeHdd8WmzYjWHysT5o9ebLcvi9k+XGDs7jC/kRXNqTJwfOfG6ZY9ng3jOa5J31hj/AfBndApv/y/btm8IIf4H4GPbtv8Y+D+BPxBCLNHxIH+7Oz8h1gA/oAkhfgP4Bdu2bwJ/F/gXgAv40zuP50rPSPbo8ZxQVAXLbKG363B0XkuXVqPF8uU1Ji6OHQg9qrJM3O+lLmTEfQk0TtlPzDlDYadKMV0iOhChmC1T8ilM9IXxOo82OrZtAhZCHJzQ/UIFzxNJkph9ffLA8Y4z8D2eH89bOce27T8B/uSB5/7Rff9uAn/tIa8decjzHwNzz26Wj6YXbu3R4zmiyR4iznGgo+FabnSSYkzTPJCAozpU4iMxVO3o+1a3z3VIJUeRHPQNRIikwti2jT/kJRX041SPscjmJhjLANQrDZY+W32ufSPXb26yv5458Nz9BnL12jqZrdxzO36Po3kRYgJfFnpGskePF0S+1mCr2DGMzWqTzdvbWHcUeiRJOtB+63EoZcoIIJII0efz0Kw02F3dP3Ls/9/evUe5edd3Hn9/JM395rnbY2diJ7GdG5BNU8g6oS0Ny63L0lPKktKedtlus4fCoaHd3VLKQrYlUEq2hbbQNtzacja9ZZeeHEoLoRBaEgM2Cc0NO7ET3+I447HH47nPSPruH88zjkaWZp7RSHo0o+/rnOfM6Hke6fnqsUdf/e5zc/2QugyAVGOKzt72kq4ZVe9QD519xTss9W7toaNn9TMdubVLkC15qyeeJJ2rks1dHVy9ZQAIqhivvfmqJUMnJhaev9AZpxgzu2hw/45rh5dMHWdmBTvNzE7PcXDfERbCSzQ2NTAw3H/h+MjxUU4ePnXR89aifVMbLW3NmNmSISiLOns6vD3S1TRvk3RuFczSgF3UplcO89lpmhKdQPGkcezsOLPpNLsH+4qe09HdXnAe2ubWJq66cWfR9seW9uaL1tAsl5Fjo0ycneSKf7N+J5DYSBZXAXEr8yTp3GpkjgIGqSvK/tK9TZeveM6WrnaiLlZy+sQZmloal8zIs1wHnVImeI+qd6h72WpXV33JOqs2LVXVq1sl3SnpWUnnJY1IulfScHjs5yU9JGlM0qikf5D0kmrH6FxRyUuDLSaNqRTNEYdoZDNZMpnKfxCmF9Irdv5JNaR8weYaUoYZd+pGHG2SXwCuM7NOYDtwjGDyW4AO4IMEMylsBR4GviqpJYY4nbuIlKpIVetazE7PFewhOnhpf1UWSj647/BFE5xns8bDx55jYjaeSQKy2WzBNlDnVqvqSdLMDpjZ4pIIArLA7vDYJ83s/nAW+Dngw8Bm4Mpqx+ncejE/O8/kuSnMstj8I1h2oiyvu5DJ8PCxk0wXmOM112Uvu5RNeck4kRDbe7tpbYznC8WpZ0c48vjxlU+sW0ZS2ZK3ehJLm6SktxGsC9YJpIFfLXLqLcA0cKjI69xGsLYYw8PDhU5xbsPr7Omgsydo77PkMESseJnPTtOYaC16vCGZZLini+YV1gctVo3a0xa89nw6zcjEFNu6K1+qXdR/SS/ZKlQ1r1eCqEte1b1YhoCY2T1m1gVsAe4AHss/R9Iu4DPAr5lZwa/GZna3md1gZjf09/cXOsW5DeXE2DizC+mix5XsDZbhWkE6O8fo7EEWsrPLntfX3lZwqaxCMulMwTlY5zNZJufmKzppQb6Gxoai8866gJcko4l1nKSZnQI+DXxJUs/i/nAF628Ad5nZn8QVn6ueTDrDycOnvB1pBVPzC6Sz0T6kzOzCslf5UokmBlteQkOifJ1pzjw/xtEnTyzZd/7sBPNjU1y5uZ/Z6bmqJkpXnBTM3VrqVk9qYTKBFNAGDAFIuh54APgdM/vdGONyVZTNZpmZnC26coQL7B7soz3CiiIAE2cnefp7z2BmzKfTTOZ1oklGKHFGMT0xw8F9h+gd6uaK67YvOTY/u8DcTFCKfPp7zzBxdrIs13SuWqqaJCUlJL1L0kD4eBvwSeAIcEDSTcA/Ae83sz+sZmwuXg2NDVz+su1rXoHCvaizt4OrbtyJJE5PTnN8bHzlJ0U0PjPL0yPBAvKNzQ30DnWTTCZ59uw5zk2/WHrtG+phy45BJHHVjTuXjNl08UpiJW/1JI6S5BuAxyVNAd8h6JjzagumMvkQwcKbvydpMmd7ZQxxOrfuNYS9S7du6uTKzeVrt29IJmlrDEq0qYYUfVt7AWhraqSxyALKDWXo6erV8eURjJP06tYoqvq13cyyBEmy2PFXVTEc5+qKJMyySGv/btza2FBweMdgR9uS+WgLmRibJJFM0NYZ9H41M0YmpuhrbyW5wnN/sPcptu0eYlN/9XrKbkz1VyIsVS20STq3LixkMpydmo47jJJNLZxmdO6psr1eNptlfnb+wuPTJ85w6JFnAXjh6GlOHRkp+Lzx0+eXtE2ms1lOnZ9gIcKQjR0vGfZVQ1xVeQOQcxFNzs1zfGz8wvi/9aY51U3DMuMiV+vsqXOMHBulbecA6WyG4YFO2rqC12/paKZYQWXbrqEljxuSSV62bUuka/oCzeWxWN3qVuZJ0rmIultb6G5dvzMkJpUimVz7n/yZ2cO0pnrp3dJNZ28HaUHWjIbGhgvtjouTG7ja5ROcR+NJ0jm3Ki2pTaQSzUgimUowNTqxZD3LRaOTU0xNzcCZGS65cuuKbZWuenyprOg8STpXBWazkD4OqcvL0nEmTq2p3gu/z03Pc/LwC3T2dZBMLu3VmpCCxJhMIEWbtSeK6YkZzOxCxx9XGi9JRuNJ0rmqSIBSBK1BG0drRwvX7NkNBKuRzEzOXlh5pKetNWi/LfOMkedGxslmsp4kXVV4knSuCqRGSO2IO4yKmF1IMzE7R2p6gbEXxiu+PNfQ5Zsr+vr1QFB3c7CWypOkc3Xq/PzzGFm6Greu+rmnjoxgZmzZMcjM/AKjk1NctWWgYNukq0Xmq4BE5EnSuRpw6sgIs1NzbL/mkqpdsylZ+njD1s4Xe/l2t7XQ3VZ6r9/5dJqzUzP0tLVemK3HzDh2dpwtXe00rrBUl1s9yUuSUa3vHgTObRCtHc1Vn3KtKdlBU7K0oRqdPR00NKbKEvPY9Cz7jj7H6cmpC/vMYDadJuMT3ldMgmzJWz3xJOlcDUg1NiC0bpaSeu7ceR781hOMvbD2SdMHO9v5iWt3s3VT54V9iYTYPdhHSxnmey1FJp0hG3FJMrexeT2GK6v5dJq5dIaOZl/wdjVaO1q47KWXxh1GZJtamrn+5qvpaS9PD9OoCztXy9EnT9Dc1rRhOwkJI+njJCPxJOnKamx6ltOTU1w7NBh3KK6C2poaaYu4ruVaTI1PkWxI0dzaxEImQ1KJggl17IVzmBk9m7vLct1tu7aQSG7cijbh4ySj8iTpymqws53BTp+Aup6YzUN2FCWHVj55lU6fOEtzWxObtw9w4NRpettaGcqpll2UyWSDhswyaWyu/BeAuPncrdF4knTOrY3NQ/YclthS1pl1gCW9fXcN9JEqUrrrG+op63WdW+RJ0jm3Jkq0Q+LqSOeePztB+6aV15wspKnBP67KRZhXt0a0cSvdnXM1JZPJcPSJE8xMzMQdigOSspK3euJfzZxzVZFMJrnmpt2+GkgNENTdeMdSeZJ0zlWNJ8haYT7jTkT+P9Y5VxVjL5xjYX4h7jCcWxUvSTrnquKFo6dJNiRp6IlnFh33Ih8nGZ0nSedcVVz58p1leZ3RySlaGxtpjWnKuo3CVwGJxqtbnXPrytmpGabn5+MOo6D0QprHv/UDZiZruwevFLRJlrrVEy9JOueqbmx6hnPTs+zoW/00crsG+yoQUXmkGlJs3TVEU2vtz12c9JJkJF6SdM5VXUMiQVO4duRKzIz5ufXT4ad7oMt78W4g/i/pnKu69uamgnOwFnJuZJyn9h+ucET1ZXGcpK8nuTKvbnXO1bRNA120drbEHcYG4+Mko/Ik6ZyraZJoaqn9Nr71JBgC4m2SUXh1q3POOVeEJ0nnXCQnxsYZmZis+HXMjNnpuYpfp5hMJsMzjx5lbia+GKohISt5qyeeJJ1zkTSmkjQmK99CM3F2kqf2H8bKuIjyakiiua2JRJG1KzeCxaWySt3qibdJOuciGehor8p1Onqa2P3DvWVfwDmqRCLB0OWbY7l2tXibZHSeJJ1ztcUmaUyNAINxR7KshewsKTUirc8SZ71Vm5Zqff7rOuc2LCV6UMNL4g5jRWfmDjGTGYs7DFdhVU+Sku6U9Kyk85JGJN0rabjAeR+VZJJ+rtoxOudqw/jMLJOztdmBpr/5SlqSPXGHUZLF6tZSt3oSR0nyC8B1ZtYJbAeOAX+Ve4KklwOvB56venTOuZoxNj3DuZnZWK5tZjz72NGik5UnlYqt3bQcPElGU/U2STM7kPNQQBbYfWGH1AR8FrgN+MvqRuecqyXbe1c/AXq5BL1cmzdkL1cBifWb36sqlo47kt4G/DHQCaSBX805fAfwdTPbu56/pTnn1r8tl9V256HS1V+JsFSxJEkzuwe4R9Jm4BeBxwAk3QC8BbguyutIuo2gxMnw8EXNms7VlUwmQzIZbWUN51w0sdYjmNkp4NPAlyQNAJ8H3mlmkab1MLO7zewGM7uhv7+/kqE6V/MO7jvMmedrr7fl+TMTPLn3YNxhuBzBKiClb5GuIb1O0kFJhyS9t8DxJkl/HR7/jqTtOcd+I9x/UNJrc/YfkfSYpO9L2r/6d756tTBOMgW0AQPANcD/yalm7Qb+WNLrzexnY4rPuXVhx7WX0NjSGHcYF2nramXbrqG4wyi782cnaOtqXZ+ld0Gygq1ZkpLAJ4F/B5wA9km6z8yezDntF4ExM7tC0q3AR4G3SroauJUgHwwBX5O0y8wy4fNeZWajlYt+qaqWJCUlJL0rLDUiaRvBjTwCPA0ME1S1Lm4ngfcB765mnM6tRy3tLTX5gZ1MJens7Yg7jCXSmbVNrXZueobH/vUZpsanyxRRdQmRXMMWwcuBQ2b2jJnNE4xgeFPeOW8C/jz8/V7gFgUlpDcBf2Vmc2b2LHAofL1YxFHd+gbgcUlTwHeAaeDV4Q05kbsBGYJvGmdiiNM5VwEL8wuxXn92Ic3Dx08yu5Be02tc8tJL6eypreRfRX2S9udst+Ud3wocz3l8ItxX8BwzSwPjQO8KzzXgq5K+V+CaFVHV6lYzyxIkyajnb69cNM65apsan+LQ949w7U1XkkzFU+ptbkhx1eZ+mhtK//jb3LX+k+MaS0ijZnbDMscLFTfzu9MWO2e5595kZifD2sj7JR0ws39eOdzSbbwBQM65mtXa2crO6y+LLUEu6miu70WcBSSlkrcITgCX5DzeRtB8VvAcSSmgCzi73HPNbPHnCPBFqlAN60nSOVc1kmjtaIk7DAckUMlbBPuAnZJ2SGok6IhzX9459wG/EP7+0wTj4y3cf2vY+3UHsBP4rqQ2SR0AktqA1wCPr/lGrKAWerc655yromDu1sp1bzWztKR3AV8BksDnzOwJSb8F7Dez+whmVvuCpEMEJchbw+c+IelvgCcJJpt5p5llJA0CXwxHP6SAe8zsHyv2JkKeJJ1zzpWdmX0Z+HLevg/k/D5LMHlMoefeCdyZt+8Z4GXlj3R5niSdc64ORaw2rXueJJ1zrs6IyB1w6p4nSeecq2Hnz0xU5HUT3m8zEk+Szrm6NnJ8lMxCpmZX/Ag6fJZXMHerlySj8CTpnKtrLe3NZNKZlU+MSVdfZ9wh1DVPks65utbR3X7RPsuchkQXwRC/jUgk5dWtUXiSdM65fNlToAbYoEkyqG71JBmFKlHfHQdJp4GjZXipPqBqy7DEyN/nxlEP7xHq+31eamZlWzRX0j+G1ynVqJm9rlzx1LINkyTLRdL+FSbu3RD8fW4c9fAewd+ni4eXt51zzrkiPEk655xzRXiSvNjdcQdQJf4+N456eI/g79PFwNsknXPOuSK8JOmcc84V4UnSOeecK8KTZAHhith/KulpSROSjkn6mKTmuGNbK0nJ8L2cDt/b/5W0lvFSNUfSRyU9Iem8pJOSPi2pJ+64KkVSQtJDkkzStrjjqQRJr5b0bUmTkkYlfSrumMpJ0mZJfx3+XY5J+rqkqq+d6C7mSbKwFMFg3jcCm4BXAj8OfDTOoMrkvcCbgFcAix+oX4gvnIrIAD8H9BIs0roN+HysEVXWe4DpuIOoFEk/BtwL3EXwb7oN+EycMVXAp4AeYDcwCOwHviT5elZx8447EUl6J3Cbma3rb3eSjgK/ZWafDR9fDhwCdpjZkThjqxRJPwHcY2ZdccdSbpJ2Af8AvBl4BLjEzE7EG1V5SdoLfNPM3ht3LJUi6VHgj8zs7vDxbuAA0G9m9TDLUM3ykmR0twCPxh3EWkjqAoaB7y3uM7PDwHngpXHFVQXr/t+uEEkJ4HPAfwfOxRxORUhqA14OzEp6OKxqfUDSRpuR5mPAmyX1hc06twHf8gQZv7pLkpL+LGy7KbZ9qMBzbgduBn6z+hGX1eKaO+N5+8/lHNtQJL0Z+CXgV+KOpQJ+BThlZv8v7kAqqJvgc+qXgP8EDAFfBb4saVOMcZXbg0ASOA1MAj9F8J5dzOouSQLvAvqX2T6ce7Kk9xC04/24mR2rbqhlt7jEeX614yaC0uSGIuktwKeB/2BmD8cdTzlJugL4NYL/zxvZ4v/Zz5vZo2Y2D3wEaAD2xBdW+YQ1Al8DniL422wF7gT+RVJtrgRdR+ouSZrZpJmNLrNd6AAh6X8SfBD9qJk9Hl/U5WFm54BjwPWL+yRdRlCK3FDVkZLeDvwp8EYz+0bc8VTAzQRf6h6XNAosfgl4VNIvxxdWeZnZOHAEKNR5YqN0qOgBdgB/aGbnzWzezD5D8Pl8Y7yhubpLklFJ+hjwXwgS5MG44ymju4Ffl7RDUidfADFuAAAF1ElEQVRBj92vbKROO5LeTdAT8rVm9mDc8VTI3wCXA9eF2xvC/a8B/iKuoCrkU8DbJV0tKUXQBjsLPBRvWOURtjs+BfyypDZJKUn/GegAHos3OueLLhcg6VLgvwHzwL/m9MI+ambXxBZYefwOQTvPPqAJuJ9guMRG8gkgDXwjtwe9mV28BP06FdZ45NZ6LP4tnzKzyXiiqpi7CBLG14Fmgl68rw9LmRvFTxJ03jlKUJV8CHiLmT0Ta1TOh4A455xzxXh1q3POOVeEJ0nnnHOuCE+SzjnnXBGeJJ1zzrkiPEk655xzRXiSdM4554rwJOnKRtIdRebD/VqR828Pj9+bt3+5+XV/Jue8B4qc0xwevyV8fHPe678j3P/+vP07w/1vq8a9kNQp6eOSjkialvSD8J4o55x+SX8g6buS5iUdiXDti+5rnPfCufXMJxNw5TYOvK7AviUkDQAfIJjQOd9vA3+St+8dwNsI5rjM9Q3gfXn75sKf3yFYW3IP8K2c43sIBuLnz/25+Lhcs/SsdC/+DPgRgvgPAa8Cfg8Q8PvhOVuBtxK8l+8DA8tdcJn7Gve9cG5d8iTpyi1tZt+OcN5HgL8HLsk/EC7fdTh3n6TPAl8zs/wP/7PFrmdmk5Ie4+IE8G8Jpm57qyTZizNq7AGeM7OjEeKPoui9kNRKsPj17YtrCAJfl3QNcCsvJslHzWwwfM5dwE+vcM2C97UG7oVz65JXt7qqk/TDwH8kWF0lyvkvBa4G/rKEyz1IkAgWX2uAYM7TTxBM7H5Vzrl7qN58oCmCv79Cy5ZdqG41s2zUF4xwX2v1XjhXszxJurILJ2jO3XLb2AT8EfC7ZvZcxJe8lWBC678rcOw1YXvetKSvhAk110PAQLi0FARJ4jkzO0Cw8smeMK4ugkRc1urFYvfCzM4TTFL+PyRdJ6lD0r8nSHKfLOE6Ue5rrPfCufXIk6Qrt15gIW+7Jef424HNBJNWR/VW4MthYsn1TYKFh19LsJL7MMEafNtzzlksDe3J+bk3/H1vzv4bCf4eypkYVroXPw8cIJiw+zxwH/DbZvbnJVwryn2N8144ty55m6Qrt3Hg1Xn7DsKFEsqHgXeb2UyUF5P0CuAy4Nfzj5nZB3Me/kvYc/QAcHu4YWZHJD1HkAD+Ivz5xfA53wZ+M/x9sQPL95eJJcHSL5bZFapDi96L0O8DryBIcM8QrBF5h6RRM/vsMq+bH1ek+1rOe+FcvfAk6cotbWb7ixx7H3Ac+KqkTeG+FNAQPp4ws0zec24lWJ3+71e6sJmdkvQgOYtKh/YCeyQ1AD9EsB7h4v7dknoJEsN3zSy9zCU+AOQm5v8F3LHM+UXvRVgt/A7gNWZ2f7j7nyV1AHdJ+vwq2iNXc1/LdS+cqwueJF017QZuAMYKHBsDXknO8ISw5PYW4O+iljxD+eu/PQT8FPCjBCXBRwDM7JCk08BNBCW6P1jhde8GvpTz+OQqYsp3Zfgzv7T2CLCJoKq20PCYQlZzX8t1L5yrC54kXTW9H/h43r6PE1RLfpCLV2H/EYJxgpF6tUoaJPiQ/1zeoQcJEsJ7gIfNbC7n2LeB/0qwqO+yvTnN7CRrS4y5FodWXA98JWf/DwFTwOgqXms197Us98K5euFJ0lWNmT2ev0/SOWDUzB4o8JRbgTPA/fkHwurKjwB/S5BwhoHfALJcnDAeAWaA1/Pi+MNFe4E7CUqfe6me/eH2OUkfAJ4laJO8HfhEznhFJC2OjdwFtOY8/qaZnV7lfa3Fe+FczfIk6WqSpBTwZuDeIm1jZwjGE36EoGpyAngA+EkzO5Z7opktSNpHUDLN//DfG77Ok2ZWqLqyIswsI+mNwIcI2jr7CZL9HcD/zjv9b4s8fhXBe17NdWvuXjhXy5TzhdU555xzOXycpHPOOVeEJ0nnnHOuCE+SzjnnXBGeJJ1zzrkiPEk655xzRXiSdM4554rwJOmcc84V4UnSOeecK8KTpHPOOVfE/weD6TmjDDdenwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAF/CAYAAAAirDIZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeWycaX7g9+/zXnXfLN6XSN1Hq9Wt7p7umfGMZzxjG9nxxPCZtbPGJrCzcAwjSP6IYyC7wcII4kUSYIFdbHYc23C8MbzOOs56x/Z6bPecPT19674p3lexDtZd9V5P/ii2JEokRbElsVv1fICCWPW+9dZTFMlfPcfv9wgpJYqiKIqiPEjb7wYoiqIoyseVCpKKoiiKsg0VJBVFURRlGypIKoqiKMo2VJBUFEVRlG2oIKkoiqIo21BBUlEURXnshBA/JoS4LoS4JYT4jS2OB4QQ/3bj+FtCiPGNx18WQpzbuJ0XQvzkbq/5RN6HypNUFEVRHichhA7cAL4ELADvAP+ZlPLKPef8KvCclPIfCSF+HvhJKeXPCSHCgC2ldIUQA8B5YBCQD7vmk6B6koqiKMrj9jJwS0p5W0ppA38MfPW+c74K/MHG1/8O+KIQQkgpG1JKd+PxIJ3guNtrPnYqSCqKoiiP2xAwf8/9hY3HtjxnIyiWgQyAEOIVIcRl4CLwjzaO7+aaj53xpF/gaenp6ZHj4+P73YxPDM/3kYChqc9JivJx99577+WllNnHdb0e0S9t7D0/v0rpMtC656GvSSm/ds99scXT7p/b2/YcKeVbwAkhxDHgD4QQf7XLaz52z0yQHB8f5913393vZiiKojx2QojZx3k9G5tXtC/t+fl/6/9JS0p5dodTFoCRe+4PA0vbnLMghDCABFC89wQp5VUhRB04uctrPnaqG6Fsy7Edauv1/W6GoiifPO8Ah4QQB4QQFvDzwJ/fd86fA7+08fVPA69LKeXGcwwAIcQYcASY2eU1H7tnpiepPH6VQo38QoEjLx3c76YoivKYCW2r0ctd8nc+vLEy9deAvwZ04PeklJeFEP8UeFdK+efA7wJ/KIS4RacH+fMbT/8M8BtCCGfjlX5VSpkH2Oqae38Tu6OCpLKtzECKdH9yv5uhKMrjJgSIJzuQKKX8S+Av73vsH9/zdQv4mS2e94fAH+72mk+aCpLKjoT4CJ82FUX5WBJ8xJ5kF1FzkoqiKIqyDdWTVBRF6UZPeLj1WaGCpKIoSrcRgBpu3RUVJJUtSdkC2UBo6f1uiqIoj53oLN5RHkoFSWVrfhX8NVBBUlGeSUJV29oVFSS7jPQbIHSECOx4ntCzoD+2KliKoiifSOqjRLfxFsBb3fSQlDbSW9unBimKsi+E2Puti6ieZLcxDj2Y+ygb4K+onqOidAshQA237ooKkl1mq+IAQkuCpirrKEpX6bIe4V6pIKkoitKNVArIrqj+tqIoiqJsQ/UkFUVRuo0AoSru7IoKkoqiKF1HqOHWXVJBUlEUpRuphTu7ovrbiqIoirIN1ZNUFEXpRqonuSsqSCqKonQbgSomsEsqSCqKonSd7isvt1cqSCo7klLitB2soLXfTVEU5XFSQXJXVH9b2dF6rsyN927vdzMURVH2hepJKjtK9iaIJML73QxFUR431ZPcFRUklR0JIdRQq6I8awSqmMAuqSCpKIrSjVRPcldUkFQURek6AlTt1l1R3yVFURRF2YbqSSqKonQbNSe5aypIKndI6YOfA61XbaOjKM86NSe5KypIKvdwwFsFLQ2oFa2K8kxTQXJXVHdBYaVc5fpqHiECCOs0QqgAqSiKAipIKkAiFKQvFr1zv5QrM3V+Zv8apCjKE7ZRu3Wvty6ihlsVQpZJyDLv3A/HgiCT+9giRVGeKLVwZ9dUkFQeEAgFCIQC+90MRVGepC7rEe7VUx1uFUL8thDishCiIoRYEkL8jhAifc/xfyCE+L4QoiSEyAsh/koIcepptlFRPoqZy/OUcuX9boaiPJQUYs+3bvK05yQ94BeBDHAaGAZ+/57jMeCfbDw+BLwPfEMIEXrK7VSUPYlnogQjqheuKM+KpzrcKqX8zXvurgkh/gXwR/cc/5f3ni+E+J+B3wSOAh88lUYqykeQ7k/tdxMUZXfUss1d2e85yS8CFx5yvAHcejrNURRF6QICNSe5S/sWJIUQPwX8MvC5bY4fBv5P4L+TUla3OedXgF8BGB0dfUItVRRFedZ0XyrHXu1Lh1sI8TPA7wA/IaV8f4vjx4FvAv+rlPL/2O46UsqvSSnPSinPZrPZJ9dgRVGUZ43Kk9yVpx4khRD/EPjXwFeklN/c4vgLwLeA/0VK+c+ecvMURVEU5Y6nOtwqhPh1OqtXf1RK+c4Wxz8NfB3476WUX3uabVMURekm3ZbKsVdPuyf5z4E48E0hRO3D2z3HfwtIAP/7vceFEJ99yu1UFABajsviemW/m6Eoj5eg89d/r7cu8rRTQHb86CKl/OGn1ZZutVats1yu8txw/3435WPL9Xxu5vJM9KRxPY9aq73fTVKUx0/1JHdlv1NAlKcsEQpiGfp+N+NjTROCaMBC1zQCpsGRfrUoTFG6lQqSXcYy9DtBslqqEUmE0bQuGz95CE0TjKRVgXflGad6krui/jp2KSklM5fmqZcb+90URVGeMsne67Z224If1ZPsQqVGk5lCidOfPqJ6kYrSjT5cuKM8lPo2daFowGI8nULTNG5fmKVeru93kxRFedpUMYFdUUGyC5m6TirS2VglkghjWGpAQVEUZSvqr2OX6xtTKzcVpRt129ziXqmeZBeR0kZ6azueY7dsbp2bxnO9p9QqRVH2hfgIty6iepLdRNbBz4G+fe9R0zUi8TBC67LfBEXpNqonuSsqSHYRoaVA62wK7NgOQghcx6NZa5HqTQBgmAYDE3372cyPLSmb4K0hDLUtm/IJJ0CqccRdUd+mLjV7ZYEffP09qoUq66vrDxwv5ysUV/Ncf3cKz1NDrwBID7D3uxWKojxFKkh2qdFjwxw4OUp6MMWBU2ObjvnSJb94C7tynlRfQuVSbhBaFGEc3PGcWttmrapSapRPgCecAiKE+DEhxHUhxC0hxG9scTwghPi3G8ffEkKMbzz+JSHEe0KIixv/fuGe53xr45rnNm69j+m7sS013NpFpJSdL7wpTGuIoUMDrK+Vcdou2eHMnfOqzgrJwzFS1jhCSyH2MHfh+m00YaCJ7qoT23IcKq0W2Vhkv5uiKDvaebuJj0YIoQP/EvgSsAC8I4T4cynllXtO+y+BkpTyoBDi54HfBn4OyNPZb3hJCHES+Gtg6J7n/YKU8t0n1/rNVBehS0jZBOddpLQB/Z7HQfr+pnNj5gDJwDjCmwL54FDsbpTsaepu/qM0+ZH4vo9/3/vYDz3RCJPZzMNPVJR99RF6kbv70PwycEtKeVt2/uj8MfDV+875KvAHG1//O+CLQgghpfxASrm08fhlICiECDyGN70nqifZNYJgTKJpAdAO4DouTrtJskeC6Nl0piZ0EDrSfA6w9vRq6cBBtF1+BpNSgl8ALY0Qe/vcNn+98zs1dmx4T89XFOWR9Agh7u3NfU1K+bV77g8B8/fcXwBeue8ad86RUrpCiDKQodOT/NBPAR9IKe/dr+73hRAe8KfAb8k7Q2RPhgqSXUIIASINQL1cJ79YZOb6NY6+3KJ38EtAcIvndD68Ld9eJZaOEk3ufghRF4/yo+WANwtaBAg9wvPuGjiwu6kJKeWeho8V5Zny0fMd81LKsw95hfvdH8x2PEcIcYLOEOyX7zn+C1LKRSFEjE6Q/M+B/2t3Td4bNdzahcr5KoZl0PuCQdVII0QnQLabba6fu4rtPt0VnEJYCOtFhNhbgASwghZWcOder912uPjdq7QaahNlRXnCu4AsACP33B8GlrY7RwhhAAmguHF/GPgz4B9IKafutFnKxY1/q8Af0RnWfaJUT7ILDU724zouKUJ4Lbj+7hQHz4yj6RotI4/t96C7afSNfSeflbxJK2AyfmKEQGhvQ8iK8kx5sl2kd4BDQogDwCLw88Dfv++cPwd+CXgT+GngdSmlFEIkgb8A/gcp5RsfnrwRSJNSyrwQwgT+HvC3T/RdoHqSXWvq3Ay1FZdQMHonzcO0TJ478Rn8apArb97gSQ31SymRzlWkX3si199JPBNTw61K15M82Z6klNIFfo3OytSrwJ9IKS8LIf6pEOInNk77XSAjhLgF/LfAh2kivwYcBP7H+1I9AsBfCyEuAOfoBN/feXzfla2pnmSXOnBqFN3U0XWd3pG7C3eEEERTESafH39iwUQIgRQxEB+vHp1050FLIrTYfjdFUT7xpJR/CfzlfY/943u+bgE/s8Xzfgv4rW0u++LjbONuqJ5kF/J9n0a1ydUf3MRuO5uOFUurLK1dJxzbPD8onYtIv7TjdV1/93N9whhGPIEgWcqVqa13kvmrpRp2a/P8qpSS/FJxm3QRf+OmKM+4j1LcvMsGYlSQ7AK5ao1c9e7QZjmfZ/riHJom0I27PwLra2Wuff829YL74EW0QRDbr251/Ca51hU8/9EW/RTrDZbL1Ud6zoekO0u7PrfpsUalQaveAmB1do1KYfO1XcclN5fHue/DAYAwxhBaYk9tUZRPGin2fusmKkh2iQ+nF6VskkxMc+SlEQLhALc+mKbV7PQAg5EgR188ypHjpzY91/cl00WB7W7/42JqIbLBY+ja0xtC9WWImYvnqJXuBsqhgwP0DHWS+Q8+f+DO1+1mm1KujGmZHP/UYQKhnXOTpV9FSlWzVnmGPeGydM8KFSS7QG8sSl88CtBJs7BOE44lGT4yyA/+w3us3F4FIBgOkO7v7BJyfwUbiaTu5ml55W1fx9QezLV8mHQkzEBib3OAutnL+MnnCMfDAHiex6XvXaVefrB2aqPSpLi03FkwJH2k9DaqD23DvQFy+/eqKJ90qie5O2rhThfyXANwCQQtfuJXf5R45sEgNXNpDtescPDocTTNYDKboeos4+9z78r1WmiyiND7EELHCkrwi6D3oOs6I0eHCMUezLdM9SVJ9obBWwUEeIsgq2AevzOXamj39C7NM3uu/rOVD1cKq5W1ivLJooJkFyksF7Gbzp3FOpom6BnO3MmH/FA5XyE7lqYmGvjSQ9uonhMzB556m+9XaN8gRolQKA3ooI/y4WIb6S0Sz2TuBDcpJU7zNmYwi9DinYVCRie/WeqDQCfgV51lhNBIWnf3iXzUAOn5PpoQ2wbBsjOPlD6pwPgjXVdRnhj1eW1X1HBrF5m7usTy9CqDk330T6ZpezXs5oMrUhdvrSBdwUD8+Obe1cdAT+gYodBn71QJEkKnk1cM+DWQdxfkrK9VmL4wx1Z/DTrP68yfJq0xEubIA+c8ipu5Agul7YdnI0YvUbP/I72Gojw2AtDE3m9dRPUku8iZL5y883XdLWNlbW5fmmX8lQzJ4CBCCCrNFt5IHCspabolQkZq2+tVSzUWbiyRzCaeWlUe/cOAuAVhHtl0P5mNE469BsKi6qwSMTJ3esWbnrdN78/26njSIWQkH9qu8UwKbYeh1L3M1yrKk9Rtc4t7pXqSXWL2yjyNavPO/YjRw2j2FP0He1iamaNlVym2pwkYBq2FdSqVEqViYcftp8yASTgWxrG3SBn5GBBCEAgFkHi0vBKedHH8Fo7f2tXzHb9Bzc1Rthceem7QNLAMHcfz+GB+iYb9YIrJTqQ7h/T3lgqjKMqTo4JklzADJmKLYZLSYo3pb+dYvPI6N96+hXRcRvszRI0s+Ws2rfr2BQKC4QBjx4cZPTq07TmPm+M3WWtd27SAqObkdszPbLhFEtYophak7uaoOaubj9sOpUbzgedFzCwJcwj5wOYF2zM0jaFknJo3S91Z2/XzNgqFPcL5ivIRqWICu6KGW7vE4OTW82GHX5igVa1TLxdY+KCB0bqGoev0jZ3i1GePfexWY+rCJKSnEdxdnNPy1rG0CPo2e1+6soUhO3Or9849VuwlJJJWK0Gl1SIVfnBVrKVHsPTdbxEmhKA3FqXl9aI/QkUhYYzt+lxFeRzUcOvuqCDZxaSUOLZL/8QAty86lPM5KmtVCsslesd6SGQTROJhmhsVbEKR/Z9X04RB1Ly7d6QQgp7g4R2fs3nVqsDxW9SdNUJ6ipnCOgHd4VBvzw5X2FqnhrO25UrYoB5/5OspylPThUUB9koFyS7iSxdX2lhaJ/m+Wqoxc2meUCxIvVTn0AsH+PR/+jJLU6tUS3UKzRYnjo+TXygAMHLkwWFV6dwEfQChRZ/qe/kofN9HSp+AHmUosXVvb2m9Qk80gnVPeoyUHsjm3ffq3uyU6jNGt7yGonxcdXYB2e9WfDKoINlFmt46dWeN3tAxAKLJKKNnxnFsh8DaOulIuJOQf3gQ2/W4spzD9rwtgyN0KtxIz3wgz3I/tL0qphZGE1u3xfXbCKGjC4PLS+uMpbMQgGjgwSAppaTSWCIeSGMZnV6r9OtIbw38JUTgtc6JxiT3T9BIvwG4CE31JBXlWaCCZJcorpQwA0F6kp2hSd+XLKyXWS1XSNqClpBMPDdGYbmE03boH+/l+ZGdiwcs385hNwUTzz04l/e0ldozhI0sISO5Kd2i5ZWpu3mQEkMLkbCGONSbIWxtTiWR0r6TNymEIGy0KdaKREMbQdK5AO5tMO/Wtd1yFxNZAr8BKkgqH3eqJ7krT3V1qxDit4UQl4UQFSHEkhDid4QQ6R3OlUKIX3yabXxWtept7JaDQOPSG9dYWM6zVC5SeWuWylyB2ECCiu9gWgZm4MFcRM/1WJnJbUoJGTjQy8jRQey2Q3Fl5220dqPUnqHm5Pb03L7QSTzZfmDlqi4CBLU4MXOQiJ7B8Tzytcamc6RfBufcnYLmUjbJRur0xIc37rtgHITgVxDm5uLv9xP6EMI8tKf3oChPk6rdujtPOwXEA34RyACngWHg9+8/SQjxMvDjwPJTbd0z7MPVrbO3l1lPGEQCBpYzzeipXhzXx1isUrq2zLW3b23aPgs621nZtkNuLs/S1ArFegPfl+iGjmmZtGot8ovFh7ZBeisbi122FjJSBPRHn9uUsoUQgqQ1ummRDnSS+CNmlqq7TN3L07RdbuXyeP496RYiDuYpxMZQrRAhgqGThAMbbZE1hDeH0GK7Wu1bqjdZ2WL7r6a7zlrr+iO/P0V57ARqF5BdeqpBUkr5m1LKD6SUjpRyDfgXwOfvPUcIEQB+F/ivgEfbnFDZkWHqhIMBDo/1o/ka3lwCQ4Y4cGIUYehUogIj7uNL704eou26TOdLeLrGxHNjOK7P7XyRlns32MUzMQ6/OLnja0vpdYqLy+0T+YN6AnNjUdFuSb+GtN9DSgexTe3UcrPF4lqIuDlE0NQ51NeDqd/90e88b/OQ8b1zikJLgnkc6T+YS/mhG6t55ovrAPhS4snNOY+VYhUNE8tPkZt7lPxJRVH2037PSX4RuHDfY/8T8LqU8s2HfWoXQvwK8CsAo6NqheHDJHrumSeLwUs/chbHb1Aor3PktVGuFz5g4EAGoVco21UoJ1meWuHFVzfKvQUsoskIB/bw2kLoYJ3e8ljNyRHQY5ja7uc2pWyBexOpHwRkJ/huU7IuZJoMJBIIIbAMg/HM9qX27l5fAu7durDeMleXVhnInMYvtyivVRg/OQISdENnMBnH0DqBNxMNs7ZQ4PbcLCMns+TqN8lf0kgcdbG0CAuLC6SGXsPU9z+lRule3TZsulf7FiSFED8F/DLwuXseOwv8DPD8bq4hpfwa8DWAs2fPqnIlj8DxHEqNOvOrs3zn669z9MgkfYleevqOMXd9nsHJPqx0EN3qY6V5iZ7AoU3Fzj3pom9RB/VepXqTSqvNWGbn2qe2X8fQApg8ygIgA7RMp9C5+QJihx6oZehkYw8WBJBSgjeL1LIIfIR2z5Zh/mqn5/thYNcPkA2nSYSCuJqO03aYuTSPEIKJ58bwqi2sWKizulWEiGeitGotps8tYcQDpPti9GWSrDavcPCFA+ja9jVoFeWpUEFyV/YlSAohfgb418BPSCnf33jMojM/+V9LKWv70a5ukquvcGFxlp7AKIfPfp5PPz+J7hvouk4gEMLQLXRDJ5ZIYHjepsLinnRYbV4mGzy84/CorgksQ0dKueUwqGM7GKZBOvDofVMhDNAHN+6Ekf46kiiaZlB31vCkS9x6+NZe0lsBJPglsF64e0DLgpbE98rgr9ComSxfbpJ+LUogFMBpu1ghi76xLM7GfG1mKEUqdROMIwRCCfoO9NKsNlmq1fFMwY035xg6foBU9NELF2yn2mpzYzXPmZFBtC7bnUH5aKQqSrorTz1ICiH+IfC/AV+RUr5xz6FB4ATwf9/zBzUF/CshxI9LKX/h6bb02dae9RlYj9P0phgfjSEcCCeDCKExfOhucOmkQ2Tu3G+6JaanrzKQOYQZDiOlT9VZIWL24nliU/J9PBSEhsPlN65x8jPHHmjDzfdu0zfeS2bg4cOfO6k7eSqNb7Luw4HYj6JrATT54I+275XALyD03rtzjsJEaBnQN5eFE0KnXm5x8bvv0ztkM37qFMc+NYJhdq77Yb3a9bUy89eWOPXZzvuT8vk7qSFWwMT3fNJCEokE8aMRIolHm3N9mLBlMpFNqwCpPJourMG6V081SAohfh34J8CPSinfue/wPHD/xOKbwD8D/ugpNK+rCE0QCARoR0s0yz43Fr/HwIk0Vji9qczbQqmM6/uMZ1LUKw2WpguEo1ksPYzddnAcG8doUG7UubVW5cXRQZCS8lqFdH+KSDLM2Imt92ocOzVKzfvoO4g4fhPfOEhaBNExMfXNw7a+OwvODXAugHUG9N7OrhvSRki3EyiF1hl+dS+CfgBXhjHDAYLRLJd+sIgZlowcudubLq6UCMXDWCGLgy/c7Qnfnzs5fXGW1dk8pz9/glRvgoZbwPCCd+rBuq6H76xiBvsfeaNnAF3Ttqw5qyjK4/G0e5L/HHCBb947/CaljMpOktqmPYmEEB5QklIWnmoru0D/eC+Xvn+RsJUnnTzJfK2GFIOEjc4fed+XrNtzhIMJ9I25QsPUiSXi9I93EuxvvD9Ffb3BmS+cQkrJiYEQuqbRqDZZmc6RyMbRdZ1Yauu0DmEZLK2WyEQjGPrWAaIzx6fd2WR5KxEzg65ZrDYu4uPQqx8DBMvrdYQQDEQkeEUI/SzCGEQIHQkIBBIdIR0QIYQQSK2P6Uur/N03LzMw0ceLJw6Q6Iljtxw8z0PX9U7O6HSOUDSEa7scenHivjaXQCQRQqDpOgOHkyw3ckTtMIvzcwyMjNwJkrnZZeqFCxx86QuAWsijPD1q4c7uPO0UECGlNDeC4p3bDuePSyn/zdNs4yeFlD5Sbr+N1cMYpk48laI+f5DF61VOPncEUYSg1llkM5UvMLOaxxcF4sFO4JSGTmYwRWG5Uzgg1Zekd6wzvyaEILJR4i0cC3H81SPo+s7l6sKWyZmRwW0DJAD+Eng7p8uaWpio0UvCGkcTOqvFW5y7+hegVYlYFsIYRgTPAnXwljrt1eIILUa7aVNafBO58RpC78MKhclmE/gNm8JyiYGJPlJ9Ca69dQvf99F0j2Mvp0n2xckvF3njP36HuVxnkbaUNri3QDZZt+cZfj7B6NEowVADz/XQailC+t3h5b7xAcaf/9KOHwIU5YlQeZK7st8pIMpe+Wud4GHtaiHwHfVKg8tvXCMYDXL0pQMMjq1y4XsrrOf6aVRaSF9iyzrZQJDSJYGTbCMDfqdSz9IKoarL9MwKX/6xs2SHMg99Pc/1EJpA0/b4eUzfOf/yQ0IIUoERPOnQbLhEW9foC2uY5kbwMSbBrwI60ssh/RrCGMNxBqnVJSntbuAaPjRI70gPS7dXWV65zfT6Mj2JEYyAxvy1RUaPJpDuLRKpQYYO97O2vEw6OownHXRhIc2znQ2ftTaaMAkEexgLDFBtevgD0U0fHnRdf+iHiftJ6ePI1p1C9YryqFSB891T65s+qbQsmMcf+WmtehvDNFi8ucz3/uxd3vrrVSprS1x98zLRZARH1LlV+B4L16dJppJEGKDUnkNKn15b48J/PIfn+YCgWuosQp69unCnd3m/uasLLE2tbnnsYT5cFXv/yljpreLbFzfOaSOdC0hpU24vcqn0/0K0xuEz/wmGMbCR7wi+/Q7S2xi1F0Hw13CaU0RTEXqHTC5+5wLNWvPO+yg0p3D8GkNjY0SCSdbsK2QOmiRHQ51eqHmCeqVOpF8wdNYmZNa4Vfk7KvYyUnZK9+laAMdvbKwGvgRam1ggsPm9ODeQ7hyuV+7kfu5CyytTbE3t6XuqKHeoTZd3RfUkP6E6izx2v6nvhzIDKdL9Scr5CuVClfxinETmDO1Gm3hPjJqzSHnKJ22GKCwUaDea1J0Co6MhEtkY+liK1147Dq7Hhe9c4bkfOk48EyMYvtsWKSWu42JaJkOHd5+acG9e5fLtVVr1FgdObV51KqXsVNnxmrTcArpsUbTXSWs+UauPYCveyd+U7U7Qca4g9UFw10DeRJrPI/QkwjrD1Nu3yA6XSPcF6TsUp+00WJ7NEcsGiEV7yB6Pb+SGjlNzhqg6K9iUicsMQotTXI2xMrfKkRcGEAGLTGCS1cZlyuYCI5GX8KVD3c0TMbJkg0c66TL3jaq6pKk4eVz3ItngEYR58KHfp075vthDz1MU5aNTQbILCSFIZhNEUxHKuTLpgRTX3rrJ2997l/FTMcL0M/n8OAMTfYSiQVr1NjNX5rCCJiePjBKLhrGCFtnhDK7jkepNbLp+cWWd1Zkcx189grVFsfTt6Jq4Uy4uM5jCc71Nx6X0KNf/PaZxilW7jOmeZ8DKYBljGJqFEBrH4l+G5p8i3Z5O3qO0ofV1CP40yAJtO4EuFjFCCSZPH6TVaLM8YxMcNkE08A6d5/LiDUKrx0meXCFljRMwYphahKq9gifbJK0RwkaaseMjxNJRwvEImmERIUjNyNMX7KSDmCKEJ21c2aJiLxExswT1zveqUW2ycGOJwOEiEofB0OcQG4t56s4aCEHE2D6fUntIIQdF2VEXFirfK/Wb1kWkXwYRA9rg13HaUQpL60w+PzdeY7oAACAASURBVI5vacwuX6b5eobhyZM0qy2mL8xx9JWDaIZOvjpHb9Tg+ODd9JAP67XmFwtYQYt4ptO7SfUliCYffb4sHgp2cisBK2h1CqI7swjzKACucx0NgYWP8G4Ql1Ec7QWazgxR2Ych2+DOdQIjoU7Kh4iA6IHGvwG9j4XrhxDem/QeeRvhfZX3/2aW3iMRpOvjyDrr7QWGYy9hBtqsNC4SNfqw7Qbr9hyaZiCkRlBL0naWqDW/QTL5CmtejZR7tLODifSx/SaedAlqPv1aHYFN0EiiE8DzbXTNwgwYpPqSpCLD6BspKB/qfL23v2Ce77NWrdMbi6rcSWVn6sdjV9ScZJfo5ADeQPplVmZmqZRmef/dG1gRCyRoHmizCVYl2L0OX/+dv2EuX8IMWORm81z9xjxO/sF8PM/3abUdps7PUCl2dr7QNI1AKICU9ra7fjh2J6Wi0zYXab+D9DcXWpIihq/d7U2ttmZoksSwhhmIfJ6yu866M0dv8NjGZssmwsgggq+CdQi8PDhXQQyAFgEMBsdtCvke5isGpVonTWXwaC8hPYrrtxiLvUoyPEQgrtFsRbiRm2Wx/h7pwAQT0R+iJ3iEkjODoaWQfoTr1dep2Mv4SGy/Rm/oCBIfiUfNKbNYLrNSLqN5QVqt75JrXgLAdTxqpRpX37hNq2Fjtx0ufvcqrUabsJEhbNzdQU5KSanevDO/uhPX88lV67j3bGmmKFtRW2XtjupJdgkhBNJ8Edfx+NZb56gurdMq1Hn5h09ye62I73vU1tuc+tQwLNsc/8xR2uHOj4cm4IUfeZHhiZFOAYG2Q369hl9uIgZi3FhYwbm1xsTp8c0v6t7G8yyazd4HciXnri4SigYZnOxHCANpTILY3PusuWVsv06P3oP0S4TNYxh6mLpXZ61dIGoNkLKGKbanKbZvMxQ5Q8wcBH0Q6VUh8AL4Psg1RPi/AL+Ap02hHzfI27MMD75K39ABLOHh2re53V5kLPoqmeBBcs1rVL0ZbFGmbdfxqg49wYNUnRWWKkX8xvMkY4eIRtKEjTT51jV0LYDtN0laIzTaN1mpf5tKM0u+tMDhTIhaqUrYd5FHOh8cDMtg9NgQetBHCBg9NkQg1JnbtdsOru0SjoVoOW1url7n9MgJAubOw9cB0+C54f6P8JOiKMq9VJDsItVinVypwvjZAwxjkZ8rMHlmnNe/eZ7KlRXS/UksP0rPaJ30gEErN0K71eLCd68yfnKUaqlGvdygmK9QimhMJmOENJNo1SXzwgTRRJjiSolGpcnw4UEwJpi5PE9x+QYv//gLm9oyemwIjVWkcwVhHkdom/felu4MIa/N+lwIb6KJJm8hRBwdH91dpO1OoWkpevQkEfs8UrfQ/XWkH0B6ebAvgD4K+OAuIM0KQkTAb6PbYWrLAxQyZYLyNj1mL2t2g5ZXZKH2Lpbm03TmiAcDJM1+mrJIUE/SdNdBaPSEemhbSxyIv8i6Y6ILjZa7TMw83Xk9oO6skrYOEouWCQUtemJx0sFPYfmdFbahSJDeg3EEGiV7BkuLkurpFJzypUtxuUR1vUr2uEVMT3J2WEMYT37gx27Z5OYLDB3s39XemconmPrv3RUVJLuI5/kEPHjlUOePsWnoVNcbBFJhyqUqYwcHWJ3O0XcwQ3He5Y3/59scPjvJwGQfPYMp1nNlRo4MEYoFGfQ76RmVtQrxZBQraKIbOgWnzVKhSP2dBkdeOkg4HiA9MPFAW0zLRMosyLuLfqQ7B/gIYxy0XoTu4DnlzopW4iSsA53cUPMoKU8joGcQQiMcPE2o/nVwVpDihwG9My/p3AYtjLReolLwSWajxIJjHBhxcRLL+JpLrnmZIC6apnEq+bMs2xdZqr1DQASJGn00ZY6xyGdJB8fwpEPZnsc2muiaSa71Ad+fvsRXDn+VGEV82SRpjVNs3yYZGMGgApFXSDk+FxfOM9Y3Qig8gRAGl9+5jJW1CQaCiFiLpNVZxdtwi1ScJfrHT9LjJ6k4C6CF0PTncP02hni0nMpH5fsS13a3LUqvPDu6bdh0r1SQ7CKp3gQ33p1i7toi8UyUWqnB0OEBRLNCu1onlonSM5hh7VaT6cvzVJw2iWwMDY2e4TSm1RnqazdsPNejvt7gg9cvYgYMXvxyZ0spWxM4cYtgtDO82j+Uo9nyaNYChKL3bWwsAiACnQ2ZcUFL00lzBqGFMSw4cDLRmdf0LCQSQR2p9aLpWSpegZgzjdB6O/tJ+kVk408QwU8hIj+LlA74LZzyXzB3rorzwjCp1Bcx9BoJw2U0dAI39Dz59g1i5hEa7hrV9iIhPUXVt+kzBL3Rr6KbnQVJs4USEauHUnUJXa4xXYkRFy9T9yqE9S+StHq5vrJGMgaJcB+SGIIgjfYUxzM3aRtpXBnAd3yWxN8Snhkmrh9n4swRAhsrW33fv7PjiidtZtZaDMaaJKOSYnuagdAphNAo1BokQsGdqxU9hPSL4K8jjLsfYoLhAOPb1NpVniFdmO+4VypIdpkDp0axWzatehvTMrj+znVWK1cJRkzmC+ssTuf44s9+GtvzGJ7MMDIxzMqNZXzPx2476LqG3bQJxUJERl1e+OIw8ewYiZ44vu8zoFskB/uo2w6F5RKFhSDBmIZpVR4Iknf4OaS3itCHEXpnoY70GwitswUWIoir9eNLm4B5HKQko7tUfR1hXwDzLAgPX3+B1eabJDxJu/k+Qc2kbi/Qoy8y8ZLOuj9F23sFRzZIhz9FG4nvt1hvz1JuzzMQPkbW0HC1MHW/jNv+Aa3QBGH9GMgKHlO4jBKyUswVW1xZWWA808ti0SYThkxUJxYMETNSyPZFhJzH1XqZLQ+RjL7MmDWJY7vcunCLgfQA0Ug/kVgvkehG6oebZ611hbDRR75WRzPXqLmL5Gtp+uJ99AaPUm2vY+oh5krrHDQyxPTA1t/TXbEemAdWuodUIwW7ooJkF1mdXePS964ihOALf/+z3Hhvive+cYnsSIa/98uf5cr1Ba6cP49ru4wc6sduOlx/8zqjR4dpVFsUloqYAZNGpUmyN0Ek5hFLZHn37+axAgZHXznE8u0ch89OYKZMHNshEBojmuwEASmbID1wp0AfROhZADyviCCG8OaRWppS+ypRmcPWD9Fs/oC4FcfWT7LavErIyJDRj3B79hxecoHDloOpZ8EYR/MrpKxRTM3Ely1M2oSs0xSas0gZJqZXsVt/R4AYldb7nG/XiFuTuJ6DS5uo0Yuv9aCLJLV2gTU5wCm3SVhcpGIHEW6GUChKoXaFwcRB1urguTqzaz6kHQ5mJQOJGO/NLjISnsPxqiy1XCayHro5QNtxmL48RdWfZ0i+hhYwCEY6Qa7u5qm3KwT1BAsFh1ozx0sHejjWG6LVCgItdPcSV3JtspEhzox0dh7JLxZw2i4DE307/t9/+L0X2t0FVJ2vty2drCgKKkh2lVa9xcBkH9Fk5w+jFTI5+ZkxNE2nUW4yMZxFvniIS9+7Rn6pwOBkP4demCAUDXD7/CwTp8fwJbh2jup6jUiiFyEEk6ejSCAQCnDitSNAJ21BN/Q7ARJAujmQLYRxoFMabsOavUbcmiRinQHAFEEEJnW3QMGpEQkcJmoOdBIrpI3nutj2ABPhA5jetztzj6IG0iUoYpRyNzHCKyxqMdKRQWzjENXmB6QCR6i0btDwAujGBGFxFcdbBJElYQ1TaN8mpcPV4nvkq6MMpkNUynnCyc9xbqlEwDRo2HW+dWuVYEBnoifDaqXKrbUS/YkYhVqdm7kil3MXaaTinOpZIdJ0qayH6Mmc4dziMvlijTOnj7O+ukxfduTOqt+Kvcil1VscSp1hKJ4l2OOBcAhpKc6vzoPMMJya5MWhBLrQ8HwfXdMIhAPoxi7mKb01kG3QDj2mnyblE091JHdFBckukJtbI5LoVMnxpcRu2SzcXOLa27cIhVzqtSYzl+dID2Z4/ounCIUtzn3zIuVijevvTDF0cID+A724jkdhsUi90uD8ty/z5V/6PNFEhHR/Csd2kFLie53Vncu3V7n+7hQHTo1QXqtw5gvPITQDfA9kDfx1fG0Yz/XIhl+9Mw8npSTiT4ExRq+VpdcMgT7MUv0HhM0BkuYYde8mBw9lCMsS+CZoYSAF3hV8+lldWCTYcxkROAjWB+h+kBh1llqL9AVfYq72XYKeSYsIQRHD9ho4XgvPtyn4LTQ/ygvpUVbtKDfXe/nmze8jRQbflxzIptGMfhq2y59+cJlTQ/0c68uSCocoN23y9Qa2HeA7Uw2kfoKTvcepNDwKc+ukEiHsWIRYOE30MISNzo4rdssmGzzKSwNDmIZGxIxRbKzy11cv89kDLzGUraDrKYSWwQTaTptzC8s8NzS07TZk9xPG/Vu1Kt1MFTjfPRUku4Dddgm6PnbLJtWXJBCy8D2fYy8forC8jlgrEQyF8HtCXFxaYSIcxQyYDB3sYeXWDVzXw2m76KZBOV+hul7nx3/5RwgGHHyvhJAF3v2rFXrHh/E9HytoEghb9AylcdsO9XIT1/XQRAahpwAXhEd+oUApV+HQi2P40kUX1saejjEQmc4KVS2F685Ra1/B1MJcmPkb6pUrPHd0Ep8S680GEeNNAuYx8OvUW1cJDS6wap9FL9xkuX6JSOYV+oKnGLVO4Ng5LMIENDDNMA27QMNvQmuFtDXKcrvMXLXAzNJpSs0Mx7Iea9UmplGh3M5Ta7eJhoIMRqPU2zYT2TSVRovpfIkfOjROb9xgrRZgMJ4gZvTRcA3KjRKi4mDGMqSG0sQjYdq2AE/Dkx5X37pJ31iWtlMnODBPyPOJB36IydRxImaA20WTZOLur6olVjjaUyVk7b7kn6I8QAXJXVFBsgsMHxoAOikgsWSESrGGFTAYOz5Cokdy4+2rrCwkaOaKNCI6AbOOrgkmT4/QN9jAMCXruXVEXqPVsGnX2wQCJtXCLJEoCNNg5Pgwmh5g5fYaB188gNNyGDo0gK5rmEGLK9+/TmYwxdDBTlvyS0VC8RDJ3gRVZxXXb5IJbhT3Np8H+43ObhrmCTRhMRz9HK32OUKBLOHEGW4s5emPlllt6EzEemiV38SLhnFJse41Kcnr2EvXSfeGcBKLzNWPINrvs9D4AboWoi9wlogRZ9H+Dqv2GuFAhIVynVbzU1TWqhzPVnl/XuLaeXytl/nCOi+M9aGLCC+ODtKTaDKYDVOqLzC33iYV7OEbV24SsKocH4oSMQYI6AaVZptb5RVOj4+QDcc5v7hMcXWdt9/5Bo0lg8//9KcZO5Ol0sihewkygUnKre9wa2WBVDhM0DI5PXAMkyWkWwItSctNE48O7Or/3rEdbrx7m8nnxwmG7y7y8aWr6r92M7W6dddUWboucf3dW0ydm6FZazF/fZHZq4tI6ROL5+gdG6NZaSINwZGRPqIxH+m1ufrmLNnhMMK7iRXyacsc/QeyvPCl0zRrLW5+0ODtv62QW4zSe2AYvSfGyc8eY3kqR7vl0jOYJtyjY1sF0v1J+saynRJ0UnLu9QssX/sOptUmqgmSZoaKvUS1fQPhXgT9EOCBO4Pwlgj5U6R0ODQ0xshgiPPX5li+ukqyHMPwGjTWmxihH6Egw6yZETQ8/EiY7GAQz1tgqvZd5mpvYbsthO8z07jMrerfEtBfIpfrp10dwiZMT9IjX7O4tAKeDwOpk9hOgNm1GvhRPnVghOVKjeqKjluMIPwIq+U2qXCQ6XyJd6frtFoxUvECq82rpKIeLw4fJxNOE7JMxjMpSqslhhJJXv3CKO3AKjLQwo9USI4GEFoAI/DDDCUS1JoLOO2LCFml2LRAS7GWP8f5+Ska9u7+3w3TYGCiFyu4ude52rzSKY6gKMqOVJDsEpnBNM997jjRZISRYwMEhxq0vCpT61O4YZOJ58ep31xBq5YxxetEei4yN3OV6Rmdhell+ici1JwPSA14GPEg3794k/X8Kp5TYPHmChffvsnlyzPU1+sEB2Isyjae5yF9QUCfxY++jTAA5zL4q3zmJ2JMPD8GIoTwFhHebQzZxPCXkfoR8HM0XBe3PUelrXVqsLY/gOrvETCDfOGETn+vze1LkmJ+hP7Jk1Tat8gvVtBbTVxrjdHDcRwtzKLjEg40sLQAIT2GBfRZGRLaAdYbEUwR4FuzFWZzAd64WWSuUOLiaosj/T1YpoVhWJwe6cPUdH7/jfc4P7tMueHw/kyOpZKgVPd4e2aRtWqNU0P9PD88wFLJp21HKTVcAqZJvnkdxy3jLZT54O8ukeqbpH/iGKuFFMI1GY+9RsRIoHnTRM0kg6kEzw1YGEKj3brMarVG0w3z/fNhou0EkcDutkkTQpDuTz2w6XVP8CBBPf74f9CUTwxVu3V31HhLl+gZTNNwC1RaRbx6jFqpidG3QsBPUKtptP15Xv5ii+OfWuTid2ym8gHK2jrVwk0M7QimNcBg/Et8608u0/f8m7Tn4/SnoySyBumhETRNw3NqWCGL8vklBkZTLFy7BVoE4UYxRAXhV5HGMI1WgPXGCradJiWnSJjjCE0nJFLACEJY1L1+qvYbOLbOYjnDK4N94BeQwke6C4xmHEgbrMxdoLIapeC9SHZgjWMDi9SEzbKfZdFuo0sdzWtQ9aZoYxPiBE2WKFZ6McQBTvcPsrp+mpl6gaVGmGurZXqjaQyzSUCs4No54sHnmas3SQVMWo6L0Op8a3kWK2ZRb7X5dE8votTimtMkFQryZx98wERPglcmxik7MywuLyFnq7jReUKRGAdOjdI3PshsIYcvHULaMlL2IUQAaZ69U+lGGCMgDBrFGkszK+QrM5wYazExsf0WWjvxXA9N1xBCdPa2VLpblwW7vVI9yS5SnGvQWjOxeiQ9o2kMc5zRgc/hOR4L03PI5EEWa4cIxg/QT4gzk0GOHq8xPimxAibpoX6qpQa5q1WOHBpj/LnniCQP0qy2SGbDZLKLhKM+B18cI5CZon/oLcIRl+zIIP2jryH8HPg2mhGgxUHy5TYBHKSsslLJUS2XEcLCky4Vt4QV/jKm5RNZf49GYwVEgao2QKX6xzS9FWp+P0veEOVmH7m5AuXFHKVim5Y+gOaV0HDxZJO2FiBrDqGjU20ssrY0yGoNlmpXOLcwRyQ4xe18jeVyGYCeaATpx1muG3x72uVmLs/cWpHf+5sfUKjU+MrxPnzPplRrElyqs/wfLvHCsXH0UpuZS/N8eug247HrhI0YfaEjBAouertEI/gBtvE3GEaO8tJ3sRf+jMlsikDoZZBNfN+/EyBvnZtmebrG9MUcFy7MUVxbZzwQwyvqaFsUEJi7tkh+qbjj//+tczOszecf/w+W8omkepK7o3qSXaC2vk4kPIsVTlMVK6StIzTXW8wVZxmZGOPQsRMcOtJHizYr+RC3r47ROxnFjyzy1jszZLMf0JftZ/7aRYSTJ5U4S3Z0FN+ZI5YM0qpMI50+0I8iZJNgKIVjj6NbR1i7WuD2xRaHXwoR6UnQan6PaOAYEz29xMx/j/BfBX2SavEy5cYC8WSSqrOCj0syMAHmLxKdvEowooHxFaIk8WWFQnsB5Lc4eyZLOnKW+fnbVOtxrMHj2HaDWrnJULyHnGhgE6bst4hwmJiZYpkogegtNCNHrpTkB+fD2DLIsViJ98uS+WIFTdOJWRaWFSAeNJnsGWNmNsdzA32s5CN8990ZBkez/PpXvsT70uTd/+9djo0lSWrLhP1F1haSDGdvoNHPcH+D+PFDvH+hRi43xeHjccLRCLWqRUgP4joO7dYHLNxYZvTQWfTwCLFsDF8IVksVPv3p4+iGTiBowUQ/KzO5Tq9Q0yhUaiSycYJhi3Bsc0Uj6TcAB6F16uOOnxjGMJ/sr3y9bTNbXOdoX1btZ6k8E1SQfMa1m22mzi1w9KU0Pb0DxPwo6/M2b33jHP1nV0nkh1i6bhMISUaOj1C/egXfHSAe0QhFh/H0LOvLt7H1i6Al+cn/5ue4+tYi1UKNWqmM066RyPZSvlgkO5YmHi8AQSr1IBUMjr96lKtv3aC0WsaKJSi6DmFxDU1PkNBMKtVb6NUrOMWjBAcFq7NrxPqKtP0Sq/8/e28eI1ly3/l94p358r6Puu8+qu+e7jk4wxHFQxIlimtJ9Mq7a60WsgUYu7ABA/7DBmQsjP1jF/A/C6+xWO16bcuWYFiiRVESKVEiKc59d08f1UcdXXdWZVbex8uX7wj/UT3NnoNiS+QMNWR9gETli4iMfIV4+b4vIn5H5fdQ5ZChPySimeBpoGTRxJC0CtVgFE+NcLP7x+TyBfq9MgfeKN3AZtvWaemreG1oGB7JSB6XbWzvBnWOY/Rs9ivHGQ7CtPoe3b7D606Eoe0RlgPyuQSWYbG9G8GKDLh1uwKmRseE9coac9JGbPfoNrrMnpuhulWjeXsd4/Qe5e0nGDajOD3o1L6K2+tgRROIUBVXW6C+O6Cnt7nzmiSQBxiWQTMY4dbSPqUpg516i/39GjnVYGQyR/h+OL/2sIylJYilIgSB5LWvv8Xyxh6zZ6ZYPDH5PpFEtiDown2RNK0fJITdo6GrKgkrdCSQHweOhuiROBLJjwEyaIFfQeh/82gppmVy6ukTKCoge4QUk2xxi5HFJPXVdba7B1x/boMTn11kr/Mdur0yRniIohiUxj3aPYERjxLNKcw+dp7Keo29vQPu3niRz/7SHLZ9ktGFArWdJr6n4gVhVP9l4mocX19ESknp+CgvfucFrEiMSPEcbnAXRB9nuMvW8g5augS6i0EU194hpIQJgDo+fe8amueDH2XouzS8gBQefeoEMk3L7VEPYrSVDLVOmbx3QCjkMVqYpDpsUatvosRCdJQG7bKKHzfoDV0avThhuYjt98lYfcJaFlVRcIyAXq1Lq+2QmBlh2Oiz/+oOwlJJLxSROy2a6/e4FE2xe7PL9b+8weM/f5HcRJb4MM6wWcRrZbn50nUm57ukcnEGZhp/uIVb3sX3t+lnz1Mz01z6fIp0YRQpJVf+47cpZjx6vS1e+bMGvqmSefIkO29tUHo2iu8HHNQqjI5GiSQOA66ffOoYo/MlZCCJJt69x9jzDtBEDFN/NFeRHxaGpjKaPDII+jvPT+Cy6d+WI5H8WKCDEvn+zb4HqqYigwbSXaHfzRO2Vlk8c5LKyA5Bt0sqe5fR8ShK+BILz7xIrd0mVSqihnOMz/0OO46NDAo0BuOsV+8QzDnMz4+AOku71sVol9FiIbbfVijNFMiMfJIYz7Pvfh3b/zSxWIrzz5ynEFNZq0NXnCQVG6CEn6CUa3J3N0XpmEGuUMJNLdML4PrtG0znIWSoDI04jSBJY/g8aRV6pPBlE49pVp0rpBWfiDnFWHGBmv0cviiQ0gIawy6h2T7SU6ivBdQ2DHKPqUStGnV7kpXlPeLRPNFGDz8lWKk1KYQ9SnqI5noDseMwNfRxMlFS+SQ/dXmSnaVbpM5kkTWNrcE9PHeSr/7bP2XmzAipQp7A85k+M0mnUUEGAyo1hXptyOSIhqnMcu7xLF5QZGv1DtnjFnZvl+p2CysWwswe50pdY35eJxqNs1euMXG8hBEy2Fkus3W1i3muy+j8oUiWpgoM+0MUVSGeib1rzB2/gxQeXVshFjIxHiV03RE/WRyJ5CNxJJIfA4QSBn4wa0ShpOjbU6xefZ2TT3+esNFC80rI/IBP/GefJ9CmqDuvIVSdWOkyUrTo2is0PY+iPM5re3Wed/9vfvrYBU6Yx8FfJa73acguYTZo7fZoeccppX18z0BRT5IWAwbDVVRjjmzcQsgqM9kxhNCpHGzh2bP0ezsUjoUxYxrbvTfpOhtoXg43ZtGx0kTUDGubXycpV9EzCoaSQYgNAq+NoVxh2vDxiNF1buIaF2m40+SMU0SVJRx6SE/S7loMhYYy6rJVTbK6OY4iDNpCsFatMKVHybnwTHGEprOMrNSZGKjUhWDv2hbTI0kirT1eXq7iDhy6lXVmfv4C5ZpLfrdBc38He84jns3TbfXptRssv/EGN19Q+NXfepbJfIxh9QBJAj0ygSXfYGLuOAFRPLeNa28yeXKOkdkxNu06I9NNouFxsrtJcuMZAPSQjqKqbG7fITsTxVQPRTFetIgnUg/G2bEdBj2HKjVSeplKZxE1VURXTYRQH+TETBoTR8EEftI5EslH4si69ScIKx7n5NOzNPZbuP17eJ1NVE/HV0x058uMhM4zHvsMaT1HoMTpOZvUO2Gq7TgZZYKz+VniCsSNY2wN9qi7+4wVj6EoBrFSieSxEl23iu3ts1yts9OJI2WTnlum51aQ7irYf4b07qAHYcTggPHjCoHucrARUO2vovgbuM19Bu0+w36Vt958FcuzYThJVCh43MVza1SGIbygQkx2CYZ9VH+PZu/b7DfarFc7rNYkOln67TRRGSWa9Wm6ESoHJY7nThKTFrYToArJgeLwRqtOq7EFWy4xPY/h2ww3qiRjYULWgPREmuiJEfZWqwyGfbx6n/G5SarbdYonpgjPJgn8JtX1FTaXKuzvhghEBrs9SdpqUBzrMH4sx0t/tMT2xgRv/MUuzapOIrdAOHWB0vw4V2vrBKJMPH4BoaYoTObwGbJbXyKSDPHEL1zk+OPzKPcTL/e7fW7cfoG+892gAN1mn+r2AZVuD08ucmpshoRZOcy8AoBAETpHd8gjjng0jh4lf4IQ9FBlg3ZtQDh2nLHT87y5dYV8J0cuMokR7FNz9+mLMIXIE2zaJsmIizAdZkKL7Pa7KNooIthFFWFUEULxlrnVu0beOsN0zqTtplH8q5TCYTRrlkjocw++P/AEDK+BtEnmopCewpUeduc17izVOPeJTyP1Mj0joDRq47b7CC3KzPRprmwuYdkzmOEIQ7mN1PpUBho3diwO/IDJMQ1bKEyk+gTaDTq+ypA2ltmlOwjTtS0U6dB1fN6qbaF7XQwlSdwVuLZHdKtDdfUAE4Xir8zRsxxClaUqUgAAIABJREFUQYXBwCNwfa58bY3c6E0yeWgywc3n73DhiWPcW6sy6Y7yxu/uksl1iCRUMqU0lz4zwv6Ww9rVdYKBx8zJEJlSl6kzc2TGMqRKAbH72Vhcx0NIiBsZpBdif7CGlD6l8BkECndf3EX3O1z6ufMkrRGEEHQaXZqVFpcf+xym8d1VhkwpRaaUYiIooov7hjzqCO8ks1aFRtI4Sqp8xNGe5KNyJJI/IUgpEUqafbfN+NwSeuQ4BBX8vRZ7nRWyj8fpD2/Q8zX6lSka0a+QTGXJxhbxlBFWml+m7VZQBoK1fpeMVaRh1zFTc8wmvkSYHpriEY2co7UX8MKdu0wu3ONkLkNt6zbR3ONY0RnQZgjcZVr9v6DSTZIxhlwYu0g+9Rq67tF0AsJWiMbuGG/fqJNbEHzzTYWEEsW0yty5WcNXY7gZl1x4wHS4RcpTqIkoNh61rT6GYRAvStyBh3At7IFLo2dR6WQZ1AR6v0d+zKHe9yl3JdGejzISIzGWxeoErF5b57jYoK5HEf2ARkUjO5knP7JJYTzB+nKKbsNh5swU7WqH7HiGZCHJ9e/cYnt5yKf/8wJTJxbYWXZQzRKdVpNKdZJULk5mrsNb336FXkNijCR49qnzlI4n6XtVTo9OUh0s0xruMxF9Aj8YoikGT33uWQAq3lUUT2ckco5us0e73mX82CiO7bzLctVzPQh0hHk/KIF4tOg8R/yEcSSSj8SRSP4YIqUL/i6o4wih4Lh1Xvurlzh1ZgzCWfbbFmbwTcKBoHnnOtPHbuL18gyss7iKiZaawlNus9/9Bjpt0olfZzxyAaP7Te6t38UVOcKcpRfcxVb/Penoz6KEzmASpT/Y4aB1k3MTc+QSAwLndfrtOqHkY8igB8LCdna5s9cip2/Q01J0u/Nc3YFi9EXCoR7xepRuv8Tuyy+jtht88+Asnzw3j6zeZTS5QVtCpWvRdy1GkwOEK4lIj44AdcJH68KwXaAdGBidCIrdprFXpN9N0ev0kTt1pvpdGiNJ9EBD0QTRjks6ZDGlGdxQB0gtTatWp17ts/j4Mayoy+mn+7z89ST5MZ+ZM8dJ5RM89jPniCZ8mjXJhc+d4cRjYTTNZuNmhcXHqhBaQDrXePFrO3hqAkPX0cMhJh83eeFrV8nIENFciMJ9Y5ysOUfGnMEN+uzY10iZM8TMPIH0cQZdkuZhsmUrGqJZabGzUuZgp86pp48DsH37BgiF7bt9zv30IpH4UVLlI96P5J21hSO+H0ci+WOJBGkDAaCgBneZOmEQCW/j2lOs39zlzKU9rNAMP/Wf/gaD7i6RRIF67yvEzZM0lQMUt0JJG6Pl65SXXiMTmeKACLnxAtnoHGsrdxlLl+iILL5j0G0GBJll2k6Let8mPRiwb/tEc9/ByCywv/Yy5tw1sL6Ao8wz9Gv0winyOtj9v2SrcwvcS6yuv439yiqLP1enMDHgxnaYGl262xUGmXUark4QBEjFQIRsWihUlABLCnJKQHtggDFk7W6LXtygWlZor2YJzdoYlQ5KLcDbcTFiNspSF7Xl4gSSMTcgMt3g5dcdOmEFMxKFaARLN/HzYTavbKCnThOLOyTzFu6gTjyzSK+xiddb4bP/8B8yaK8TiuWQsk3icg436OD64LTPM+x9DSXfYe9uHFXROPfkp8n84gT796qYWpioXqA93MWTA9LmDIYSxVLT2F4de09BDyls9suoiRIhrYYbq3H66ROYEYMgGOAP3sIPxtHVMunxk8igjeM8z+17Y8wW5kmE+kgZIEQIoRwJ5088H0EWECHEzwL/GlCB/yCl/JfvqTeB3wEuAjXg70sp14UQnwX+JWAAQ+C/k1J+6/5nLgL/B2ABXwP+Gynlh6r3RyL5Y4gQBlIdA1xAQzUuYGXu4WhxUpEUxx+P4PcvosQFA6fMwFwiLQaMxn6Bcu85qncatMwLWKU/o1F2UTph3Po21bpHbHyIn4my2XeRfhlHzeNaGZzK20SDCDv3qiTyYbRMiEK4S693mXpHxQr1OPB0nMEeWesYschx1iqvYGSOU4ylyblblOsqJxdSvGnv8NzGPlNZ+NQnWjR/O+DOdZedpSRRfC4/VSeRqFO7aWCeCJjJ20gkt4M4ng1BCNKlLhE7Ss2N0GCWwWs9ErdrWGaS6GyM9Q2b2m4FVYJMW2jTaQZqF3/oEqm7FB8f5c5alYipMV/sYP3KcfbWfUaOa9y7uYll7dDYS3HpZ89T33GprPw5sdw0qOMcdL+OLhtYkS8w8PYYhG1OfurTpPMTdBffxHZGUFWVVCFFr2kzMltECEFYy+BLl+Zwk6hWQFctpBzg+AGBhNHIabKhSUxFQdV1QpkYw8GQ1/70OrGMQ2FcMnN6DDOco7jg0x76JDyNjXqDM/kyoNLzk3SHkuJ9X8vOwCGs61S7PfKx6IcSBEBKG6SDUJI/9L6P+LuJEEIF/lfgs8A28LoQ4qtSyqWHmv0G0JBSzgkhfhX4V8DfBw6AL0gpd4UQp4A/B0bvf+bfAr8JvMKhSP4s8PUP8385EskfV/wyUkqkbCGM8ySNcYTQUBUD00+zvrlMKmMgndcInDJtfQxLzdJZHiVfmqLZshnYCwg9imsdsKtsM7NwionIZdZWh/SWbdQnmhzTXN5cXqJWvcIXF/4p4yfP0GzuEzZDSCvPXv07DIIOc3MzqMopGh2TfnuLyegUWSXC7o2reKln8bw815oVTvtVommd3p9UqRkBrqmi1HtU9y28go4ceLQ8jfa+ie5LKnWfQOrsNEyqhRBuPcJ4tokZ8thfaeH3U5SyBuVaj+KUgRpVaK+HKL8xRE+CjkK049F+ax9HaJjdBu0a3Hp1mUQ+ysh0Hk10KY1Xef4PDhid0CmMNNnbzqGrOzR3bmGoIULhAZo2C7JKRM0wEKNYWhoz2GYnWKcZN7DcBLs7NkL2iWY6RFMWsQWbndVdpO8wNudSGzroSgg06DhbDIZXieYuYxoTTCpTmOqhMY7G4R7kwU6d7GyJquhTnA0Ip04ivX1MMSQf/STJkIftegijhADcnk1v2AfA8wNu71WJmgb77S6psIWpfAi3hKAFQROORPLvFh/uTPIysCKlXAMQQvw/wBeBh0Xyi8A/v//+D4B/I4QQUsorD7W5CYTuzzrTQFxK+fL9Pn8H+HscieQRfyu02cMb0/AuUkrUYAtECJRJ3HAFY/4GnjvGrtNltWUzLldRK3ep9MeJ+hGuLl/n1LiB4hapl6vECk9z0OjQyXyLvPEpxlIWudwMm3dv02g2OD3y8wjD5M7mNo8dX6C8do+16v/HzIVRRjJZ7H6TeHySres32bl1l8WnDCaOP8VecA/Hb9LwdGbVKFvVFLHqn7OOTmVP5fb/2aeph8imuwy6Fn5E5d6mykgJ9BkPM6uw24LoVEDH1nBjPlIX1LeitOyAollle2+NxBtQGU1zsDvErB6QLVnsWAauomB4Dp7wUCYy5Fo21R3wqwHDfo9kJsKVb3dpVB2gh6rtc/rxBJ75LOmUTibxHIp+HIen0aOXwLuN6V9D0xYInLfAvUXBTKLKMYTu409m8JUatuUjvCyWmkYvKfi+R2u4ze32i5xOfQlNMbG0LC03RxgVLxgAPPCPfAfDMrjwzAl8U3CjvEnHcdh6s8n4iVHi6QCXFoauACEAUhGLVOS+0KoKFyZGqPds8rEo5t8irqv0K6DEESL0/jrpgRwg1CKoxb9x30d8uPyA1q1ZIcQbDx3/tpTytx86HgW2HjreBh5/Tx8P2kgpPSFEC8hwOJN8h18GrkgpHSHE6P1+Hu5zlA+ZI5H8McTze1QG18lZZ9GtXwAgkBnwyyAlCWOM4SDO3uA6CfUxjkVctsq3iAUR0qUeaW2UaSOAlolrmohEhFanQTLh09mNcfpTKdTgp7l9Y5OwdZ7FiSRqNMwLz73Gt9bKZDSLZm2bYmaBkHC5vrtLTNlnRouROVEmUcwQK22x3/wTZh+bYa+qkVzb5fipZ9hfr/DnL8VpKFHaqo/XP8BIC1qqS38nxInP1DE8n4ZtoNsaMCRkejhNBV94BH2NSs/k7doI3SBMeADFYgvzXJr9FRdd9Rk54RLbadPq5AhJhf6+g9CGRIYH7JDkxJMdhnaCZ35xEqlkWX27hvRqzF/KYbtFhgSU5t4i1D/A1AsMCbh3vcb8hVfRjZv0ZALHE2SDFfpijpA+jeG3iOsjzKTjOEEHTXFxfRtV1XH1FgO1iSITnEh+geF+mJrZIFtaIKxnaQ93SBjjNPs2vDt3Mql8gkFvQCwc4cnpY6iKgnZ6gnq5QXO/RXbBpO+3EELBkDZ9d41w6HEUoVLpdHFcj/H0DzDDC2ogtMMHsPfVHUBQAeXM377/Iz48fjCRPJBSPvY37P29e4d/bRshxCKHS7Cfe5T2HxYfaTABIcS/EkLcFEK0hRC7Qoh/L4RIv6fNrBDiD4UQrfuvV4QQ+vfq84j3o9IhpYKKIBh8k8DbQSgxkF3wN9EVi2L8ZwmbF6lX9rFqDgEhynctgrVpXnr1JrHxIqWzeRYuJMjPrxAfjWGFfdyDPquvbJEqhRkZ6fPqwSYvL6/w+otvMdh8nXMyTj2okDqhsLPbY79hkhGTzI//Em9WrrDvaExPZklY5ymvPMWVlQoddY2z58vs1L/OxvU3WQw5PH1myNi5JkZUQRwM6awolEbr9G3J5h0D3VNoLxmsf0Pn9ksJFEPBb6h07Dh1dHqehXRUpuQeqzc0tsOCYcYiHxki9DDbTonA9og5ewjHJ55WiXdtnGt9NBFh9tQ4u/civPRHt0kXspx4fIp8qcQzX7jE7EIUpdXlxssdfG8FQ6xw/OzLdNUy/UBFenfIaXWGSoJ64GJLHyklbmCjaAMyVgFFUQnrabpehdZwi7R2nKg2R0wromgSVTv8aZpqnJTSoDeo8K3nrrG1usfu6h4AUga0ax02lg4frtX7iZWjyQjZySxkwphKkmo7YODaSMViIDWk9Ol3bBRfEtJ17K6N53oMPR8/CB5cRw+//14I/QRCSX9wnVoEbfEHupaP+NiyDTzskDsG7H6vNkIIDUgA9fvHY8AfAr8mpVx9qP3Y9+nzh85HPZP0gX8E3ACSHFo2/e8crk0jhMgBzwO/Dfw60AXO3//cEe9BSh9k6303KaEWCSl5wEUqaVCS+P4BilSRUkf2v4yvLcJwHSupsrbXYrfqMJlNEtLaXJzMceOF5/FGLfLHY+y+sUZjz6G/kiJUTJNI9rEbW1T39ghtw8BdxlTGOfe5Zynf9nnu68t88deeRLHWub09RN/tEgmvkLFKZBNzfPnN28xNScrGFrZmE1IGBF2TF79RZ25slMXLA3x9m+2/imL7Ho2my9iUTfoi9O6auNWA57+aZP58Db9jkTvj0rJ0LNMhMWjjDX0uT61w62aCtzZyWHnYvBdFdQfY4zEKe210R0PLx5kMrWNvh1C7BZqNGm5fUttPMhwe0K3dJJrWEdYemtVjQIZMPsDSNzFT/4TFBKjWq6CNokmFsDqLpZcQg2+DSCC186hyHT9wCWtpKoPbIAPaYodi+AwgcTUbTYS4W19C+Hmm05skcjnC5vihbysCwziNIWJ88rJH2+5w726X4nSend4Sew6cfez4u8a/79XwlBD7zj76YI/AzxFS06iKRjp0iWq3R3ulSjwTpTCZ484bq6QKCeq6JGzoTKSTVDs9tpstzo+P/EDXqBBHMWP/rvIhBxN4HZgXQkwDO8CvAv/gPW2+Cvxj4GXgV4BvSSmlECIJ/Cnw30spX3xwvlKWhRAdIcQTwKvArwH/y4f6X/ARi6SU8n946LAqhPg3wO89VPbfAptSyn/+UNnD695HPIzsg3cPqScR4t2LAofHJsI4D0DNWSUUtIgoMdDPs9ZZ5u0VBXVd0NArRHwTVwi60SQvfeUvaJYPOJ64yM7yFksbU5zMQu6TVdpah5YxQqcjUdRjfOqiy07fx2zlaCC5ev3bFI1zvPqNP+byk0/DMMvmwW2u3bpHMnUC3WgwZhRIaxbRgoIMn0V4VcrDcfqRP4VoluU7e2y8WmBq3sab7POJ81Ve+0aErS8ryL5k6pJDeSPNxksm45/2kYpKqDogXPAZNkxu38yQnu9jRhV6hNiuJdBcl0TcIVK1qCVG0GNNJtoBO/0TdNw9aDsoAw3SHvXaLoFrclD2EPEI80/2ySVPYIzG2FneJZUfIzd6nXjyAohLoKQIghZCBuDdQSphAgxawzuYSp6qc4eonsOXLpaaIGlMsNl9BUMJkzInCSkJ5jIJhsEASzuBriaQckh/8DK7Tp+J2NOYioYZDVFpt5g/O42iKGRD02gJF/09wcu7boWEMcaliQUC6TMaMdmoNQlpKuVWB4RgbD7PQa9PAZg7P4WiKAQ7NSKRw8ADqbCF9dfsUXYHDhHTeJAk+oiPGR+yC8j9PcZ/xqFlqgr8RynlTSHE/wS8IaX8KvC/Af+XEGKFwxnkr97/+D8D5oDfEkL81v2yz0kpK8B/xXddQL7Oh2y0Az/6PclPA9ceOv4UsCyE+CPgGQ6n1/9KSvm7P4qT+7uOUGJgXPzAOhl077c59IlLh04inC4IC6GNovnw7LFZzOkmQytPr1aiXxngd9Z4/FyfP15Pk1XG2dhZI7WYQ25IFMWm0WgTKZYRrmDtzWWWbZtnv3Se84+f4eWrZUaSjxOeS5NNjmArglZrG+eUSjH+STa3ffapszA2TT41RWu/wdCZZ8cecPf1FzleOMXynmQ+/1Po57cJp5sYtxQCrUuy4JOfFdx+y6LWE8QWPYy2znB3yK4bJmZ6JFJ9BB7ZkTbVVor2rkJye5/0aI2Gk8CSPcxKD29/n+F0nP2hx4nsKJZusr5SRgx9QlYILVAxLJ1Ln1EgaBJxFHr9MnvOMqfOV1G0zOFenPcmUkQIrAt4g9+j5fWxjTP46iz50AJ5GaAqBkljDE869L0DQloKU41SsE6iChPbq9Nyt8mYczh+nZbbIm3OkNBHCemTJKWNIlVaw2126gqmmqDS6TCWimOIEIWYRbvZRIkOiekFAPLWiQfXwTtBzPv2Eh1ZoBDPU0rGcFyPtYM65WaHUjLG3b0D1td2uHxiCmKHRj3b1Tb1Xp+nZiffdW35QcCtvSrHClni1gfsRR7x8eBDfr6RUn6NQzeNh8v+x4feD4AvfcDn/gXwL75Hn28Ap364Z/rX8yMTSSHELwP/JfDsQ8VZ4BKHvjK/zKFo/rEQYkNK+cIH9PGbHPrMMDEx8aGf88eK4L6B2H2RVOQAR51ifW+FaH8NNZkG6dJUy8SUPOXqCiGpsXjBZGXtPLnRO+hC4nkaIUfFyEeo3ouhDnfJzyu88pbOyIkUopBn/Y5EDP+EWzdbSJliv7HDcJiivLKBtpchfCxKWbtHfS1G7bkWL2Y3+aXPSYxuEU/tMLUwymY6SaKlsjPRZPHMFGxW0bQpZh9P8vrLNfY6gtiei6kE9K0EObVGZVtFuagycq6NY8OrWyly8SG6EmBsOjSMEsGUJB30iAY9fKnhKQMiYyZ6v093Y8iN8j3OnM0gWz3siM+5T4W4uxwiqA9J5vroGrz8px5f/I1NCiMlwloPQw+B/hT4Lh3nOq56l5CIMQyaeISIivChu40AN+hTdZYpWItY2ncNZMLa4RK5qUbQ1TCWmiCq5xj4ncOHfKEykDGqzjUiRhEvcFiu9DheKDFwPSqdLtdevsOJqRLVyh6j5yNsViEbjeD6h7sTY6nEg+/Lx4sc9Azy8cOUa6auYbse1W6PUjJGx3GYPTFGItVC+l2EOkrMNAGJPXQJ6dqDWaOqKJwfH0FTj/IjfJw5it36aPxIRFII8SXg3wG/KKV866GqDvCylPIP7h//hRDiz4BfBN4nkvdNjn8b4LHHHjuKsvQQQpt6d4G/Dl4CS58mkgiRzKfYa/U5aLYZeN8hHDxDKpZCN66TyfgYM332xTqlkslaQ6M8MHDMIacuTxITJhF3mVb8gGjrOCsdk90lBSfw6MccEpqFveMzNZ4n0CxuvLjLwuIsIR9SI20WZ1qUO0ucyxyjW9coxqOcXRjl7Ve2mRgp0ZVxBnaJ139vifmwgruXwZM2ra0AViXhZoPNjk5oxKF2XcOZNklGXey9MJvtgJwYoKIy1mlyZyuBp0OvY+Em43SdPhEfrHqfaMgiSCikCvvgFsCMIqMbTMzWiZ16lnzpbTw3xJkFhdGZPcob0JAjpHIDZOQc9uCPCPnrRGmz6lv4YpoFcxxFidL36jh+F4FAQeUdI7xmf0AsZDwwsgGIaIfpsFzfR5EWhnb4swxpcaZizxDWUoS1FF88C51hlRt7O4T1U5y9OE8uFWN0voSqqljaAOu++D2M5wes1g1OFnP4QUDbdkhFLD45P8XAbwFwcfLQkl4GKqBQtzcJhwPy0TFeX99mcaxI4qFZ45FAHvGTwkd+pQsh/gmHAvkFKeW331N9lQ826T0SwL8BQ8+n5wzfXagt0vHS9KRJqpjDCwTbzQbzKRfNO49uGbz9rausXvfw7GnioWMURvKM5s6RtgawtQyVa2y96uLYY8Smwxg7Js07daIx+MQnJziWiHBayWA6Ot+8vo7byTN+8jyxiVnu3W5x79omn/lPPsHJJy4ymtxitfVnXAluU7U3mJo+y4lLKrHuDfq9NtnYKE1lSGyhyUgxzcK0SaIIStijb5ukngCRCUHBJON1EJU+x3IVLNFh67qBp/Tp1CCdtqlXBcbQJnZnj7DdIxEdgBEQTYXRogZ3NjXWrg4ob1W4fsVB92H0p8e40xuh2/Cp7w1oiYtk58aJJPPs75/BUwJ6IoujLaJoI0xEn2Ys9gSq6CHo4QZ9JAGaYmCqUVrDHdygz3KlSqVbOYxjC6zXGqxWawDsNNvcqzXxg4ArW7vYQ0lYS71rGHUZ5kxhhnrfxoqGUDUV5b7gJqwQhqaRsEIkrBBte8BLqxsIAdOZFKqi0BkM2aw3qff6LO1t03DW8aX7oH+hJBk6JuuvVDG8BAfbNVIt710Cudfq4LxHiI/4GCJ+gNdPEB+1C8h/DfzPwM88bLX0EP8OeEII8feEEIoQ4lMc+sh85aM8z48z0r1BpbXJvYMqDbvFZr2JlJJASup9m/G0SWu4g66qzKa6hEIFtPEo8UyZ/OSQt5d0djs6c/ECllej02zyzPwlLl46hX6gkRBFtne2iTNgMv9JLlwYYaQtee2FJQZKBds9YGquxxd/fgzCFe7U38Tv1Zi7UGDiC0WW9iuoO9PEO89iv53hWKmIN4yx2+pwECgoIYXa/j3CUZ2f+y+K2KUwbsGlOVQIDQMyF1xIq/SqOsnMgOmn6ughSSgt6CkqtY0Qd74T5+ZfjdLpa+gbA8LVLhouWlIhL4bEohEmUikiow69xpB0SEHR25gyRiQoMuASd+69wfDmOolklSd+Zo+0+iqWgKi1wdjYChExxA2q7AUGTX+IInTK/bfpBFE6vqTrVgmkR0hNEtFyKEJBAqfHkqDeQ7o3kDKgEItSSsQBGE8lmM2mqXR69AYu2ntCxPm+z8rrm9TXbXRVQRUC3/O5/vxNuq0GALbXZK9/nb5XQxEK/aGL4/nU+zaNbp9MNEw2FmGj3iQRilMKn0UVh/Fw3aGL5weYlsnUCUGltkJuPMP82al3nUejb+N4HyySD4fRPOj2GHqPZpgugy7S23zEq/yIHwpHIvlIfNTLrf8a8IBvP2wVJ6WM3v/7ihDiH3DoQPq7wD3gH78ThuiIR0AdZTQdITqs0rLLBJ6K72ygGGcwNRURlEHRkTJgt7lL1c5yeWaCLbuJsRCnubXDqLMKTghHOHRra7x+ZQNFwsGW5NKXLJbe3qEUO6AfvE0tbPPcV/pMzE0yefkc6ekQw9Rd0vkWX/nyFulBQM6Ios9EKHWGaP0NblRW+OnP/hJNv0bjlkowc4CpdjlRXCSbnkH343z72lUs3aO6lydQriHTMWrVBIYbIOoOelygRHwYCjo1lU7XYGRqSMtLIU8mGLR8uvE8RneAodcQdRXNHtCL+BwcdNA2fYrNMHOlMLPzIdxKm0/+skmjOU2+UKd1UMZdNLj4mRCZtI1PDBmU8YJVDBEDr8xE5Cx9MUPb3cRUBihCpedWCOsZHK+NpSWx/ToNZ4O4NsPQ1YiaYUrak0jpIoSCZShIKfGDANcPcDyPdt/mzn6FU6N5Qvp3XYTtzgDfDyhO59GNw/JGz0bKOsIfAI/R8yqYahyDgPbgbS5OniJs6IxZYd5++TbOpRBjiRkKseK7lkyrWzVuXF3DL0T4zOWT6PE5bn3jLTLRAfH0uwOinyjlv/f15y0hlQxCLVJuddAUFUP7/m4gUrqIowWjjw5xtCf5qHzULiDfd1iklL8P/P5HcDo/lgjlcHkuYYyQMCSDoc3b5S0WR1xGUyGC/hD7IARjAjMUJaruovg1SrEnuX71Ok53ie2mzeT0aXy1hYePOehT8RQyizqabFM8fYrlbzqUJnYZmfgC6Qu3iBb2eeOFLcKFSbQn7zBd9BgJ56iuNcg/PcrOG8vYPZPST7XJFYvcvnUDPd3hYPsAzR5Q3QvopyMsOQMa3xzgomF39+l4e/RFiNZKl1PTHunjXXZe0dj3dSpvRdnbguScZMuYonmvBk2bkGmQHffYq1vohsfJJ4d4nsbm8xK77OPKAb6uY85FyBZNhobL3DPT5EdbFD6xR/VGhPFTn2Fs/A57mwHTxwM6fpX9IEAXx0krOjERI9DGqfXfxpc+jmxTsBapDG5j+w00xWLoDklFpqjYd7jXukngFrg4dvJwnO7Hxxj4LW5X1tApkg5HadsDjpXyTGRSWMa7Y2iEIibhZJiW7ZC9X7fbakOsiBo63FMcbEZRVIXkTJKOm0F6PeqNBoankjlWwPYaKEJ5sCdqd23Wrm0yd3GGU+dzDNEQ3ptEQyf47Oc/gW7oNPsDwob+SGKdt/mjAAAgAElEQVSHOgHiMK7s6dHvhqKzewNCYfMDXUakHCL8ZdA+UqPFI45E8pH4UbuAHPEDIoM+yAYoJcB7kGD38GYksMwIC8VppNLjYLBF1B2nXdsiNy6YzV8+9BEUJrghLDPD4rPH2Fm7xcz4HHdXXb5x9wa/+YUvsPZHL7C6sU7smw6J+RZX1mvc3h9yevcWsf0W8RmdXszjle8s03/O5dlfmCGmK+TTLlLrs/zWOu2GIHcmiWPF6FcbZPs7WJE4C9lTXL+7hFi4R6qSoh3eI3MsihgmWL/n42345MK7oCvU3lBQkj6ioaMrLrm0T3HCJaWsISdDlP9QoWQdoEqdvqMziIRYuxlB3GtTGhtihH1qK4Juc0jTs+g8d0AiDeMnVeKZBPmRXRKxp0gr28RjdaSWoq8uYHg3SYoihjFG0+9R7d/DkbeQAhSpUe5doxQ5Q0TNUxsskzRmuL1fJchZSAnFaIZ2N8a9gwax6AEhNUG1pSOEg2X2iGkupXiM0v3sHO8VyHfGtOd59Bot4hGLoeexOFJg31XotYaEwhFSxSRCCITQOeib9DoraO0Wg0GewvER5tPHUR8KYq6bOrXdOvWowoXZLuHQGIg5EGF041BItxpNSokY2WiEoedzbafMyVKB8AedoxJ7X5mUkuU315haHCeeeX+9EAZSO4lQwn+bn8ARR3yoHInkxx4Pgj5QQfpl0I8jhPWuFlFTImWMuJdj6OwzfaKPbT9HZZAjYU4TskxeWV1DKYVxVxLgWezd3kCr7xO9vUvjs7ucPVMkEsBE6hoddY+ZWJy7bp3l+qvEohFOGJ/k0j+aoVv9FnvlJn1/m73Xd4nLPDOnzmFu7zMe3yKghGMnke4a284QEiGaTgXp9YnGkpxUv4VxKUu6MM/yc03SqSW27wr0qM66X8SKRdFknYO7OvFYn4NWhOxBh2Y9xP7rBhfONrAbBvfumMiMSqnoMbAU7IZJp+Zz/ITL7qZGkNWIJWqUTnRo7+okVJ8Xvyp57Bd6hMav0XCjpMQ2yRGTjogSCv0ySWnTcpfpBxo9b4NS9DIZcxw9OKDvNYgoFhX3FglzlLHoWdKmy0bvz4loGSJ6jngyw26rQ63j0xu06Q80AimZzi7S6rlkjSGdRo9MKfWBI61qKucuzgOHxjM3dveZz2eJGhqafjjLC0cDpLuElBcoJWLUegUi0TyZMxpLe/vUOyGKD7mGaLrGhZ85y9fuXmfbjpEQ+0T0HDo+X79xjVREoxDLY6iH/Ruaykw2/dcGGngvQghOPDH/YIm45wyJmMa72xzluPxIkRwttz4qRyL5MUcocVDiSBmA9MFdeleAASl9cO8g1AJ2c5fy/gAvvEjK6uIH0LRttu5eoyjiZPNJlDM6tfazbF49wG4GPLZYIlxZYV+ZxNaX6bkpXv1/D/Bdlac/H8URQxRvwFsv3Ga97OGVAs6fPsXEzG3eOgixU43w4stvkpsdcOnXF3j1bg2n8xLUqljhcdDXsNsqkZxGajhgpZclNKKgaB3UkyayOcLMZ2o0v9NHD5UJ+h2slsP0SYV2T4O9PptCRYT7DK0sByt9tK0B6azOWtlDrjcpTIE+5bJ/RbDbCTEcusQVj82/0jEXLZ74rMqNlxXyxzoMgiLjYdjf3cHLKEhhEVNsIqHL7Pf+EkuNkFQmDpedjVHs4asI/QLxkIWUPQrWSQwlRs+rYWpRYnqRlDmNqUbRFIOoorJTqTMxMUMylEMIUIVCICX9Vo/GXvN7iuQ7uEGfeMTl8tQYQghiGfO74x00AR8hNEaScUaSh0ZB0i9zJpdk5eo22aciaLp2mKUjqBCJlvj8mRmadp2VSpOzI4fLpKYhSURc/EA+cEsBSEfCSH8fqcTf90D2vXhHIIeex43dfU6PFj9wJnrER8iRSD4S31ck7yfDfFFKufX92h7xo0MIBdQRUHMPymRQB+8e6GcAjexEETvaYqvRZWlvyLFCjmIiRkXNsvJKhatfe5OTz8bYsDVGUzu0HR0zFKFR99l/e53dWx5yskd2tMjqrR12XnRJL6QIe2G8hsfSi0vMzmxBUxL3M0xMQnmtjxbRyJ+K8fzv93AOXHKXz9LsxLDiTULuKLXlCqk5nc32Gvt3ouy3WsiD13FKOt3NLnK5Q6GQJrnocPuajgjDXKFL68Bh5VaGUKxL78BnMrbJ3jBJVStRaLcYUbqETqn0mwLpq8w/2Wb5WgjDlJRKQ8IZE0363HgrxOnHJd64QTBoI4ZxMmYUQRkpu5jeVYQbI6PF8Jy3iWsagVIiEB6eP8BV6oTNcwAkAp/mcJNA+lihJElzgs5wl4Ogy2TsSeKGgSPHyUcPhcj1fbYaLcZTCeLpGPH0+5cj34sbDHD8Ninr/YHFhZoH5f0iK9QSkQQsXLTRdI1yq0Or10QTO8wW84ggQSaUwMqOEzMOlz0/NXWCju/SHgwxxTbSNxDq/ViuQROEDo8oku9gaBrnx0e+5/6mdG+AOo5QEh9Yf8QPkSORfCQeZSb5e4AUQuwALwEv3n9dlVJ+/zQBR/zQadkDes7wwSzhHQ73IR9axhIJ0BZAdkCEkVIS08pcadloWo/lbZ+1rU1Oj4Robjc495nLbN3eIaoHhE5eJjK2xf6rK6jpAjdXlghFNIYdiWlVOf9pk/pqj4OVHsqoytkzKks3u+w3BPt/cZs7r4X4+X+a4bFPhFCagnBQJmCaoZfF39xl6Hr0wgr3Xthg4RcnCUezuBjMn6wjylG0iGBns0/i5JDYhElIvUdfBGRGoqzetRi8ZNARYaotE7etkoh16C4JOn0QMR//wOby0xW2ZIrxgs2tF6AV1YhPKaiTCkEFSrNQHO8xkCrTMzaGFcXuDFmqzPDEgoLDPHHzNH33Cqoygi67SGWUipcjouxT711DSoekVqfv1tCUEJu9V2m7ZYLAw5cOCXOcTGieQXDoohGJh4ksfnfvLQgkA9flzpsrFCfzpPIJDro9mv0Bc/nMB46/pUaxlA+ehQlhgHj3Uqbjeqzf3qY0mnkgwgPXIx5OEA/lAcFWo0VU3WU0nQMOz2/1yj1GF0aYy2fuBxn47u1C6Mce4Ur9YHRVIL01UMce7KE/QMn9jYX3iCM+TB5FJBeA/5+9Nw2SI03v+35vnpV1333fBxr3DDD3LGcPcpda7oqyZNJmSJYs05LJsGzaliPssPiJDsqWQ/pgRlhmhGVLpugQbZ5e06R3yd3Z5c7uXJgBBvfV6Pvuuq+sPF9/KAADDBqDBgZLcnf6F1ERXVmZb2VXVuXzHv/n/7wKvAy8Qs+tXQAdIcS79ALmm/Sccuo/qBP9tBCEIefXtpgt5ohHzD33CcNe3uPH0ctXUxBKgtC9CkoOocRIWirHBodImTc4e+kWV9ZKHOrPkx+IoGsam7e2KY6paBmHxT9rMpUc5Pm5FkO/OM3GlVvEssf49m99l3BzFGkqFHNlnGoLY+w4x74cY2WpBFaFTrnEmd+vM3RIY3Fpl45XQxUKLbdLdqTL5NBJqk4JqSp0vC7VG4JYvkFVbxLLBFQ0H/e7WfJ9GZydFuV8CpoNop2AcNknNeZRueUzZu7iRgSjk5LqkEJ2pcz1jkk7mWB+xSZzOmS1rBPJKSRiDtGwTBedyFiI4to4gY6JYGVxhuGjL7NVeodT06soxs9gEYLcRioZhHGcmpPCViNYQlIPGgSaiaJOYJmnuFr7GgjImbPENb+Xo0kWTZhoiomuDtxz/UIURcEPQnZbbWaKeZqaiZXoBQdL15EWdDsOuqGhfnTUFZYhrIJyZF/fqVK7Q9lxGL6nnYl8hk7LxlRsvPYVhiPHiCXHubdg5dizE5hm77lQPkHNyb2QAXt5hAi17+m+zwF7c5ACsm8eGSSllPPAPPAbAEKIJB8GzJeB/wz4ZXqjzStSyoMKq58AVVEYy6b3VDfe4d7q8g9jfreMrqqM5zKsLSSR0mV0ViC0SSbzKqHXZHDkJqODg6QzL/HCV6Ks3djg+S8NMjxtUi1FGHBWkX0e3/pGh9SRz1L1F1g6v4w2NMypl17k/PevUV6P4Gse1z9ooBhNHKXFxOko7sUkN98osXa9TOaURmVJxRyvsvotn0uyCazQqJt0pc/hlwZpjGzy/hvD5ApNFHOT1opDftiDjE4sbvDWb+jM/aSCo4Uc+SseE5kWsqjQEknUUOPMWZMjI1WqRpSB1W2cqTwIjZ1ShNZWSLbToRXqlHc09HzIi6/adEsOzraGq8boH19hs+3gpnxSGYPN1ct0nNPMHJkkKQQVbxknbNKROjGWiBqH6I8cpoPAUC36oscQUiGuF7GDBKGdw1CSlFseHbdDOlRolBqMHRnh5vsL5AYzJPtSNLoOfcmQVP7DWYGYaRAzjV4Jq2KS4mjhvmsr1AG4J+g+iqF0kqHn7p91KG9Wee8bH/Dsjx9DBn3slHeYPDZK1FC4ceZtcsOHKAkfy+mVznqaCKGAPvNU2zzgCfiUBEkhxLiUcmmP7WNSyuVHHf/Ywh0pZYNe+ZNvCCEywGeAXwC+DBxUWH0K5OIPl8JXd+oEnk9+aO+pOCklYRAynE6h3M5J6xvL90QawXUQMRBRWm6cRjXD6qV1lM/ViJmb9A/dJJXZZOnaBNFUEVMInj1e5Pcu1zBvbjI68hqvv3WOdbuEefE9tE4Z1Q+o1UPUbJnWgsnxFzwy7UWWO0fJzxXZXPCxtx3iaZ2rb+gUBiGUTYioDB6zyIw5xHWdbOIWF8wMmbSOSETZXRaIGZvF1QaoBjP/TotqOYKwdWqtIt5KQFfR2RYWkRtNinYHHxdbMxkakzj2LuuNOPaZgNnxOsef77A0bxLJCJJpn+YOdBsqmUkDK91he9Wmf66PydwMVlolDBaIW68BDrgXaIczRPQMo5HXaDtpXG+TqnONbOxzuGGbnDlJtVNlrbHGaHqMYn/+7jXRFIUIAnk7KX9kbggjoqNpGkc+JjF/+plxlI94pPqej/YRZakMW+BfA/0ZhNjfTzqVj/LSXz2Okghoek3M6ADVjo3tdiBVJZ42SZspkB2kdBBi71mNO3hBgK4e1I484C8lF4DkHtvPAXtXDL+Hx7KlE0LMCSF+XgjxvwohrgAl4F/QK4r8y8AXHqe9A54AKQnDh0+13vpgkT/7nTexDB1T17j27k3a9Q6RaAxhnLqbi+Z6dfRIlZnTp2ncqvIH/+L3uHlxjaqTIDduksmc44Wf+gqm8RLPHVUYOOaSLozws7/005ycGyarlbH9LY6/WmF0WmNk+CiOv0V5Q2LvZChO9ZGa6vLK59LULxmce8fEMgaZe3WW7YUCGxccPnjX5ex3AhYvzXPjjRLhezWihkqn2iH2YpuGEcXe6VKfDwgaKRQ1TiQqqSw2KasaiwspOo6Fflwnd1qSTrnEAo+RiTbxiEf/YJuxsTbFOZ+matH/jMCcVfBmoti6wZWzUdq1kERSY+pwwLOjgtr199hYO4cqQGt/h6b9Jr7+MopqsNW5QMO5ReitcHO7DN46F8u/yeXq1zCUODWnRNUuo5Ph0vo2tU6XeMQkF49ixS2y/T1BTTRhPRDo9kLV1PuS7wM/4PKb12k3OvfvKKKgTT40QIbyQWs4VeySiJ1nfvcChGlmi329qiHSI57tx7SiqIqCEq7Tsde4sV1CyoAgDHFvW9JdXN9ip9lCSsn5tU2qbfuR/5OUIdK7cNe79oC/OKR48scPGQ+csei5eezL4mk/6tZ/RG9q9SUgRS8qvwX8d/TWIW89ztke8MnI9H381FduKMvazU1qzQ7pRJShmQEiMRMpJb600ZUovueTjat0Nw12txpU19aQqwGl1QJGpI/k4Ajnvv42ufFpAneDpXkXdXqBzprO1Q8WCJducuK1MWKjHa42dEZedOnO1xFVnflqHUPaBHKX3Q2PVQ0CU+PwTId8Zh3N0Wk0bNpeSHa0ihVPQLfK9WWNyFGXzSWfndIYLb3E9Csule4I9V3B8Mwuq/NJZNLix39ik/lzCQrpDo3Ap1D0KDouK6/rZBM22/U4DamR0G1Wmib+CohOhLmxFmpcQ2l4nH0jythIFzOwqS4rnP58lERmgdHPSOKqQrd9koWFBfyZNcbENEPWKNlQxfPOInAx42PEYyeZ8G+iKkN0XI9DuV6B6416k3K7w3g+w1q1jqXrHzs7sF9UTWXm1CRW/P4ajkIoIPbuEIfSZ8u+RN6cwVBj9zQ2CNInZ0hiWj+e66EbOvnkKHBP2TltFiF96p1VKtVLOGKO1UaZ2f4Yo9l+LF3v5UH2F7H0R6d0CKEgleID4qIDDnjaCCH+lF4gNIUQf/KRl0eBsw8e9SD7mZv5VaAN/Gvg16SUNx7nRA/48yWVTzL5wjTXS2Vmux6JdC8nzgmalJ1b9FvHeev1D8iPrWG6E0ydGKMbhLzyC5PotYBIPIMekcT7P4vnhXzv91ZITEQJ5jfw1rZI52LMvtLH1XdqhMVZgsVNkkM7qOE5jn0OypsF5m9E8MQttEwf/dk61ZJF13IxjV0uv6cRBhbpvMVYsk3TrtE30cH3MkTSHfqSVzn/Z3HGXzFZOqcQpk0a7Rh/spTBwMO4WmK9EuH8mxFUR+DHAq5ux1lyTLQBSOckpVshoR2w6xSoNqFpeUQSUTZ3PVpbGk5Nw1BCClMeTV9nZ0cjfdGnb6xB6BXoaCrl1joxY5akqRNTFFBz+CKCK2IEwmSuMIsi4ihKCtu3WCptc2p0AE3VGEwlGEgmUBRB23FRlCfvepc3q2i6enfNMpp4POWnIjRy5jT6R9xshFAQ+jijBfBcjytv3WD29CRW3PrIfgLbdbm1UkHJpHn2aJF0PI6qgKl+GKw/ag7wcQi1/9E7HfCD54dvRPi43Cmv+Fl6AtM7hMAW+7Q/3U+Q/Af0BDpfAn7xdirIW7cfbwLnpLyn1s4Bf6EoisLoeB/9fsD8mXmUmQFS+SSmmqDPOkqr2kGRCpm+z6C2BZ6pYqQsAg+S0W0qa2dxmhFalSR6Ns8X/s4hqkqbjbURVlsmVrJBfiyOdtFHUkJxPC6/2UenHqAUobGiELoOsXibRmmLUq3F3JxHtSIhLahVDDzFxHJsVt4vEg40ee9tC2fNY6Da5ZpjsnUF1K5J4ctpjBWP1oLD6nQae9cnSKS4teKh5l2E7RKmNPoKLbYvawyM+diah+UFbG1p9A+3iAzrxCIeYbODpwXMzLXZ3jFwdiTn51M880KL+koIg4KtTcgXLRSjyaVKm+O5bWLGaxiqwVZ3hZz5LFbYouUuUumcQxERSt1dBiIhw+kkVWeJtt+iLzp+t8ByX/JDJ5lqxyYZMe+rJel7PmEoMcy9R2HBHiWpAj94UPH6MZjqx7vZ6IZ+e4T6YYDstrtUVl+nf/olbE9ltj/PcDzB5a0dZop5TPXBW4frB1zf3r1dNLo3uvwkHYQDfsD8iF8aKeWvAAghrkopf/tJ29mPuvXXgV+//WYFPlS2/g3gH/c2i7PcDpxSyt9/0pM54PFZLFUpJmIP9OQNTeXIy/fnsqlCJ5ZSGJ8aQOsobK2tE7oWdtNmdmaQSDSNrg9Q2vCZO73FcsPDaQVcf2+ZTsVBy1r4t5rEDo+TmEyjNBe4udvBCR1mjhe4cLFLuhgyd7xJW4fuJZvNt+PoKVD7Xa5dNdhZ9ckO6mwt+xx/cQfbhIjnMffTNleu5CnXIaj7rK3atL/WpVWTqHGF/HiCnZqLl4HopEf9hobwIVrvMDXb5oN2jKsX00STIQWtw3IqwvPjt+hsdwgiKm+/H8dYVEj0SbIZD9uymF/LUusInn22hluyWLNTdA3J7IjJ8ZEQXynQ7LxPPPEfk/Yvo7qr3LQbOKFAX/LZbGwx/cxfR7pVlj/YYHh6mrXAxsgFWB/J5w9DycJuhZlijqQVIfADELC1tIvXdZk4Prbn9f2osrVVa3P17Rv0jRUYPTz8yb9At/noCFXRVKQ6CUqS4YzGcCbVq1bSaKE/pOCypijk4zFWKlXaXY+5/gL33olv7pTIx2KPVGYf8OfAD+fa4pNyTghRkFLuCiGiwH9FrxrVP5NSdh918GOpW6WUu8D/c/uB6CkFPgv8F8A/vL3bgcTtL5Cly6uk8om7a5e261FuVRhKNkGdQlVVNEOjVWuTHvPwQ6iWO9TSDQI/JJaIc/3Md5k9lWSyeJy33v2AiFLg4sI1ZFVQLER58+tXaIZJokKhL6vghDu4ySIUo1TKLfAUdq+YtPwoQeBy44zg8BGbylqAl0pQ2rJJj3rcugChqZGPuwSGzkrH4ujJGsuKyVrDpLLRxq/7CBOyQzYqCknLJiFcKqNpBlWPvnKLZkWlo0dIVDp4gcpq0yA56LMdiWNmXd75IM3LL1WZX4myvarx7oUE3bIg9lmByAYsLmlUdqJ8+ec8VjdtKm6Cl6YVFK7SrJ/GaXaIp5/DczdAuURU0UgPD9MomQjvLEb8OF39Gun0SRJKlfNLV8jFX8a8R5yjKIJTo4N3hTgr19bRDY2Bqb7HKikeS0WZPDGG3dr7ty2l3LPSxuNimDpDM3P3bRNCMJBKIMMOMqiBUqDrSS5v7nBiqB9D0xhIJTBUFT8M746YW45Lq+uQjETu+0wehpQu+EsfK0Y64Cnw6QmS/wb4D4Bd4J8AnwNcYBj4xUcd/NjfQCHEJL2R5J3HUXqB0QbOPG57B3wyJvL3D1nMqIlufnhZvSCg4wV4gYKhCbYbLW6t7WCvbLBx9XUOv/oVDr0wy41ymUIuQWO7xcKtJo1IwGsvq6gqzB3JM3Hii+zudrh1ZYWOb+CUNik+U+TICxVKQZTLbwxhlnfQLI+VxTiabhGuq6jmNvZ4ina3TSwdkBzzcesKoQ+tqg5dgdO0kGWdvsE6kViAWtWJNTy8iIqigoKKTFZIbkCyLXDbgkzJQz+s0BjJEnRCFBHipgy6gSA94uMkEsh8k2qgEx23qAzCUNLBvaEQMyXpcWg1XOyaQiQisUyHty/FccMhxkZ3eaao8P73EyRicPhVGynSaLzDocSrhNJhJ7iECBPsLLXpO+TwzAsvkYym8f0Iyco1/I7D7s4uqXyCRKY33XkneC2UKqRHsiSjEdR70iYWL62QLiQ/VpwlhCA3uLdIxws7lLo3KVpHUW8Hl0B6qOJpe6R6ELYhrGGKGJP5wn3pHx8VKXlBQNNxmMrn9jn9KnqWd5+iu/gBP1CmgMu3//636ZnjNIGLPI0gKYS4NyC+DPR8rODO2uT/Tm9R9JyUcu9y5QfcRxiGLJxfZmh2ACsWefQBj0G71kYIiKd7N+akFcEL0lzcqnK836O0WiLoumT7+9lZzRBmNd568wrNdp3j/9Zr2MkY0+5z5PsbLN66zImfXqK0uM3ZN5KoYgeXKW6eWSQtFHLDcb7XSDA9WWRnpcbmlW2KOSifKhDVtpHLPs3lgDDXxdNDSBrgCbyWirseIFUdM+cTNX2quyqLVy0qmz4BPqEWcPh4h5s3LXzpY2+bZAoerZZG2UrRqPiItsD2LJotC2VGIbq1SzymMnBUYft8h5vnUnhFg7bQMRZsoqh4Zpq5z5So1CJU5hUaiwq7YYrtBYvRssfgq7tsbWhs1+PkBjYZHOwQWB12uwYGOdJqClVYmL4FW2WOf/4ouqaxXKkR031MPcLJ146jqirNanvPoKArCkbEuJsGEoYSNwhIF5JE4k/+fdCERdoYuxsg3bBDqXuDPuvY3W33snp9HaEoDM/s35gA6PmqKqleHUgUsrpGGEo+OoC9vl0ibhoMpZPsNtssV2oPdOr2bF/ooE08sF1KD8JdUAaeymj5086naLpVAKoQYhro3DEWEEI82iiZ/Y0kv0cvD/Ii8Lv0xDpv7sep4ID7sdtdli+vMv3sBIls/G55o0+CDOsQVhC3byoTJ0ZRlAfXjKYKWRYvLXPj+9f5a//Jl1EUhYkXp7ly9XXc9QYvvhYnnW6zeqHLH/zhO8weyvPFVw+zdjkD0T706nWamzB5Ks/mUJkTJwdZ3dlk7rkizx3J8/1//l3UigODFmGjhhI0iQ3r2Csez72yy1t/HCFlhuRyLcYPu7TyGqtvWmiGT99AFyVUaduCeJ/C+pZC0NXRIzWSwwq2aWFIG82K43QtPOKY41ALIFCiENfQ7QayGtKxBZeWkwjfQyvbWJqKsmyzLWIYLkTrNRoRjcauQFRd0kmHyxeixOI++YE6o7EasdlBdqstlOQYfvEY+DXyegFVGUcoMRx/B8PwaccVzr5znoS6ybu7cV576TgThRza7VFVfiRP6AdcfOMKs89PY0Z668YjH3GwKbXbrFUbnBod3Pd137i1RSwVvc+pRwhxVzAEYChRCpHZPQMkQH7owxGpDBuARstVUYTYl1pVCIO2X0JIg8vrDeb6CyTusVIcTCXujjDHc2k+8chQehBWQOnjYFXnKfDpCZLvAP8c6Af+GHouPEBlPwfvJ0j+BPCOlPIg+/cTYpg6+aEsqqbSN1b42H2r27XbgfRRl0i9L+fszvTd2o0NkrkEyVyCzUaTvniMwlCOuRdn7gZRLwg4v2Hxlb9+ipHJPFJK5k6o/GTnZTaub2LoGRbeUtCjCjWtD5nNMHt0gOZ2CbfZYP3dDUYHZhn98pcojiyzdOE8BBqhlmO5quDWVabGt4n6NmHLotzQYSMkFVMIhcBXYXa4y9Fnbb7+hxaurlCvBEwearJ5K8LVr1n85H9Y4+p1h/PXsqgGZPQakeM6jbZO9N0KzS8Moq7W8HMxxn/CpFsN2Jq38UKJn9bpNj2ilQ5GxqT4kzq19TzvrCsgFOL5Dhffh9ZawOyPd2jYUd5/HcQHLoePutQ3PVafF8ydOklM/RbJ+ByhOE6p8zYZK8fxZ3Ns7nYwGgNoy3VKOzWubWzz+aOzAFzZ3GHcsLj27jy5wSyDU/10HZeW55GPf5izWIjHSFuPFrPYfg2QWFoG7SOerjJsgYghhKDbcdB0FU3XHuyd4YAAACAASURBVEj9uJf70j3CHSDCTtPC1DSihgqyS4hFud2hmNhbIeuHXQxFZbYvT8y4P7DeGzDvLbUFsN1oYekaSWv/I2ehREE5tu/9D3gE4jEWw3+4+QV6ef0V4L+9ve0FemuVj2Q/6tbXn/jUDrgPVVMfaid3L1JKtpZ20U2deHrvS9Swu3R9//bN68Mb2B3zbMMyEKqgG9QZyXusvbdKo9zmxa+curtvPh7j8xOTaAgWL94ikVojlnuBnGawVG5z5dtXSBYSiJE06tkmSd+lHF5gcG6Fb/7LGomoRqEwya1z73D4lQjb8zY31w2spE40F2AvuayUFWpKElWB/IDPmh2ltCRQ3ZBwKMK1edheM0gmuyB18mmHFD6JySbVnMH1qxZ9Y12slYCJw10iwsfprrJ01cSphUTf36EzkkSxO+wsStpagki0hRMziW46KJqGPxHD6Ei2mzHaaYNIo4XsekTzAV0sbE/jjZsKWtsmPWaglYG6wXhB0q1UuF6fJxsfY2O7zlThJv3WEQSS0CmzXKnxyswJ/r0jp7j27k3WVnap5goMjxY50l8gauj8xN96gXhiDbsd4+xbtzAnsvcFSSHEQ0tH3Usg3bt/F0c+tL2T0gf/CmhHQMRZubpGuvCg5+vHIbRpAKZuHyKDXQjWsOVRNmpNcrHofakrd0gZPYWt9ZjqBsf30fZor/f/SKSUe86IHHDA43J71vNvfWTbbwP7SgvZz5qkIeU9v87etlHgPwdO0dPmvUfPaGBtn+d9wMcghODwi/cbQEsZQLgNSj9CKLhBgO0+uAR85c3rjMwNkR/Kcvn71xk8nMVMGYAg8CuE3gKK2bshLl5cZqPVIl1Isvp+hUtv3mT2tE51q8ZsMc/pr5xitVqjLgNejlq8+a++xZv/V5vMKZNjn51i6XyVlbPrvP4bZ9hqBtitFKgh5kqT7qaCqiu0Eim8Kw0CA9ITIfoVn4lXOgQbsFSPILsh5cCgrlgcn6qzsayz/EGcUAERSEQ84NpGBt/1qa9JmJRQiNG/3WFHUYlqDcKFEEVVcOMq7oCJWpKMmG3kgMJacZjE9g5isUndttC9gGLKwYo2qdciZEYVmpsqWizAjaXwym2KM5LdNZUjcw7901HauKCdoLyjMpgbIK2nkVLiBQrZdpVOq04+McTRV+aYOD7Wy30MwrtVXNJ9RQgFmhLnmedniKV6AdL3fG59sMT4sRFM6+O9UQHi+t4+r0JoSP0UtZ0Wtd0Vpp4Z/8QBRqgFpJIhLjSeGXm8NctH0XZc+hLxhypdtxZ3sFtdJk/snRZzwCfnh9Re7okRQnwG+DvAgJTyrwohTgMxKeV3H3Xsfvp/thDiZSnlu7ff7Dhwp+E7LgZ/D/i7QohXDxx5flAEvRJJSh4wyMdj5PeYARs/NorTcQCYOD5KNGmhKAp9J2K0ViVXz+4Sel0iVoTiaJ6VzQ8QboRjrx0mCAIc28H3fWaeneT17/wx3X748olX8LUY8b89w8J8g24yYO4Vn2Y8R5pbVBcMjpyeYf7aBpXtGqXtDn3xgGjdo+aG+KbO9Emb8rwg2PIoFw28doha7yLMEJlSGDrlcPR4A/FGnPKGgWG5aFKj5pmIXYWZiTbHT7c4V4tTudrF6o8w+5rEEh7v/L5NrZjEmNNQ1mykqdJSNbQA1HoHJ1TpZpIkrm+TMBxa6RTbYZTYxS3aVgF1RMcp24hGl854jrJjI5Y7XHgvxXIJTj2XR41m6W5u4QzDjWu3MKMmrtbkuZdfRfoqt84vMXZkmGjC4spb1xmY7LurUu0VxO6j7bhcr9c4Ho+gqyqqppLpT6MZnzzNQQiNSDxCWoj7FLP7xQmaBNIlqn040/GDSr9YqzWI6toDa7N3yA1le3mkB/xg+ZQESSHE3wT+J+D/AF67vVnSm3r93KOO309386Mf5T8FNoA5KeVXpZRfBebomZ3/6v5O+4DHRQgDoR9/sEjtRzCjBuvzW2wv7RBPx+6OKJKRCKOFAYK0TbxfvXsTP3HyWVpVWLu2QX4kT3VzhZ/5T5PEUjZHhjKcdOd5+9+8gW6EtFt53HYMrdvPhd9bJuUsYsarpIuSyekCfrtMwS8RHTLpOiblDviminw2y4bIs6ulcRMRWnqO0S+qOCMmrYSFg0llU2fDNlmeNwFBalCQnXQx/QDDbrHWMHnjT9PU3lEp1rtsLxpc+WNYf0ugiZCcV2XIr9DfrTEZL1FLWFQjSXR8imMOHMrQfzJkeK5LwawjNUHjeB87ahRrTiFq+gRJkyaw29Jx+mLsbnUor6dYW0wRBGVeeqXIhe9/m+tnXqfjLJJLjKKrUereMtVSBc/pGU8dfml2zzSOxVIVQ9PuilmEEBRH8k8U1PbCikXIFFNPdKwvXfzQeezjup6PH/QCmhcElFrtB16vdu43Pp8pZB8aIKG3dv9JVd++57N2Y4MgOAi2D0V8gscPF78MfElK+Uv0LOkALrHPqlVP0lX8MeDvSym372yQUm4LIf4J8M+eoL0DPiFhGLJxa5O+EYFmDjD1zDjLV9boGy/eDZKqABoOiXCMkckRut0OjVqd997ZoFluMzc3wsjcIIn059HUVaKJEC0/ye7mOpWuybd/9yqu7WE3bQ5N9NGdTLNiX6aZH8OtNPjuty9TyI1w8ZZNJBHiFeMMzHboNAUlP6RjmXg5INDpXGlRn4ihD2gUElWCfJR1t8CV6y6ZEQfXVlirxNBqHuG4TugKtHmXatRAi3s0Y6De7JAfdnFrKmEX9J2QctsknI7RpYuWUPE8n9CDzaBI4EtWSxm8mCA3GKCuKwTDSdK2i3sD1JKEiRhOTCHwdY5Ob5PdaVESMZYXL/GNb6/yU39jmpMvvEAmE+PytUtc2lxi2pxANaE4YOMF5wm9KWL63muB47n0vtYe/yKIaY9eK9+Lq5s7LJU3eHXcIBKZZb3WIBeL3k3RaHS7VNo2mWhPJLS5uI3dfHAq1Q9CarZ931rtJ0FK2eu0fGq0KY/Pp2i6dVBK+d7tv+98I3z2KZHeb5D86Fdtr/SPZWBfeScHPF2klGzMrxIxamQHbWLJKbqDMepdBwuFtRsbxDMxtpd3kcB8c4ml3bPE9DyqjPPiXzlJNhEnmrBIZhNsVlpEjSIjwzH+8H8LUUQLo11j4dwyJ378MMVXJBd+s8LmrSjXr7bYLdWJzyocHokykBE4hkJjucGtIEO+KCn4LYKqR6xgsVkskCs7rC6q1PQ4RX8Hud2gLxOy3MrSr9apmzop0yaT8HD6fbq7KkpeUspFYDtk46bAtEL8lEBXAoZnOmyej6D1SWp6BDYCTKVOtGPjDcfhrTp0PLrPDLDiR9heddEHFTpRFXPBJ7rVRjoBGoK+UgMPk9bYOOlpnUjbZ2AqghQzrM6PkYt4JBMpLGeUoaEV4tEO9TBk4NAx/LCF95BUYdfx7q5RSumDdw60wwjl431VnzZSSnzPR/+Yot6Pw3g+TdtpkozGiZgRZop5rm+XmC3mURRBMRG/TxlbVkKKgw+OIm3PY7VaJxuN0nIcbu6UeXZkcM88093uNaJanpiWf+C1O+iG/lCrvwM+ddwSQrwipXzznm2vANf3c/B+g+R/L4S4k1PiAdPc76oOMAaU99neAY+gVWuzen2DuRemH5k4raoqU88cwjA9BBWklEzmc8RNAxkExFJRCsM5cgOZXlsCxpwMmmJR3e5QXa2ROpHAsR0a5Q0qrse5966SsSympkcpbdTQ+wxeODlKab3EO9+rcu2NCJfeWsYOy5x+wcYQZQwzTaeloKV99KSDfsnGlQHtFDgVgarbFD9Xpf+4ZKttENMkSjLF5ls+zq5CMKgw2N+lKi103ad7PSQS8eg70oEdhcZ74GTiSC1AajZuRyGSCRi2OrQGNXbLOomgihOJcMRdp5ZKUJMuctQgMaSgWnXmW3kKbhNvSTCgNQiSBjJmEOYs5FyBMSeKl02T1Zrs7oSsexoLl9sMaVd5/+wtnp0e5TkLlt66weETQ5z47CCWGAJAV1PslcjRbnSYP7vI0VcPoelaT2ijTfXqQH5CpAx7a5638UMHN2zdt7Z4L7WdOuvzWxx7dW7P1x+XTDTKZ2Y+9AhWhEAI8YCxwN39UzHcepeFjeW7o0kpJYmIybMjvTzRmGkwWcg+1J0nqQ+hKU/XhONTyadnJPmrwNeEEL8G6EKI/5Ke8PQ/2s/B+wmS36U3LL0zh3QOGN9jv5+9/dqnGiklW4s75Iezn6i3HomZ9I8X9uUsEgQBmb7U7anVngIyHb19E1EVBib6gF6FkCCUqKKGpc0j1BEKIwPYHYf/9xtnkMs1EkbI8z81xZJTRx2JcuYb7yIkvHbiGf7k99/i+c9HkQu7OC2HofECqWKamRclm/MXuPxNl1olJB4NGZtwsQZVzqzl6IgQkYWc2mDn+x1K53S0do3IMYvy+yH6gMkLrzUYsDZYWo4RIHBLPqWagbduYcQV9K02fkwQ+B5hRMVbV6jqEdxalzVvjEY+Qbxa5chnbTa+2aKMSuC6mIFGJdSJDWp4aAyX1skOGiy28ngoFIZDOmOgLvlkfEE61k+QaKO0t1i9pNIoJog6Dpuuw8mpURavrhJNl0nFBskNF+9en3ajQ6AImr7HUPr+IuixZJTZ56dwu97dih9CeXhB9Ia70TOjf8i07R2klOCdRWrTCKU3OvNCG9uvPTRIpgpJrMcst/U4dD2fhv2gr6yUkjAIGUoncUwT554czetn5skP58jftttTFeXu9Oy9+J6PpmuY6sGE1Sfmh3Nt8YmQUv7fQog28Ev0Zjy/APy8lPJP93P8fvIkP7fPc/lvOBhJIqWk07TxveATBUlN1x5ZYPkO85dWiFkmw7N7O7bc3CmRtiy8IGCpVGW64JOPDSOVQTZ2a/iez4szo2wqJoXhHGtbLuXAxV5bp7SySzEWQ1ZtpotZBqMhHyzWmX52nBtnbuEUo1zcaTJ/pZ9go449Ege1w823AzIZCyWqooaS/G6JF14q883VflKHVVrf9ag1klBUiCstlpZ1wnQU24rj7irUW1Gckzq5OFg7NUqYuBkdGUI4kMK0u2gZn3heZ7duoIcdRJ/KxfIoVrJKJ2eilrqYVQ890iXYBTuMEcspeOtgxgzScYPALBGuekSjJmE+ytJGnU7D42TeQtUc0terKDETcSRF3WiTUl0MAtrOLmuda6i7Adu2hlypEssmILf36NCKRbh1fol4OvZIIwldsVD2oSwVQiC1GRAfTmdaWvo+152PoigKkeij002elJS+wDPDffd17gLps7q4iFtVmD09hWmZmFavEHjgB4zMDWFaHy9Ia1SaLF1a5fiPHT6wpHtafHrMBLgdEPcVFD/KU9N4SykvPq22fphRFIWpk+P3bZNSsnBhmcGpvgeK2n4Ux3YIQ4kVi7B8dQ3TMugffzA/bnt5l3QxidBVShHoH3y4qjEbjWIZOoaq4gUhjicpbfgItcq3vvk+f+1nPgNtl0QqjmM7fPC1S1z/7nmmjvik2yGzp0fom8jSlRt8/5ZDqi+O7miMzoEn2zS3YXZ8EOfkBPPrW0QWqzieQmO9jRmRhHFJVU/xp9/TyAkbLjkQMUj5HVptgVLt4juCMzJFqtthbLhDu9+kmdLBDghMjciPZZjc3mR7w6Tk+DjZCK4LTszC16NMxLYpLWp0FR+jqBNZacGqS3soTuKIj7bkYZVaNA4N4AyGxC4tsKVmSR+XTB2O0lxLUCm1cWVA2ojitNNEWcEf1nCrNgXfR49otNs+F88ajIzFqG9GWFrbYaW6xYkjs+CHzPbtvU62UWvAYIK+wqMFMpb2aH/TOwjlydSsPzCUPJoSIwhDlss1cvEoEcPHLDj09fXyc6W/AmqBylaX7aWdB0q67UUiE2f62YmDAPkU+RQJd+4ihJgDvgx8IKX89n6O2Y+ZwL8LfFNK+akfJT4JQRCgqipWIoK6jzJBpfUKnuMzfnSE3EAGVds7S6fT6LDl2iTScZ4ZH/pYr817qzKM5dJ0Ow4ry2v4js+oGSVhGLz7rctoWVCzeQ49N8X0qQk6lfd44Svj7KzrrFxexW2vorWLxAqC7ZUOsWiclbMb9I86mEGKzZs6mU6XWlMngoMPCLfD8dk2169YRAcMnptucu57MWzXIqwIYo6NlYTCcYGuC/wFSSIMuaVl8FdCnLaCHzGJbHrsLOo0VQul26EznETd7cJCiGp1icYhbXVxL2/jRU0S0qaWilF7tp/upk1iuUIkGiJuNmBApdOB+OYu/fkY030GZdWivLJJdypFOh9joeYQmS2QtyLstNo0bQ/Fsai0W0yFId1Ml8qVMqd/7jM0z63gZlXWah1GXA9rjxmEpBUhajzaD/WHHaH2OnS26/L+yjqDqSSvTo8xkLjXTs4FGdDWITPVt792hbiv5qWUkt1Wm3wsdnft0vUDqh37vkLXvX1DWv4uMS2PIv5yqosPePoIIaaAf00v1eMN4FeAPwM6QFYI8fellP/yUe3sZyT5W4AnhPgmPa+7r0kpW0985p8igiDg8vevM3ksycDwDsLof2Cf+XOLDEwW77qwDE7oSHrTYfH0w+XwE8fHOLuyju16+zKj3lzeoaoEzAwWiURN+ieKaLrK6NFhNF1j/MVB5ssXGS6MMTozgqZrfOf/vEVp5RrL1xKMHh4lmf0xauVFEpFB5tUNDs2dRtMGubZwkbrt0W451CttJga7BNKj6apUWyqLZ6P4rkrZM/k6Qz2xieUQWhk6qsbgUJ2tchLnUpOYCd6Ywtxwk6VbPnoV7IJFux7Da6r4iQDNActp4AsFRQmILdZZ/QDCooI5Y9GxNbZtA2PY4lBrh+1lCbs+g8/ZxE6GLG7k6BbiOIbDdtulcksyNbDOzKRB12vjqj6nJrJMdMa50GxxVBlmofQm0UKTTLZAsZ4jlrD45v93hvzhQardPHOxLE23xk6zRTERx/Y8srEPOyfxfVyjH3Z218rUdurMnJokbhp8+dghmt0Hcy/vWOBpWoPIEy5JeEHIeq1BMhIhotyueuL7tz//2H0jzpCAblAlqmbgIEh+mvgfgVvAP6ZnS/cHwN+TUv7W7cHfLwNPJUhCL1A+B/wmPQeeP7q97Y+llI+fgfwpQVVVJk+MEU2awN7rRMl8Aj1y7w3UQTzksuyslhBCUBjuTdmdGh166Hv7nk+91EQ3NAI/4MzXz5M5MUifaWFZsHT+LWK5Q9gNh+FDg6hdnWIwQ6QDl69cpzCcI5EdQUqDzKhGyxBM9udZvraG1/UgobO9VWb2VI4lP4WyW8fbDRG5GM2mT22zhR2NEnohXsNFDULMThvP1Si+COEFj/LVKkpSYamqIytNctmAYtHDb6ucntzkxUHJB69bSN1hre1T7kui1x0SgyFNW8NFwYhbyIIg1Bzykwq13RZG3QRNIC47tERAIinxYhq1VY3iUZ/BoMqVEmCFODsCLWWyvupy+rNF1ta6LFVUPLfGdjNAGBatosVc7jSNTol3ahXe1+r8XDRJcSTPt9++zKmfOEZ7pcJUJo6z1WJ+vYZRjN8XJOF+E/I/L1qOy/xOmeNDfXt6rz5NUoUk0cSHqtO4aXxs52DwIwKnx8HQ1Ltq2LvvFzE5PvRgR1QVOoXI01Hz/kjxoz/d+hIwKqW0hRDfo2dwfsev9XeA/2U/jez3V/M/SymPAc8Av0bPs/X3gG0hxL8SQnxJ3KtDP+AuPdcbjVBaNKu9Afj1925R3akDPaNqw/ywNy3UIYS69xSUbur3FVSGXv7dXq4iTsdhZ6WEYzu4XY+f/Luf5cdePsrFqyuU6y2OvhgwNqvz/jcvcP3MLYQQtIOQxWoVp+Nw5usfsLveIJkbwLUrDM4MEImZDE73sdBsEtnq4JQavP3u6+gtm9GYwth4H5GGi5V2UCIC1fYpGm1kRCKzOk5UJTvg4gUa62oCBjS+9NVdjAEDNaZiR6MsNZIslONc+G6ElRsGAyMBhhoQb7dJX69gbdgktZB+rYnZsYl5TYiqRGIwMtjmhddaWMMCTJVEVtI3aCOGDPRCisMvh0S0EFV0SFXqJLKC2IkRrOEI8QGPcyuCShemx7McHTxObEzFjQacPb9EJJehOJFgqn+E8UiUStdhXQ8prZZQbJ+R0TrZgRgDk0UOHRqmkIjdp/KU0qO8+j1K66uf+Dv1OFi6xlA6+QMPkNBzyrkzI3IHKUOcoHn3ec1duV3N5PGRUtL1DkrWPi3u+Lc+yeOHBFNKaQNIKRtAU0oZ3H4ess9uwmMJd6SUF4ALwD8SQrwI/BzwM8C/D5SEEL8jpfwHj9Pmp4V2rcPK1TWOfeYwAxPFRxbX9VwPu9Ulmf1Q7r6X5djSpRVS+SR9YwVatTZGRMeIGJhRk8Jw9m7Vkavv3KQ4mqdvJEcym0WxvgjojMwNYloGbtcjFrcomgalus2xn0mRkBPYaocJOUHSFXz/j84QiRq8MDfJuaVz6AmLTjNOUg/x1YC+8Qhdu4hGDV26qKaPsF3ijk8Yd1hftpj6nGRpCeThDJ0th/PvthE7XU692KARRHCqCqkZn+FBlz/62iDZoMXp11q4nZD8sMflM1F2LzvkMi7pZkCrHsErCGxb5crbcYoTHYxUQLQeEuoS29DQfQcrYdNpSryNkEY0iR9JkW+aVMolOksKdTsgdbjC7IhBrbXMdkQjbKrkfJfcXJrXjs1ycSfOq8dVtq9uog0k6GxscHhqEM2dZ2styuQRE8U4SqvWpmp3iEUjd0tBCaGjWc+jaH++066qolBIPB0Xm3uRUoK0e+WrPgYnbFF1Fum3TiCEQBMRVOXhn8FCqUI2Gv0whekeanaX+Z0yz40NHQh4DngSnkjO+8TqVinlO8A7Qoh/CHyWXsD8WeBHNki6QRtNiTzR4n8yl+Do7QTuZO7ReV6tapvt5V2SLzy4b8PuoioKUa3OxLEhFE0nCEO2lnZI5hIUR/K4XY/yRpXsQAZFURg7Moymq2zMb7G2VSc/lMdzfA6/MINhmfh+wKWVVYzFGtuX1/nqzPPgrvL9r20ghcLos1Fs16MrQrqXbuB2ba5cLJFJ79AOFBYXI7jtSyTTJmFulFJlCyMiqS526Zt1OHqsiSBk6Zs6Zc2nf6KDd63KrqOh5ySJOZ2Nr0uqG4JczOHmgoVRcQhjgvSwj5c30QOba5eijE11+ds/v8O3vpXi2pmQoO3QdVTEjsvupoadlaSP6DgRndqaTf+IQ67gc2MtSbemYsQlgjq7m2myIzGcQCEWr2KX1lndSsFEHk2t0Z+zGMxEMaIprm3s8syJGc5dWUaZyrC+uMsXnz/G6REDY9Cnf+w5Nha32Vw8QzLTIj1whL5UAiklrh9g6hrp4pNZv/2lRNbBv4nUT/Nxk0gRNUmfdexuUHtYJZN2o0Or2iaSMtHUvdtLWxFODPUfBMingeDTkAISF0LcW8FK+8jzp2pL91CklBL4DvAdIcSPbIAEqLiLJPVBotrDE8EfRuAHVLdr5Aaz+/qRZ/rSD82TPP/BLfqHUkz376Lps+y2fTZqTZ55ZoJWrY3nekQTFtOnJli6tMrQTD/RhIWUkmOfmaNbfQthJNlYCNhe3sXturz41dOkyhb9L+V55QsnKa2vUV6+SXm+xuDRfsrNDie/eBwMje7iBwReyJbi09WKZAKFybEI567YqJ6PVWoxMl4HS8fZCLBXBKWkjr8laKxqhKZP6JWRQqD3K0ST8PYfGmRTEkTA0nULW9cZHu3SsmHhmolfNNk5Z2HaEtmS/Pav59ncNhl7ySFeC1lciNDwNfyMiql5xJtd9AWoezqlmo6T1iiaVW5aYxjdLkpMwelKrMU2ruKROFJnOGHjGzYxRyAPWYxkrlLZjpCOPE/95jI3FJWg6+K5PgMTRfo3HN7a6DKTG6V6s8SzE6Ocf+N7DE9nKAzl6Nhdrr0zT6sQ4dT06I+UeEcoaaR+8mMD5B18N8QwP/5+FPgBnuMxnH54DumdupulVvs+f9gDnpAf/Y/v80+jkf0Eyd8AdvfT2J353ochhPgfgK8CI0AL+CPgv5ZSVm6/rtKrIP036SldloBfkVL+7n7e/wdNMXL4iSXkruOxu1Yh05e+r6L8fvBcj52VEmbUIBKNMDNQIJ1PIW4XvM1Gw7vpBevzW+QGM/z/7L1nkBxpeuf3e9OWN12uq9pbNBrezADj1xtyucu75YnLIzck6njShXSSIhQh6UIRlCh+0IU+nOLi4sgLkqL2QhTFPd5RuxztLrl+xw8wM/CuAbT31eV9ZWXmqw/VwAAD1zOz4I7BL6Kiu9MDWZnPa57n/w8lw7Q7HTx+E0VVKOUqLF1aYerxcTyR/SA8jO7XGN0/xJWT12jVWsRbYJXLzNfPEEn143gmSO49TU+sQyPsYf+hXaxcXOaNeZXJo4fR9POsz62Tq1Qxe6c5+MWDyIbF+TPzjMUNFI9NardNOw8nz0f5pS9vEZ1zyPqDaFLDE29hmuBmvDT/VjA4XiWmKwjg8mUVBl0md7UouQEufcfAbDnoigRH5eqCCZZg9pLGeKpGPG2hrEK9DjQk/qhNftNAShfCUJ6XVEw/8b4ysd2wvqEQrFQIT+uIBQ/N7Ci2LVCWKuz/4m62IgXquQbRhEZeW8IplIiWMzQDMBrvZf94hnNn5lh64Rz2UpmB3hjn5ouUfDpXVkzceIN8rcH4/iE0v4nvIxQgb/AgRxp4WwRg79NT9/W4DPUEb5tauJVb9WbbtsNSoUTIY2JoD8fK62PDRzxISilf2Om2Qog/lFL+F3dbtxPFnd9+Nxf2ABzgt+jalETo1rB8A/jK9vr/Evg63RbA1e3lfymEuCClvPJzvI73xPupsfL6PXcYKe8U6UqKm2VWr62TGk6w/9lpFEXBdV1sy8bwGARUg8JGEem6+IM6G/lLVJ04e8bSOLbDwoUl4v09vH7qKiOpGANjb9eSjewbA4zlxgAAIABJREFUxPAY7I8FaTQttq7VqRQsGpUWDTIsX6qz8cNX8S1v0D+e5PAzOXItnVK7w+VFlUrbJNJeI+TzMJzpsO/AINdPt7DtLCITomWrRDo6F163aRY7aP0QCtZ57Kky/983Y2Q8Nfbuczh9IkRmokmrquC2FMIBF1MVzF01iHqbNG0DqTgs1HoQSotgr4XegVLeIB7sEB+18DYlw+kyltTIxwTeoIHSbpEtG9Cx8ZZsIi2JOqgiQi6u5rLhSdDflDQaCoOHdRb1FaZKHtqal1hokJeuWPRfMBkdW2IkPYm9lKPhU+nRl/itzx9ic7aEOdzD1atrDD8xDppK2OMhEfB95F7kTatD3bJ25NbhupKWJpg4Mvq+TKDz60WySzmmj0/i0bX7ZnU/4l3wEQ+S75LfAu4aJN9XypsQQhFCPCmE2JGYopTyf5RSnpZSdqSUW3SNMD9xyybjwM+klDOyy7fpSt3tvcvh/k4pbpZoVJsP3vAhYHgMpp+Y5PFfOowQCrVyA4DCRom3fniOuXNdU5ZgTwAranL53Dx+q87u3u4cWDlXYfzQCKnhJMF4kHDi7dR7KSUnvnuKwkaJueVNzl5fZvTgMeYv5Fi9uMqXvnQcj9+HGpb0DMxy/cxlZk45LL5lQytCPWngjoaJj0H22gLLC1c49/0LYNYRZoB4u8VQrEhHWmxuGAhFobgAq2t+vv9CL3sPt3GLLrUatC1Ym/GQ3dJxFbh+zsfmssm+/jL7PtPC1sBuCpSGha47pCMWag2yV3UuXfSTFQZ1oWK1odNWwDLQOgYtYRCfArPXpNTUya5oVE9Fqc0ZNFdNVLvFwGAPAa1DMLRMxbYouVH2TX2SYmWEYKnD8V89QFNp8L1v/pQfX3iRUycvs3tqF24qDAkTn+4y9twuNFUQC3gJeIz7BkgpJc49HEM+yDSsDvn6zp4Dy3FYKVVQzffnOBJNhRk78MjR4xEPlXs2Gd5vMzdIV8ngE9s/3y2fppste4M/Af5cCDFN18bk721f44t321kI8Z+xreQ+ODj4Hk6/cyqFGkEpb1P9eL9cOzVHtDdyU9j5XpS2ykhXEk1FqBVrWE0LohBLRzGf2Y10uj6iVtPC5zFJHZ4k6H07O7CwUSLRH+PyhUXWly+zOz0G7MZqd6iX6ph+E3/YSydvo5heKvkq4USYUCxEp91ibF+YzO5jWLV1Ir0G8+eXkZ4crlVgMhZhw7RpGjqVxwJsbpQRnXVaVyA87EFXXJYuqDi5GkKVZAYsekMdZMrHnokisy9pBL2SpVoQGfXQ2Woztb9BcVnl4BMlrp4J06gbjA+32XW4zeJ5HREDfd1lbsaDZgoU08HVFbKndQy/4I3zMfSQSjwJI+M13vypQWUZ3KiCUm/jt3yEBqMsLpYpz9pMfSJINNYkHtdoF5MYsyVeWC5y0Wzymf/kKzz7+WeJqx5KC3WCao7QQIiAMMhtefAgCGtVdk0YZLcsZl5bRdmTZsvvp9q26AkFuLS0Rp/mYWj87bq+hlOg2lmn1/vza/9J+zoovQ/VfisW8N2m4HTHNUiXmr2JX0tu9/rurif8blBVFdV75yiOlPLRvOR7Rn4cEnfeDff8z9iJLN1f3me1TjcC/74QYgtASvkf7eSKhBBfBf4x3czYG8zRDbYX6DpIt4GvSymzdzuGlPKP2S4IPXr06EO940O7+3/ux+wdSWJui01bts1GpcZANHzHg29bNq7b/ef1T2ZurhdCENxW5WlaHV566QJJr5fxgbfrLFeurVPJVRjZN8iIV6dVq1LKB7h24izZy6vsOjzC4FQfuqmTbTbx9vjwBj3seWoSj8/DhTPnCPlzJOPHmHmrweXXZph6fB9qQKO4cIp4NYf3apNAJkxdBFhTCvhTNorfT6HsoNQCBIwaIqZh0WEt58fXaOPx2WgRgdGv8+rzXvbtbyIGOmRtnUURoalJzHCJg58pcOp8GL9iE5+2yec1ju7PogiXs6/72NwyGZyyKGQ9lOoKzpZFIuXS8KqsKGGs1Qa1gSBqsUZIb2JEBXnXjy8BxoKJktbYOFVFHZnFTY1hhk2sep5OyGD3QQ8e/3eJq0dZPuWhYjTJeCKM9tdJ7rd5+c9OEp4KESzrNJ00ZWOGVtqDu77B9VoDNxIgPGGil9vUPG+/1JcKJXTLxdRT3OqtJe15UJII5b2WbBi8z8Gh942LS8up4lV7HroE3LnVDfoioduGfi3bYS5XYDTe84E1uP5A8DFyAXm/7KQn+WtAFrh8n/13ZlexjRDiHwB/BHxZSnnqllV/CEwAI8AyXcWEbwshalLKH7ybc3wYCEbfbvE7rqTZsZGSO7z4btQ6AsxuFdBUheFYVwR7Y3mLpWyRqelBPBEfSuf2nYsbRXxhH6qqEvR7efzpgzSqDSoX1gj1RSltlhndP0yz2kJu1AgH/MyeW+TqG7P8yj/5HNeulxkYGeSt66exNxZRdC/TTxzix998mTevCzIeg/KWgWfvJNa5i+xNmqwFRwi3m7RqLSpLFsF4gJG+LTZKJsWSTjvn0mO2efkHAbYuquAzWXcUhg62IaaQzSlYMZ0rV8MEohYi6aHkE1x+Tac0q3JiPYgdkKTjFj1tm7nLXowejUCkg2U59E108EZdzl82aNsKMUNSBGwNEjGHhuqneWUJ3XXJpCK02xEq7TKyukkz38YbTBLweeg/9DhL5WVSdpvAoSXceT/J0TH6g2EunG9i9fmJmQY1bZ2zL53n8U8fZtezWX78/17E8SvsG5lEKDYhw6Qc0qm22uguNMsNrI7EEQrRniZC/HxGJ4T2cEdTdoIqNBKeyb+Tc43Eonfo5KqKwKvrKI96mA/kQyQK8AtlJ0HyvwV+F1gC/pmUcv3GCiFEhK7Uz38jpbzrkOg7EUL8NvAvgF+RUr7TuPkI8AdSysXtv18VQrxEV7X9AxEkCxtFFFUhknhv7gvSLYOzidBvf5F4DZ1dqTjFbJlwPHjPRIdMJHRbA1D3mQifht80OHZ0klxtlrK1Qng789Xj95AcfNuZwrEdXvyrE7hNiz2fO4Av5MUb8GC1O0wcHuGVb73A1LFBnv3qMYQQfPVrz7GaK3G5uoWv2SAYsKgXr4CqYIW9BPv76ekpow946E+H2T9exV9KsXpli/EvTqJf3cJyZhgcMJhZzlC2LExZZKkSxFuQOMsO+qjKBj6WXndRR70cGVll+RWF2XiE2ppBfyDHyeUAzbwk3G8h6w7NZZNrkRBKpQ11SXywjS1c3LTL6rJGou3S15siX26iBRwCmxrtps5axY86qqN2DJqtKjPn63iVFtFEnj1Hxpi57GPv7l3Mfv8sr+tzjD8xSSS9hRVv8FzvLxGNDFBqt3AuzDHaa3B4/zil6iqXXryG3ZKEQ0EOPjdMZX2Nhfl5WukSR/c/Q6PTIWAaZJdyGLUSI/umkW4DaZ3BUicxtRhCG3lP36kPGhVrHeGuETCnH9gAaHVsDFW9p8HyDZq1JqbPvO25CHnvFBxQFYWh2Ltqsz/iI4oQ4qm7xJhb1/+GlPIvbvx5r+12kt36L4UQfw78c+DKdhnHv9jWbH1XQ5xCiP8a+J+Bz0sp37jLJq8AvymEeF5Kubqt6vMJui7SHwhsy0Z5P8M4woB7zBk5tsPqtXU8PuOellq+d7ScY7EQsVg3EWe1UkMSIX2L4e7E4dHbz+G4TD0+TnZ5i1qpTjQV5k/+j+8RaEn8qsZjn+tFOnkUbYDiZgnDo7N+bR1vWyMzcoR2s8jffOsyVHQ+OWTS23cWdzxKqxHhmseHFRkmv7CAYzmohklk0EvZClNteLEvNTHGAwQCZWoXbcR+P4QtlKUmWqsNLqjY5LwOVakgvCpKzWJktI3Vsbi84seIGXj9LYqbAmvZwVOTSA8sL5pggxPVabYsGoUOZs8mIqRQ6EQQVpN4Jkpy0INevYIDRJ6MM/MD2FrKoylBDn/xV3CTlyjPL3MgrWF6TZy5PNVOgOaySX3CIS9WWK9kGXJD5NeXqU37MSIlBoYtbEvQIoQ/WSXZO4WqTrBa6kqwXV7P0mMLRkZCKOkaUloIxYelTpBvvELK/zSq+u7rbz+I6IoXpIaUDXC2bvZwpXRBlm4znL68kaUvEiIZvP886vXTCwzu7iMcf+96r494Bx/9OcmXhBDPA78ppazfZf0f0dUgB5i+10F2NIEhpdySUv4O8Bngy3SD5Vff5QVDV/c1BPxUCFG78bll/X9Hdz7ypBCiCvw53YD8Zzs9QVfb4OGRHEw8MNHmfgjhRah3T2ZQNZW9T0090HPyXozEo4zF01S3mljtzs3lTavD5fUsjuvSaVnU8vNU8luUcxWKjSZa1WL3/hGe+tXHSA7vQ4oxGtUmZ169gqKpHDg8zuoLM9iKoNrWsdQQQ3sG8CXjFGUPm6sGf/tvT9FZKGI1iujFZaanSgQLHQb2ZnDiUWqaF8enYSseorYPN+xDkR0OPVkjcQwGR1scGGlglOsENZdQWjI+Vieqtjn3lp9LuQgiLShugmlCYJ/JwDEHNe6idroNDNdxcOJe7JhOy9bw+ho8eXQL/3IWPWEiYybXT85RzlvEEx7qCwa9/T0MTiV57Av9dOoKpZzGhg0rGw2uvPoK0Yhk6c0sP/vfX2Rl8To9/jCjiV7spM26dZZzJ2bxaP0M7XkG02fgyA44YVYummzmrlJv1dioVNnbm8Qpt3FsD+hHbtYYmlqclO8oygPk3W7wsL/fPw+8WgSveQCBCbf6H8gG2HPcWk69J50isYNykt3HJ24LkFJKpHRZn9ukXmn8XK//Y4N4H58PB22gF3hFCHG3pJKb/xIp5T1Fld+tdusbwHEhxH9Kt3xjiXfRm5Ty/qPg2yK0/2T7865p1ppcP73A7uMTaDvwbvxFYrU7GKaOYzvvWlzgXtwQsc6tFlBU5aZwuqYqBD0mihD4w37GjiZoD60xFs3QdHWSIymEK9FNnbWtIh6/wdmT16hp4NoOAkFmIkMsE0XtC9HfSFNeylMt2swU4uweHaZnt4lVt9lcsZk+sItL8wuMfLqXlTdmmPuLNTrSwTNoIOazONECiceC9FFj7jsKbS1ClTbe3QoD+9ssrYQQczVmz6jIko1mKLRaGilvm+hTguVFLy2/QXC9TrusYjhg+sG1QCmVUcoSFMHGoskJXaXT46GpqyRrC9gDgvWtAK3VEPUChJw6YwdTRPuyZDeu4m1KJg4d5We1n8GCzo//+gxTQ2FS6T4Mbx+ltTzrxSVMGUV3UuiBBAE9Sba0RHYxz+74Xk7OX0PLWaSTFkZHsHmhQd8z0+w6OgaA67p02hbGtvuLqr2LDNDOGaQ6iFB/sRJ39baFqih47vOcCSUAysTtfxtHb9tmp8k1dzzP7hq4ZRwnCh+ChsMHkY/BtG2HbmLoN4A3hBBfkVKevGX9jr447ykVbtuochddObrngdx7Oc7PG9NnMri77+8kQLabbTYXdyREdAdWy+Lya1eplupceOUKzdp7r78s5yosz6zetmzi8ChqwMTeLg3RVZX+W7JmNyyLwlaApXNF/DZEhcba7Abf+aMf8uprlzjzyhU2Lq7y5MEJVF3Dtmx2jWcoLeR5fPcohguKKti1d5qwESCUDrMhK2wsLbJn2mVyzwEmJo4yuqsPT6zI1GN97H1yF55GC38YPNNpwrUIm+sm5UwMbTxKZ1+MTK9Lb6eBZ72JXRWIIQ96UBBLtXErGtW8n5i/zcizkuiwQyHiRx4N4SQV2hNh/E+ZHHyighnuQNvBEg5bax7i8RZpbR1ptfDXTfwhjaLTIZk0CY2oXL+6xF/+WYdvfXuWq6fnaK5XOTJ+gD3PHsHjEQzvUsns6ePFH55h4/QqSTVM+cwWgWqG3n6HSmeNQNTP2KERqu0Cg3GX4cEUNAL0JfsZ3zNw8964To384s+4fvr6bfesVqpT2Cg++IZro6C8t/nwnyerpQrZ6i/QVlZJgDpE/0T6DueRR+yAG9qt7/XzIUFK2ZZS/kPg39Adwfzauz3GTkpAfgD8V1LKmVuWfQo4IaX8H97tCR8miqL8nc1Z2JZN4z0O8xgeg8nHxrYdO3SUewg6341yrkJ+rcjo/m5x9er1DUrZ8m2lIQDn51dJeLyMj6TvOMZgcDdDhzTsjoPruGQm0ziD0C+SZFJ9FDfKPPPlx5i9tEx5s0y11mDX0XE2Fzb55r/6Dv5YAN1yGZhS+I3f/iyax+DkKxeZ+LJCrK+fv/rmq9irVcYOj1BrlBCeOpXgGOgajz8XYdMXYbOcY2iwAws6a6ZBj1ll64pL70AbRuIErQY5y0O4z8GqOigRhU5RsnpBEB1r0O/vcHleQ+QtXEPiWa/Tqrks5wz8GYmeMtCNDlvzLrW6h2bRxal6CAR0JvYFuHixQGCwgAimMRQNs23w7OP7aBW2aBs2uWIFq1omOZRE0R1a2TKZ6T6Ez0+mb4Kf/MkpAkNRnPMdkokRIv4YrY7NtY11DvTvoSbLXDj5Mpn+AYKRtx+z2WyDtpIkuacrmXdD+9RqWTRrrTvu1TsRH4AACTCZij94o4eIEEZ3fv9dIKWkbnU+Uhq6j9gZUsrfF0JcBr4hhJiSUv4eOxw43snb+TPAzSdzW1/1h3R7kh9b/GE/I/veuwqI1++5+VPcJZM1W61xbSXLpdev0rHenl/0+E0iybcbAv2TafKOxUqx609Z3Cpz9oWLjAZD+Oxs1+j3FqTbQHGXUZTucGyuWGVlaQt/LIjWGySeiTF2cJjF5S1OnZvDmwzyysU5bHuVcPBFPIaGPxWkJhzeePkSW7ZFeXEWXdVo2X4or5PZH0Dr7+rJqvEnKbQHUUWZ0CGdQg0uvFZFVkLIwG5UTSdybYn2tRaleTj5cozmvEllRTJZW0HxuKw0Axh2E38Slus9XPipB7No40ubBGMSQwU1ptKo6xSvetmY8RDOtFBGg9iPpannNdTeQXp2pWlYAtks05tocOqcTXlToJd0vvCJg5i25NAxP+Vrc4jVVfp8bTprba6+1cQbCvDJz+xhffYSl64tcuSz+/nK1z/Jrn0Z3rqwgOO6NPJVBgwvVqNFRUiOHv8croBC+SyW3aSSyyO3ZmmtS8qNFrc+oz29UfrG09Q7W+RaV9/z9+oR96bWtri0PTf/CB76nKQQ4gtCiBkhxHUhxD+7y3pTCPHvttefEEIMby+PCSFu5K3863fs87PtY57Z/tzdVuYuSCn/Pd1E0N/Zrv//+ftJ3sIHejS7UqgSjAY+0GocUkryqwXarc5tpss38GgaMuhFHdRuGz5uN96ey3JdF1/Iy7Gn9yDNPE0bOs0Oc+cWmX5iEk2pUG5UWC7X6Ne9mF4Dw7QpbZWYs5bY15dG8RtEpnqpVxqsLG4S2+fvWmdtVvnULx0lu1rgiT0jXL5QZfLoMT71Gwl0r4ezr17m3GszfP/bP2UkfglfLYVDghNNm2ePZVg95uHq0iwBFXY/nuEHL87RUy9T7S2T1EymJyosNPoZmOzgjCu8eTqIOVyGjoLXqNOeVNHTKilvjWY+ANkOZkwSGlXwHlIptzQqKxIrlSATq6GqNn7ZIed6UZIalXKL5rUK0Qkd1y8x6mUs3Yft2MysaQynTZSOzdrZJSYODtPTE+Diq5eJ9e0nHBdUi1UG9+5GC29R26px8EuTRHothkfCXPzuWSafmqRVb3P9tTyFUo2FkR6sYpVz353HCJokPjGJbmgM+3qo2xPMr+ZhJcfYcBEznuL0G5v0f6p9s7F0A1MNoSn39xp9xNtItwH2DOj7EOL+r7Ogx+TQQPrvxID6Q8FDfD1ud6b+APgssEJ3TvB5KeWlWzb7R0BRSjm+PQz6vwG/DrTolh3u5e6SpL8ppXxzJ5fxzgVSyje3qyb+mtukPO7NBzu75T1gd2wWLiwzcXjkPWeJPggpJWvlKqlg4J7edw/i6mYOr09jaPruSj4h77Zhb5jbkntqpTqqphKI+Fm+soqiKgzs6qPe6aApBj3pAIc+vQ9FURDaKD6PQ4Y21ZUibY9OfrXA4pUi+784hEfXyERCBEyd88t5juwaoicdRdM1GtUmc9fXaOTrONkq507PMrvSh8Mao4EAsWiAf/Tf/z3+zf/6l5zfTHNweoJUX4LF6wucfOl7xNL7KcwWOfPCJZ58cg+f3j9OnQAn3ywxHG4h2xWCJclaxY8MppBumY5hMOCTdEyH5qbO1ozAM+pHNnWcjs3KRBrZcXjcWiI67DA/4+I6TVKRErW2l2zCg1ZpEwq64POTH0yjY9OTqpLMqFgVHzXDg1bv0K4lCZoVCILmM3n+j/8Dh5+s8NaLTWZKDmOZGOG+CK/Or6Cakn/7L7/Nc39/ktHkIUaOlHjrzCzhsB/Vb9C/b4Jr19bwKy2MAJiqyiAmxbUqnmCEaDSG7RQYO74fRUaIKBHEuMHC1SWuVFY50j9FojfKRrOJz9BJ+ptIV71paNzu2Giq8ujlvo2UEpxlUHtBmKD2sUNrQHT1kQrP2zzUucXHgetSyjkAIcQ36RpW3BokvwL83vbv/wH410IIsV2u8bIQYvx9XsMX77Zwu7zwGWBHFRo7feru9r/5gZy91XSNvU+/9zKKneC4kmKjif0+hm36omFS4SCebVm65ZnVuybwWO1ON7mn3p2vyoz1khrqeu6lR1OkhrujDX49ga740HSNgcnMzaBqaCqxgA9VV1mf20SoCo99/iAhj8nGQlftz2l0yOcq5D2SM2sbWLbN6dPXWLi+wdpbc7i2w2NPTxOXgpF9fWQODDK6f4jZs4s0dYtD+wYgqHHp7GnGxm1CI1PU1R5sj0YoFSE4noCqJJ3Zz+7D4xz9eoae5BhOOEzeaVEzWihNB7+ikosE6KwYeOuCWs7HxqyBUqnhjAcJV6p4ZsosntZ48yWT5lQPiqKQzfkIGhLnkqQpTcrLDrlVh4y+hbRbFPM6izUfuesSQxoUAgHOqAr+ARNfRuEqZay+XmbmVVaW1hDFOvmZDd54+QztYh4dwcjYBFOPfYqDz+3hk3//CUZ7oixfWScS8LO/P81njx3HkAreBCQOaDQ7BQbGUvjDPhzXRQISlxYRhBKhdyRJ71AMUaliNVq88TenMQG/oYNbptuY7nI1m2Oz8gtMkvkgIhsgbYRQEWryAz1q9IHl4Q639tFVTbvByvayu24jpbSBMrCTtO1vbA+1/q64z42XUr58n3VNKeX/vYNz7bgn+X0hxDstC358l2VIKXc8RvyweD+2PDtBUxX2ZlIP3vAuOLYDgjuSB4QQOLZLcbN0m9myYepEEiE0/c4W8I1h11spZruWWnufmrptues4BCI+Jg53yxAqherNF0s4GuTgs91a2kqrTatjUxIuh3cN4PlEDByd4YHdvPjCD9DdLRKhPmqlOptzmwyEopTzFb7wJS8vuRl+dH6OpBlD81rkpMORzx9gZT5LKhFms1am1rYpzqa4sh5EtWukAm1yS02ScZW4GWJuuYQxrNEZ68HzRgdZ2KTV4yOl6pTnW3g8LtWRfpxLBfrCRfQ+FUsqRPUqagimjii4VYdGU8dnNzAslTYqlVUFPa1Dro0sN/FEdDbLLkYmRCcZJNUfpPyCwxNfPERnq8bVC8sMHOyjJ9JH9UqbqGLQ3qjyp3/8FwwfHyU93ce5C/N4Wi2k63L50iJGaJhh3WboUIJrJ5bRMhr1apP1fJnJsT5q9ibZ1kXGgp/E8BgYnhjPPf4sQlWwahaZeHT7bt1uqbYrlUC7z3e6YXXQVeVj00sSQoA+9eANH/EwiQshbh3y/ONtLe0b3C14vbNjtZNt3slvbvcEg8Bf0bVW/L8eeLXvg50Eyf/lYV7AB4FGtUkpWyYz1vvQz7V0ZRXd0OifvL02rn8yQ61UZ30+S7CnO5+qaiqu69JqWHTaXdPZB+ENmKi6iuM4qLe8NPsnMnQsG9txqdSb9Nxiclsr1si+tURmLMXesV4WL69weCBDbqXAUCRFu9FhVckxUzVJ1SXLi+eo5iv8ym8doLm1j6XmKmeLOTa3bHb1Rjn/0zN0MgNMKTFaMke506TXo1E7dw6vL8nmpk7xwgaWksefivJYUqOVbFPMreJtQijjoyMb+NJR9n2+w5U5C013MTotvLRYEr3YcT8ercNmU6U20yQ9oaBLh+olhXzbJBozqIyMIwxwKzmCdZeeYVgQHsy1PBFF0LRMRLZKr9dPI7tFKajyxvIVfvlzuwg9dpzZ19eJmiZmws/g3jR9/Ql+UtjiW/9+heOfO0x/NIxuufz1H3yfXc9OMfzYCGrZwqOG2f9UBKtlkV0vsLCcZSATw+MJkvBM3cxoBYgkvWDPEj7+dmBsN9vYHQd/qDvc+qBawvlcgYjPS1/kkRrNI3aIAPH+SjlyUsqj91m/Agzc8nc/sHaPbVZEd0I5TFfm9J5IKVe3f1aFEP8P3WHdX2yQlFJ+5IOkdF1c5+8m461/Mn3PoaFAxM/08UkWLy0jFIXBqT4URblZhL4TVE0lGPHfdg4pJfPnF6lXmvgHezh1dpavfukJpJQoioKUksRAjMRAd6TDH/JipiwGdk+iqz6spoWjCUbH+hlTvFy2qmRP1dhYXCfUE2b1zRyVjQajY320y4sIPYjf0Jg6FMQODtOj5TCcJuFCnPOnNrBLRVRTobqpowqFkc8r/KQ5yma2iF5botcK0cxXmZsrUG9a+JpNViZH6NgdEkj2BRepmVBfEQR6A7h+waLWS6NQohVOolotLLWDvZSnPZnG2wDPSJhqHbyXNolNgtnbj79cx1TypA8dYxWHzvU1gk6Zn/zZm8TGB0gYcWZOXMM/HKNQqTN1uMWurwzzXHAAodjkZiuMPjlO/+Ewu/ccpLRV4er1JeqVJv0TaebOLaIbKlOpBMW1Ev0TaQz1nTV9Koggt86pFTfLNKtNRvYNIaUNsn7f0o+p3sRHVtBbOmuAjlATv+hL+ejxcL8ybwAnXfemAAAgAElEQVQTQogRYBX4GvAP37HN88B/DLxG10jjJ/I+klLbgTQipcwJIXTgS8CPHsbF38pHLnHnveAP+3+uBclNq4OqKHftAdyrN2h3uiPXmq6RGe99z3MsCxeWifZGbhtybjctyvkqYweGCUYDJHp8zM5epFmwmT46zYbdpnc4jqpp2I5LvC9GsV3D1E0MxWQ9P4Ou+/jcvkk2FrJMOg6JgSHWT+VoDs/QY88zNP0V5jbyrGwKdn/pOcZ2KeSbPq5d3GLpjet0PBYHnxwkFumn3dshFNTYeGODwvplrqz10+fX+MyXvWzuGcBXmufKKyahcBSrbZL0qyhlm+p0jJyloy3USO8S+LUO7XCN9JiX2ZoPf0zFqwsKZ11aJRtP0MberGG1WuQ3oRP1Eh5W6XvKIibWObkwSMzoYWMhT67ZIJKQhBMlzPHnaJpetkpN+g4OcehTe/nRn/yYhVqHSrHOwK+Oofd2aFwtsCAuMJQe4vzVZTKRIJHBGKojWd8o4M9EqJXrjIwkbquBvPEeEEJ0MzK1AXK1Ovlag129CXqHb5mxcMvdJBXj4D3v+Uc7oUeFh2y59fFEvt+e5P2PLqUthPinwPfptgD/TynlRSHE7wNvSimfB/4U+DMhxHW6Pcibhf5CiAW6EqaGEOJXgc8Bi3Sn/vTtY/6IrgfxQ+VRkHyfdByHfK1Bbzh4c9lCvkjQY9Iffbv137E6qJp6z/nStdlNpOsyND1wM5AuXl4h0R9DmBqGpu7oZXirR+UNihslgtHAzeHVmUKeUEASDgkst07Y68HUNFZKZRpWh6neBFHz7RpQgxA6BpfXs2w2KiTrDslMjMlDowRC+yiszvHm1TKdRIuRRoDcZomV15aZfuIQuxQve77+Sc5VC1hNyeiBDqdfOY93cpTBoyWOx/J8e3kad0OgB9sM7/FSnosTnMgh1yV2VKFUNegXJsr6HKWcwlrdIHvdIKRDo9AkLFySiTaGEUEJRok+0WbxQhFRbhH3tqj6DIw+E1/ApMdMUV5P0GhbeHp8yIiPVkEydWSaVKjCajlMY7FGdH8YXbMJ9fpZCdv0/kaYtDrM2tUVfLsSuIUgAa1JrxzEWwpzdXYRbRSqAZWO4+A3VHShUJE2jWqLreUcgYgf3dCZP7+EN+ghPfL2vLbfMBCBOxtGQo0hlY+G8Pl7Qajvbe7/Eb94pJTfA773jmX/0y2/t4B/cI99h+9x2CM/r+vbKY+C5PukbTts1eokg4Gbdj+Tqfgdw19zZxeJ9kZIDtxdqaRv/M75UE1XUVSFK5s50uEgqdCDHefNoBfLtrk1pSeajtDyKlSbbQIeg9FYErUTJxzpHs+7HcvT4SD5jeId85l9A8MANDZzFK5sYGgmQ3sH8Ad9QJjUaC++0nkOhgdITPq5+OoVljt+GrUWomGzN5RhMN3Da997i9dOnSK7nufYlz7F2fMuwd1fY2J2k/kLNX54ziU4GSTiNviVL7V5y97DyuIKPmFSrW9R/JnC/k8ZTB8PcX6lQeFkC6XPT8WrM1S1YGOTTsdlSQ/jRL047Q4VXSW2J0rJstEDGu7gEJ35Ilm3jXc6g1lbgLrKyIEBzl1foVRtYc6tsXfXAPGpBCEZZG5llSvuCrnNGIPBEKLc5ls/eYsR3UOkrbJ27irDh0cwoj46r82S3Sjyq7/zGVqNPPMrCkuXVoj2Rnjr1SuMT/ZRrzbo33X7nLTX0PEaOnbHZvnKKv27MjcbS48yNx/xUHj0tdoRj4Lk+yRgGuzruz3A3ejxdRwHXVXJrxeJ9kaIZaJ3O0R3n7sMzfaNdyXl9pjJ+2Y33kqh3uD1+SWeHB0iuR1Us4s5Vkol8u02iWCAhGFy7ewiU8fGqeZr9KSjKIqCIiG/mCcc9uMNeKm3LepbFYobZaJ9UZaWNrG2qqSeHMDVVS5dW2FyJM36co4BJUC8Tyc/1yIUCzP6aZtrdpvRnji616C4mafZWuXQl57j+uoixrDO8Z59BMImRvo6PU/XOfvyRZSVNfK+GNktHy0XvJ4MUduiqoaIHm/QVCssLVZorBr0xWrkmhp54lxvdxg7BI2ii7m6hllSqXpN+jIKzZk8jifAZn+A9uImyoUs40/3U5jfYBMv1QurhHwXUdM+3OvLKHWHyycuUTXLfOHpT1Jdb+LKXqK1Bk6nSmtygFGPj2qzTUTotFwoLWTxF30MTKZp11oUijP0BKsER0Y5/dpVxo+NsaE6NJotSptlhOjeq6jPe1sQFIpA9xgPzNB2bAfXdXeUzPWIR9yNR22vnfEoSD4kXFdyZnmdyVT8phiA+h5T9N9Nar/HcslUJfnrmyQPd4Nk30QvffRSKtdp11oYoQDTT0wiJWytFAhFbVQjTHapzNSxcVRVxXUlP5mZI+HxsmcsxY+eP8n88gaTQ2mGpvoo1pucOHEFxdSouhajyTBnfvQq4UiGiUPDNPU4pdUtShtZvvu9K2xWHcYTSQqFFpmhHk5tzHLyxxscibc4fuwAK7bg+NePc/rEC1jZBpV2ANEsYCdiFIpVRhIKpu1hab6JxxwjHNXYWpG4UZvE+gq1gk7V20O80eQrv7bEi3/px1f0oG0mUDIDPDO6zpVKFW3IT3tNQV0rYSktQlqEeCLCylaR+FKRRKaHakSjvGXj0ZKMH5lg/vkC+8IJ1qfCxDsCbyrME5mDvHL2GltrBfom0/y7P/ge6dEU//h3fx1XSLKVVVRlkvlCiWSmB49pcGxyCMdxaFdanPrJBcR4jH2Daby3BDpVVemfuFNv951sLGRpN6ybGr6PeMS74obA+SMeyKMg+ZBQFMHudBK/oSMG3rvM2DuHPh+E1bHJpHroSb/da72xv+pIatkKW/Nb7H16ClVV2X1sAmmdxrYV6pUG9UqTar5KfCjBaDxC0ONB+Aw+8YVDPF5t0ay1EIqgtlzg6Wf2MJiOIwRUNudwahfQR+qceaVMZEihkS1QvJDH6PHz+BPT9Kgm8XQPUgVXtVlfOE1tLYtV+SGZ3WF8vk/RXB0kM1hhY1UwHU2zXFyj4PgoLUHEq1Pu6TC8J0x5TbCwIsj0DdEUqzz5TJKePTE28wF+dsVH3VvHFjqBQ6OMagZydQ37Wg53w0N8dASXGvGSxbX1Kv0DKYajfjyWZOjZQVZfnaGDn75YmO//4Q/Y/fQEwUiWLemSn1/nhavz7N67j0je4sXnv094PMnYU7t48gsH+NFPz+AYCiE3QHNulePPTXPqrau8eOISu1IJ7I5DrVgjHAsyNtgNhq7rUivW8Ud8d9xr6ZYAHaHcnljWO5JEuo9ecvfDdttoivngDT+GCN53CcjHho9yWtwvnIBpvK/5pGatyYWXr9wmcP4gVp02RjqEL+hFSsnFV2eolbqm3JFEmIkjY0wcHsUFio2uwo8wDqF7EowfHEHTVKx2h9lzi9SqTTbLNdodm2iqK8A9sn+ItWoeLegwkOjB1DUMTSMcH2T/M19gU/NwsVakZoUZi47x3GefRhch9sRSrC5mKVxZJxkN0+OLcGTfKNHeBC+e9FO87qWTvcjhpxyefvZpDg6OY6sq7WsNhpo+OppOxePhmV9O8enPDuEqGhWh0FA6xIY8VHo9dPwu1fwWa6c7yIhA39ODd+0SnbUTXF7wMnkkRbtUYfn1y4weHgElhaapFM8uUynUEWMxdCXH3r0KhgOpgThlTfLCuetcWw1SP7HEyPAcB59sIXoMfBMJPvlPn2Xg8SGe+/IYjneJ7FoeveUQUDR0j8bM61fRFIX6TJZTZ2dp+BTGD42QHkmiGzqzZxbIrRa4ePIapy4v3im+7eZAVu64z6qq7tgSrmKt47jWjr9DHwVaTpls6wpSShbyReZzd9qQFevNR2Lnj3ggj3qSH2A8fg9jB4bf1bzTdG/y5vCsEIK+iV68gbd7skIIfEEvhXqDc1eXmYpG6R1OIu1ZQMUXHGZ4eoA3/vY0bk0nvW+AWMB3c3/LdlgrFxhNGXi83VZ6s9YE4eDvKbEr2M/E5zNQd+ibTNNutFm7tMqpH75FreOyWbIoewR7poc4MgibIXj9+2OsLdVxZZDWsuCt0ipapYUdNqi3HZyNIrFYCJ+r4fUNc36uyHplg+EDw0RqFjJiY5YbXPzGAsKx2XN8nEbUZe/wAIt/lef0hSqJ0BZS1FCnepHLBnOnLhD1R1k7t0ZHCzKQjBJWNJYuSzrLUK03eOPKIpkvTrGUL7OarTLgehgJPUNPaoCZU+sM7Ruk0GiydyTGqZfeIBYa4HOfOkRxs0LWyFHflCQ8QWTMRzDoo38iTSIU5NKrZ+kbLhGKfZH+XRlyqwX8IS9SCKr5KqbPxPRpONJG1969fKW7Xfer6RpSSjpuA5cwKg+2iLJaFvPnlxg9MPShnu80lRAJzy6EECQC/jtkXFxXMp8vMJ6IdTWSP4Y8mpPcGY+C5AcYIQSByP3rN8vNFgv5IlOxHoQQmO+Qqosk7l6E3uP3cXgwg2M7SLeO6whcIuha97yxTA+O7TDYE7ltP6+hc2zodkmw2bOLFLMlJp4aRfHCaseieX4FzaOx2mqSmk6SPXeC537tS5w+ucDCjy9zeGKQWLyHKycWOfrMY4zEImxtlrm2uE4o4DLc6+dPv/kT0k+O4lzMYhoGHl1n/m+ucXlzndB+L08fHcGoO6ytFViq6Zj+OOGjk+wKa3z/G69R+uVBWpP7sZrzJAIKVq8P9TzE+02SI3D1ep3hr00zOXoUe6lELruJHvPR2TOAWmywtbyO9+pJCuUIyZEBQkmdN9/Ic/qN1zmwZ4Txp0ap5+vUsgLLSnH+5WWm9u3m1MkraL02E73DTB8a59qpecpNi+unF5CWzchkCd0osHhphcx4V1xi6rFxdF1j8dIKqt9Ej7dRtQYJT9eRznLqCCHQFR8PIruUo1qoMXF4tHsvPe9CjEJXifZG7ppI9mFCCIEuusHPfxf/SEGVQ30qQv14Bkh4NNy6Ux4FyQ84ju1w+cQ1xg4M3VW03Wfo9EfCbMxnUTX1Drm7+xGKdesmpZMjt7pBraowdqAbFMcODANdB3pVCDRVIeb3kVsrUFgvMjTdf3O4b/exCWbXt1irWByMDxDItGmoXmbenKXSbuNLBsk8/gQdadB7ZJgjx6cIRQMsXlllavowSxdW0HtjZDI9hHsCvH5xjni6wu7hPFc6XkI+lV1HRlFNi5cubWJZfnR/mHDHodW+iOFNYRci7P/qINnFVex0m4HHxqHfpEcRpN7SMW0vbiPA1NEwsfEkeq3GarmArphsnlzkN/7zTzK/us7575yj4LYYmUxTDzVZLK/ja7jEhUrRlLR7fUTTEUoeyXdefQW13mLq2c/SWFpjcM8Aq1c3GdnVT2IoTsg0sZoWw3sHuHzyKo7lsLAvSUxNsDv6GFrQh2HqpHf1UG2sE9X6Gd4zwEqxTLWuMJZ8O4Gn4eSRriDquXeQXC9XKTdbTPTH6OmN3HO7+6Gq6j3LlD4qrJYqSCdPX/jD3RB43zzqSe6IR0HyA46qqfRNpO8QCLiBrnZdPqJTntvmP11pd4fr3uFNWMlXUbUyvlAfQggs20HKCPGhY8TukgjScRxajosQgpCmszGfJbucIxQL0mnbuI5LfDxFSGjUN4so46Jr8zXswes3EXqF03N1rHAAf9BL3Ahy6bWrjB4YpubYXDyzyMJPrpBdz3P8q8eJBzX8MT+eSIb9h4/yhCfFgr5K7xOjLJw+QUBbZdwbIe338PIP3qDkxoi5GkeeHMBtQaivl7MvXOXpXz/Oa8//FMXVGRrrEDAUtt6qoyXqbJgF1C0P0aqkcP46+XqBf/V7C/QMDCHHe9kfDFD12ow3+/DZHpqaSfHSBvGpXhJSRxwcYsus0xNNsXZtkRf/9i0i+zIcPzzFuVMvMza5h+p6mY6hsXRtg61Wg0NPTpEZTjK3tMlgYg/egJ/lmVWqhRqxYT9LM8s4CS+aoeEU60zsvt1CTXGSzGzmODzo3lNUIurz4jf0bib1h7wn+DAJmgaO7EVoD88p6H50nzmJucM55YfC+9du/djwKEh+CIgm763beQMhXOhcROqTCOGlbudpOUUSnu7QaKVQpbhZRlUdfL5r+EIxwMt6uUo+V6bf5yeaCuO67m01esOxbpbsVrXORqPBvqd3Y7U7aLqKdCXlRpPL61kOD2ZI3JJRuza7gdcPkfAGid4UPsXD/JtzTB4dZe/TU9StDo2wQVwaOEdGuLqUpXPiAkf3LuKKIQx3iPF9n0Ztb/Ctf/5jrpXa/PrXPkFIyxD5pTirWxVKuTq1hcss5f0ojT4m9w2T/e4l1LyLkWuza49JLHGA+eIMjdZ1gu4AXi1K9vU1NufX6envEA3ohAcdGok45UCNHr2H0pUNito64YkUz37FYPmsTWlGUndcIkEf5dkcU2xBTWOkP4HYaNI+u0EunSQcTHH95DLSERgeneHdfcSwCQT8XH1rlnA8iKw0eev16/hCPiRd+7M9ex9H01UKa4WblmnNWpNGtUUsHSVgmkz1Ju6ruuTRNTy/yBfvh4T7zUE6tsPq9Q36xnsfWkNjrVyhbTvsSn20e+wfFR49UR8ZVFBTsJ2cEdCS+LW3rdl0Q8Mb8JAciCNlBpwlFmZUPEE/mYAft+Myf36JUCx4Uzv0hpSedCWb85t4wj7o6dp3ATiug2jaHBxIo4gOp5cXGE8OEfJ66GgldC2Ire1lPKnz+plrpP9/9t4zRrJ0ve/7vSdVztVVXVWdc8/0xJ3NuzeSvJeZEimblAxKACEBCoAB2R/8xbJh2B9sfzBgWBAgwZYoAhItCZREG6TJS3H37k27926YPNM5p8o5nDrBH2qmZnq6p6cn7uxu/YDana7z1jlvnao6z3me93n+z0gYl9dFqVJnqVDgTCpOug4TkqDx7TOsvn+bD38gMTsZZL9QwXIpTMYmSfzW6ywu7XDtp4t8dGuV//z8MB7bxHB4kAoytmXhzlfZ+WCB+PkUr6QucPn96xAxaW4v4pFMSoU+NLcPG8HwcAB/JExEbJPfV/EMnCIWVdnJ7eOX86gTQSaCDoZnRln8Xp6ByRihM3BtaZ+qV2VgMIZX9OML+BieTjJ/bY1gIsSfb24y19fHmbdHWbm+wfL1DbSol/5oAFWROf/NOW58tMAn719BaduEMw4q+Qr9Q1FWV/ZQh0KMerz4Ql5s26bV0KkWqkQSISRJ4HP2yhmeN7ZtY5kWVnsDSYoiJN+jX/SYDIWC2C9BO95etPVk9IzkC8C2bbDrh2rdHvWaplnCKQdOVEYihOh0ar/vb3Hfx+vyurprmrZtU82XCcZH0BxOrudyTMejhBMhlj9bRdEUoskwK1c3CMX8WJbNwnu3OP32NAxDrVxna36H5GQ/W4u7nO7zg1Viv7jNgM/E5xghmPBhWi2W1y+T8J0maMkkokEa1Qaf/OgWjX6Zc323GJr9GpKkoTd1Wq+NsvJ+le1yk2+cjVJtZ6lVK+jYvPa101wYGuTjzBa5UpHPPryN0NyMvjLBb//6efLbBdK3mrz1tRD/4t/e5OrmZS4145w7P0Y626RP1PF6PSjCREm4OTOY5Gf/wYF/SGPDsLhEhGRYYnH1J+xt+IjHU5RViXx5h/3tFsMRPyW5jNfQ0S9XCP/cHLGwn7/4wWcMJKPMnh7Gk/dxbnAAp6rw6eVldlsNXLkir39tjkatyfLyDqtX1pHOxHDaMs6qQWI0jsvvwqkoeCUZRVNIjFhg3CLYd+qhiVc9ng+KqjByehDbWOd59ZXvyFd+viZKPGeB8y8TXxojebeLxovCsiyK6RKhePDRRswugbGIrb5yoJfgcZi2TlFfp885gyKerQdhtAXr806mLrlxuBycccRxqgpCCIZmUzjcDmy7zch0BdmVBFvlO3/rG91OKQ6XRiQVplFpUi3XyefLbNTbfPPUuyjWGpZlENBS2LZNpamQLmaZuzSBYVlYNrz57mlajQKZjTViEx3BhM/+8hq2LDEXi2JaHWm/hewqZitM261S3yhwdbvKr369n5inTuRCAeKv8t5faHy0aXPWlAkG9pBoM+mTKQ0N0zc1ScUr49m3WP10gzO/NsNi9RaRvTFuXF2g0N7HZft5/c2LrLx3i8XddSJTEr/8y9NsVnz4NSfDX+/nn//+VRaCEb71i2dIBfysOqrcXNrGGDLxhRqYjXX2c2GGE2Y33Pn6t84yMDdE2JK49dEC129vwmiQqdfGqeVrvPmd8we+N8GwF6/DyeInK6QmwxgtN7FhGyHEgZKOB7Ftm2pLP9LLrBZryKqMy/PVzeB8UoTy5Vcy6hnJk/GlERN40YkKerPN7kr6RMZZSEFQz3UNZLNtsF08XCB+P4rkIOE+91wUQzSHypl3Z3HcqXN0aWr3gu0JeO5cjGU0VxRZ1lBUBZfPpN38EZaxiaJ2PM1QPMhVvcJPPl2g39nEocgsF0OsZlusXF1jfz1DYrSftWub5HcLfPLZEvObe7g8TrJbTRauxrBMQTFdxga8Xid6qYGUb9I2TPRmArNoM664OP/qJJn5dT76g3U+/bN9hmZ/EdMOcLY/jnwzy5VPM2TlBEHPeZz1Jv6WC7e7xIj2n5CcTebemeXV1+e4MObGGdJxqQ76gwGKO2VM2yLdqNHwB5Dbp/ngny/z7qlRmvkfQ7HJ28NzRKsSXtXDn/z+j2moFnWHgZry8faFt2iHx9itQ6McvtfyTJLIlitk01kUn8E737nAL79xlpHxBH6fG8u0yGylSa8vAB2d3kDEx+wbk7j9QSpFu9tSK7uVY/nK+oHP0DAtLMumrrf5ycoGuWodgJK+RaG1BsDND+dZubz2zL8/PXp8lfjSeJLPulNCtdlio1Bitr/vyH073Q5OvzV94v0Jca9WyzBNqs3WY89p9do6kWS4W7rxJJQbTYqN5qH6x0p7F92qE3GM35mvBMq9DMvFm8v4onn6w/eSDVRN4Te+eZ7s0h4BOQMkGY0EufnjefpSEULxAJpT49Xvnie3WyDh9dLX12n7NHF+lPGzQTCukS5FcQ6GmZ0dYubVKIgQkiwzFYtiiyp7hSx7S/u8+1cGWck72LtR4NMfbjH4+gSnf3WY8r/6AJ+7D4fXzU//LEt0cJJvnHWD2yCg+VlfaJEc6+sY5K1JHC2dd94ZZHu7xHe+ESfnsDn15iD5Kws0NrZJTCdoeiv09UeoFRos1xu4Bn002zV2pBbW0jYukUXKhJH8ASaScXYX9sgVLDL+LNWaxPRgHL3Y4Mb8MqX6BufOf5ud3Txvvj7D3NszLH22iqGXaVZWcfUFsRUTv5ZA1VRUTWXs3CACQaPaIJIKE+jzH/i8FtNZvA6NwXCQ8Wi4u8blViLcDRPOvDqJJH9p7oNfOA29zc3dNGdS/Uf2hv2i0xMTOBlfGiP5rNEU+VCHhmeF1+lguv/xO637Ij401+HC6LbeppzrJHg8is5a5WFcchiH5D9iSwe3GiPonULSDq6rWuo6Y+eGcSmdLFpNgelXxnG4NCzT4sr7N/AEXKgOQXTUg6reF+IRPlBG2avusprJc3Vpma+d0Snv9BMc7GPJWqSvEYNgEfOncLXsJTAZ5q1vDfLJ1hX6Sj6ciRjf/a23qBarVIt1Ws0gSxu7mPV5bqyXadacRJomaqtO9vufklX6UYvrlD9YJb8Oi5bE13/nXQJWi++OSXheS1LWh7myvE4tD0rRxGGrVK5kWDXcOPCQrjbw9CfAGaLWaOENeXCG3HhG3TQrn2E1R1krlWC9iCw5Ub3jbG+kafo0vNHODU5qOsFSxkG7BpYpsIVFrVxHcWkYVpuSOY+rNcDG1X3m3p7pev13GYuGu5mu47H7ErSke2UNT3Mz1QMcisJoNPSlNJAAUi/ceiJ6RvIhaIpCIvB0F5mbP5knNZkgEH248bmftRubBGP+hyZrRJOHm+/WSjWWr6wjOSwCcfdDw7P75SqZao25ZPzI9StFcmBZKnqr3c1evZ/B6dSR+404JroX5r1ShbDHRb5dY2HtChdTp/GGPLj9LvpTGxStKpbVhyZ3DK0QCjZBvnkpxFttg/WNfSRbYBo5anWDoD+J5vbQdJzlu7/Xz+52lu3NfXRL4d1TF7CNztfXMk2u//A2IHjtNy5xrbTLxs8ylJDQ8DB7aYb0ThqzLTF9NkPDB4UFm2CkTTA+REuvsJWDmcl38Y1G8DT3cTLLfG2HwnKR7OZ1CMVpLmxw8Y0ZcraJcCtkFvfYLKxw4dcuYQUchD2QWR/l3PAQmsfBrc0SAZ+g1ihjtn2c6Y9Qb+ksFgqcH0jg8zjB7UQTXurFJrsb2zjHo2wv7DA+FCWYiuB9M4CsyKzf3MQf9ROKBdhd2adZbzE6N4RtpkHyIcTnU/P3MmMaJvVKA1/o0X1Yj0KSBGHPoxWOHnp802R7cY/EWOzEEn/Zao3tYplzA4/uBPM0iF6d5InpGcmnwLZtsq1FAmqqe+G/n4GpJJ7AyX9k3pDnoaIBR6EbJrlWk/7RGHJfkYZZwCcdbt4MEHI7cT2ihi63UyC3k2fmtckTz+Hu++7I4xVxaypuTWV9OUNE32V8LIkn4MG2/QRxHvLMr+/sE/N5EcD4aAJZkgiGfWytpUn6U2REjYTHj8vjwhVTCTlKnBo6R63SJrORZSNX5Ed/8AMyS3t866+/i6YonJ0S9GVduCKXWF9J40m1eW18hNUPM8gtidyCl61qk3qrxbuhKOffCjAwqvLBv10m3MyyXNhgJHEKs2Ew8vY0rcsSyWScqVCIxc/WqPhkxFQfslOw0q6x+t7HvHFpGofUZPa1USzhYyNf5NJ3LiBLgmsfL7DdbOAN+/C5ISUpSJLESDRMw+miWWsR7POT2cqScLsIjCVxuB3sraXxBj2omoo35MXp7kQRwokg+b0iq9c3GJmug1CgZyQPUS3W2JzfYe7tmUcPfh7YYD+mgHrA5USRXozn2jOSJ6NnJOFA4K8AACAASURBVJ8CIQQuOYgsjr5LfNxw14Oe4ur1DSKJ0EP3o5smZcNgcCAGRI4NDWtKp1vHcUSSoUNrX3dp1JroDf2hXnGl2SIV9N0p1Hbyu7/ySxT2S2zO7zB8ehBFVVC1w/MbiYRotdv86c0lfnluirDHjT/s41TYx8rWPj++tsRvf+0i85t7DMYjxP1vsbWQZnczw8+uLvPaL16kbziKW1Nwhr3YNkylLuJ6JcWPtnOc/dZpVMvA2ZQIn3IjOUcZeDODz7bY/MEilmnzZ/MmHl3F4bPIXd3kws+HaKJwyVPhex8W8LUk9OUcyb85R1bXqS9uYmdyOAZTGMNB1N06lYU0681+4uMGbn+TD/+fj1n1uQnFwxTqdW7upjk9kKCeWye7niX+ThyAZq1FOVchGAsQ7AtgCh0rmMHlGKecq9z7bO4LpTtcDoKxAPVyA6EOHTqnW4u7RFNhnI9xw/VlJBD1f64hZ1mRGT41+FivUWWZoPvLGd79otIzkk9Ju+Bgd2uLyYtjz3zfvpAH1fnwMI3XoTGXjD+TY+2XqzQbTaIu95Hh1lqpTrVQe6iRHAgdDBFLkkQkESLcH2T58hrekKcrUnA/PqcDn9PBb54/hfsBIeqgo82bSRftUpGNhX1SfSFsW2N7aY+R04Pgd1IoVhkY7CNnC37ykxvomuDUWIq+RD/nXS4ikoYmSwSiflqZHKah8x//5H0mEqN8/ZvnaBom169tMDPuYdvM4Gk68ZhOXHabfL2BYShUDIP+V0f56NZtYqEw42Nh5H6J5Z+s83f/9s9RWc2TGI9x+6fLFNyCETXON75+lvVsgbSuM5py4VKiFLby5DUHydHzrN3eQtNUhICh2QGEEJiGyc5Chv5TPgQSoXgQ0zDRW21kRTrQa9Llcd6ptzuM2TYey4NpmybVlk7I/eXzRp9HTsGXhd6pORlfCSN5ey/DQNCP9ykUS0zDxGgbhxIoPAH3c/uyRVORRw96RqiyRC5fwzJqjJ4ZPiRPF02Gj1wThU6N6q0PF5m4MILs1Kg0W932WkIIxs4NI4RgYT+LS1VIBnyUMmW8UR9Xt/cY9fkJh1zYxho2bgQVhDKOUSuTDEE4vMm3vjbF/kaBbLPN5MUxgjE/br+Lm5dXmXl9DOnSBL7v38CHjGGaLPxsmdG5IXZX0zSqTebeiTIaWGe/OsVv/M53GEoNgN/Blb+8hsOwGInEuLJ3G1ciwo01B5cueFlTE/wXf+MMjdU8E3MhPv30fQrNIO54nFgywrXQZ8SCfobfjSNEm4nzQeq6h8ZmgbpbxZUIMujz4GQJqdkmbcAP/vIyv/ArrzF/dY2LU4PddlaNapPYUBTbstHUzs1CYb9IvdLA0E1CMT+xoXvJXqZh8un3rpGc7Gf4AZ3Xx/Veqk2dtXyBkNtFtloj4HJ22631+LJi9xJ3TshXwkj6nY6n/tFntnLd9kP3ozlUtOegilLX2zgU+VitzkfRqDVxuLQDxu5hhD1uwrOdAup6pcHSZ6ucenPqRI19FVXpihCUGi12SmUiXjeWZZOp1ujzehBCkAz6USSJVl1nby3DWMANu1V++P9e5+d/900cWgOhhLEti9xOHtWdRJZl3l9YY2JAEE+GMA0Lt6/j8fjDPi6+NdN9f+e/fprLm7tUbn2GP1DBFz6FrEjozTYlI4OwXPzsxzfxItMfbrG4n6ZWqKEu5Pl0r8nf+of/GduVIvniElrtBn7dwO+aQXJo3PzRDiqTxB0qy1dWGQgF+Bu/+CalTIXvf/8azVKWppXF5xil79IIM/0RLAAhiHpfwTlRxV9pcPrv/wputxPbrTAymMCpqeyvZ9ic3z5QuwoQigfJbOYYOzdMfq9Iq9HqbpcVmdGzh0OtT0LI4yLk6TTp3iqU0WQZ1dUzkl9mBL01yZPylTCSyeDJskuPIzYUpW/g6T27ht4mU60dqlN8kPn9DKmgn5jvyTLzAJY/WyU1lTyRQPr9uLxORuYGT2Qg7xKI+qk2W9R0nTOpTvKQYZnslioEXU4ckoL3bjhVVTj1xlSnI0mjjT/qpZRrkduCuXf86IaLrcUFZl4dRwjB3nKRkb44ezYMBHwHMnBVh8rSZ6skxuN4/G5OJ2Ms7xbA48U0TDSXhux20K4rrFxZY9QfgKibj66uYFau8Nrrl0jEBtBcMoMDfVSvVegLhNm+CbEBQW5jEbNvCkmYlIs1VMnGMRFj5epVbEvH5RlA0gRBd4RazY2o6JT2ipSCPoIeN1uFEk5FId1osPz+DcYujSON9pGIBFEVGdu2Wd9IMzI72DWA28UypZ0iatNgZG4Qj99NbjuPdadLS7Peot1qozlVJFnCaBvYtv3QDErDalEzMvjV1LHhRyEE5wefb1Zlj5cH6SXQj/0i8MKNpBDifwL+OhABmsAHwD+0bXvjzvbfBf47IAFcA/6ebdufPO1xS9kyWwu7jyUAcD+SJD0TfSLTttEN85Hj5pJxlMfwIg3TQhLiwDrVzOuTj2Xo7iKEwB9+eMJDraUjSxKNQo1aqc7AZOfCureRwfSocGd9UlOUYy+6/oiP0+/OsrCbIRQP4bvTYFpzqCiKzM5KmgYWP//NC1hqgY38NhvXJUJOJ3OvT3fnmrXalFZ3ODWewuV1ER1KcDufZ/Ont3G1LBp9LjSPg8Hxfmi02S9UyKgWupbCHRoh3NonEPVg2zaLS7uoQoKSRq1kUy3UiF0q8MP3rvLar11i58YWDcNgzyPj0C3sG+ukJmKU4jW2d9aI2IPom5uMjrioynFOJWJsF7fY3y2S3S+yd3uFNyIupuJRyrkKmt+JMhzCF/ejmzVkSaPabLFtNLgwnOh+DveHULPbOW7+eIFTb01RK9a4sV2gf7SP8XOjR57n/Y0Muco6Z+aSfN6aoT16fNH4PDzJPwD+F9u2S0IIN/A/An8IvCWEeAf4J8BfAb4P/JfAnwghJm3bPl7H7RF4gx4Gp0/ekPh54XVoTMQe7ZE+bnh4OZPDqaoMR+55qE9iIE/CdrGMU1WIOFRMz73wYD5fwaV2vPbcboFA1PfIOUhCwu9xoSoyBWGxn8kx3hdh6tI4W/PbzN9YJ5AIEvc6CPQP8L2ry4yOJtnbzbFVr3F2OMXc3Ag7C7u0GnonvNkfYkIV7LtrLP/5dZQVwcXffJ2wx40mS8SH+5gTY2TWMghLZfzcGSzL4kcfXOPimzOk4mHausHS5RX2ltMkfB5+5zdPkxxPURxJorfafPjRJ4T0DJXTYcxBmUBcYX8twuJOkfBAlN1Gm7iio+ttNj5dRGOHX/29t2k7+gl73NQbLVavbzBxYZSLQ53v5UrxNvmKxOn4FMPhIM6HeIb+iI/h0wOkJhK0W21C8SBbi7sPrXGNxvsIhsMn1g2+S7Pe6nirTxHy7/GSInqJOyflhRtJ27Zv3/enACzgrnv3t4E/sm37zwGEEP8r8A/oGM3ff5rjyor8hVcgMU2T9RtbDEwl0JwHM0FHIqGHZjs+ayZj98pNPAEPpmXRaBucvjCObppYlkVmM4vTraEEjv+KKbLUDT37nQ5caucirzlUxs6OMHqmk/RjG0sokpdf+aXXWc0WWLy9RTIVRZUlNEVm6swwpWyZpU9XmXtnmut/eoXUVJLv/s67tHUDt8eFaVjImspKOsP68h5fe+MUrYbO9dsbpMsVyhjI1SoD/RE0h8rMq5PMr+3TurHKyGgGTbEoZxO899F1nJYgGp7Eo9XYvtrANdpHIJLgzakoll8lv5vHHZD53j//FI/fzfAbl1gqm0xFbLL5Mv/mB58yPZFkXLt3M5TyzOCTdW7tpRkKObn64Qa+VB+z453EHNOyWErniEoq/ogPIQSaUyM21Ic35D1gIC3LwrZs9KaOy+vC8QSJq0ufrZKa6CcUP35poMcXD0FPceekfC5rkkKIv07HY/QDBvAP72w6B/yLu+Ns27aFEJ/def4rjxACh1tDHGEMX2SX8wfXtfK1BlvFEhcGk9yVVHgcQYK7eO4rASnnK+yupBk/N0y93MAfmehui/u99L8+i/sBTysQ9TPzugvanzJ5IYQnHMHQTQIRP9tLu/z0gxuc+fop4okQGYdGoVrHrrVxtC30fB0jW2F4qpO8VCvXMdsmQxMJokEvn9xepb89zcCIk1ca42ys7qNFg0yEg4yPtllZ32coGaJwO8MHC6s4XC0GXEk8oRCn3pzCEfXxw49vsvfBFi6nymzAx0gs0glb15osFookAj76fJ5OQbm1yMfrKzj999bTBQKnquIL+NBiBw3X3WSmuyx8vIwkS9iWzfSrEzwObb3Nxq1txs8P43T3Ooh8Wekl7pyMzyWOYtv2v7JtO0Bn3fG/p7P2COADSg8ML9IxpocQQvwdIcTHQoiPM5nM85ruS4MkSaQmEt0EDdtYxjb3n+kx9svVxxZf7/N5OJs6qPSzt5YmvZl96GtabYPWnY4Z6c0stVLt4PaGji/kplqssbW4e2+/pQpt0zpgIFezBbYKna/NZqbAbrWfzLZBMV3i5ocL5HYLlIwWVY+M4nPgc7sIDob4/ntX+MHVBdw+F9/+1nkmUjGckoxtt6hmPqSQydA/U2PXKDI1msLv9pKp1snpOpqqUFvPs7Wwh9vnIhj1c/vTDzn9Rpzf+1vfoS+c5Opf6Hz249t8urRN2OPmojvI8HSKRq2Fz+ng5rV1yuUqCz9bJunzYFda6E0dTZER6hSv/+ov4HBpFNIlNrezWLbNcCR4rJaoaZq09TaDMylGzwwxcfHodcrjkCQJl9eJ5tR6dYY9vvJ8rtmttm3vCSH+GbAihBgCKsCDqZhBYPkhr/+nwD8FuHTp0pfytsg298AqINTZwxtFEJ5Rr0nbtrFtqOk62hOUyzxYquL0OI7tQLFVLCEQjPWF0ZttHC4Nw7So6ToeRWF/LU3/SIxgXwCH28HG7W2GZlIYloX5QKF82ONCFoJauc7a5XXGzg7jDvnBrbF5e5t6pcEtpUV8rI+BSIjFdBaXpjE8N0DU4SLg96JqKqffnr5jFGRiI+dACpNv5Nhv7jE7GUeWJDx6jXg9Q9p0UlBs1FqDSCrE/7eyghaScQSzCD3CsOQicqYfu21hbxa5+eE8p96YppQpYTRq7LeaFCWTnN5i5o1J2gJWbu2gqTLFTJlwf5BcpcbWfgGPJPPZ6jZuv5Pyeh6X13mkMANAej1LrVRn4sLjG8fuZ6nIJMePljfs8WWhVyd5Ul6GEhAF8ABJ4Apw8e4G0blinQf+6POZ2kuAFARxdMhLyM9ObGCzUKKht4/sTtI2TfK1BnH/yctRJK+DjUKJOTrrwFsLO2gujdhgp9XWaCSMEB3P5252bL5WZy1XZMLrw7BsfPeVrtx1aB5U9mnobTyahiJLLC+sobZM+iMBWlE/S+kcv/b3v0O2XMe5u8tw1Eer2sDrcBBw2gx6M3f6fHbCvNuLe0jsMzgzTKXkpJzbIzEa45zaIF0qI0kCr99J3Sfx2qtnufy9q1y/vcbo8j6Omzle+folrn50DW8oxIVvn6F/NMapd2Z5/w9/xP5WjgnDwB9uMPemRN92EvwOSlsFdor7WFE3/skYLWeeraVdvMEL2A6F0VMDmBWdym4Rq6qzv55h5rVO+FRv6mwv7TE0m0K3yzhkH7HhKJb5eHqhD6Pa6twwfVm7YHzV6YVbT8YLDbcKISQhxD8QQsTu/D0A/GNgDbgN/DPgrwohvi06V67/CnAC//5FzvNFsZEvPrL5shDOTtPm50y/3/vQ2s1W22C/XO3W6Z0Ep6rS570n+u6P+A6IvUuSoFlrcv2Ht2nrbaAjaHBhsFP24JmOsVPqaJe6PM5DXUgsyyK9keHK5g5XNncAGJ0bYuLCKIoqE3A5uTiUxOF04PY66R90ks9v06g2SQR8uDQfKOMH+nwOTidJTg6AUJEVGVXr3EPu1Wr8p/kVru/sUbNdDA2fYeXjVYZmUrz666/iHQpz4Y1p8ptNZs5+m4uXprn90yUuv3cdp8vB6bdmMAMOlvdy5Gpurqb9eBIBfnx5ga3VPfKajWXpXLm+yq3NJlMX53D7XIxGwgyFgjhVhYCqIdnw6nfPU5QsdMMgt1voNnkutbdpWw1kWWZ/PUt2OwdAfq+AeYKSo6NYzxXI1epP9NoeT8aTLHc8CUJ0Enee9PFV4vPwJH8J+EdCCA+d9cb3gZ+zbdsAfiiE+Ht0jOXdOslfetryj5cVv9PJC0pIPZa75RraQ0oOvE4HZweODr9VWzpuVe1m1m7ki/R5Pbg09YDn2ag28UcPZhc7PU7Gz41011h1w2QhnWUqFmE8Gjk2Rd0yLYqZMqMjAapmZ6AkSSRG72nZ3l1PC7ldhNxjEB7Dsk3qRh63EgZxUGZPVmTy+052lvY49eYUbl+nn+jZc+Nou/u0TRtVlthutoiPxYgnw+yvb/Px/DrKeoHIaIy8ZJFUZYZmUlSLNS6/dx1ZlQkKhe0PFnCcG2ZsLEG2Wme4L4QvKBgZVLHa21S9AfzBEK22jM/RyfwFiA9EkRWZ6+u7vNsfom2aWDYYuoHm1DB0g37X3L3PK+hG1RRM02RvLYPT4zyU2HMSZvtjSJLAtm10q4pD/mJnh38RqOk66gtqlN0TEzgZL9RI2rZt0TGSx435l8C/fDEz+nwJvgSZg7Ztk944ulzDtm0ym1kiyTDyQ0Jut/fSjEXD3b57umFi2vd+fIVaA5/TQbPewtM+2DZMCIE3eM/bVCSJkNuFLEldo2sa5pHHVlSFyQshMJaJa6+e6L0upXME3AJT3sEpB5CEfOd9tsGYB2WSSq6C3tQxDZOfvn+d8QujaKZNq2WgqjIbn6yiOyRur2QQr09xKhFDifXRSDaIJEJk9or8q3/9PqfPKMy9dZb5j3cJ9AdQHSp9yTDxkRiSJCH2q/SpTlSviqbFQAty9pzGVmWflcISTvUiHk3Ftm0kSeLbf/UNqo0W7ZbOZCyKbdukJpOsXF2jXm7gcDmwrSoIZ6ebiGFimRan3pg60bk5irufgWE3ybWWiTtPIUuHm34fh23rYJUQ8uM3Gf8qMhY9Wh+5x+dHr0r4c8C2bUzzyUJgzxohBLOvT+IJHO6HaVkdb62tGw99/fmB5IHGtBOxSFd+zrZtVnMFarrO8OzAAYN4FJIkSAX9B5KA5n+2RH6v8JDJh0A5feApo21QSJcwDZP0RgbbtsmVLqO31vE6NIRl4pKDXQOZ3sxSKDew8FNrmqSmU1z89lnyxSrLlRK2KrGxuEnl1nXapkVwpI/Tsx5OvTHJarMKgMfrIpoMI4QgGPXRaLX48b+/jm3L1MtNPvjzy3z003lSUwnWb27RrDVRHSrhZAhJlrj6/Vs06vD+v/kRXt2B3xGnWG+Q2cqx9Nkq0FEvaufrrN/cAmCvXOXG7j4T50fv1TEaS2DlO9vX0mze3jn2fN9PIV2iWb8X5rNtm7UbmzSqDVTJRb/rzAEDWa80TrZjuwHmyefR48UhhP3Ej68SL0PizleOzFaOwn6J6Uvjn/dUjkWWZaZeOX6Oiixh2yZY+yD1d1VdCvtFfGFvV03mSRmZG8LhPtp7EUKAOOid1isN9lbTuH1O9tYztHWDstuHrPjpD/j49PuL9E14ccUNFEmimC6RrQlmBvvZLJRIBCxiPi9Op8bZ6SESQT/mQJBye4uk4iCZ9CGMDfqHTuHXQ7g1leVMrqOx22hjmRbvfusctfwE2a0tfIE9Cvkyia9N0jQtQvEArVqWaCoJisT6XoZiOo98WaJZbyFJCjN9o2wv7bG5nmbqPkH9stNAHewYxJDLgetBJRz1DOKO8e8fjWGfcA251WhR3C+CHej2oOwIFajdDOW7NxXQqaNc/HSFqVfGcHmPD+MKKQBar8z5OOz2Ikg+hPziMopFL7v1xPQ8yc+BcH+QodnUowd+YWiDlQM63rFt2+ytZWjWHi8BoVBr0LyTiGJZFpVijaXPVtGb7QPjGrUmazc2se3DP3J/2Mfs65NUCjVMw6RV15lNjhP0dJoWz74ySyoxwdXtPYqNJlOvjBOuWsgNgzPJ/q6gfMDvYXokQaPWJDGUYrDvFAs/mKdtyHy4GqLStEkv7rG1s8jGrRVs0yK7nWNzfpv2ZhErU2NrqUJsZIZXvnWWqKXgUhWCcZWN/Z+Qzua4sr1HMhbirV98hVA8iNEyWLu+0U1K+uSzJTKVGrXyneQZdQev506izm6J/fk9dMPg+s4+umF0DSR0bnBOIktYLda4/dMlhk4NHFLWSY73H2oNB3TKZd6aPmAgs9s5Nm+v0FlR6fFYyFEQT9+E4XHpJe6cjJ4n+TmgqMpz01U9DttuI8TDmzg/CW29jaI6EOqZ7nNCiG6ZwuOwX6kS8bhxqgrFdIndlTTDpwa63s1dZFlCdRx9/m7uphkKBQj2+XF5nXj8Bz3NliQoVmrM9vdR2ipgDGnEB6MsfbZKcrKfxEgn8ce2WxR2r2ExwMBkkuREgkgqgkNTsPerLGzOU85WmfpmlLFkBK/LQdXj5OaP5/GGfegtnYGJBJIc4vzZBKVchUK+TDDkp2/0O6RCIaKG2RVFsHWTd3/zjU59qSRx4VtnmH5nhlomz+q1NebePsWg7zQ3drK4FJ2+wQilbJn06m2CQQeydPSan26Yx5ZweIMeZl+fPNDQ+SQ8+P11eZ3I3AA7eCghqsfxCCn04o9JT5bupPSM5FcE28yCuQ7aK0+1H8uysG27e1Fd/GSF+EiMSOLgD31rYQfbhqGZk3vMM/fVaIbiQfyRowXSNadGauLo7iJBlxNNkVGUo29EbNvGtCycisJupYFpmITiQWR1C+n+dFrbJDESJLOrsHR5lYnzo12v6vW3TnHrowVuzi8wNJ3qFu4nR+P4/tqbSLIMtn1gnXdpaYdMVudb0SBDkU59q1uT2CqUSJf2qcyvcOmNd3H73OiGwUa+xGg0hCuWJhzrnFun6mQkEsatqpiGQbtlkNvOMhrshLQ38sXumm5ut0Cj1WbbbnF+IHGsbOGDOsBPgifgwe1/40BJTY8eXwZ6RvKrghQ+tH73JOytpmnWWoyd7Wicjp8fQT2i80RsKMoR0dBjKecrWKZFsC+AEOKJvO1H9Q5tpstk1zKkvnGa4VMDtFsGbb3N+W/MHRgnJDdIUwRjOp5gJwRr2zZCCGRFZu7tWaZfnThUuO8Ldcok6tUqlqUDCoufrjI0HicuHzwhi5+u4Onz4aiAK5U4YFQFnTIXSZlGuu9nqrWtTjKNpuD2OYlPvonb6UA3TOp6G9OykaVOHZzLoXI6HOwayK1CiYjHjUtTqRSqeIOeZyo71zOQXyBEz5M8Kb01ya8IQkidC/9TEhuKMjB1z4tzuBxHtlJyuByHwqSPollr0ag2n2p+1n2SdXpTv+PR3rsYqA4Vy7LvlLfkuPr9GweyQE3TZH89092P5tTw+N1UClVu/Oj2gf03Kk2MttEt3L9Lsd7gZ++/x97mFYQQhPuDmDJsFSsH5hIdCBPpCzA4FSI8HKFWbZDdyVOoN6HcYunTVYTQDrS4KmXKVAs1NKdGdFxjM/1HGEYbTZGZ6e/rhlbD/SGCMT+O+4xgo93GsCz0VpuVq+sHsll7fPWQsJ/48VWi50k+Y2xbB2MBlKkv5Z21oirwbJc1u4Tiga6wwJNgWRY3fjTP6JkhvMFOE2WjbXY9QIBoMkw02VkzS4zFiQ5GsE2rW4/ZbOrk9oq4Il6W8nnmkv1oiozb72Lo1MCBG4LMVg7NpVEv1QknQt1tNpC48Arbeh1/q4w35KGYLnFxtBMWrettbu7u4043icQC+FMql/f22XrvOmNDcQbfGMfX58OX6MxzJZPDNmwaK9k7nTkc2LaNR3MyFBlElo/+GafXs9TKdSbOd8LBk7EobdNkPVdk5q0pHOpz+iB7vPT0sltPTs9IPnPkjvB479Q+Fm29zc0fLzB16XBZgWVZrF3fJDnRf6x3KkkSI3ODuP2d1ztcDkZODz50vBACTVPZnN/GNCxGTg+yValSi7uoGm2GwkFUWcK2WwgMzAcM7vi5kUP7tG2b3MIeyZE+RGkRw9hDmBcopstYto0dchH3eYkpDpbTu4yeGcQpw7jiZ9erERyJkroTMm41WlSbOUr1Jm5NJTXRT13ao6kLauudVl/t6BgXPZ357O7l+A8/u86vvXuBVNDf1XE1rI7HqEgOsE0EbWTpxeuxFjMlFFV5ZL1sjx4vE70r+TNGCBmUgc97Gi8UvdVGlqWHqvKcBFVTmXxI3Z0Q4pFdRe6S2cxh2zb+8Mkl1BJj96Tsxvsi5Gt1FFnqiiTYxg56o8H2koQ35Hmot9uoNSlmyhT2S/QNhGnVQ5hWAKPWwp0KUK00qZZbRJ0bxCNjbA0EO0Uz5iYOuch3f+ESgei9NdXVW6ssrnzGmdfeRXJoBEMBTLtzflwD4DeCmErHQDb0NqulMq+ODNDn7cxblmVkWabQWkMImaA2iEKasVDphdbk3aVebqA61J6RfEnoeZIno2ckezw1m7e3cXmdh9orGabFSjbPSCSIpjz6q/YwfVEhxIlbN/kjXhyuk4e5bbuFzAYonaJ9RZaIPdjtRB7B4YW5t+9J5RX2i4TjDQQmQukkMa1d3+CDP/mE6YtjuP1uxs7OUtzJs7u4iTQVRXgUVMkmW1NIRZy8dW7yzhxGiQwKNgtlyhtp2sUGY2eHmTgzQWI4ScU2+XBti0TARzlTp5yr0HBKCLdG2OPm6vYeCb+PiWQfQU07dK6D2vB97yUJdG4Ksts5ZFUhFHuwO93joRsG1ZZ+QHnpKHrtt14eeiUgJ6eXuNPjqRk5PUh85HCdnhCgyvJzbdxbzlW6XUQAoqnIkQXwD0eAUDr/f9gIIQ68B72pk93OY9tekO4ZmIlXxhj/xizevk5/yk9urHD16iqD00lSkgN3psFwOIxO/EDhvxByNznH5XUSige6CT7lbAWHbjPckKhmK9za3QiJywAAIABJREFUTrO1mycgKbjrJks3NsCGlmHQTle5/oPb6E2darHG0uVV9KZ+YP5CSN1aWdu++58Oud0CC58c2br1WKot/ZHdbHq8fPTEBE5Gz0j2eCxsu4Gtf9xJULqDrMhHFqPLksRoNIT6BE2cT8ruappq8cnbOQmhIZTRAxmkj8LldTHz2iTlPKQ32+ws76E3dW7sZjhzYRznYJitQokLE4O8+uYMgUSIYCxAajJBwO3qilhblkXbNFlMZ2mbJkmfF6ll0NYNstt5Pv7J99F8ArfXiUdWkBSZmZEE/X0BkiNxwmEvpb15Uu4WqaCfSq7C4EwKzalhGib7GxmqpYefm76BSFdlZ3dln1a9Rf9ojMxWjlL25EYv7HFzJvV8vcRqs/VYrdp6HI+gl916UnpGssex6K02rcb9pQIOkEdfmszd6UvjDw0XNuutAyUbzxpJlpBkiVZDp5St4KkZRHweRmMRYj4PXp+bhiK4vraD0Taolerd3o7Z7RwLHy9j2za1Qh2BoJStsHZji1qxRjgRZOL8JNFEHx6/u9PKzKHgcztwuRzc/MkCQpI4d3qSgNd3R+Vokr6BjlBBIOrHH/Kyt7JP2zQxH3EeXD4nvrAXf9iHbVmUaw22CqXndu4eB9u2ub2fodR8uvKgHj2ehJ6R7HEs6fUMuyvp7t9CSAg58vnNZyNDIX2yi/fSZ6uUMg/3iBq1Zrdp8fbSLrVS7dj92bZNq23QarS4+ZN53H4XfQMRBmYSeNy38KotzLbB2se3sdsdY5gM+Am2bPI7BTZub3Pth7cBCMYCDM0OYDbbKJkaWBaRRIgL3z7D6JlhZFkm6h9CvhMaTY73IztVHC4HA1NJkuNxXF4nqak5FO1oGTh/1E8kGWY5k2ercLxnWM5VUdSOxx8b6sMfCxypjft5IITg/ECSkPvxe2L2eAhPEWr9qoVbe4k7PY4lOfFyJVsISTq2GfP9TL86fqxqz+btbYQkmDg/2qlxfMSOi/UmS5kcFwcTxEdi3X1f3U4zFh6hfyyBbZWJD+SQVYlqS8fr0Bif6yTO9I/GqJc7LaZkRUZRLTSnxtw7s/fe3/1rn4ZJ2zTxODQK9QYr2TyXhjuZ0w+KkR/F8OydsYZ5UHLvCCRJHHj/AZeTgOvz73d6F+UFNSL+KiGJnhj9Seh983ociyRJRyrqfF70DUQI9p0sG1PV1GOThoZODdCsNmk1dBJj8UNi6A8SdDs5k+pHlmUiiVB33zP9fQQ8KYSQKWUFtjxLtdnm5m6a9n19QxVVwR/plKYU9otc/XCea9t7tNptPl7fonFfAlK50WS/XGU9XwQg5HZxqj9GMdPxopv1JttLu9i2zfzWPj/70c2uV2zbNra5i213emvmNrKPNDIDU0lcnpfHKPZ4vtzNbu15ko/m5bn69ejxgnG6HJx599QhgQLbtklvZLrrh3dZv7mFcUT7L49D63hiXVQ2Pl1jwu3rJi2ZlsViOotudAxZKB5k9tVJYj4vmqIwHo3gvOOZWpbN/H4Wv8uBv2ayfnMTIQT7S3t88r2r1Ct1rv3gNpVCFb2p43WohCM+pDvCB7a5A1YWbB1FlY/smLK7ss/S5dUTn6v8XoFGrbcm+GWil7hzMnrh1h4vPXulCmGP+9iWT88Sy7QopMsE+vwHBBJcXieKdvAnU6g1qOk6Ec2BqindMKgn4Mbl7XhmumEgSxKyJHG31EQIgcfj5G5ZfcjjYnNxh9xWjlPvzjIVixBwOdESIQrVOvN7GVSvRjAWQEgS06+O4wt5ufzedYIxfzeka1sthF3qti7zhcAXeqDuE9hfzxBJ3uvc0qg1aVabDw3jlrIVhCT1vM0eXzl6nmSPlxrLsslUa10P7Hmxt5buJu7Iisz0pfFD9Zbx4b5DXqcQAkkItuZ3yO8Wus+7fS6EEFiWzSdrW2QLFYbDQTRFppyrsH5r68B+yrkKa9c2sCybbLXOdqkCgMvjxO1z07YscKsMnxpAc6q0jRY35z/EEXCQk0x0w8AwLW7vN9GZOvT+jLbB7sp+Nxln+rUJUpP3hOoblQa313bRH/Ces9udcpDRuaGnFh3o8fJwV7u1F259ND1Pssczw7QsdksVEgHfHa/p6ZEk8dxr8KCjovMkdXhBt5Og24l5znPk2q0kCeKWyt7iHhv9FS4OJVEdStfLvIs35OHit89022UlAvdk9YJuJ25JOtD3UZZVXGqQofPjbBRKgGDz9hamKii46jT3ygxOJrr1q6ZhUivXsSwLWZYPeYTBWJAQxp1SkXves2lYyEovwePLSC9x52T0PMkeT4RlWdz8cIFa+V6xumnZlBrNR9bkvYykJhJHhiUfRaHWoKG3sYD1fPHI9z46meTUKxNMx6PIkoTL6yI2GMW2742VJOlgP0khaDVarFxbZ+3mJrc+XDxQrxoI+xkZnUaRZcaiYTRFJhDxMZ6MspUrUSzXsO8z+g6Xg4nzo0eKPnSOL5jp78P1gC5tfLjvRJm0Pb5YCAGysJ/4cbJjiO8KIeaFEEtCiP/miO0OIcT/fWf7R0KIkTvPR4QQ7wkhqkKI/+OB17wihLh25zX/u3iecl536BnJHk+EJEn0jxwMP2qKzOlk/EQ6rbatY7fnse32I8e+jDRqTbYWd0lXa1RarU4NpWEe2WhaCIGqyvjvK6mwzQy0rxx7jMJ+iXq5TjAWYOrVg+Hf9EaW5ctrB8aH+0O4vC4ujQ9y/rXpJ2pa/STorfZDayrL+Qqr19ZPtB/bttla2HlAvKLHFxHR0V38x8AvAqeA3xFCnHpg2O8BBdu2J4D/Dfif7zzfBP5b4L8+Ytf/BPg7wOSdx3ef/ewP0jOSPZ6YcH/oKTp/SCA0vrBfQdvGMi2m49Fuhup0PHpkqYVpmIcFEKQQKJOHx95309A/EmPk0jgL1TKK86CHF04EGZhKdDVanweVZotP1rcfGYZe/GSFwn7xyG2aU8P7GB66aVpH3mj0ePY85+zW14Al27ZX7I6G5R8Cv/7AmF8Hfv/Ov/8d8G0hhLBtu2bb9g/pGMsuQogE4Ldt+yd2567sXwK/8RSn4ET01iR7fC4IoYAy+nlP44lxeV0MzaRONLZZa7K1sMNGq8ZELIrHoXXevzhoPGzbZr9xk5A2jEu5kyWrqcz29x3Sv1U1FVVT0Zt6t/YSYLd+i0xOYcSfxB94upZUbk1lLBp+oLylQylbxh/pyOFNXBhBdRzdPszpdhzbA/R+hBBdAYQezxv7ea9JpoDN+/7eAl5/2Bjbtg0hRAmIANlj9nl/xtvWneeeK1/Q2/gePb44eAIezrwzS9zvw3FMKFoIQZ9zCqccOPCcz3nPyOhN/YD4uObUiKbC3U4oXiVBaV9nb/WelGAxW+aDf/djzPuEDZptg6Z+ONRtWVa3HnL9+iZUD4c+23qb9ZtbNOudbQ6X46USnOjxaJ6BmEBUCPHxfY+/c8QhHuRBF/QkY55m/DOh50n26PGcaOttJElivVDC49DoDxzfCNpoGwhUhPrwXIRaqU5up3CgOXN2O09hr8j0qxP4tCDvXgoeWCPUHDoe7zam0UaWZbYWd/nZ/gLhUImvzX4LIXlpNVpoTo1Spsz20h5zb88Q6g/i9h2ui1Q1lTPvzj5Uzcg0TPbXM8RH+h6aKPTg+Kdp2N3jyZCfzr5kbdu+dMz2LWDwvr8HgJ2HjNkSQihAAMg/Yp/3hxqO2uczp3f716PHc2JrfofdlX2Cbicex6O7pmwv7bG9tHfguUqzxbXtva7RC8WDTFwYxbZtDKvjyUWSIUbPDB143f0GzOWNcPEXfgHN0TF4/rCXt6dGOjqwonOfvPjJCsVMmVA8yMxrE51jxQIP7c15XFKhaVrUK40D2bX3c39ijt7Uuf6j212vtMeXhp8Bk0KIUdFpGfTbwB8/MOaPgb9559+/BfylfYyqvm3bu0BFCPHGnazW3wX+47Of+kF6nmSPHs+JwZkUpq2jixJeNfHI8QOTh8c4VYWYz8vm/A6SLHXHtKwK+dYqEWkGo2UcKB95ECEEiHshXH/Ehx8fMNx9burSeHdd8WmzYjWHysT5o9ebLcvi9k+XGDs7jC/kRXNqTJwfOfG6ZY9ng3jOa5J31hj/AfBndApv/y/btm8IIf4H4GPbtv8Y+D+BPxBCLNHxIH+7Oz8h1gA/oAkhfgP4Bdu2bwJ/F/gXgAv40zuP50rPSPbo8ZxQVAXLbKG363B0XkuXVqPF8uU1Ji6OHQg9qrJM3O+lLmTEfQk0TtlPzDlDYadKMV0iOhChmC1T8ilM9IXxOo82OrZtAhZCHJzQ/UIFzxNJkph9ffLA8Y4z8D2eH89bOce27T8B/uSB5/7Rff9uAn/tIa8decjzHwNzz26Wj6YXbu3R4zmiyR4iznGgo+FabnSSYkzTPJCAozpU4iMxVO3o+1a3z3VIJUeRHPQNRIikwti2jT/kJRX041SPscjmJhjLANQrDZY+W32ufSPXb26yv5458Nz9BnL12jqZrdxzO36Po3kRYgJfFnpGskePF0S+1mCr2DGMzWqTzdvbWHcUeiRJOtB+63EoZcoIIJII0efz0Kw02F3dP3Ls/9/evUe5edd3Hn9/JM395rnbY2diJ7GdG5BNU8g6oS0Ny63L0lPKktKedtlus4fCoaHd3VLKQrYlUEq2hbbQNtzacja9ZZeeHEoLoRBaEgM2Cc0NO7ET3+I447HH47nPSPruH88zjkaWZp7RSHo0o+/rnOfM6Hke6fnqsUdf/e5zc/2QugyAVGOKzt72kq4ZVe9QD519xTss9W7toaNn9TMdubVLkC15qyeeJJ2rks1dHVy9ZQAIqhivvfmqJUMnJhaev9AZpxgzu2hw/45rh5dMHWdmBTvNzE7PcXDfERbCSzQ2NTAw3H/h+MjxUU4ePnXR89aifVMbLW3NmNmSISiLOns6vD3S1TRvk3RuFczSgF3UplcO89lpmhKdQPGkcezsOLPpNLsH+4qe09HdXnAe2ubWJq66cWfR9seW9uaL1tAsl5Fjo0ycneSKf7N+J5DYSBZXAXEr8yTp3GpkjgIGqSvK/tK9TZeveM6WrnaiLlZy+sQZmloal8zIs1wHnVImeI+qd6h72WpXV33JOqs2LVXVq1sl3SnpWUnnJY1IulfScHjs5yU9JGlM0qikf5D0kmrH6FxRyUuDLSaNqRTNEYdoZDNZMpnKfxCmF9Irdv5JNaR8weYaUoYZd+pGHG2SXwCuM7NOYDtwjGDyW4AO4IMEMylsBR4GviqpJYY4nbuIlKpIVetazE7PFewhOnhpf1UWSj647/BFE5xns8bDx55jYjaeSQKy2WzBNlDnVqvqSdLMDpjZ4pIIArLA7vDYJ83s/nAW+Dngw8Bm4Mpqx+ncejE/O8/kuSnMstj8I1h2oiyvu5DJ8PCxk0wXmOM112Uvu5RNeck4kRDbe7tpbYznC8WpZ0c48vjxlU+sW0ZS2ZK3ehJLm6SktxGsC9YJpIFfLXLqLcA0cKjI69xGsLYYw8PDhU5xbsPr7Omgsydo77PkMESseJnPTtOYaC16vCGZZLini+YV1gctVo3a0xa89nw6zcjEFNu6K1+qXdR/SS/ZKlQ1r1eCqEte1b1YhoCY2T1m1gVsAe4AHss/R9Iu4DPAr5lZwa/GZna3md1gZjf09/cXOsW5DeXE2DizC+mix5XsDZbhWkE6O8fo7EEWsrPLntfX3lZwqaxCMulMwTlY5zNZJufmKzppQb6Gxoai8866gJcko4l1nKSZnQI+DXxJUs/i/nAF628Ad5nZn8QVn6ueTDrDycOnvB1pBVPzC6Sz0T6kzOzCslf5UokmBlteQkOifJ1pzjw/xtEnTyzZd/7sBPNjU1y5uZ/Z6bmqJkpXnBTM3VrqVk9qYTKBFNAGDAFIuh54APgdM/vdGONyVZTNZpmZnC26coQL7B7soz3CiiIAE2cnefp7z2BmzKfTTOZ1oklGKHFGMT0xw8F9h+gd6uaK67YvOTY/u8DcTFCKfPp7zzBxdrIs13SuWqqaJCUlJL1L0kD4eBvwSeAIcEDSTcA/Ae83sz+sZmwuXg2NDVz+su1rXoHCvaizt4OrbtyJJE5PTnN8bHzlJ0U0PjPL0yPBAvKNzQ30DnWTTCZ59uw5zk2/WHrtG+phy45BJHHVjTuXjNl08UpiJW/1JI6S5BuAxyVNAd8h6JjzagumMvkQwcKbvydpMmd7ZQxxOrfuNYS9S7du6uTKzeVrt29IJmlrDEq0qYYUfVt7AWhraqSxyALKDWXo6erV8eURjJP06tYoqvq13cyyBEmy2PFXVTEc5+qKJMyySGv/btza2FBweMdgR9uS+WgLmRibJJFM0NYZ9H41M0YmpuhrbyW5wnN/sPcptu0eYlN/9XrKbkz1VyIsVS20STq3LixkMpydmo47jJJNLZxmdO6psr1eNptlfnb+wuPTJ85w6JFnAXjh6GlOHRkp+Lzx0+eXtE2ms1lOnZ9gIcKQjR0vGfZVQ1xVeQOQcxFNzs1zfGz8wvi/9aY51U3DMuMiV+vsqXOMHBulbecA6WyG4YFO2rqC12/paKZYQWXbrqEljxuSSV62bUuka/oCzeWxWN3qVuZJ0rmIultb6G5dvzMkJpUimVz7n/yZ2cO0pnrp3dJNZ28HaUHWjIbGhgvtjouTG7ja5ROcR+NJ0jm3Ki2pTaQSzUgimUowNTqxZD3LRaOTU0xNzcCZGS65cuuKbZWuenyprOg8STpXBWazkD4OqcvL0nEmTq2p3gu/z03Pc/LwC3T2dZBMLu3VmpCCxJhMIEWbtSeK6YkZzOxCxx9XGi9JRuNJ0rmqSIBSBK1BG0drRwvX7NkNBKuRzEzOXlh5pKetNWi/LfOMkedGxslmsp4kXVV4knSuCqRGSO2IO4yKmF1IMzE7R2p6gbEXxiu+PNfQ5Zsr+vr1QFB3c7CWypOkc3Xq/PzzGFm6Greu+rmnjoxgZmzZMcjM/AKjk1NctWWgYNukq0Xmq4BE5EnSuRpw6sgIs1NzbL/mkqpdsylZ+njD1s4Xe/l2t7XQ3VZ6r9/5dJqzUzP0tLVemK3HzDh2dpwtXe00rrBUl1s9yUuSUa3vHgTObRCtHc1Vn3KtKdlBU7K0oRqdPR00NKbKEvPY9Cz7jj7H6cmpC/vMYDadJuMT3ldMgmzJWz3xJOlcDUg1NiC0bpaSeu7ceR781hOMvbD2SdMHO9v5iWt3s3VT54V9iYTYPdhHSxnmey1FJp0hG3FJMrexeT2GK6v5dJq5dIaOZl/wdjVaO1q47KWXxh1GZJtamrn+5qvpaS9PD9OoCztXy9EnT9Dc1rRhOwkJI+njJCPxJOnKamx6ltOTU1w7NBh3KK6C2poaaYu4ruVaTI1PkWxI0dzaxEImQ1KJggl17IVzmBk9m7vLct1tu7aQSG7cijbh4ySj8iTpymqws53BTp+Aup6YzUN2FCWHVj55lU6fOEtzWxObtw9w4NRpettaGcqpll2UyWSDhswyaWyu/BeAuPncrdF4knTOrY3NQ/YclthS1pl1gCW9fXcN9JEqUrrrG+op63WdW+RJ0jm3Jkq0Q+LqSOeePztB+6aV15wspKnBP67KRZhXt0a0cSvdnXM1JZPJcPSJE8xMzMQdigOSspK3euJfzZxzVZFMJrnmpt2+GkgNENTdeMdSeZJ0zlWNJ8haYT7jTkT+P9Y5VxVjL5xjYX4h7jCcWxUvSTrnquKFo6dJNiRp6IlnFh33Ih8nGZ0nSedcVVz58p1leZ3RySlaGxtpjWnKuo3CVwGJxqtbnXPrytmpGabn5+MOo6D0QprHv/UDZiZruwevFLRJlrrVEy9JOueqbmx6hnPTs+zoW/00crsG+yoQUXmkGlJs3TVEU2vtz12c9JJkJF6SdM5VXUMiQVO4duRKzIz5ufXT4ad7oMt78W4g/i/pnKu69uamgnOwFnJuZJyn9h+ucET1ZXGcpK8nuTKvbnXO1bRNA120drbEHcYG4+Mko/Ik6ZyraZJoaqn9Nr71JBgC4m2SUXh1q3POOVeEJ0nnXCQnxsYZmZis+HXMjNnpuYpfp5hMJsMzjx5lbia+GKohISt5qyeeJJ1zkTSmkjQmK99CM3F2kqf2H8bKuIjyakiiua2JRJG1KzeCxaWySt3qibdJOuciGehor8p1Onqa2P3DvWVfwDmqRCLB0OWbY7l2tXibZHSeJJ1ztcUmaUyNAINxR7KshewsKTUirc8SZ71Vm5Zqff7rOuc2LCV6UMNL4g5jRWfmDjGTGYs7DFdhVU+Sku6U9Kyk85JGJN0rabjAeR+VZJJ+rtoxOudqw/jMLJOztdmBpr/5SlqSPXGHUZLF6tZSt3oSR0nyC8B1ZtYJbAeOAX+Ve4KklwOvB56venTOuZoxNj3DuZnZWK5tZjz72NGik5UnlYqt3bQcPElGU/U2STM7kPNQQBbYfWGH1AR8FrgN+MvqRuecqyXbe1c/AXq5BL1cmzdkL1cBifWb36sqlo47kt4G/DHQCaSBX805fAfwdTPbu56/pTnn1r8tl9V256HS1V+JsFSxJEkzuwe4R9Jm4BeBxwAk3QC8BbguyutIuo2gxMnw8EXNms7VlUwmQzIZbWUN51w0sdYjmNkp4NPAlyQNAJ8H3mlmkab1MLO7zewGM7uhv7+/kqE6V/MO7jvMmedrr7fl+TMTPLn3YNxhuBzBKiClb5GuIb1O0kFJhyS9t8DxJkl/HR7/jqTtOcd+I9x/UNJrc/YfkfSYpO9L2r/6d756tTBOMgW0AQPANcD/yalm7Qb+WNLrzexnY4rPuXVhx7WX0NjSGHcYF2nramXbrqG4wyi782cnaOtqXZ+ld0Gygq1ZkpLAJ4F/B5wA9km6z8yezDntF4ExM7tC0q3AR4G3SroauJUgHwwBX5O0y8wy4fNeZWajlYt+qaqWJCUlJL0rLDUiaRvBjTwCPA0ME1S1Lm4ngfcB765mnM6tRy3tLTX5gZ1MJens7Yg7jCXSmbVNrXZueobH/vUZpsanyxRRdQmRXMMWwcuBQ2b2jJnNE4xgeFPeOW8C/jz8/V7gFgUlpDcBf2Vmc2b2LHAofL1YxFHd+gbgcUlTwHeAaeDV4Q05kbsBGYJvGmdiiNM5VwEL8wuxXn92Ic3Dx08yu5Be02tc8tJL6eypreRfRX2S9udst+Ud3wocz3l8ItxX8BwzSwPjQO8KzzXgq5K+V+CaFVHV6lYzyxIkyajnb69cNM65apsan+LQ949w7U1XkkzFU+ptbkhx1eZ+mhtK//jb3LX+k+MaS0ijZnbDMscLFTfzu9MWO2e5595kZifD2sj7JR0ws39eOdzSbbwBQM65mtXa2crO6y+LLUEu6miu70WcBSSlkrcITgCX5DzeRtB8VvAcSSmgCzi73HPNbPHnCPBFqlAN60nSOVc1kmjtaIk7DAckUMlbBPuAnZJ2SGok6IhzX9459wG/EP7+0wTj4y3cf2vY+3UHsBP4rqQ2SR0AktqA1wCPr/lGrKAWerc655yromDu1sp1bzWztKR3AV8BksDnzOwJSb8F7Dez+whmVvuCpEMEJchbw+c+IelvgCcJJpt5p5llJA0CXwxHP6SAe8zsHyv2JkKeJJ1zzpWdmX0Z+HLevg/k/D5LMHlMoefeCdyZt+8Z4GXlj3R5niSdc64ORaw2rXueJJ1zrs6IyB1w6p4nSeecq2Hnz0xU5HUT3m8zEk+Szrm6NnJ8lMxCpmZX/Ag6fJZXMHerlySj8CTpnKtrLe3NZNKZlU+MSVdfZ9wh1DVPks65utbR3X7RPsuchkQXwRC/jUgk5dWtUXiSdM65fNlToAbYoEkyqG71JBmFKlHfHQdJp4GjZXipPqBqy7DEyN/nxlEP7xHq+31eamZlWzRX0j+G1ynVqJm9rlzx1LINkyTLRdL+FSbu3RD8fW4c9fAewd+ni4eXt51zzrkiPEk655xzRXiSvNjdcQdQJf4+N456eI/g79PFwNsknXPOuSK8JOmcc84V4UnSOeecK8KTZAHhith/KulpSROSjkn6mKTmuGNbK0nJ8L2cDt/b/5W0lvFSNUfSRyU9Iem8pJOSPi2pJ+64KkVSQtJDkkzStrjjqQRJr5b0bUmTkkYlfSrumMpJ0mZJfx3+XY5J+rqkqq+d6C7mSbKwFMFg3jcCm4BXAj8OfDTOoMrkvcCbgFcAix+oX4gvnIrIAD8H9BIs0roN+HysEVXWe4DpuIOoFEk/BtwL3EXwb7oN+EycMVXAp4AeYDcwCOwHviT5elZx8447EUl6J3Cbma3rb3eSjgK/ZWafDR9fDhwCdpjZkThjqxRJPwHcY2ZdccdSbpJ2Af8AvBl4BLjEzE7EG1V5SdoLfNPM3ht3LJUi6VHgj8zs7vDxbuAA0G9m9TDLUM3ykmR0twCPxh3EWkjqAoaB7y3uM7PDwHngpXHFVQXr/t+uEEkJ4HPAfwfOxRxORUhqA14OzEp6OKxqfUDSRpuR5mPAmyX1hc06twHf8gQZv7pLkpL+LGy7KbZ9qMBzbgduBn6z+hGX1eKaO+N5+8/lHNtQJL0Z+CXgV+KOpQJ+BThlZv8v7kAqqJvgc+qXgP8EDAFfBb4saVOMcZXbg0ASOA1MAj9F8J5dzOouSQLvAvqX2T6ce7Kk9xC04/24mR2rbqhlt7jEeX614yaC0uSGIuktwKeB/2BmD8cdTzlJugL4NYL/zxvZ4v/Zz5vZo2Y2D3wEaAD2xBdW+YQ1Al8DniL422wF7gT+RVJtrgRdR+ouSZrZpJmNLrNd6AAh6X8SfBD9qJk9Hl/U5WFm54BjwPWL+yRdRlCK3FDVkZLeDvwp8EYz+0bc8VTAzQRf6h6XNAosfgl4VNIvxxdWeZnZOHAEKNR5YqN0qOgBdgB/aGbnzWzezD5D8Pl8Y7yhubpLklFJ+hjwXwgS5MG44ymju4Ffl7RDUidfADFuAAAF1ElEQVRBj92vbKROO5LeTdAT8rVm9mDc8VTI3wCXA9eF2xvC/a8B/iKuoCrkU8DbJV0tKUXQBjsLPBRvWOURtjs+BfyypDZJKUn/GegAHos3OueLLhcg6VLgvwHzwL/m9MI+ambXxBZYefwOQTvPPqAJuJ9guMRG8gkgDXwjtwe9mV28BP06FdZ45NZ6LP4tnzKzyXiiqpi7CBLG14Fmgl68rw9LmRvFTxJ03jlKUJV8CHiLmT0Ta1TOh4A455xzxXh1q3POOVeEJ0nnnHOuCE+SzjnnXBGeJJ1zzrkiPEk655xzRXiSdM4554rwJOnKRtIdRebD/VqR828Pj9+bt3+5+XV/Jue8B4qc0xwevyV8fHPe678j3P/+vP07w/1vq8a9kNQp6eOSjkialvSD8J4o55x+SX8g6buS5iUdiXDti+5rnPfCufXMJxNw5TYOvK7AviUkDQAfIJjQOd9vA3+St+8dwNsI5rjM9Q3gfXn75sKf3yFYW3IP8K2c43sIBuLnz/25+Lhcs/SsdC/+DPgRgvgPAa8Cfg8Q8PvhOVuBtxK8l+8DA8tdcJn7Gve9cG5d8iTpyi1tZt+OcN5HgL8HLsk/EC7fdTh3n6TPAl8zs/wP/7PFrmdmk5Ie4+IE8G8Jpm57qyTZizNq7AGeM7OjEeKPoui9kNRKsPj17YtrCAJfl3QNcCsvJslHzWwwfM5dwE+vcM2C97UG7oVz65JXt7qqk/TDwH8kWF0lyvkvBa4G/rKEyz1IkAgWX2uAYM7TTxBM7H5Vzrl7qN58oCmCv79Cy5ZdqG41s2zUF4xwX2v1XjhXszxJurILJ2jO3XLb2AT8EfC7ZvZcxJe8lWBC678rcOw1YXvetKSvhAk110PAQLi0FARJ4jkzO0Cw8smeMK4ugkRc1urFYvfCzM4TTFL+PyRdJ6lD0r8nSHKfLOE6Ue5rrPfCufXIk6Qrt15gIW+7Jef424HNBJNWR/VW4MthYsn1TYKFh19LsJL7MMEafNtzzlksDe3J+bk3/H1vzv4bCf4eypkYVroXPw8cIJiw+zxwH/DbZvbnJVwryn2N8144ty55m6Qrt3Hg1Xn7DsKFEsqHgXeb2UyUF5P0CuAy4Nfzj5nZB3Me/kvYc/QAcHu4YWZHJD1HkAD+Ivz5xfA53wZ+M/x9sQPL95eJJcHSL5bZFapDi96L0O8DryBIcM8QrBF5h6RRM/vsMq+bH1ek+1rOe+FcvfAk6cotbWb7ixx7H3Ac+KqkTeG+FNAQPp4ws0zec24lWJ3+71e6sJmdkvQgOYtKh/YCeyQ1AD9EsB7h4v7dknoJEsN3zSy9zCU+AOQm5v8F3LHM+UXvRVgt/A7gNWZ2f7j7nyV1AHdJ+vwq2iNXc1/LdS+cqwueJF017QZuAMYKHBsDXknO8ISw5PYW4O+iljxD+eu/PQT8FPCjBCXBRwDM7JCk08BNBCW6P1jhde8GvpTz+OQqYsp3Zfgzv7T2CLCJoKq20PCYQlZzX8t1L5yrC54kXTW9H/h43r6PE1RLfpCLV2H/EYJxgpF6tUoaJPiQ/1zeoQcJEsJ7gIfNbC7n2LeB/0qwqO+yvTnN7CRrS4y5FodWXA98JWf/DwFTwOgqXms197Us98K5euFJ0lWNmT2ev0/SOWDUzB4o8JRbgTPA/fkHwurKjwB/S5BwhoHfALJcnDAeAWaA1/Pi+MNFe4E7CUqfe6me/eH2OUkfAJ4laJO8HfhEznhFJC2OjdwFtOY8/qaZnV7lfa3Fe+FczfIk6WqSpBTwZuDeIm1jZwjGE36EoGpyAngA+EkzO5Z7opktSNpHUDLN//DfG77Ok2ZWqLqyIswsI+mNwIcI2jr7CZL9HcD/zjv9b4s8fhXBe17NdWvuXjhXy5TzhdU555xzOXycpHPOOVeEJ0nnnHOuCE+SzjnnXBGeJJ1zzrkiPEk655xzRXiSdM4554rwJOmcc84V4UnSOeecK8KTpHPOOVfE/weD6TmjDDdenwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_cmd_with_fits.plot(data_fits_file=\"M31-B09-EAST_chunk.st_with_sourceden_cut.fits\", \n", + " beast_fits_file=\"M31-B09-EAST_chunk/M31-B09-EAST_chunk_stats.fits\", \n", + " mag1_filter=\"F475W\",\n", + " mag2_filter=\"F814W\",\n", + " mag3_filter=\"F475W\",\n", + " param=\"Z_Best\", #metallicity\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Completeness Plot\n", + "This next plot shows the completeness (how many AST sources were detected out of the total number of AST that exist for that parameter bin) for each parameter, although it should be noted that the *distance* parameter was purposefully left out because all the sources have the same distance value, and thus the plotting code isn't sure how to handle it." + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "plotting Av and Av\n", + "plotting Av and Rv\n", + "plotting Av and logA\n", + "plotting Av and f_A\n", + "plotting Av and M_ini\n", + "plotting Av and Z\n", + "plotting Rv and Rv\n", + "plotting Rv and logA\n", + "plotting Rv and f_A\n", + "plotting Rv and M_ini\n", + "plotting Rv and Z\n", + "plotting logA and logA\n", + "plotting logA and f_A\n", + "plotting logA and M_ini\n", + "plotting logA and Z\n", + "plotting f_A and f_A\n", + "plotting f_A and M_ini\n", + "plotting f_A and Z\n", + "plotting M_ini and M_ini\n", + "plotting M_ini and Z\n", + "plotting Z and Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_completeness.py:196: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.\n", + " gs.tight_layout(fig)\n" + ] + } + ], + "source": [ + "plot_completeness.plot_completeness(physgrid_list=file_dict[\"modelsedgrid_trim_files\"],\n", + " noise_model_list=file_dict[\"noise_trim_files\"],\n", + " output_plot_filename=\"completeness_plot.pdf\",\n", + " param_list=['Av', 'Rv', 'logA', 'f_A', 'M_ini', 'Z'],\n", + " #, 'distance'],\n", + " compl_filter='F475W',)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Chi Squared Plot\n", + "Make a histogram of the best chi2 values (chi2=1 and the median chi2 are marked). Note that there is no plot of reduced chi2, because it is mathematically difficult to define the number of degrees of freedom. Inputs are the BEAST stats file and optionally the number of bins to use for the histogram." + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "plot_chi2_hist.plot(beast_stats_file=\"M31-B09-EAST_chunk/M31-B09-EAST_chunk_stats.fits\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There's another cool plot for plotting the individual fits of stars, but unfortunately, this code works with a file that only gets generated when using multiple subgrids (remember how we checked that we had a subgrid = 1 back in Step 2?). If it had worked with the code below, it would have made a multi-panel plot that shows the PDFs and best fits of each parameter for any given star, as well as the SED (similar to Figure 14 in Gordon+16)." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "#plot_indiv_fit.plot_beast_ifit(filter=datamodel.filters, waves, stats, pdf1d_hdu, starnum=0):" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Sorry I wasn't able to show you all that last plot. But thanks for reading through this notebook til the end. Hopefully you found it to be somewhat helpful and if you have any suggestions for how to make it better, you can find me at cwlind@jhu.edu.\n", + "\n", + "Thanks,\\\n", + "Christina Lindberg\\\n", + "(she/her)" ] } ], @@ -776,7 +2695,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.6.10" } }, "nbformat": 4, diff --git a/M31_Example/datamodel.py b/M31_Example/datamodel.py index 33aee84..91a51aa 100644 --- a/M31_Example/datamodel.py +++ b/M31_Example/datamodel.py @@ -1,6 +1,6 @@ """ Data Model interface v2.0 -BEAST datamodel for M33 PHAT fields +BEAST datamodel for M31 Example """ import numpy as np @@ -28,7 +28,7 @@ # project : string # the name of the output results directory -project = "M31-B21-WEST_cutout" +project = "M31-B09-EAST_chunk" # name of the survey # used for the creation of the unique name for each source @@ -59,7 +59,7 @@ # obsfile : string # pathname of the observed catalog -obsfile = "./M31-B21-WEST_cutout.st.fits" +obsfile ="./M31-B09-EAST_chunk.st_with_sourceden.fits" # ------------------------------------------------------ # Artificial Star Test Input File Generation Parameters @@ -109,9 +109,7 @@ # tools/create_background_density_map.py, containing either the source # density map or the background density map. If supplied, the ASTs will # be repeated for each density bin in the table -ast_density_table = './M31-B21-WEST_cutout.st_sourceden_map.hd5' - -# ast_density_table = 'data/b15_4band_det_27_A_sourcedens_map.hd5' +ast_density_table = './M31-B09-EAST_chunk.st_sourceden_map.hd5' # ast_N_bins : (int, optional) # Number of source or background bins that you want ASTs repeated over @@ -127,7 +125,7 @@ # is True and no X and Y information is present in the photometry catalog) # Name of the reference image used by DOLPHOT when running the measured # photometry. -ast_reference_image = "./M31-B21-WEST_cutout.st.fits" +ast_reference_image = "M31-B09-EAST_chunk_F475W_drz.chip1.fits" # ast_coord_boundary : None, or list of two arrays (optional) # If supplied, these RA/Dec coordinates will be used to limit the region @@ -143,7 +141,8 @@ # astfile : string # pathname of the AST files (single camera ASTs) -astfile = "data/M31-B21_WEST_cutout.gst.fake.fits" +astfile = "M31-B09-EAST_chunk.gst.fake.fits" +#astfile = "M31-B09-EAST_chunk.gst.fake_cut.fits" # ast_colnames : list of strings # names of columns for filters in the AST catalog (AC) @@ -171,7 +170,7 @@ # Distance/Velocity # Distances: distance to the galaxy [min, max, step] or [fixed number] -distances = [24.79] +distances = [24.79]#[24.29, 25.29, 0.25] #number was originally 24.79 #used 2013AJ....146...86T as a reference # Distance unit (any length or units.mag) From 055d3ce0e1e7fc3249fde1191bcb37df23b69c7c Mon Sep 17 00:00:00 2001 From: christinawlindberg Date: Fri, 19 Jun 2020 10:53:35 -0700 Subject: [PATCH 4/7] added wget cell and updated steps 4.5 and 5.5 to work as a function --- ...31_BEAST_workflow_example-checkpoint.ipynb | 2703 +++++++++++++++++ .../M31_workflow-checkpoint.ipynb | 784 +++++ M31_Example/M31_workflow.ipynb | 1776 +++-------- M31_Example/datamodel.py | 5 +- 4 files changed, 3953 insertions(+), 1315 deletions(-) create mode 100644 M31_Example/.ipynb_checkpoints/M31_BEAST_workflow_example-checkpoint.ipynb create mode 100644 M31_Example/.ipynb_checkpoints/M31_workflow-checkpoint.ipynb diff --git a/M31_Example/.ipynb_checkpoints/M31_BEAST_workflow_example-checkpoint.ipynb b/M31_Example/.ipynb_checkpoints/M31_BEAST_workflow_example-checkpoint.ipynb new file mode 100644 index 0000000..c099b9d --- /dev/null +++ b/M31_Example/.ipynb_checkpoints/M31_BEAST_workflow_example-checkpoint.ipynb @@ -0,0 +1,2703 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# BEAST Workflow Example\n", + "\n", + "In this notebook we will be walking through a standard BEAST workflow example using some data from M31.\n", + "\n", + "You'll need a couple of datafiles to get started though. Please visit https://www.dropbox.com/sh/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama?dl=0 and download all the files (can omit wrangling_data.ipynb) into the same folder this Jupyter Notebook is in. \n", + "\n", + "Before we do anything, we have to import the following packages. This seems like a lot but they are all here to make our lives easier down the line. And running them all as the first cell means that if our kernel ever crashes halfway through, we can just reimport everything at once rather than stepping through the cells individually." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n" + ] + } + ], + "source": [ + "import h5py\n", + "\n", + "import numpy as np\n", + "from astropy import wcs\n", + "from astropy.io import fits\n", + "from astropy.table import Table\n", + "#import tables\n", + "\n", + "import glob\n", + "import os\n", + "import types\n", + "import argparse\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from beast.plotting import (plot_mag_hist, plot_ast_histogram, plot_noisemodel)\n", + "\n", + "from beast.tools.run import (\n", + " create_physicsmodel,\n", + " make_ast_inputs,\n", + " create_obsmodel,\n", + " run_fitting,\n", + " merge_files,\n", + " create_filenames,\n", + ")\n", + "\n", + "from beast.physicsmodel.grid import FileSEDGrid\n", + "from beast.fitting import trim_grid\n", + "import beast.observationmodel.noisemodel.generic_noisemodel as noisemodel\n", + "\n", + "\n", + "from beast.tools.run import (\n", + " run_fitting,\n", + " merge_files,\n", + ") \n", + " \n", + "from beast.tools import (\n", + " create_background_density_map,\n", + " split_ast_input_file,\n", + " split_catalog_using_map,\n", + "# subdivide_obscat_by_source_density,\n", + " cut_catalogs,\n", + "# split_asts_by_source_density,\n", + " setup_batch_beast_trim,\n", + "# setup_batch_beast_fit,\n", + " )\n", + "\n", + "import importlib" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step -1. Obtain data file and convert to fits file\n", + "\n", + "Sometimes photometric catalogs are delivered as HDF5 files. While these are great for storing data in heirarchies, it's a little hard to work with directly, so we have to convert our HDF5 file to a FITS file.\n", + "\n", + "Thankfully, our photometric catalog for this example is already in a FITS format so we don't need to worry about this and can move straight on to Step 1." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1a. Make magnitude histograms\n", + "\n", + "The first thing we need to do is understand the range of stellar magnitudes we are working with in this data set.\n", + "\n", + "To do this we can make histograms of all the magnitudes of all the stars in all the different filters from the photometric catalog. This is done so that we know where the peaks of the histograms are in each filter. These peaks will then be used later when we make source density maps. \n", + "\n", + "Essentially what happens is that, for the density maps, we only count objects within a certain range, currently set to mag_cut = 15 - (peak_for_filter-0.5). So if the peak was 17.5, then the objects that would be counted would have to be in the range between 15 and 18. \n", + "\n", + "The reason we only count brighter sources is because dimmer sources tend to not be properly observed, especially as the magnitudes near the telescope limit. There will always be far more dim sources than bright sources, but if we know how many bright sources there are, then we can extrapolate as to how many dim sources there should be, and probably get a better understand from that than if we were to try and actually count all the dim sources we detect. \n", + "\n", + "**Variable Information**\n", + "\n", + "* **field_name** : the string name of the main photometric catalog we are working with. This variable will be used to rename a lot of different files in the future which is why we have it as a separate variable.\n", + "* **gst_file** : stands for good-stars, this is the full name for the original photometric catalog we are working with." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "field_name = \"M31-B09-EAST_chunk\"\n", + "gst_file = \"./%s.st.fits\" %field_name" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see what type of data this fits file holds by making a table. There should be around 50,000 sources in this calalog, which is quite small compared to the original file.\n", + "\n", + "*Note: **st** stands for stars. We also sometimes name things **gst** for good stars to signify when cuts have been made.*" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "Table length=50625\n", + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
F814W_STF814W_GSTF475W_STF475W_GSTF275W_STF275W_GSTF160W_STF160W_GSTF336W_STF336W_GSTF110W_STF110W_GSTXYRADECCHI_GLSNR_GLSHARP_GLROUND_GLCROWD_GLF475W_COUNTF475W_SKYF475W_RATEF475W_RATERRF475W_VEGAF475W_TRANSF475W_ERRF475W_CHIF475W_SNRF475W_SHARPF475W_ROUNDF475W_CROWDF814W_COUNTF814W_SKYF814W_RATEF814W_RATERRF814W_VEGAF814W_TRANSF814W_ERRF814W_CHIF814W_SNRF814W_SHARPF814W_ROUNDF814W_CROWDF275W_COUNTF275W_SKYF275W_RATEF275W_RATERRF275W_VEGAF275W_TRANSF275W_ERRF275W_CHIF275W_SNRF275W_SHARPF275W_ROUNDF275W_CROWDF336W_COUNTF336W_SKYF336W_RATEF336W_RATERRF336W_VEGAF336W_TRANSF336W_ERRF336W_CHIF336W_SNRF336W_SHARPF336W_ROUNDF336W_CROWDF110W_COUNTF110W_SKYF110W_RATEF110W_RATERRF110W_VEGAF110W_TRANSF110W_ERRF110W_CHIF110W_SNRF110W_SHARPF110W_ROUNDF110W_CROWDF160W_COUNTF160W_SKYF160W_RATEF160W_RATERRF160W_VEGAF160W_TRANSF160W_ERRF160W_CHIF160W_SNRF160W_SHARPF160W_ROUNDF160W_CROWDEXTCHIPMAJAX_GLOBJTYPE_GLF475W_FLAGF814W_FLAGF275W_FLAGF336W_FLAGF110W_FLAGF160W_FLAG
boolboolboolboolboolboolboolboolboolboolboolboolfloat64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64int64int64int64int64int64int64int64int64int64int64
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue869.890000004669244.4099999948323311.13183257065668641.6034194385187354.032917.0-0.030.020.251233000000.087358.199.039999999999999e-081.3800000000000002e-0917.6117.7210.0172.4865.40.0050.0380.175198000000.0102360.61.59e-071.27e-0916.99616.9860.0090000000000000011.77124.80.010.0490.226999999999999985970000.02256.981.25e-071.16e-0917.255nan0.012.92107.7-0.0380.0180000000000000020.08623800000.07534.451.69e-076.92e-1016.932000000000002nan0.0042.63243.9-0.0310.0590000000000000040.08479700000.088039.231.6e-072.58e-1016.992nan0.0022.23619.1-0.0040.10.3556000000.093657.591.8e-072.53e-1016.864nan0.0021.51708.8-0.0180000000000000020.0270000000000000030.396011651220000
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue868.390000004002842.18999999354980411.1318041403340241.603388910561614.132566.5-0.050.0289999999999999980.27699999999999997125000000.046004.844.85e-082.51e-1018.28599999999999818.4120.0063.02193.3-0.053-0.0060.231118000000.077080.489.23e-081.24e-0917.58717.5770.0155.8774.3-0.0960.0440000000000000040.3244360000.02332.749.15e-087.099999999999999e-1017.597nan0.0082.08128.8-0.0570.0080.09216500000.08339.991.1699999999999999e-079.25e-1017.329nan0.0090000000000000013.74126.5-0.085-0.0069999999999999990.10649500000.082165.189.92e-082.82e-1017.508nan0.0032.79352.50.013000000000000001-0.0790.51635100000.087515.551.13e-073.31e-1017.371nan0.0032.18340.0-0.026000000000000002-0.0040.63501751220200
TrueTrueFalseFalseFalseFalseTrueTrueFalseFalseTrueTrue297.150000004934122.16999999453628311.13527556698522741.5958886431035351.171663.1-0.088000000000000010.0610.00829910.710270.951.1499999999999999e-111.34e-1227.34800000000000327.8059999999999970.1261.348.6-0.6340.1770.0254160000.021190.253.17e-091.0000000000000001e-1121.24821.4230000000000020.0030.9316.3-0.0630.0490.001-1.744.5-6.900000000000001e-141.49e-11nannan9.9990.87-0.01.0582.9510.002-565.3268.32-4.1e-126.389999999999999e-12nannan9.9991.05-0.60.00.00.039700000.073069.777.96e-081.1e-1017.747nan0.0011.35723.90.012-0.0270000000000000030.01100000000000000167100000.085406.732.15e-071.8399999999999998e-1016.668nan0.0011.111172.0-0.004-0.0050.01201101000022
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue884.830000005168195.549999994055511.13261861490244341.603868587849891.92292.6-0.0250.0130000000000000010.0166100000.022123.932.5299999999999998e-082.46e-1118.9918.9770.0011.671031.4-0.0230.0139999999999999990.034800000.030329.552.64e-082.7e-1118.94400000000000318.9340.0011.23980.70.0040.0180000000000000020.0025440000.01002.341.14e-071.13e-0917.355999999999998nan0.0110000000000000012.74101.0-0.0590000000000000040.0460.012000000.02448.628.51e-085.41e-1017.676nan0.0069999999999999992.98157.3-0.0850.0370000000000000050.011400000.075079.132.28e-085.56e-1119.104nan0.0031.38411.0-0.045-0.0090000000000000010.037260000.080299.632.33e-085.929999999999999e-1119.082nan0.0030.93392.4-0.017-0.0030.079011301002000
TrueTrueFalseFalseFalseFalseTrueTrueFalseFalseTrueTrue805.8000000041931624.129999994245511.14230396052788341.6054863003324161.231555.9-0.1220.1650.016-8222.310309.21-3.2e-128.149999999999999e-13nannan9.9991.18-3.9-4.4120.7130.478854724.418592.636.51e-104.58e-1222.965999999999998nan0.0081.27142.1-0.1570.2210.006-836.744.69-1.8e-111.98e-11nannan9.9991.2-0.90.84-0.280.037000000000000005-490.7257.91-3.6000000000000004e-126.37e-12nannan9.9990.93-0.60.00.00.036400000.071988.727.299999999999999e-081.68e-1017.842nan0.0032.24433.8-0.0590000000000000040.0750.00699999999999999963800000.085344.552.05e-071.8399999999999998e-1016.723nan0.0010.981114.10.0090000000000000010.0020.0101151330022
TrueTrueTrueTrueFalseFalseTrueTrueFalseFalseTrueTrue158.71000000585047879.069999994607111.1510441920025341.5983766806643661.211504.4-0.0579999999999999960.118000000000000010.008174859.810226.126.75e-111.7799999999999999e-1225.42726.0890000000000020.0289999999999999981.2437.8-0.160.3180.015210000.021725.853.97e-091.1e-1121.00321.0960.0030.86362.1-0.0340.0330.003-124.231.75-2.6000000000000002e-121.3599999999999999e-11nannan9.9990.85-0.20.066.640.0746.3233.955.4500000000000004e-126.2599999999999996e-1228.159000000000002nan1.2461.170.9-0.039-0.70200000000000010.00625900000.068934.55.2e-081.01e-1018.21nan0.0021.76512.9-0.0540000000000000060.0650.01100000000000000145900000.080340.591.47e-071.35e-1017.08nan0.0011.041088.4-0.0240.0069999999999999990.013000000000000001011501200000
TrueTrueTrueTrueFalseFalseTrueTrueFalseFalseTrueTrue238.33000000445975474.9599999942912511.1435118648751941.5973892810344742.031436.1-0.0830.1830.1080000000000000133068.29542.111.28e-112.0299999999999996e-1227.23327.8810.1722.46.3-0.4050.6330.3541180000.018492.859.01e-101.1099999999999999e-1122.61300000000000322.7150.0130000000000000012.2481.5-0.0650.2010.10099999999999999-962.13.96-2.0000000000000002e-111.56e-11nannan9.9990.95-1.30.00.00.0-724.2249.83-5.3e-125.679999999999999e-12nannan9.9991.03-0.90.00.00.028500000.067956.215.71e-086.23e-1118.108nan0.0011.03916.4-0.003-0.0080.0341000000.077900.651.31e-071.42e-1017.204nan0.0011.15924.90.0050.0090000000000000010.047011251000000
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue824.9700000049659176.1299999942310711.13441467214382541.6034958629885451.712286.3-0.0130000000000000010.010.01548100000.018255.81.85e-081.7800000000000003e-1119.33319.3590.0011.611040.5-0.0040.0139999999999999990.00699999999999999929200000.028051.122.2200000000000004e-081.81e-1119.13319.1230.0011.111230.70.0050.0110000000000000010.0069999999999999991690000.0448.873.54e-085.58e-1018.628nan0.0172.6163.4-0.07400000000000001-0.0170.05410000.01424.623.84e-083.85e-1018.541nan0.0110000000000000012.9599.7-0.0850.020.010200000.070618.532.04e-084.5299999999999995e-1119.224nan0.0021.03450.7-0.012-0.0190.096700000.076931.272.15e-086.58e-1119.17nan0.0031.08326.6-0.0010.0120.09011351202200
TrueTrueTrueTrueFalseFalseTrueTrueTrueTrueTrueTrue590.0900000061857332.859999995311811.13869963863796841.601236303203311.372254.4-0.0190.0110000000000000010.0064650000.011464.721.79e-094.8899999999999996e-1221.86922.5340000000000020.0031.55365.6-0.020.0069999999999999990.00337700000.030650.812.8700000000000002e-082.05e-1118.85518.8920.0011.051401.2-0.0150.0080.002-392.418.53-8.4e-121.84e-11nannan9.9991.11-0.5-0.0040.90799999999999990.0069999999999999998649.2252.796.34e-119.12e-1225.495nan0.1561.116.9-0.090.2540.00634700000.072915.046.950000000000001e-088.9e-1117.895nan0.0011.31781.0-0.006999999999999999-0.0340.02451000000.083288.021.6300000000000002e-071.36e-1016.967nan0.0010.781203.3-0.008-0.00.027999999999999997011051200000
TrueTrueTrueTrueFalseFalseTrueTrueFalseFalseTrueTrue192.55000000367136766.049999994467311.14886024321624141.59825050146121.231310.9-0.0230.1610.00880824.010965.43.12e-111.7200000000000001e-1226.26426.7850.061.3918.1-0.1050.4570.0180000000000000027870000.023112.076e-091.32e-1120.55520.710.0020.84455.1-0.0289999999999999980.080.002855.83.01.81e-111.63e-1126.855999999999998nan0.9810.931.10.1070.7520.001876.4285.086.4e-128.890000000000001e-1227.984nan1.5071.360.71.5511.6320.00621000000.066448.024.21e-081.31e-1018.439nan0.0032.44321.1-0.0640.0170.00900000000000000134900000.075358.921.12e-071.29e-1017.379nan0.0010.98869.2-0.0440000000000000040.0260000000000000020.01100000000000000101701200000
.....................................................................................................................................................................................................................................................................................................................
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse139.70000000664345235.739999995250411.14002713724323941.5949161904238451.134.20.0010.472.8771123.58802.054.2299999999999996e-138.909999999999998e-1330.93431.0009999999999982.2861.110.50.181.01700000000000011.193819.616521.36.02e-132.7400000000000004e-1230.55130.5419999999999984.9391.30.2-0.39399999999999996-0.8661.84300000000000021414.36.42.99e-111.61e-1126.31nan0.5830.921.90.042-1.0790.02524.0199.473.96e-126.179999999999999e-1228.505nan1.6920.840.6-0.0152.4280.0255249.163158.891.05e-111.26e-1127.445nan1.31.330.8-0.541-0.0554.15600000000000111899.270717.093.820000000000001e-112.1899999999999997e-1126.046nan0.6231.071.70.1210.0212.753011651000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse45.02000000496014833.559999994632811.15101530625155141.596676412951291.114.8-0.1820.670.4158471.29065.823.28e-121.09e-1228.71128.9809999999999980.361.113.00.0579999999999999960.1540.63213201.016691.071.0100000000000001e-113.18e-1227.49199999999999727.4850.342999999999999971.263.20.159-0.2630.92561.83.981.19e-111.35e-1127.315nan1.2350.850.9-0.471.20.062-430.5230.36-3.2e-124.150000000000001e-12nannan9.9990.88-0.8-0.3713.1030.088000000000000017197.461992.181.4400000000000002e-118.859999999999999e-1227.101999999999997nan0.6670.911.60.47200000000000003-0.8993.343351.268266.341.1100000000000001e-122.0699999999999997e-1129.884nan9.9991.070.1-0.28300000000000003-0.3823.88301101002000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse124.22000000354114891.709999994725611.1514935652369841.5979929809703961.074.40.278999999999999971.0750.8713799.58730.351.47e-121.03e-1229.58130.060.7620.991.40.460.0579999999999999961.154000000000000110487.516054.268e-123.0600000000000003e-1227.74199999999999727.7450.4151.232.60.100999999999999991.0241.421-946.21.81-2.0000000000000002e-111.26e-11nannan9.9991.11-1.63.8479.9990.035-859.3208.6-6.3e-124.03e-12nannan9.9991.0-1.60.015-0.0230.02200000000000000210494.961350.072.1e-111.2900000000000002e-1126.693nan0.6671.421.60.102-0.0623.24516822.666808.65.3899999999999996e-112.0899999999999997e-1125.671nan0.422000000000000040.682.6-0.1240.8212.8139999999999996011351000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse491.730000004728628.1599999940499411.1340788283108741.598439306371291.33.61.2491.40400000000000010.9420000000000001-3482.79812.03-1.3000000000000001e-129.75e-13nannan9.9991.25-1.40.9009999999999999-1.3390.45117882.318260.271.3599999999999999e-113.22e-1227.164nan0.2571.454.21.3931.7571.099-1014.151.71-2.1e-111.4699999999999998e-11nannan9.9990.9-1.40.00.00.0-2806.0259.79-2.0000000000000002e-111.0800000000000001e-11nannan9.9990.87-1.80.00.00.0-843.367460.74-1.6999999999999998e-121.6e-11nannan9.9991.71-0.10.00.00.014713.174903.594.72e-112.64e-1125.816nan0.6071.261.80.327999999999999961.5792.601301200000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse45.10000000349737784.419999994372811.15016352741409441.5964319731037261.134.50.2970.6531.626999999999999810956.98636.314.24e-121.08e-1228.430999999999997nan0.2761.033.90.131-0.1021.251-3891.815874.79-2.9999999999999997e-123.39e-12nannan9.9991.31-0.92.0928.9020000000000013.199-1522.426.91-3.2e-111.64e-11nannan9.9991.2-2.00.00.00.01473.8225.731.07e-115.480000000000001e-1227.421999999999997nan0.55299999999999990.92.00.4310.91799999999999990.05313270.760622.412.66e-111.16e-1126.438000000000002nan0.4751.472.30.2490.7692.7821628.066785.315.26e-122.0200000000000002e-1128.198nan4.170.870.30.1490.0260000000000000023.0269999999999997011501000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse300.67000000529197124.4699999946125211.1370240437316141.596445499977821.243.8-0.2392.2240.9888530.98828.883.28e-129.2e-1328.71229.0119999999999970.3051.183.6-0.119000000000000013.5171.00214136.917768.31.0800000000000001e-112.9e-1227.4227.4140.2921.313.7-0.1931.5581.268-1678.8-5.81-3.6e-111.68e-11nannan9.9991.18-2.1-0.41200000000000003-1.2620.03700000000000000520.4204.341.2e-136.4599999999999995e-1232.298nan9.9991.130.0-1.3790.3640.0996309.564820.311.26e-111.39e-1127.245nan1.1951.620.9-0.1720.1633.6871575.671781.35.0500000000000005e-121.97e-1128.241999999999997nan4.2450.880.30.062-0.0110000000000000013.931011001000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse328.90000000475607371.3799999943713611.14111239844944641.598045071427151.163.8-0.118000000000000010.6163.438-6049.98542.92-2.3e-121e-12nannan9.9991.02-2.3-0.1519.5962.115-5593.716425.26-4.3e-122.5000000000000003e-12nannan9.9991.1-1.70.376-2.54699999999999972.0734632.440.899.83e-113.2100000000000004e-1125.018nan0.3551.33.1-0.10.4020.053-1094.0197.85-8e-125.59e-12nannan9.9990.83-1.40.00.00.0-1385.963262.95-2.7999999999999998e-121.64e-11nannan9.9991.55-0.20.00.00.032938.170232.931.06e-102.7300000000000002e-1124.94nan0.281.333.90.1320.3422.597011601010000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse546.950000003710761.3199999934338411.13428414824808941.59932039424321.083.60.2970.8612.937-1815.09237.35-6.9e-138.4e-13nannan9.9991.0-0.80.0840.236000000000000021.24119.817602.081.0699999999999999e-132.54e-1232.423nan9.9991.090.00.0270000000000000030.7822.5892267.64.874.75e-111.81e-1125.807nan0.412000000000000030.912.60.431.11599999999999990.013999999999999999-1588.6199.09-1.1e-117.639999999999999e-12nannan9.9991.25-1.50.00.00.05653.167000.591.13e-111.56e-1127.365nan1.4991.520.71.16400000000000016.1524.52223006.973242.077.379999999999999e-112.6899999999999996e-1125.33nan0.3961.042.70.5240.6933.13701351000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse729.7300000053044216.0699999951789311.13574316367944841.6024616659390741.123.60.0792.2281.9454766.79215.831.82e-127.08e-1329.34800000000000329.5930000000000040.421000000000000041.072.60.1052.1971.1626956.316934.975.3e-121.96e-1228.18928.180.4011.162.70.1591.14200000000000011.744-2312.789.92-4.7999999999999996e-111.72e-11nannan9.9991.1-2.80.1930.3630.371-856.9206.22-6.0999999999999995e-125.679999999999999e-12nannan9.9990.96-1.1-0.3228.3440.0383614.764680.27.240000000000001e-121.4499999999999998e-1127.85nan2.1751.490.5-1.1280.4574.6610000000000005-2560.772170.48-8.2e-122.43e-11nannan9.9991.24-0.32.3220.4564.11901901200000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse735.9100000053115553.179999994579511.14154186564717741.6042263474051951.063.60.5213.7951.4466386.69697.992.46e-126.929999999999999e-1329.02229.0709999999999980.3051.073.60.2623.7450.8514251.117863.193.2400000000000003e-121.7799999999999999e-1228.72528.7159999999999980.5981.021.81.042.1441.3359999999999999-1733.433.06-3.7e-111.52e-11nannan9.9990.97-2.45.9799.9990.113-1083.8247.92-8e-126.29e-12nannan9.9990.95-1.30.680.3370.152-3049.365793.02-6.0999999999999995e-121.05e-11nannan9.9991.27-0.60.00.00.02055.571931.66.56e-121.96e-1127.958000000000002nan3.2380.980.3-0.230.2662.71301901020000
" + ], + "text/plain": [ + "\n", + "F814W_ST F814W_GST F475W_ST F475W_GST ... F336W_FLAG F110W_FLAG F160W_FLAG\n", + " bool bool bool bool ... int64 int64 int64 \n", + "-------- --------- -------- --------- ... ---------- ---------- ----------\n", + " True True True True ... 0 0 0\n", + " True True True True ... 2 0 0\n", + " True True False False ... 0 2 2\n", + " True True True True ... 0 0 0\n", + " True True False False ... 0 2 2\n", + " True True True True ... 0 0 0\n", + " True True True True ... 0 0 0\n", + " True True True True ... 2 0 0\n", + " True True True True ... 0 0 0\n", + " True True True True ... 0 0 0\n", + " ... ... ... ... ... ... ... ...\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hdul = fits.open(gst_file)\n", + "Table(hdul[1].data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see, there's a lot of columns and even more rows. For plotting the magnitude histograms, we're going to be interested in any column that contains the name VEGA. These are the columns with the magnitudes for each filter.\n", + "\n", + "We could also use the X and Y columns to plot where are the sources are located, or the RA and DEC to map their actual position in the sky.\n", + "\n", + "In larger projects we might have multiple fields to analyze during each run, so there would be multiple **field_names**. Since this is just a small example, we just have one field so our index will always be equal to **0**." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# the list of fields (we only have 1 for this example.)\n", + "field_names = [field_name]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can create some histogram plots to visualize the magnitude distribution of our sources." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# this 'if' statement just checks if there's already a histogram file\n", + "if not os.path.isfile('./'+field_names[0]+'.st_maghist.pdf'):\n", + " peak_mags = plot_mag_hist.plot_mag_hist(gst_file, stars_per_bin=70, max_bins=75)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can check out the results for the histograms in the file ending with **_maghist.pdf**\n", + "\n", + "From this plot, we can also see what filters exist for the data. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1b. Make source density maps" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we'll be creating source density maps. These are maps of our data field colored such that they show how many stars/sources there are in each degree field. The standard size is 5 arc seconds squared. The size can easily be changed by modifying the **pixsize** variable below." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Pick the filter with the dimmest peak from the histogram\n", + "ref_filter =[\"F475W\"]\n", + "\n", + "# choose a filter to use for removing artifacts\n", + "# (remove catalog sources with filter_FLAG > 99)\n", + "flag_filter = [\"F275W\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# check to see if the sourde density file already exists\n", + "if not os.path.isfile(gst_file.replace(\".fits\", \"_source_den_image.fits\")):\n", + " # if not, run all this other code\n", + " \n", + " # - pixel size of 5 arcsec\n", + " # - use ref_filter[b] between vega mags of 15 and peak_mags[ref_filter[b]]-0.5\n", + " # since we're only working with one field, our index b is set to 0\n", + " sourceden_args = types.SimpleNamespace(\n", + " subcommand=\"sourceden\",\n", + " catfile=gst_file,\n", + " pixsize=5,\n", + " npix=None,\n", + " mag_name=ref_filter[0]+ \"_VEGA\",\n", + " mag_cut=[17, peak_mags[ref_filter[0]] - 0.5],\n", + " flag_name=flag_filter[0]+'_FLAG',\n", + " )\n", + " create_background_density_map.main_make_map(sourceden_args)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# new file name with the source density column\n", + "gst_file_sd = gst_file.replace(\".fits\", \"_with_sourceden.fits\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This function should create 3 files: \n", + "* *M31-B09-EAST_subset.st_source_den_image.fits* : a file for viewing the source density information in ds9 or with matplotlib\n", + "\n", + "* *M31-B09-EAST_subset.st_sourceden_map.hd5* : the same file as source_den_image but now with even more data (the split_catalog_using_map function will end up using this file later on) \n", + "\n", + "* *M31-B09-EAST_subset.st_with_sourceden.fits* : the same as the original photometric file (gst_file) but now with an additional column for what density bin the source is located in" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### View the fits images of the source density maps\n", + "\n", + "Now that we have the source density maps outputted, we can plot the image and see that the density looks like." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Filename: ./M31-B09-EAST_chunk.st_source_den_image.fits\n", + "No. Name Ver Type Cards Dimensions Format\n", + " 0 PRIMARY 1 PrimaryHDU 19 (12, 12) float64 \n", + "\n", + "(12, 12)\n" + ] + } + ], + "source": [ + "# open the fits file\n", + "hdu_list = fits.open(\"./%s.st_source_den_image.fits\"%field_name)\n", + "hdu_list.info()\n", + "\n", + "# extract the image data\n", + "image_data = hdu_list[0].data\n", + "\n", + "# take a look at what the image should look like\n", + "print(type(image_data))\n", + "print(image_data.shape)\n", + "\n", + "# close the fits file\n", + "hdu_list.close()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Density of Sources per 5 arcsec^2')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAIzCAYAAAAakPP8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3debhkVX3v//eHppvuRiZFFAEFI2gMKmprgpo8Kg5oVLw3iULUiBqJuY5RY9RrQjS/5OYmjjcOSQsqDtEo4hS9ImoUvSpKozKjyCAIyDyP3ef7+6P2SY7nnDqnTnNq76pT79fz1HOqdq3a+1u7Gupb37X2WqkqJEmSxtE2XQcgSZK0tUxkJEnS2DKRkSRJY8tERpIkjS0TGUmSNLa27ToASZLUrSc/bvu66uotrRxr06m3HV9VBy/X/kxkJEmacFddvYXvH3/vVo61avef7rpYmyR/BvwxUMBpwAuq6tb52tq1JEmSRkaSPYBXABuqan9gFXBov/ZWZCRJmnAFTDHVdRgzbQusS3IHsB64pF9DKzKSJKlNuyY5ecbtiJlPVtUvgLcCPwcuBa6rqq/025kVGUmSJl6xpVqryFxZVRv6PZlkF+AQYB/gWuBTSZ5bVR+dr70VGUmSNEqeAJxfVVdU1R3AccCj+jW2IiNJ0oTrjZEZmUWkfw78VpL1wC3AQcDJ/RpbkZEkSSOjqk4CjgVOoXfp9TbAxn7trchIkqSRumqpqo4EjhykrRUZSZI0tqzISJI04YpiS43MGJklsSIjSZLGlhUZSZI0SlctLYkVGUmSNLZMZCRJ0tiya0mSpAlXwBa7liRJktplRUaSJDnYV5IkqW1WZCRJmnAFTognSZLUNisykiRphJaMXBorMpIkaWxZkZEkacIV5TwykiRJbbMiI0nSpCvYMp4FGSsykiRpfFmRkSRpwhVetSRJktQ6KzKSJE28sIV0HcRWsSIjSZLGlomMJEkaW3YtSZI04QqY8vJrabwk+e0k57R0rPsn+WGSG5K8oo1jarwk+b0kf57EH5jSEpjIqHNJLkhyS/Mlf22S7yR5SZKh/vusqm9V1f1nxfGEIR3udcA3qmqHqvo/s59M8htJvpLkmuYcbEry1CHFMtaSPDbJVJIbZ9ye33Vcd0aSZwNHAc8BPpAks55/a5KfNv+NnJ3kjzoJVCvalmbA77Bvy81ERqPi6VW1A3Af4O+BvwCO7jakZXUf4IwFnv8CcAJwD2A34BXA9csdxLj92l8g3kuq6i4zbscM+XhD0yTP7wSeCPwOcF/gH2Y1uwl4OrAT8HzgXUke1Wac0qgykdFIqarrqurzwLOB5yfZHyDJds2v0p8n+WWSf06yrnnusUkuTvKaJJcnuTTJC6b3meSpSc5sfs3+IslrZ76uuf8R4N7AF5pf+K9L8sUkL58ZX5JTkzxzvtiTPCPJGU1F5RtJfr3Z/nXgccC7m33vN+t1uwL7AO+vqtub2/+rqm/PaPPiJOcmuTrJ55Pcq9m+d5Ka+QXcHPuPm/uHJ/l/Sd6R5Grgr2fs76zmnJyZ5GHN9nsl+XSSK5KcP7MbLMkjk5yc5PrmM3h7n/Mw/Xm8McmVTaXrOTOeH+Sz/IsklwEfnO8YS5HkXUkuauLelOS3Zzz310mOTfLRJNcDhydZ1cT+s+b8bEqyV3re0fwbu675t7Dov8/m+UOS/KiJ4WdJDm62bwD+BXhyVZ1cVdcDTwYeNv3vFKCqjqyqs6tqqqpOAr4FHHhnz400rbAiIy2rqvo+cDEw/aXzv4H9gAOA+wF7AH814yX3pPdrdQ/gRcB7kuzSPHc08CdNxWd/4OvzHO95wM/pVYbuUlX/ABwDPHe6TZKHNPv/0uzXN8nJx4FXAXdv2nwhyZqqejy9L56XNfv+yayXXwWcC3w0yTOT3GPWvh8P/C/gWcDuwIXAJ+Y7b338JnAevUrP3yb5A3oJzR8BOwLPAK5KryvvC8CPm/d5EPCqJE9u9vMu4F1VtSPwa8AnFzjmPYFdm/08H9iYZLobb5DP8q70qlhH9Nn/bk3CcH6TXGy/QCw/aI51V+BfgU8lWTvj+UOAY4GdgY8BrwYOA55K7/y8ELgZeBK9isl+Tdtn0/vsFnxPSR4JfBj48+Z1vwNcANAkL79WVadOB1NVN1XVQVX11vneTJMgPYKFK3zSxDCR0Si7BLhrkgAvBv6sqq6uqhuAvwMOndH2DuAtVXVHVX0JuBG4/4znHphkx6q6pqpOGfD4nwP2TbJv8/h5wL9V1e3ztH028MWqOqGq7gDeCqwDFi3/V1XRq9hcALwNuDTJiTOO+xzgA1V1SlXdBrwBODDJ3gO+j0uq6p+qanNV3QL8MfAPVfWD6jm3qi6k9+V496p6S1MVOg94P/91nu8A7pdk16q6saq+t8hx/7KqbquqbwJfBJ414Gc5BRzZvPaWefZ7Nr2EYXfg8cDDgXmrQwBV9dGquqp5/28DtuO//m0AfLeqPttUO6bPz5uq6pzm/Py4qq5q3v8OwAOAVNVZVXXpAO/pRfQ+vxOaY/yiqs5e5Nwt5J/pJZvH34l9SHNMVVq5LTcTGY2yPYCr6VU41gObmm6ba4EvN9unXVVVm2c8vhm4S3P/9+j9ur4wyTeTDFSSb5KGTwLPbaoVhwEf6dP8XvQqJdOvnQIuat7DIMe6uKpeVlW/Rq8ScRO9X/Hz7ftGepWAgfbdxDHTXsDP5ml3H+Be0+e4Oc9vpDduB3pfyPsBZyf5QZKnLXDMa6rqphmPL2zexyCf5RVVdWu/HVfVZVV1ZpMUnE9vIPXv92ufXpfjWU130LX0Kne7zmgy0Pmpqq8D7wbeA/wyycYkOw7wnvqd7yVL8o/0qorPahJgaeKZyGgkJXkEvS/qbwNXArcAv1FVOze3narqLgvupNFUHg6h17XyWfp3icz3xXAMvYrIQcDNVfXdPq+9hF4iMB1/6H2B/WKQGGfFexG9L8v9++x7e+Buzb6nk4X1M3Zxz9m7nPX4InpdQ7NdBJw/4xzv3Fxl9dQmrp9W1WH0zuP/Bo5doEtnl1nP3bt5H4N8lkv9gi6Yv+O9GQ/zF/S65Xapqp2B62a1H/T8UFX/p6oeDvwGvaTuzwd4T333txRJ3gw8BXhSM5ZGWjaOkZGWSZIdm1/6nwA+WlWnNdWN9wPvSLJb026PGWM3FtrfmiTPSbJT0+VzPbClT/Nf0rti5D81icsUvS6fftUY6CVHv5vkoCSrgdcAtwHfGSDGXZK8Ocn9kmyT3uDfFwLTXTf/CrwgyQFJtqPXbXFSVV1QVVfQS2ie2wxSfSGLf2keBbw2ycObAaz3S3If4PvA9c1A23XN/vZvkkqSPDfJ3ZvP49pmX/3OJcCbm/P/28DTgE/dmc9yxvl6bJJ7N7HvRe8qt8/1ab4DsBm4Atg2yV/RG/eykKOAv0myb3OMBye5W5JHJPnN5vO9CbgV2DLAezqa3ud3UPP57pHkAYO+32Z/bwD+EHhi080lqWEio1HxhSQ30Pv1+j/pjXl4wYzn/4LegNjvpXd1yVf51XEOC3kecEHzupcwYwDvLP8LeFPTPfDaGds/DDwI+Gi/A1TVOc1+/4neL/Sn0xs4PN94mtluB/am956uB06nlwQd3uz7a8BfAp8GLqWXqMwcU/JiepWBq+hVChZMnqrqU8Df0kuQbqBXpbprVW1p4j4AOL95H0fR64oBOBg4I8mN9Ab+HrpAF9BlwDX0qjAfA14yY1zInfksAR4GfJdeMvEdeuer3ySDxwP/F/gJve6tW5nblTTb2+klpl+h93kcTW+80470EpZrmn1dRW8s1ILvqXoD118AvINeNeibzKiwDejv6FW1fpr/mjvnjUvch9RXEbawTSu35Ra7WaWFpTf52BFV9ZiuYxkHSR5Lr5q2Z9exSBrMrz94u/rwv+/eyrEeeZ8LN1XVhuXa31hNjiW1Lcl64H8A7+06FkkapmFcUdQGu5akPpoxDlfQGzvzrx2HI0mahxUZqY+qOh5YaKI1zaOqvgHYrSSNkemrlsaRFRlJkjS2xqIisybb1Vp/GEut2+/BN3cdwrxOu+ruizdq2TYLXYjekdWX3bR4I42kW7mJ2+u28SyRtGwsEpm1bM9v5qCuw5AmzvHH/6jrEOa170f+tOsQ5lhz3eh95+z5d4tOY6QRdVJ9reUjhi01np004xm1JEkSY1KRkSRJw1PA1JjWNsYzakmSJKzISJIkvPxakiSpdVZkJEmacFVetSRJktQ6KzKSJIkpx8hIkiS1y4qMJEkTrrdo5HjWNsYzakmSJKzISJIk11qSJElqnxUZSZImnGstSZIkdcBERpIkjS27liRJElvKCfEkSZJaZUVGkqQJV2RkJsRLcn/g32Zsui/wV1X1zvnam8hIkqSRUVXnAAcAJFkF/AL4TL/2JjKSJImp0ZwQ7yDgZ1V1Yb8GJjKSJKlNuyY5ecbjjVW1sU/bQ4GPL7QzExlJkiZcy4tGXllVGxZrlGQN8AzgDQu1G8k6kiRJmnhPAU6pql8u1MiKjCRJE67IKM4jcxiLdCuBFRlJkjRikqwHnggct1hbKzKSJGmkFo2sqpuBuw3SdnSiliRJWiIrMpIkTbgq2DKa88gsajyjliRJwoqMJEkiTDFyVy0NxIqMJEkaWyYykiRpbNm1JEnShCvGd7CviYwm0pV/cmDXIcxx/X27jmCu+33jgK5DmNc2W7qOYK51v6yuQ5AmkomMJElqc9HIZTWeUUuSJGFFRpKkiVeEqdFbNHIgVmQkSdLYsiIjSZIcIyNJktQ2KzKSJE24AqbGdB6Z8YxakiQJKzKSJImwxUUjJUmS2mVFRpKkCecYGUmSpA5YkZEkSY6RkSRJapsVGUmSJlxVHCMjSZLUtqElMkk+kOTyJKfP2HbXJCck+Wnzd5dhHV+SJK18w6zIfAg4eNa21wNfq6p9ga81jyVJUse21Dat3Jbb0BKZqjoRuHrW5kOAY5r7xwDPHNbxJUnSytf2YN97VNWlAFV1aZLd+jVMcgRwBMBa1rcUniRJk6eAKS+/Xl5VtbGqNlTVhtVs13U4kiRpBLVdkfllkt2baszuwOUtH1+SJM2RoYxfaUPbUX8eeH5z//nA51o+viRJWkGGVpFJ8nHgscCuSS4GjgT+HvhkkhcBPwf+YFjHlyRJg+ktGjmeY2SGlshU1WF9njpoWMeUJEmTxSUKJEkSW0b3+p8FjWfUkiRJWJGRJGniFRnbMTJWZCRJ0tiyIiNJkpga09rGeEYtSZKEFRlJkiZeFWxxjIwkSVK7TGQkSdLYsmtJkiR5+bUkSVLbrMhIkjThehPijWdtw0RmK53/8Yd0HcIc607avusQ5nXLPavrEOaa6jqAuba9efTKunf8Yl3XIcwrW7qOYK6p1V1HMNdlr3xU1yHMcc93fafrELTCmMhIkiS2MHo/pgYxnnUkSZIkrMhIkjTxCq9akiRJap0VGUmSJt74XrU0nlFLkiRhRUaSJAFTXrUkSZLULisykiRNuCrY4lVLkiRJ7bIiI0mSvGpJkiSpbSYykiRppCTZOcmxSc5OclaSA/u1tWtJkqQJV2TUlih4F/Dlqvr9JGuA9f0amshIkqSRkWRH4HeAwwGq6nbg9n7tTWQkSVKbE+LtmuTkGY83VtXGGY/vC1wBfDDJQ4BNwCur6qb5duYYGUmS1KYrq2rDjNvGWc9vCzwMeF9VPRS4CXh9v51ZkZEkacIVjNIYmYuBi6vqpObxsSyQyFiRkSRJI6OqLgMuSnL/ZtNBwJn92luRkSRJozYh3suBjzVXLJ0HvKBfQxMZSZI0UqrqR8CGQdqayEiSNOlq5OaRGdhI1ZEkSZKWwoqMJEkTrmh1HpllZUVGkiSNLSsykiTJMTKSJEltsyIjSdKEG7GZfZfEiowkSRpbJjKSJGls2bUkSZLsWpIkSWqbFRlJkiZc4RIFkiRJrbMiI0mSXKJAkiSpbeNRkdlvNfmXPbqO4les+sb2XYcwxy27VdchzGu7q0cvy79t59E7V1Pbjl5M6y8dvc8OoFZ1HcFcm9d3HcFcmeo6Ao2N8qolSZKk1o1HRUaSJA2NSxRIkiR1wIqMJEmyIiNJktQ2KzKSJE04Z/aVJEnqgBUZSZJEWZGRJElql4mMJEkaW3YtSZIkF42UJElqmxUZSZImXLlopCRJUvusyEiSJC+/Xookf5bkjCSnJ/l4krVdxCFJksZb64lMkj2AVwAbqmp/YBVwaNtxSJKkab0lCtq4LbeuxshsC6xLsi2wHrikozgkSdIYa32MTFX9IslbgZ8DtwBfqaqvzG6X5AjgCIC199ih3SAlSZowjpEZUJJdgEOAfYB7Adsnee7sdlW1sao2VNWG1TutaztMSZI0Brq4aukJwPlVdQVAkuOARwEf7SAWSZImXuE8Mkvxc+C3kqxPEuAg4KwO4pAkSWOuizEyJyU5FjgF2Az8ENjYdhySJKlRvdl9x1EnE+JV1ZHAkV0cW5IkrRzO7CtJklz9WpIkqW0mMpIkaWzZtSRJ0oQrnBBPkiSpdVZkJEmaeMNZ0LENVmQkSdLYsiIjSZLGdkI8KzKSJGlsWZGRJEletSRJktQ2KzKSJE24qvGtyIxFInPbzWs495S9ug7jV0zttqXrEOa426bRLLBddcBU1yHMsfby0TtXW9aO3ki7zdt3HcH81l45eufqjh1G70vgjnVdRzDXLc98ZNchzGvdZ7/fdQjaSmORyEiSpOFyHhlJkqSWWZGRJEnOIyNJktQ2KzKSJGlsr1qyIiNJksaWFRlJkjRSklwA3ABsATZX1YZ+bU1kJEmacEVGsWvpcVV15WKN7FqSJEljy0RGkiRRLd2AXZOcPON2RJ9wvpJkU5/n/5NdS5IkqU1XLjTmpfHoqrokyW7ACUnOrqoT52toIiNJ0qQbsUUjq+qS5u/lST4DPBKYN5Gxa0mSJI2MJNsn2WH6PvAk4PR+7a3ISJKk/xzAMgLuAXwmCfTylH+tqi/3a2wiI0mSRkZVnQc8ZND2JjKSJGmkxsgshWNkJEnS2LIiI0mSqNEZI7MkVmQkSdLYsiIjSdKEKxwjI0mS1DorMpIkTboCrMhIkiS1y0RGkiSNrYG6lpLsAtwLuAW4oKqmhhqVJElq1bheft03kUmyE/BS4DBgDXAFsBa4R5LvAe+tqv9oJUpJkqR5LFSRORb4MPDbVXXtzCeSPBx4XpL7VtXRwwxQkiS1YKVVZKrqiQs8twnYNJSIJEmSBrRQ19KTgR2q6thZ258DXF5VJww7OEmS1IasyAnx3gx8c57tXwPeMpxwJEmSBrfQGJn1VXXF7I1VdVmS7YcYkyRJatuYjpFZqCKzNsmcRCfJamDd8EKSJEkazEKJzHHA+2dWX5r7/9w8J0mSVoLqLRrZxm25LZTIvAn4JXBhkk1JNgEX0JtP5k3LHokkSdISLXT59Wbg9UneDNyv2XxuVd3SSmSSJKk9K22MTJLXATSJywOq6rTpJCbJ37UUnyRJUl8LXbV0KPAPzf03AJ+a8dzBwBuHFdRsq26DHc4bsfUtRywcgG22jGY6vea60ZuboAZaZaxd210zeucpW7qOYH633N1zNYhtb+46grmu22cE/+PDK1h6Ru+/q0Es9HWcPvfneyxJktS6hVLj6nN/vseSJGmcjek3+0KJzEOSXE+v+rKuuU/zeO3QI5MkSVrEQlctrWozEEmSpKVadNRVkgcBD2genllVZww3JEmS1LqV1rWUZCfgc8C9gR/T61J6UJKfA4dU1fX9XitJktSGhSoyfwOcDDy+qqYAkmwD/D3wt8DLhx+eJEkaugKGsHxAGxZKZJ4APHg6iQGoqqkkbwROG3pkkiRJi1gokbm9WabgV1TV5iS3DTEmSZLUslppY2SAtUkeyvyT4W03vJAkSZIGs1Aicynw9j7PXTaEWCRJUldWWkWmqh7XZiCSJElLNZqrd0mSpHaN6VVLI7iGsyRJ0mCsyEiSJDKmY2QWrcgk+XSS320mw1sWSXZOcmySs5OcleTA5dq3JEmaHIMkJ+8D/hD4aZK/T/KAxV4wgHcBX66qBwAPAc5ahn1KkqStUS3eltmiiUxVfbWqngM8DLgAOCHJd5K8IMnqpR4wyY7A7wBHN/u/vaquXep+JEmSBuouSnI34HDgj4Ef0quoPAw4YSuOeV/gCuCDSX6Y5Kgk289zzCOSnJzk5M233LQVh5EkSYNJ76qlNm7LbJAxMscB3wLWA0+vqmdU1b9V1cuBu2zFMbellwS9r6oeCtwEvH52o6raWFUbqmrDtuvm5DmSJEkDXbX07qr6+nxPVNWGrTjmxcDFVXVS8/hY5klkJEmSFtM3kUny3+e7P62qjtuaA1bVZUkuSnL/qjoHOAg4c2v2JUmSlsmYXn69UEXm6Qs8V8BWJTKNlwMfS7IGOA94wZ3YlyRJmlALrbU0tOSiqn4EbE23lCRJGoaVVpFJ8uqFXlhV/VbGliRJasVCXUs7tBaFJEnq1kqryFTVm9sMRJIkaakWvfw6yVrgRcBvAGunt1fVC4cYlyRJaksxlMnq2jDIzL4fAe4JPBn4JrAncMMwg5IkSRrEIInM/arqL4GbquoY4HeBBw03LEmS1KZUO7flNkgic0fz99ok+wM7AXsvfyiSJElLM8gSBRuT7AL8JfB5eusr/dVQo5IkSe1aaVctTauqo5q736S3crUkSdJIGOSqpe2A36PXnfSf7avqLcMLS5IkaXGDdC19DrgO2ATcNtxwJEmSBjdIIrNnVR089EgkSVJnhnFFURsGuWrpO0m83FqSJLUmyaokP0zy7wu1G6Qi8xjg8CTn0+taClBV9eBliHMgU6vh1t3aOtpgdj5nqusQ5rhxj0Hy0vaturXrCObasl3XEcy1zR2Lt2nbHXfpOoL5rbti9H463rH96M2KOrWm6wjmMXqnSdNGb2bfVwJnATsu1GiQROYpyxKOJEnSAJLsSW8C3r8FXr1Q276JTJIdq+p6XI5AkiQtn12TnDzj8caq2jirzTuB1wE7LLazhSoy/wo8jd7VSsWvFgQL55SRJGllKNqcEO/KqtrQ78kkTwMur6pNSR672M76JjJV9bTm7z5bE6UkSdJWeDTwjCRPBdYCOyb5aFU9d77Gg0yI97B5Nl8HXFhVm+9UqJIkaTSMyBj6qnoD8AaApiLz2n5JDAw22Pe9wMOAU+l1Lz0I+DFwtyQvqaqv3NmgJUmStsYg1+teADy0qjZU1cOBA4DTgScA/zDE2CRJUktS7dyWoqq+MT3UpZ9BEpkHVNUZM3Z6Jr3E5rylhSNJkrS8BulaOifJ+4BPNI+fDfykWUxyBKfwkiRJSzYiY2SWapCKzOHAucCrgD8Dzmu23QE8bliBSZIkLWbRikxV3QK8rbnNduOyRyRJkto3phWZhWb2/WRVPSvJaczz9tpca0mSJGk+C1VkXtn8XXC0sCRJGm9bc0XRqFhoZt9Lk6wCjq6qJ7QYkyRJ0kAWHCNTVVuS3Jxkp6q6rq2gJElSyyqLtxlBg1x+fStwWpITgJumN1bVK4YWlSRJ0gAGSWS+2NwkSdJKtdLGyEyrqmOSrAH2azadU1VOhCdJkjo3yOrXjwWOobfmUoC9kjy/qk4cbmiSJEkLG6Rr6W3Ak6rqHIAk+wEfBx4+zMAkSVJ7xvXy60GWKFg9ncQAVNVPgNXDC0mSJGkwg1RkTk5yNPCR5vFzgE3DC0mSJLVuTCsygyQyfwq8FHgFvTEyJwLvHWZQkiRJgxjkqqXbgLc3N0mStNKM8RIFfcfIJPlCkqcnmTMeJsl9k7wlyQuHG54kSVJ/C1VkXgy8GnhnkquBK4C1wD7AucC7q+pzww9RkiQN3ZhWZBZaNPIy4HXA65LsDewO3AL8pKpubiU6SZKkBQwy2JequoDehHiSJGklGtOKzCDzyEiSJI2kgSoykiRpZVtxVy1JkiSNur4VmSSnMX+PWYCqqgcPLSpJkqQBLNS19LTWopAkSdoKC11+feH0/ST3Afatqq8mWbfQ6yRJ0hhaqWNkkrwYOBb4l2bTnsBnhxmUJEnSIAYZ7PtS4NHA9QBV9VNgt2EGJUmSNIhBuohuq6rbkwCQZFtaLkCtueQm7v3X32nzkIu6+A2P6jqEsbHm+q4jmGvLmq4jmGvL2q4jmGvbW7qOYH61Kl2HMMetu41eXX6H87uOYK5rHrq56xDmdeWfHNh1CL9i86e/1+4BV+KikTN8M8kbgXVJngh8CvjCcMOSJEla3CCJzOvpLRh5GvAnwJeANw0zKEmS1LJq6bbMBula2rWq3g+8f3pDkvsD5yx/OJIkSYMbpCLzrSTPmn6Q5DXAZ4YXkiRJat0Krsg8FtiY5A+AewBnAY9c/lAkSZKWZtGKTFVdCnwZOBDYG/hwVd045LgkSVJLQu+qpTZuy23RikySE4BLgf3pTYb3gSQnVtVrlz8cSZKkwQ0yRuY9VfVHVXVtVZ0OPAq4bshxSZKkNq3UMTJV9dlZjzcDf7P8oUiSJC1N30Qmyber6jFJbuBXc6gAVVU7Dj06SZI0fGM8s+9Cq18/pvm7Q3vhSJIkDW6hisxa4CXA/YBTgQ803UqSJGmlGdOKzEKDfY8BNtBbmuCpwNtaiUiSJGlACw32fWBVPQggydHA99sJSZIktW4FVmTumL5jl5IkSRpFC1VkHpLk+uZ+gHXN42W5ainJKuBk4BdV9bQ7sy9JkjSZFrpqadWQj/1Keus2eRm3JEkdG9fLrweZ2XfZJdkT+F3gqC6OL0mSVoZBVr8ehncCrwP6zlGT5AjgCIC1rG8pLEmSJpQVmcEkeRpweVVtWqhdVW2sqg1VtWE127UUnSRJGiddVGQeDTwjyVOBtcCOST5aVc/tIBZJkjSkBR3b0HpFpqreUFV7VtXewKHA101iJEnS1uhqjIwkSRoh43rVUqeJTFV9A/hGlzFIkqTxZUVGkiQ5RkaSJKltVmQkSdLYjpGxIiNJksaWFRlJkjQyY2SSrAVOBLajl6ccW1VH9mtvIiNJkkbJbcDjq+rGJKuBbyf5v1X1vfkam8hIkjTpRmhm36oq4Mbm4erm1jc6x8hIkqQ27Zrk5Bm3I2Y3SLIqyY+Ay4ETquqkfnXpKDwAABBrSURBVDuzIiNJktp0ZVVtWKhBVW0BDkiyM/CZJPtX1enztbUiI0nShEuLt6WoqmvprQBwcL82JjKSJGlkJLl7U4khyTrgCcDZ/drbtSRJkkZmsC+wO3BMklX0Ci6frKp/79fYRGYrbVnbdQRz7XLOVNchzGtq1VKLicN3w96jFxMj+PGtvXJ0/s820+07jt7nt81tXUcw14337jqCudZfsLrrEOZ17QNG6z/AUfyOaUtVnQo8dND2JjKSJMklCiRJktpmRUaSJI3SGJklsSIjSZLGlhUZSZJkRUaSJKltVmQkSZp05VVLkiRJrbMiI0mSHCMjSZLUNisykiTJMTKSJEltM5GRJEljy64lSZLkYF9JkqS2WZGRJEkO9pUkSWqbFRlJkiZd4RgZSZKktlmRkSRJVmQkSZLaZkVGkqQJF7xqSZIkqXVWZCRJkmNkJEmS2mZFRpIkkRrPkowVGUmSNLasyEiSNOmc2VeSJKl9JjKSJGls2bUkSZKcEE+SJKltVmQkSZKDfSVJktpmRUaSJDlGRpIkqW1WZLbSfY78TtchzHH1Cw/sOoR5bV6XrkOYI5u7jmCu7a4dvZ9DN+8+ep8dwG27jN652vbm0TtXNYKDHra7ZvRiAtjz777XdQi/4qq6qf2DjuZHsygrMpIkaWxZkZEkadKVY2QkSZJaZ0VGkiQ5RkaSJKltVmQkSZpwwTEykiRJrbMiI0mSoMazJGNFRpIkjS0TGUmSNLbsWpIkSQ72lSRJapsVGUmSJl3hhHiSJEltsyIjSZLIVNcRbJ3WKzJJ9kryH0nOSnJGkle2HYMkSVoZuqjIbAZeU1WnJNkB2JTkhKo6s4NYJEkSOEZmUFV1aVWd0ty/ATgL2KPtOCRJ0vjrdIxMkr2BhwInzfPcEcARAGtZ32pckiRNGueRWaIkdwE+Dbyqqq6f/XxVbayqDVW1YTXbtR+gJEkaeZ1UZJKsppfEfKyqjusiBkmS1ChcNHJQSQIcDZxVVW9v+/iSJGnl6KJr6dHA84DHJ/lRc3tqB3FIkqRGqp3bonEscZqW1ruWqurbQNo+riRJGgtLmqbFmX0lSdLIzCNTVZcClzb3b0gyPU2LiYwkSercrklOnvF4Y1VtnK/hQtO0TDORkSRJbbqyqjYs1mixaVqmmchIkjThwmhNiLeUaVo6mxBPkiRptqVO02IiI0nSpKtq77a4JU3TYteSJEkaGUudpsVERpIkjdQYmaWwa0mSJI0tKzKSJGlkJsRbKisykiRpbFmRkSRJjpGRJElqmxWZFeTGe4/mouJrru06gnmM4KnavH70gtrm9q4jmN/aq0bvXN3rmzd1HcIc+e6Puw5B46KAqfEsyViRkSRJY8uKjCRJ8qolSZKktlmRkSRJXrUkSZLUNhMZSZI0tuxakiRJUOPZt2RFRpIkjS0rMpIkycG+kiRJbbMiI0nSpCucEE+SJKltVmQkSZpwAeJVS5IkSe2yIiNJkmCq6wC2jhUZSZI0tqzISJIkx8hIkiS1zYqMJEmTznlkJEmS2mdFRpKkiVeufi1JktQ2KzKSJMnVryVJktpmIiNJksaWXUuSJMnBvpIkSW2zIiNJ0qQriItGSpIktcuKjCRJcoyMJElS26zISJIkF42UJElqmxUZSZJEHCMjSZLULisykiRpbK9aMpFZQdZc23UE81t12wj+x1HpOoI5bjnwxq5DmGOfQ0/tOgRJWpCJjCRJk64AZ/aVJElqlxUZSZImXCivWpIkSWqbiYwkSRpbdi1JkqSxvfzaiowkSRpbVmQkSZIVGUmSpLZZkZEkadI5IZ4kSVL7rMhIkiQnxJMkSWqbFRlJkuRVS5IkSXdWkg8kuTzJ6YO07ySRSXJwknOSnJvk9V3EIEmSplWvItPGbXEfAg4eNPLWE5kkq4D3AE8BHggcluSBbcchSZJGT1WdCFw9aPsuxsg8Eji3qs4DSPIJ4BDgzA5ikSRJRZtjZHZNcvKMxxurauPW7qyLRGYP4KIZjy8GfnN2oyRHAEcArGV9O5FJkqRhu7KqNizXzrpIZDLPtjlpYJOdbQTYMXcdz6HUkiSNC2f2HdjFwF4zHu8JXNJBHJIkacx1kcj8ANg3yT5J1gCHAp/vIA5JkjRiknwc+C5w/yQXJ3nRQu1b71qqqs1JXgYcD6wCPlBVZ7QdhyRJ+i+jskRBVR22lPadzOxbVV8CvtTFsSVJ0srhEgWSJMklCiRJktpmRUaSpElXwJQVGUmSpFZZkZEkaeINvKDjyLEiI0mSxpYVGUmSZEVGkiSpbVZkJEmSFRlJkqS2WZGRJGnSOY+MJElS+8aiInMD11z51Tr2wmXY1a7Alcuwn9H0jmOXc28r+1wtn+U7T+9clr0sq58t7+78NzUYz9NgVvp5uk+7hyuoqXYPuUzGIpGpqrsvx36SnFxVG5ZjXyud52ownqfBea4G43kajOdJ0+xakiRJY2ssKjKSJGnIvPx6LGzsOoAx4rkajOdpcJ6rwXieBuN5EgCpMc3AJEnS8thpzT3qUfc8rJVjffmid21azvFNk1aRkSRJK4hjZCRJkmNkRl2Sg5Ock+TcJK/vOp5RlGSvJP+R5KwkZyR5Zdcxjbokq5L8MMm/dx3LqEqyc5Jjk5zd/Ns6sOuYRlWSP2v+2zs9yceTrO06plGQ5ANJLk9y+oxtd01yQpKfNn936TJGdWciEpkkq4D3AE8BHggcluSB3UY1kjYDr6mqXwd+C3ip52lRrwTO6jqIEfcu4MtV9QDgIXi+5pVkD+AVwIaq2h9YBRzabVQj40PAwbO2vR74WlXtC3yteaw7o6qd2zKbiEQGeCRwblWdV1W3A58ADuk4ppFTVZdW1SnN/RvofeHs0W1UoyvJnsDvAkd1HcuoSrIj8DvA0QBVdXtVXdttVCNtW2Bdkm2B9cAlHcczEqrqRODqWZsPAY5p7h8DPLPVoDQyJiWR2QO4aMbji/ELekFJ9gYeCpzUbSQj7Z3A64DxnNe7HfcFrgA+2HTBHZVk+66DGkVV9QvgrcDPgUuB66rqK91GNdLuUVWXQu9HGLBbx/GMuZaqMVZktlrm2Taeo5pakOQuwKeBV1XV9V3HM4qSPA24vKo2dR3LiNsWeBjwvqp6KHATdgHMqxnjcQiwD3AvYPskz+02Kmn0TUoiczGw14zHe2LJdl5JVtNLYj5WVcd1Hc8IezTwjCQX0OuqfHySj3Yb0ki6GLi4qqYre8fSS2w01xOA86vqiqq6AzgOeFTHMY2yXybZHaD5e3nH8Yy3Aqam2rkts0lJZH4A7JtknyRr6A2g+3zHMY2cJKE3luGsqnp71/GMsqp6Q1XtWVV70/v39PWq8tfzLFV1GXBRkvs3mw4CzuwwpFH2c+C3kqxv/ls8CAdGL+TzwPOb+88HPtdhLOrQRMwjU1Wbk7wMOJ7elQAfqKozOg5rFD0aeB5wWpIfNdveWFVf6jAmjb+XAx9rfkScB7yg43hGUlWdlORY4BR6VxD+EKfhByDJx4HHArsmuRg4Evh74JNJXkQvCfyD7iJcIcZ0HhmXKJAkacLttHq3etTdfr+VY335l+9b1iUKJqIiI0mSFjGmhY1JGSMjSZJWIBMZSZI0tuxakiRp4hVM2bUkSZLUKhMZaYiSbEnyo2Y1408lWd9s/85W7m/vmSsAz3pu96Wuwp3kXs0lv4u1+1KSnZey7xmv/eskr23ufyjJwJdGJPlGs2r9j5P8IMkBs55/aJJK8uQZ29YkObFZr0jSIAqqplq5LTcTGWm4bqmqA5rVjG8HXgJQVcOYsfXVwPsHbZxk26q6pKoWTSyq6qkdLvb4nKp6CPBe4B9nPXcY8O3mL9BbmJLeasjPbi1CSZ0xkZHa8y3gfgBJbmz+/rckX03P7kl+kuSeSVYl+cemCnFqkj8ZYP+/B3y52e/aJB9MclqzWOPjmu2HN5WhLwBfmVnhaWaU/WRzvH9LclKSDc1zFyTZtWl/VpL3JzkjyVeSrGvavLiJ98dJPj1dfZpPkoOSfGbG4ycmWWxJjO8yY7HXZvbb3wcOB56UZO2Mtp8FnjPAOZM0barauS0zExmpBU03x1OA02Zur6rPAJcBL6VXTTmymdb/RfRWP34E8AjgxUn2WWD/+wDXVNVtzaaXNvt/EL1qxTEzvugPBJ5fVY+ftZv/0ezjwcDfAA/vc7h9gfdU1W8A19JLoACOq6pHNNWTs5r30M/XgV9Pcvfm8QuADy7QHuBgegnKtEfTW5voZ8A3gKfOeO50eudN0gpnH7I0XOtmLPfwLXprWc32cnpfvN+rqo83254EPHjGeJKd6CUQP+lznN2BK2Y8fgzwTwBVdXaSC4H9mudOqKqr59nHY4B3Na85PcmpfY51flVNv6dNwN7N/f2T/H/AzsBd6C0JMq+qqiQfAZ6b5IP0kqs/6tP8Y0m2p7e8yMwFJw+jt2Anzd/n0VtokarakuT2JDtU1Q394pA0w5hOiGciIw3XLVV1wCJt9gCmgHsk2aZ6o+ECvLyqfiUZSLJ3v+MAM7tWssDxbuqzfaHXzHTbjPtbgHXN/Q8Bz6yqHyc5nN7aOAv5IPAF4FbgU1W1uU+75wA/pre2znuA/55kFb1K0DOS/M8m9rvNSly2a/YtaQWza0nqUNPl9EHgD+l1x7y6eep44E+TrG7a7ddUJfr5Cf9VGQE4kWaMSJL9gHsD5ywSzreBZzWveSDwoKW8F2AH4NIm5kXHp1TVJcAlwJvoJUELtb2jafdbSX4deALw46raq6r2rqr7AJ8GntnEfzfgiuZ1khZTBVNT7dyWmRUZqVtvBL5VVd9quqB+kOSLwFH0EpNTmkGtV9B8Sc+nqm5K8rMk96uqc+ld4fPPSU6jt5Ly4VV1W29Xfb2X3liaU+mtvHwqcN0S3stfAicBF9IbC7TDAK/5GHD3qjpzsYZVdUuStwGvpdfN9JlZTT4N/CnwEeBxgKu2SxPA1a+lFSLJfwMeXlVv2srXrwJWV9WtSX6N3iXM+zWXMw9FkncDP6yq+cYO3Zn9Hge8oaoWq0JJAnZatWsduP3TWznW8Td8yNWvJc1VVZ9pulS21nrgP5quoQB/OuQkZhO98TqvWeb9rgE+axIjTQYTGWkFqaqj7sRrbwCW7VfSAMfrd3n3nd3v7cCHh7FvaSWrIYxfaYODfSVJ0tiyIiNJ0sSrsZ1HxoqMJEkaWyYykiRpbNm1JEnSpCuGsqBjG6zISJKksWVFRpIkQXn5tSRJUqusyEiSNOEKKMfISJIktcuKjCRJk67KMTKSJEltsyIjSZIcIyNJkrQckhyc5Jwk5yZ5/UJtrchIkqSRGSOTZBXwHuCJwMXAD5J8vqrOnK+9FRlJkjRKHgmcW1XnVdXtwCeAQ/o1tiIjSdKEu4Frjv9qHbtrS4dbm+TkGY83VtXGGY/3AC6a8fhi4Df77cxERpKkCVdVB3cdwwyZZ1vfkch2LUmSpFFyMbDXjMd7Apf0a2wiI0mSRskPgH2T7JNkDXAo8Pl+je1akiRJI6OqNid5GXA8sAr4QFWd0a99qsZzAhxJkiS7liRJ0tgykZEkSWPLREaSJI0tExlJkjS2TGQkSdLYMpGRJEljy0RGkiSNrf8fCXC/ecjTNwwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot the extracted image data\n", + "fig = plt.figure(0, [10,10])\n", + "im = plt.imshow(image_data, origin=\"lower\")\n", + "plt.colorbar(im)\n", + "plt.xlabel(\"Pixel (originally RA)\")\n", + "plt.ylabel(\"Pixel (originally DEC)\")\n", + "plt.title(\"Density of Sources per 5 arcsec^2\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1c. Set up datamodel file\n", + "\n", + "At this point, we have a basic understanding of the information we are working with, so it's about time we set up our datamodel file. \n", + "\n", + "The datamodel file is a sort of catch-all file used to store any sort of infomation we might need to run the BEAST code on our data. We'll go through and talk about what all the different variables mean, and which ones would need to be changed for any future projects.\n", + "\n", + "Go ahead and open the datamodel.py file in a text editor now and ensure that the following variables match:\n", + "\n", + "* **project** : the same as the field_name variable we noted earlier\n", + " * *project = \"M31-B09-EAST_chunk\" *\n", + "* **surveyname** : the overall name for the survey (this variable isn't actually important for the code)\n", + " * *surveyname = \"PHAT-M31\"*\n", + "* **filters** : the full filter names from the photometric catalog, also the names that show up in our magnitude histograms so you can add them from there\n", + " * *filters = [\"HST_WFC3_F475W\", \"HST_WFC3_F275W\", \"HST_WFC3_F336W\", \"HST_WFC3_F814W\", \"HST_WFC3_F110W\", \"HST_WFC3_F160W\",]*\n", + " \n", + "* **base filters** : shortened versions of the filter names\n", + " * *basefilters = [\"F475W\", \"F275W\", \"F336W\", \"F814W\", \"F110W\", \"F160W\"]*\n", + "* **obsfile** : the name of the photometric catalog (now including the source density information\n", + " * *obsfile = \"./M31-B09-EAST_chunk.st_with_sourceden_cut.fits\"*\n", + " \n", + "* **ast_with_positions** : make sure is set to *True* if you have the locations included in your obsfile\n", + "\n", + "* **ast_density_table** : the source density map created in step 1b \n", + " * *ast_density_table = './M31-B09-EAST_chunk.st_sourceden_map.hd5'*\n", + " \n", + "* **ast_reference_image** : the original photometric FITS catalog which is required if you use the ast_with_positions as true \n", + " * *ast_reference_image = \"./M31-B09-EAST_chunk_F475W_drz.chip1.fits\"*\n", + " \n", + "* **astfile** : the file of ASTs we will be creating in step 3, but since ASTs normally have to be processed by a specialist, we have already included a finished AST file for us to use in this example\n", + " * *astfile = \"M31-B09_EAST_chunk.gst.fake.fits\"*\n", + " \n", + "* **n_subgrid** : the number of subgrids to use for generating the physics model later on (with 1 meaning no subgrids)\n", + " * *n_subgrid = 1*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This file is also where you specify the parameters and resolution of your physics model which will become relevant in step 2. The resolution of these parameters for your own runs will differ depending on what sorts of ASTs you want to model. There are 8 parameters that can be set.\n", + "\n", + "1. **Distance** : either a fixed value or a range with stepsizes\n", + "2. **Velocity** : what is the heliocentric velocity of your location or galaxy in km/s\n", + "3. **Age** : the log10 age range of the ASTs being modeled\n", + "4. **Mass** : the mass of the ASTs\n", + "5. **Metallicity** : the metallicity range of the ASTs\n", + "\n", + "6. **A(v)** : the range of dust extinction in magnitudes that could be dimming the intrinsic brightness of the ASTs\n", + "7. **R(v)** : the range of dust grain sizes \n", + "8. **f(A)** the mixture factor between the Milky Way and Small Magellanic Cloud extinction curves\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import datamodel\n", + "\n", + "importlib.reload(datamodel)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Our goal after this would normally be to eventually run a bunch of **ASTs** (Artificial Star Tests), but before we can do that, we need to generate the fake stars to use.\n", + "\n", + "Since the ASTs would normally need to be analyzed by a specialist after being created and that's a little overkill for a small example, these next couple of steps are just to illustrate how the ASTs are actually generated. A finished file of the analyzed ASTs already exists so we will end up using that in step 4 and beyond.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 2. Create physics model\n", + "\n", + "In order to generate a diverse and representative sample of fake stars to use for our ASTs, we need to set up a N-dimensional model of possible stellar parameters, so that we can easily and randomly select stars from the model.\n", + "\n", + "This model is called a **physics model**, and we will be using the parameters set in the datamodel.py file to create this N-dimensional grid.\n", + "\n", + "*As a quick note, the resolution on the stellar parameters (the step size, often specified as the third input e.g. logt = [6.0, 10.13, 1.0], where 1.0 is the step size) is the main factor driving how long this physics grid will take to set up. If things take a very long time to run, consider making the step size larger for testing's sake.*\n", + "\n", + "Sometimes we are able to have access to high-performance computing resources, meaning we can split the physics model into subgrids and run them in parallel, cutting a lot of the computation time. While we're like not running this notebook in parallel here, we've still specified a number of subgrids in the datamodel.py file. \n", + "\n", + "We can check how many subgrids are set up." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "datamodel.n_subgrid" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So we can now see that we've asked for 1 grid in the datamodel.py file.\n", + "\n", + "If we've already generated a physics model, we certainly don't want to run it again, so the following code checks to make sure all the subgrids for the physics model are present." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# set up the naming conventions for the physics model\n", + "gs_str = \"\"\n", + "\n", + "# this is only relevant if we run with multiple subgrids\n", + "if datamodel.n_subgrid > 1:\n", + " gs_str = \"sub*\"\n", + "\n", + "# collects any physics models that have already been created\n", + "# if none have, sed_files will be empty\n", + "sed_files = glob.glob(\n", + " \"./{0}/{0}_seds.grid{1}.hd5\".format(field_names[0], gs_str)\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# only make the physics model they don't already exist\n", + "if len(sed_files) < datamodel.n_subgrid:\n", + " # directly create physics model grids\n", + " create_physicsmodel.create_physicsmodel(nprocs=1, nsubs=datamodel.n_subgrid)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# list of SED files (physics models)\n", + "model_grid_files = sorted(\n", + " glob.glob(\n", + " \"./{0}/{0}_seds.grid{1}.hd5\".format(field_names[0], gs_str)\n", + " )\n", + ")\n", + "sed_files = model_grid_files" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Hopefully a spectral grid and an SED grid should have started generating. In the end you should have a new folder with the same name as your project, with a one SED and spectral grid if you have only 1 subgrid." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 3. Create Input ASTs!\n", + "\n", + "Now that we have our physics model generated, we can start to generate some input ASTs. ASTs are artificial sources inserted into the observations we have, which are then extracted with the same software that was used for the original photometry catalog. So the step that we're running now is just generating the artifical sources that will then later be inserted. \n", + "\n", + "We need to make sure that the ASTs cover the same range of magnitudes as our original photometric catalog does, so to do that\n", + "\n", + "\n", + "First thing's first, we're gonna check that there isn't already a file of AST inputs present in the folder we're working in." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'./M31-B09-EAST_chunk/M31-B09-EAST_chunk_inputAST.txt'" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# only create an AST input list if the ASTs don't already exist\n", + "ast_input_file = (\"./{0}/{0}_inputAST.txt\".format(field_names[0]))\n", + "\n", + "ast_input_file" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can create the ASTs if they don't already exist.\n", + "\n", + "The way that " + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "if not os.path.isfile(ast_input_file):\n", + " make_ast_inputs.make_ast_inputs(flux_bin_method=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "Table length=33418\n", + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
zerosonesXYHST_WFC3_F475WHST_WFC3_F275WHST_WFC3_F336WHST_WFC3_F814WHST_WFC3_F110WHST_WFC3_F160W
int64int64float64float64float64float64float64float64float64float64
01408.03456897.5236633.9505538.1835736.9970528.9912927.2261326.11148
01419.17151897.3349433.9505538.1835736.9970528.9912927.2261326.11148
01427.91019897.0346933.9505538.1835736.9970528.9912927.2261326.11148
01414.32003893.1662233.9505538.1835736.9970528.9912927.2261326.11148
01425.36739897.7232533.9505538.1835736.9970528.9912927.2261326.11148
01419.51676899.5385833.9505538.1835736.9970528.9912927.2261326.11148
01423.49592895.0248133.9505538.1835736.9970528.9912927.2261326.11148
01419.74966899.334333.9505538.1835736.9970528.9912927.2261326.11148
01416.9429896.4933133.9505538.1835736.9970528.9912927.2261326.11148
01417.38656895.2986533.9505538.1835736.9970528.9912927.2261326.11148
..............................
01855.520531.2582949.5866650.4711752.3401341.5801238.1806536.0759
01887.7347386.3207149.5866650.4711752.3401341.5801238.1806536.0759
01877.4064394.6643849.5866650.4711752.3401341.5801238.1806536.0759
01858.7756638.2763349.5866650.4711752.3401341.5801238.1806536.0759
01868.7369741.4238749.5866650.4711752.3401341.5801238.1806536.0759
01862.3463541.5893349.5866650.4711752.3401341.5801238.1806536.0759
01878.780547.2002249.5866650.4711752.3401341.5801238.1806536.0759
01858.7905582.3600349.5866650.4711752.3401341.5801238.1806536.0759
01857.7440541.3158149.5866650.4711752.3401341.5801238.1806536.0759
01852.4100960.9922349.5866650.4711752.3401341.5801238.1806536.0759
" + ], + "text/plain": [ + "\n", + "zeros ones X Y ... HST_WFC3_F814W HST_WFC3_F110W HST_WFC3_F160W\n", + "int64 int64 float64 float64 ... float64 float64 float64 \n", + "----- ----- --------- --------- ... -------------- -------------- --------------\n", + " 0 1 408.03456 897.52366 ... 28.99129 27.22613 26.11148\n", + " 0 1 419.17151 897.33494 ... 28.99129 27.22613 26.11148\n", + " 0 1 427.91019 897.03469 ... 28.99129 27.22613 26.11148\n", + " 0 1 414.32003 893.16622 ... 28.99129 27.22613 26.11148\n", + " 0 1 425.36739 897.72325 ... 28.99129 27.22613 26.11148\n", + " 0 1 419.51676 899.53858 ... 28.99129 27.22613 26.11148\n", + " 0 1 423.49592 895.02481 ... 28.99129 27.22613 26.11148\n", + " 0 1 419.74966 899.3343 ... 28.99129 27.22613 26.11148\n", + " 0 1 416.9429 896.49331 ... 28.99129 27.22613 26.11148\n", + " 0 1 417.38656 895.29865 ... 28.99129 27.22613 26.11148\n", + " ... ... ... ... ... ... ... ...\n", + " 0 1 855.5205 31.25829 ... 41.58012 38.18065 36.0759\n", + " 0 1 887.73473 86.32071 ... 41.58012 38.18065 36.0759\n", + " 0 1 877.40643 94.66438 ... 41.58012 38.18065 36.0759\n", + " 0 1 858.77566 38.27633 ... 41.58012 38.18065 36.0759\n", + " 0 1 868.73697 41.42387 ... 41.58012 38.18065 36.0759\n", + " 0 1 862.34635 41.58933 ... 41.58012 38.18065 36.0759\n", + " 0 1 878.7805 47.20022 ... 41.58012 38.18065 36.0759\n", + " 0 1 858.79055 82.36003 ... 41.58012 38.18065 36.0759\n", + " 0 1 857.74405 41.31581 ... 41.58012 38.18065 36.0759\n", + " 0 1 852.41009 60.99223 ... 41.58012 38.18065 36.0759" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ast = Table.read(ast_input_file, format=\"ascii\")\n", + "ast" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5569.666666666667" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "33418/6" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Check to see how the SEDs and the ASTs compare\n", + "\n", + "The histogram that is produced should have both the SED distribution and the AST distribution plotted on it. The thing we want to test for is whether the AST distribution fully samples the SED range." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: hd5\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='ASTs'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='Model grid'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='ASTs'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='Model grid'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='ASTs'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='Model grid'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='ASTs'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='Model grid'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='ASTs'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='Model grid'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='ASTs'\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='Model grid'\n" + ] + } + ], + "source": [ + "plot_ast_histogram.plot_ast(ast_file = ast_input_file, sed_grid_file = model_grid_files[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 4. Edit/Split the Catalog" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have to remove sources from the input photometry catalog that are in regions without full imaging coverage or flagged as bad in flag_filter. This step should mostly just be removing any sources where one of the filters might not have a value." + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "gst_file_cut = gst_file.replace(\".fits\", \"_with_sourceden_cut.fits\")\n", + "\n", + "# check to see if the trimmed catalog already exists\n", + "if not os.path.isfile(gst_file_cut):\n", + " # and if not\n", + " cut_catalogs.cut_catalogs(\n", + " gst_file_sd,\n", + " gst_file_cut,\n", + " partial_overlap=True,\n", + " flagged=True,\n", + " flag_filter=flag_filter[0],\n", + " region_file=True,\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 4.5 Update Datamodel\n", + "**After making these cuts, we should now update the obs_file name in datamodel.py (~line 62) with this new trimmed filename: './M31-B09-EAST_chunk.st_with_sourceden_cut.fits'**" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "importlib.reload(datamodel)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 5. Edit/Split the ASTs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now for this step, we're doing things a little unconventionally since actually placing all the input ASTs we generated in Step 3 back into our image and rerunning the analysis would take several days of computational time. \n", + "\n", + "Instead, we've already procurred a polished AST results file (kindly provided by Ben Williams from the University of Washington) which we can use to complete our analysis. The AST file should be named *'./M31-B09-EAST_chunk.gst.fake.fits'* while the input ASTs we generated were named *'./M31-B09-EAST_chunk/M31-B09-EAST_chunk_beast_inputAST.txt'*.\n", + "\n", + "We will now use the same cutting procedure as for the catalog to trim down the AST file with the same criteria as in Step 4." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'./M31-B09-EAST_chunk.gst.fake.fits'" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ast_file = \"./\" + field_names[0] + \".gst.fake.fits\"\n", + "ast_file " + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "Table length=51549\n", + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
F110W_INF110W_RATEF110W_RATERRF110W_VEGAF110W_STDF110W_ERRF110W_CHIF110W_SNRF110W_SHARPF110W_ROUNDF110W_CROWDF110W_FLAGF160W_INF160W_RATEF160W_RATERRF160W_VEGAF160W_STDF160W_ERRF160W_CHIF160W_SNRF160W_SHARPF160W_ROUNDF160W_CROWDF160W_FLAGF275W_INF275W_RATEF275W_RATERRF275W_VEGAF275W_STDF275W_ERRF275W_CHIF275W_SNRF275W_SHARPF275W_ROUNDF275W_CROWDF275W_FLAGF336W_INF336W_RATEF336W_RATERRF336W_VEGAF336W_STDF336W_ERRF336W_CHIF336W_SNRF336W_SHARPF336W_ROUNDF336W_CROWDF336W_FLAGF475W_INF475W_RATEF475W_RATERRF475W_VEGAF475W_STDF475W_ERRF475W_CHIF475W_SNRF475W_SHARPF475W_ROUNDF475W_CROWDF475W_FLAGF814W_INF814W_RATEF814W_RATERRF814W_VEGAF814W_STDF814W_ERRF814W_CHIF814W_SNRF814W_SHARPF814W_ROUNDF814W_CROWDF814W_FLAGYINXINYXRA_J2000DEC_J2000
float32float32float32float32float32float32float32float32float32float32float32int16float32float32float32float32float32float32float32float32float32float32float32int16float32float32float32float32float32float32float32float32float32float32float32int16float32float32float32float32float32float32float32float32float32float32float32int16float32float32float32float32float32float32float32float32float32float32float32int16float32float32float32float32float32float32float32float32float32float32float32int16float64float64float64float64float64float64
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999997.3894843659727123.66996734304714027.3894843659727123.669967343047140211.14561473248584641.59773092319124
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999999.1886759032358864.6025429651330089.1886759032358864.60254296513300811.14895638513227141.599026017115044
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999997.485941299726475.802996432562127.485941299726475.8029964325621211.1457940446630141.60069345799913
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999992.1148949038763985.9022861171424432.1148949038763985.90228611714244311.13581829682567241.60083124801925
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999997.8305971919707964.9832604762775827.8305971919707964.98326047627758211.14643410345409341.59955491360546
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999991.85123880471971212.41622580929392371.85123880471971212.416225809293923711.13532911131690641.595989469915736
17.8547.27e-084.94e-1117.84599.9990.0010.071471.8-0.0020.0010.015017.0011.59e-079.64e-1116.99399.9990.0010.091655.0-0.004-0.0010.02023.0285.85e-102.5e-1123.08299.9990.0460.9123.4-0.0070.0550.004022.2081.29e-091.85e-1122.22499.9990.0160.7369.60.008-0.0020.006021.7491.99e-094.18e-1221.75122.3830.0020.43477.0-0.003-0.0070.004219.0852.33e-081.78e-1119.0819.1060.0010.151313.8-0.004-0.0010.00824.007235908804846.1955287337720674.007235908804846.19552873377206711.13933296345877941.6012386673917
17.8548.22e-085.21e-1117.71399.9990.0010.931577.6-0.0280.0020.003017.0011.86e-071.05e-1016.82599.9990.0010.961773.9-0.0260.0060.003023.0285.88e-102.81e-1123.07699.9990.0521.1520.90.054-0.0410.0022.2081.26e-091.77e-1122.24699.9990.0150.7871.40.005-0.0120.0021.7492.02e-093.23e-1221.73822.3750.0020.5623.8-0.011-0.0040.0019.0852.46e-081.59e-1119.02419.0510.0010.651540.6-0.0270.0060.009.2224281328151327.8083166416266859.2224281328151327.80831664162668511.1490195491168641.60347847678029
17.8547.24e-084.94e-1117.85199.9990.0010.071467.0-0.0030.0030.012017.0011.59e-079.7e-1116.99699.9990.0010.081640.3-0.0030.0010.01023.0285.72e-102.56e-1123.10699.9990.0490.9922.30.0010.1210.019022.2081.27e-091.74e-1122.2499.9990.0150.8672.80.014-0.0010.001021.7491.99e-094.14e-1221.75522.3870.0020.38479.90.0020.0010.009019.0852.33e-082.06e-1119.08219.1080.0010.151128.4-0.001-0.0010.00626.3195186226238470.83997497204197346.3195186226238470.839974972041973411.1436274657259941.59380042157581
17.8547.28e-084.92e-1117.84599.9990.0010.111478.1-0.0060.0020.007017.0011.6e-079.53e-1116.99299.9990.0010.11674.3-0.0060.0020.007023.0285.58e-102.48e-1123.13399.9990.0480.9422.50.010.0580.0022.2081.29e-091.78e-1122.22199.9990.0150.8272.60.015-0.0230.0021.7492.02e-093.61e-1221.73822.3690.0020.41559.4-0.0050.0050.002019.0852.34e-081.71e-1119.07819.1030.0010.191365.0-0.0040.0040.00201.2702921361582154.9152565920301581.2702921361582154.91525659203015811.1342497655112841.59946027756628
..........................................................................................................................................................................................................................................
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999991.4388127402699396.6819513114515481.4388127402699396.68195131145154811.13456246886052441.60191404109182
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999994.40228935849986952.5431062385315614.40228935849986952.54310623853156111.14006686930167741.59616587367655
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999995.8497054762367963.5991224988445585.8497054762367963.59912249884455811.14275500566084241.597632579100775
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999990.75009700140443015.52709235109574150.75009700140443015.527092351095741511.13328350068768241.600309979631795
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999999.7053139618865095.2881318461907859.7053139618865095.28813184619078511.14991603608954141.599978162934065
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.9999910.366443771989065.51668326637318410.366443771989065.51668326637318411.15114399438531841.60029550582017
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999995.1810237391715173.23168543070047765.1810237391715173.231685430700477611.14151311546117841.59712225014788
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999991.58431455983389267.3296274708306251.58431455983389267.32962747083062511.13483261555270741.60281360865252
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.9999910.499521610538653.143998637619927410.499521610538653.143998637619927411.15139068640609641.59700009092635
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999990.28819301490882948.049008523580210.28819301490882948.0490085235802111.13242507836869241.60381257215712
" + ], + "text/plain": [ + "\n", + "F110W_IN F110W_RATE F110W_RATERR ... RA_J2000 DEC_J2000 \n", + "float32 float32 float32 ... float64 float64 \n", + "-------- ---------- ------------ ... ------------------ ------------------\n", + " 33.267 0.0 9999.0 ... 11.145614732485846 41.59773092319124\n", + " 33.267 0.0 9999.0 ... 11.148956385132271 41.599026017115044\n", + " 33.267 0.0 9999.0 ... 11.14579404466301 41.60069345799913\n", + " 33.267 0.0 9999.0 ... 11.135818296825672 41.60083124801925\n", + " 33.267 0.0 9999.0 ... 11.146434103454093 41.59955491360546\n", + " 33.267 0.0 9999.0 ... 11.135329111316906 41.595989469915736\n", + " 17.854 7.27e-08 4.94e-11 ... 11.139332963458779 41.6012386673917\n", + " 17.854 8.22e-08 5.21e-11 ... 11.14901954911686 41.60347847678029\n", + " 17.854 7.24e-08 4.94e-11 ... 11.14362746572599 41.59380042157581\n", + " 17.854 7.28e-08 4.92e-11 ... 11.13424976551128 41.59946027756628\n", + " ... ... ... ... ... ...\n", + " 33.267 0.0 9999.0 ... 11.134562468860524 41.60191404109182\n", + " 33.267 0.0 9999.0 ... 11.140066869301677 41.59616587367655\n", + " 33.267 0.0 9999.0 ... 11.142755005660842 41.597632579100775\n", + " 33.267 0.0 9999.0 ... 11.133283500687682 41.600309979631795\n", + " 33.267 0.0 9999.0 ... 11.149916036089541 41.599978162934065\n", + " 33.267 0.0 9999.0 ... 11.151143994385318 41.60029550582017\n", + " 33.267 0.0 9999.0 ... 11.141513115461178 41.59712225014788\n", + " 33.267 0.0 9999.0 ... 11.134832615552707 41.60281360865252\n", + " 33.267 0.0 9999.0 ... 11.151390686406096 41.59700009092635\n", + " 33.267 0.0 9999.0 ... 11.132425078368692 41.60381257215712" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Table.read(ast_file)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# - ASTs\n", + "ast_file_cut = ast_file.replace(\".fits\", \"_cut.fits\")\n", + "\n", + "# check to see if the trimmed AST file already exists\n", + "if not os.path.isfile(ast_file_cut):\n", + " cut_catalogs.cut_catalogs(\n", + " ast_file,\n", + " ast_file_cut,\n", + " partial_overlap=True,\n", + " flagged=True,\n", + " flag_filter=flag_filter[0],\n", + " region_file=True,\n", + " )\n", + "\n", + "# so now we've generated the cut ast file" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can plot the AST magnitudes against our original source magnitudes again, just to check that we are within a reasonable range." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "# check to see if the plotted AST file already exists\n", + "if not os.path.isfile(ast_file_cut.replace(\".fits\", \"_maghist.pdf\")):\n", + " \n", + " test = plot_mag_hist.plot_mag_hist(ast_file_cut, stars_per_bin=200, max_bins=30)\n", + "\n", + " # and so this should plot a histogram of the different asts that remain after cutting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 5.5 Update Datamodel Again\n", + "\n", + "**Same with these cuts, we now have to update the astfile variable in datamodel.py (~line 144) with this new trimmed filename: './M31-B09-EAST_chunk.gst.fake_cut.fits'**" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "importlib.reload(datamodel)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 6. Split catalog by source density" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the next fitting step, we're going to have to break our catalog and AST file into bins based on the source density, and then further into sub-bins if there are more than ~6250 sources in the bins. \n", + "\n", + "We split things into source density bins so that we can later study how the actual source density of region effects the noise or bias. We further split things into sub-bins, just to make things a little more computationally accessible.\n", + "\n", + "One thing to note is that the source density bins are first sorted by magnitude (typically F475W if it's there) before being split into sub-bins. This means that the first sub-bin file (for a source density bin that has more than 6250 sources) will end up having all the dimmest sources or any sources with NAN values, and the last sub file will have all the brightest sources. This will become handy in Step 8 when we create physics (SED) models and noisemoels tailored specifically to each sub-bin file." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "# check to see if any sub files exist yet\n", + "if len(glob.glob(gst_file_cut.replace('.fits','*sub*fits') )) == 0:\n", + " # if no sub files exist, they can now be created\n", + " # a smaller value for n_per_file will mean more individual files/runs,\n", + " # but each run will take a shorter amount of time\n", + " \n", + " #split the gst file and ast file\n", + " split_catalog_using_map.split_main(\n", + " gst_file_cut,\n", + " ast_file_cut,\n", + " gst_file.replace('.fits','_sourceden_map.hd5'), #get full sourceden_mad.hd5 file from dust folder\n", + " bin_width=1,\n", + " n_per_file=6250, #this is the max number of sources per bin before it splits \n", + "\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So these are all the different source density bins, with some of them being split into sub bins to limit the number of entries to ~6250. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Rather than reading in all the files we just created, the developers of this code instead wrote this handy little function that generates a dictionary of all the files that have just been created (assuming the function ran correctly) and all the files that we hope to generate in the future.\n", + "\n", + "Because of this, I recommend not changing any of the naming for Step 6 or beyond, just because that then makes this dictionary point to incorrect files." + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n" + ] + } + ], + "source": [ + "# generate file name lists\n", + "file_dict = create_filenames.create_filenames(\n", + " use_sd=True, nsubs=datamodel.n_subgrid\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we take a look in our folder, we should be able to see some bins with sub-bins notation. We can do a quick check to see if the sub-binning generated from the dictionary matchs up with the files split in our data folder." + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[['2', '0'],\n", + " ['3', '0'],\n", + " ['3', '1'],\n", + " ['3', '2'],\n", + " ['4', '0'],\n", + " ['4', '1'],\n", + " ['4', '2'],\n", + " ['4', '3'],\n", + " ['4', '4'],\n", + " ['4', '5'],\n", + " ['5', '0'],\n", + " ['6', '0'],\n", + " ['9', '0']]" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sd_sub_info = file_dict[\"sd_sub_info\"]\n", + "sd_sub_info" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Hint: If sd_sub_info is empty, make sure you've updated the obsfile and astfile variables in datamodel (Step 4.5 and 5.5), reloaded the datamodel, and try to run create_filenames again.**" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "** total SD bins: 6\n", + "** total SD subfiles: 13\n" + ] + } + ], + "source": [ + "# - number of SD bins\n", + "temp = set([i[0] for i in sd_sub_info])\n", + "print(\"** total SD bins: \" + str(len(temp)))\n", + "\n", + "# - the unique sets of SD+sub\n", + "unique_sd_sub = [\n", + " x for i, x in enumerate(sd_sub_info) if i == sd_sub_info.index(x)\n", + "]\n", + "print(\"** total SD subfiles: \" + str(len(unique_sd_sub)))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Just another quick was to ensure that all the binning and sub-binning matches up. If it doesn't, none of the next steps will run properly." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 7. Make Noise Models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We're now on to creating our observational noise models! These models will be used to adjust the bias and uncertainty in Steps 8 and 9. \n", + "\n", + "The **uncertainty** (also known as sigma) is the standard deviation calculated for all the detected sources.\n", + "\n", + "The **bias** is the average offset between the input flux we have for the ASTs and the measured flux. Bias tends to become more prominent in regions of high source density, where it's harder to detect all the faint stars if they get blended together. If this happens, then some of the stars are assumed to be part of the background (raising the average), which gets subtracted from the detected sources. If the background is raised, then the detected sources are measured to be systematically fainter than they should be." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "# these are what the noise files should be named once generated\n", + "noise_files = file_dict[\"noise_files\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['M31-B09-EAST_chunk.gst.fake_cut_bin2.fits',\n", + " 'M31-B09-EAST_chunk.gst.fake_cut_bin3.fits',\n", + " 'M31-B09-EAST_chunk.gst.fake_cut_bin4.fits',\n", + " 'M31-B09-EAST_chunk.gst.fake_cut_bin5.fits',\n", + " 'M31-B09-EAST_chunk.gst.fake_cut_bin6.fits',\n", + " 'M31-B09-EAST_chunk.gst.fake_cut_bin9.fits']" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# gather up the split AST files\n", + "ast_file_list = sorted(glob.glob(datamodel.astfile.replace(\".fits\", \"*_bin*\")))\n", + "ast_file_list" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "sd list: ['2', '3', '4', '5', '6', '9']\n", + "\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin2.grid.hd5 already exists\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin2.grid.hd5\n", + "\n", + "creating M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin3.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Fitting model: 100%|██████████| 6/6 [00:00<00:00, 122.37it/s]\n", + "Evaluating model: 100%|██████████| 6/6 [00:00<00:00, 30.40it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Writing to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin3.grid.hd5\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin3.grid.hd5\n", + "\n", + "creating M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin4.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Fitting model: 100%|██████████| 6/6 [00:00<00:00, 63.10it/s]\n", + "Evaluating model: 100%|██████████| 6/6 [00:00<00:00, 29.23it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Writing to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin4.grid.hd5\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin4.grid.hd5\n", + "\n", + "creating M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin5.grid.hd5\n", + "Auto-detected type: hd5\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Fitting model: 100%|██████████| 6/6 [00:00<00:00, 249.56it/s]\n", + "Evaluating model: 0%| | 0/6 [00:00" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# set up the figure frame work\n", + "# have it scale with the number of filters we're plotting\n", + "fig, axes = plt.subplots(2, len(filter_list_plot), sharex=True, figsize=(5*len(filter_list_plot),8))\n", + "\n", + "# go through noise files\n", + "for n, nfile in enumerate(noise_files):\n", + " \n", + " print(\"* reading \" + nfile)\n", + "\n", + " # read in the values\n", + " noisemodel_vals = noisemodel.get_noisemodelcat(nfile)\n", + "\n", + " # extract error and bias\n", + " noise_err = noisemodel_vals.root.error[:]\n", + " noise_bias = noisemodel_vals.root.bias[:]\n", + " \n", + " cmaps = plt.get_cmap('viridis')\n", + "\n", + " gradient = np.linspace(0, 1, len(noise_files)) \n", + "\n", + " # now we can start plotting things\n", + " for f, filt in enumerate(filter_list_plot):\n", + " \n", + " # error is negative where it's been extrapolated -> trim those\n", + " good_err = np.where(noise_err[:, f] > 0)[0]\n", + " plot_sed = sed_grid[good_err, f][::samp] # only pulls every 100th point\n", + " plot_err = noise_err[good_err, f][::samp]\n", + " plot_bias = noise_bias[good_err, f][::samp]\n", + "\n", + " # plot bias\n", + " axes[0, f].set_yscale('log')\n", + "\n", + " axes[0, f].plot(\n", + " np.log10(plot_sed),\n", + " np.abs(plot_bias) / plot_sed,\n", + " marker=\"o\",\n", + " linestyle=\"none\",\n", + " mew=0,\n", + " ms=2,\n", + " alpha=1,\n", + " c=cmaps(int(nfile[-10])/9.),\n", + " label=noise_files[n][-10]\n", + " )\n", + " \n", + " axes[0, f].set_ylabel(r\"Abs Bias ($\\mu$/F)\", fontsize=10)\n", + " # xlabel is still in flux, not mag\n", + " axes[0, f].legend()\n", + "\n", + " # plot error (uncertainty)\n", + " axes[1, f].set_yscale('log')\n", + "\n", + " axes[1, f].plot(\n", + " np.log10(plot_sed),\n", + " plot_err / plot_sed,\n", + " marker=\"o\",\n", + " linestyle=\"none\",\n", + " mew=0,\n", + " ms=2,\n", + " color=color[0 % len(color)],\n", + " alpha=0.1,)\n", + " axes[1, f].set_ylabel(r\"Error ($\\sigma$/F)\", fontsize=10)\n", + " axes[1, f].set_xlabel(\"log \" + filt[-5:], fontsize=10)\n", + "\n", + " plt.tight_layout()\n", + " \n", + " #fig.colorbar(plt.cm.ScalarMappable(norm=np.arange(0,12), cmap=cmaps), ax=axes)\n", + " \n", + "\n", + " # Need to figure out if it's worth comparing the bias and the uncertainty to one another." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can probably tell, this plot isn't the most beautiful plot in the world (especially that coloring and legend) but I'm proud of her. It does, however, let you see the scale of the bias and uncertainty (error) for different filters and how the source density and magnitudes are correlated.\n", + "\n", + "The most notable thing to note is that the uncertainty and bias tend to be larger at lower fluxes. This probably doesn't come as a shock to anyone, but it's important to accurately take this into consideration when we make our fittings in Step 9." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 8. Trim Models\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have our SED and or noise models created, we can go ahead and trim them of any sources that are so bright or so faint (compared to min/max flux in the observation file) that they will by definition produce effectively zero likelihood fits. \n", + "\n", + "One thing to note is that, since our noise models are correlated with source density, we are in a sense 'convolving' each of our noise models with the original physics grid, meaning we will end up with a lot of physics grids trimmed for each source density scenario thanks to our noise models (and these physics grids are still essentially as large as the original physics grid, making this a very storage-intensive step). However, this trimming of the 'parameter space', as you could call it, will help speed up fittings in Step 9.\n", + "\n", + "**This step is very storage intensive so I'd make sure to have at least ~5GB of storage available.**\n" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 509563\n", + "number of trimmed models = 479060\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin2_sub0_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin2_sub0_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:08:41 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479060,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479060, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin2_sub0_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510048\n", + "number of trimmed models = 479552\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub0_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub0_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:09:08 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479552,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479552, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub0_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510048\n", + "number of trimmed models = 479552\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub1_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub1_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:09:33 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479552,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479552, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub1_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510048\n", + "number of trimmed models = 479552\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub2_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub2_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:09:59 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479552,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479552, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub2_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510040\n", + "number of trimmed models = 479552\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub0_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub0_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:10:23 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479552,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479552, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub0_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510040\n", + "number of trimmed models = 479552\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub1_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub1_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:10:46 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479552,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479552, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub1_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510040\n", + "number of trimmed models = 479552\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub2_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub2_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:11:10 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479552,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479552, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub2_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510040\n", + "number of trimmed models = 479552\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub3_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub3_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:11:34 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479552,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479552, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub3_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510040\n", + "number of trimmed models = 479552\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub4_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub4_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:11:58 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479552,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479552, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub4_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510040\n", + "number of trimmed models = 479552\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub5_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub5_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:12:23 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479552,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479552, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub5_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510025\n", + "number of trimmed models = 479530\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin5_sub0_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin5_sub0_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:12:48 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(479530,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(479530, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin5_sub0_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 323563\n", + "number of trimmed models = 293022\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin6_sub0_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin6_sub0_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:13:10 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(293022,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(293022, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin6_sub0_noisemodel_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Auto-detected type: fits\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 381265\n", + "number of trimmed models = 350814\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin9_sub0_seds_trim.grid.hd5\n", + "Auto-detected type: hd5\n", + "Warning: Table does not exists. New table will be created\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin9_sub0_seds_trim.grid.hd5 (File) ''\n", + "Last modif.: 'Tue May 5 16:13:30 2020'\n", + "Object Tree: \n", + "/ (RootGroup) ''\n", + "/grid (Table(350814,)) 'grid'\n", + "/lamb (EArray(6,)) 'lamb'\n", + "/seds (EArray(350814, 6)) 'seds'\n", + "\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin9_sub0_noisemodel_trim.grid.hd5\n" + ] + } + ], + "source": [ + "# check to see if any sub files exist yet\n", + "if len(glob.glob(file_dict[\"noise_trim_files\"][0].replace('bin2_sub0','bin*_sub*'))) == 0:\n", + " \n", + " for i, sub_files in enumerate(file_dict[\"noise_trim_files\"]):\n", + " # pull out physics grid\n", + " modelsedgrid = FileSEDGrid(model_grid_files[0])\n", + " # trim for each noise file separately \n", + " noisemodel_vals = noisemodel.get_noisemodelcat(noise_files[i])\n", + " obsdata = datamodel.get_obscat(gst_file_cut, modelsedgrid.filters)\n", + "\n", + " # need to iterate over all the sub-bins\n", + " trim_grid.trim_models(modelsedgrid, noisemodel_vals, obsdata, file_dict[\"modelsedgrid_trim_files\"][i], file_dict[\"noise_trim_files\"][i])\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 9. Fit Models (WARNING! This step takes a while)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we're going to fit all our sources from our observational photometric catalog to our new trimmed physics and noise models. This will take quite some time just because every source has to be evaluated at each step in its physics model. \n", + "\n", + "So for every sub-bin of sources (max 6250 sources), every source in that photometry file is evaluated at every potential step in the physics grid that has been trimmed to specifically fit that sub-bin (hence the data-intensive code we ran back in Step 8). From this, we essentially get a report of how well every point in the physics model (AKA combo of parameters) matched with a source, what is often referred to as a likelihood. If we then take these likelihoods and figure out what parameter values they point back to, we can create a distribution of parameter values (metallicity, distance, Av, Rv, etc.) that best model each source. I hope that made sense (and is the correct interpretation).\n", + "\n", + "This function uses the trimmed photometric files we have, the trimmed physics models, and the trimmed noise models to create statistic files for each sub-binned source density bin.\n", + "\n", + "It'll take a long time though (~5 hours for me at least, but maybe you have a better computer (8GB RAM, for reference))." + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 25/25 [00:05<00:00, 4.35it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin2_sub0_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [34:16<00:00, 3.04it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub0_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [27:55<00:00, 3.73it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub1_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 985/985 [03:05<00:00, 5.32it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub2_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [26:55<00:00, 3.87it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub0_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [27:01<00:00, 3.85it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub1_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [23:10<00:00, 4.49it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub2_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [21:23<00:00, 4.87it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub3_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [20:40<00:00, 5.04it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub4_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 2587/2587 [10:27<00:00, 4.12it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub5_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 2769/2769 [13:05<00:00, 3.52it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin5_sub0_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 324/324 [00:46<00:00, 6.92it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin6_sub0_seds_trim.grid.hd5\n", + "None\n", + "Auto-detected type: fits\n", + "Auto-detected type: hd5\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 8/8 [00:01<00:00, 6.56it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin9_sub0_seds_trim.grid.hd5\n", + "None\n", + "time to fit: 212.80141111666666 min\n" + ] + } + ], + "source": [ + "#if len(glob.glob(file_dict[\"modelsedgrid_trim_files\"][0].replace('bin2_sub0','bin*_sub*'))) == 0:\n", + "run_fitting.run_fitting(\n", + " use_sd = True,\n", + " nsubs = 1,\n", + " nprocs = 1,\n", + " choose_sd_sub=None,\n", + " choose_subgrid=None,\n", + " pdf2d_param_list=['Av', 'Rv', 'f_A', 'M_ini', 'logA', 'Z', 'distance'],\n", + " resume=False,\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 10. Merge fits" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Whoo-hoo! You finished running the big Step 9!\n", + "\n", + "We are now onto the final step where we just have to merge all the trimmed SED model results together. This should produce one final **stats.fits** file which is very similar to our original photometric file, except now all the sources have estimates for what their metallicity, distance, age, mass, dust, etc. might be.\n", + "\n", + "Using these new columns of data, we can create lots of cool visuals which will be shown in the epilogue." + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "Auto-detected type: fits\n" + ] + } + ], + "source": [ + "merge_files.merge_files(use_sd=True, nsubs=datamodel.n_subgrid)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Hopefully there is now a stats.fits file in your folder. We can read it in to better understand what really happened." + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "Table length=50448\n", + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
NameRADECHST_WFC3_F475WHST_WFC3_F275WHST_WFC3_F336WHST_WFC3_F814WHST_WFC3_F110WHST_WFC3_F160WAv_BestAv_ExpAv_p16Av_p50Av_p84M_act_BestM_act_ExpM_act_p16M_act_p50M_act_p84M_ini_BestM_ini_ExpM_ini_p16M_ini_p50M_ini_p84Rv_BestRv_ExpRv_p16Rv_p50Rv_p84Rv_A_BestRv_A_ExpRv_A_p16Rv_A_p50Rv_A_p84Z_BestZ_ExpZ_p16Z_p50Z_p84distance_Bestdistance_Expdistance_p16distance_p50distance_p84f_A_Bestf_A_Expf_A_p16f_A_p50f_A_p84logA_BestlogA_ExplogA_p16logA_p50logA_p84logHST_WFC3_F110W_nd_BestlogHST_WFC3_F110W_nd_ExplogHST_WFC3_F110W_nd_p16logHST_WFC3_F110W_nd_p50logHST_WFC3_F110W_nd_p84logHST_WFC3_F110W_wd_BestlogHST_WFC3_F110W_wd_ExplogHST_WFC3_F110W_wd_p16logHST_WFC3_F110W_wd_p50logHST_WFC3_F110W_wd_p84logHST_WFC3_F160W_nd_BestlogHST_WFC3_F160W_nd_ExplogHST_WFC3_F160W_nd_p16logHST_WFC3_F160W_nd_p50logHST_WFC3_F160W_nd_p84logHST_WFC3_F160W_wd_BestlogHST_WFC3_F160W_wd_ExplogHST_WFC3_F160W_wd_p16logHST_WFC3_F160W_wd_p50logHST_WFC3_F160W_wd_p84logHST_WFC3_F275W_nd_BestlogHST_WFC3_F275W_nd_ExplogHST_WFC3_F275W_nd_p16logHST_WFC3_F275W_nd_p50logHST_WFC3_F275W_nd_p84logHST_WFC3_F275W_wd_BestlogHST_WFC3_F275W_wd_ExplogHST_WFC3_F275W_wd_p16logHST_WFC3_F275W_wd_p50logHST_WFC3_F275W_wd_p84logHST_WFC3_F336W_nd_BestlogHST_WFC3_F336W_nd_ExplogHST_WFC3_F336W_nd_p16logHST_WFC3_F336W_nd_p50logHST_WFC3_F336W_nd_p84logHST_WFC3_F336W_wd_BestlogHST_WFC3_F336W_wd_ExplogHST_WFC3_F336W_wd_p16logHST_WFC3_F336W_wd_p50logHST_WFC3_F336W_wd_p84logHST_WFC3_F475W_nd_BestlogHST_WFC3_F475W_nd_ExplogHST_WFC3_F475W_nd_p16logHST_WFC3_F475W_nd_p50logHST_WFC3_F475W_nd_p84logHST_WFC3_F475W_wd_BestlogHST_WFC3_F475W_wd_ExplogHST_WFC3_F475W_wd_p16logHST_WFC3_F475W_wd_p50logHST_WFC3_F475W_wd_p84logHST_WFC3_F814W_nd_BestlogHST_WFC3_F814W_nd_ExplogHST_WFC3_F814W_nd_p16logHST_WFC3_F814W_nd_p50logHST_WFC3_F814W_nd_p84logHST_WFC3_F814W_wd_BestlogHST_WFC3_F814W_wd_ExplogHST_WFC3_F814W_wd_p16logHST_WFC3_F814W_wd_p50logHST_WFC3_F814W_wd_p84logL_BestlogL_ExplogL_p16logL_p50logL_p84logT_BestlogT_ExplogT_p16logT_p50logT_p84logg_Bestlogg_Explogg_p16logg_p50logg_p84mbolmag_Bestmbolmag_Expmbolmag_p16mbolmag_p50mbolmag_p84radius_Bestradius_Expradius_p16radius_p50radius_p84symlogHST_WFC3_F475W_wd_bias_BestsymlogHST_WFC3_F475W_wd_bias_ExpsymlogHST_WFC3_F475W_wd_bias_p16symlogHST_WFC3_F475W_wd_bias_p50symlogHST_WFC3_F475W_wd_bias_p84symlogHST_WFC3_F275W_wd_bias_BestsymlogHST_WFC3_F275W_wd_bias_ExpsymlogHST_WFC3_F275W_wd_bias_p16symlogHST_WFC3_F275W_wd_bias_p50symlogHST_WFC3_F275W_wd_bias_p84symlogHST_WFC3_F336W_wd_bias_BestsymlogHST_WFC3_F336W_wd_bias_ExpsymlogHST_WFC3_F336W_wd_bias_p16symlogHST_WFC3_F336W_wd_bias_p50symlogHST_WFC3_F336W_wd_bias_p84symlogHST_WFC3_F814W_wd_bias_BestsymlogHST_WFC3_F814W_wd_bias_ExpsymlogHST_WFC3_F814W_wd_bias_p16symlogHST_WFC3_F814W_wd_bias_p50symlogHST_WFC3_F814W_wd_bias_p84symlogHST_WFC3_F110W_wd_bias_BestsymlogHST_WFC3_F110W_wd_bias_ExpsymlogHST_WFC3_F110W_wd_bias_p16symlogHST_WFC3_F110W_wd_bias_p50symlogHST_WFC3_F110W_wd_bias_p84symlogHST_WFC3_F160W_wd_bias_BestsymlogHST_WFC3_F160W_wd_bias_ExpsymlogHST_WFC3_F160W_wd_bias_p16symlogHST_WFC3_F160W_wd_bias_p50symlogHST_WFC3_F160W_wd_bias_p84chi2minchi2min_indxPmaxPmax_indxspecgrid_indxtotal_log_normreorder_tag
str29float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64int64float64int64int64float64str9
PHAT-M31 J004435.01+413540.9611.14587991456673441.594710659711372.6938229780643986e-219.227016583504053e-212.7366301117024876e-201.1307473476472241e-202.834051501297643e-209.345915577912443e-210.010.53456166142496430.010.43826086644179671.48046141450494660.8571.02832898251109370.79063154445482730.95067027692975491.27844891553961220.85805004841.02913538904224340.78197955570888980.9440315625055621.27811178639027646.03.74585256500229222.42159372648859073.57122178222140455.2065285670678646.04.0002894325957852.7894911428983643.90732578844482435.21096444696570.0040.0144282675103485270.0042187709121964490.0128541413385111020.026976716233826286907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818611.00.81077596687245460.498237965815047530.8614501690977431.010.09.7305510123295949.05185865929169.74335598421418710.0-20.67636129725098-20.6236537008216-21.0509735696428-20.64286101773007-20.256706515414454-20.678330849908075-20.711449908394854-21.113535322392185-20.709933659111115-20.34368071109016-20.980377715492033-20.91301124176117-21.316712892428228-20.937429738193238-20.562456775522598-20.98152257240765-20.96456690920686-21.34084568168185-20.97544015553115-20.6265449026026-20.493497753001503-20.78341194302714-21.54356800434706-20.809517111341446-20.12574372918582-20.499578985655024-21.205510187506228-21.969076273909813-21.26948971788478-20.420943309950818-20.209204563145295-20.356128902590655-20.97047753956093-20.353387689550278-19.846291582669707-20.214935104383855-20.719670141133243-21.346614909313963-20.740925996643867-20.102449153616963-20.0325403458445-20.046368231410447-20.578511367373867-20.064563927672037-19.586323818826365-20.037341419776936-20.316226964559053-20.836999121500778-20.332117355514576-19.800693067142216-20.36622352609169-20.32894352025428-20.77521370573467-20.33923764287305-19.942563121414988-20.369186946063625-20.47051295376766-20.89623779326875-20.45771989176555-20.077751630499440.2080.2293109126043186-0.268991343988197240.20817988318467140.65854931952862963.78813.77011934792464583.7147646831764443.76356011343640343.8179390041881094.2674.2379825225066524.00630215982120854.28759714157550854.5092073814579274.2494.1967476320132513.1228055905350224.2487065792953325.4416107000616321.12318982588888461.38882743966782730.8399501414894871.1989246679859021.7648568606536434-1.080334102553474e-212.8021647353763844e-22-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.022376224076914e-20-3.9921181535628153e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-3.0124820022351794e-21-4.477328062729628e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-188.253190878307196e-218.802754736035475e-213.979466120141786e-213.979466120141786e-211.917672252650435e-18-6.434665075977322e-21-5.741406475711803e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-7.337125257302916e-21-6.7303603403994876e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-193.5809198565301386205808250.1830088275045383884967256.90977146717074bin2_sub0
PHAT-M31 J004435.89+413607.1711.14955149842946541.601990303679221.9437781488778407e-205.790233078717116e-201.708360057840435e-201.4971932473477133e-20-3.838628834610639e-211.6586115608949553e-200.010.44358326044262850.010.36557407569475211.30292117915303150.8791.11929758334137990.82240954654086111.01576271834313481.50201089020364460.88030308491.12009120967160470.82205397699751151.01088189825426731.50464471520414136.03.7714571257976062.4385653924859713.5957919155217175.244211753675976.04.0242868841862882.81385918828352733.93274296577762965.25029984969630.0040.0141629682464226580.00416480561807692360.0126342810129921440.02634107881703608907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818611.00.81281025899146580.50269875147033050.86301025537572161.010.09.6249134725860928.84423766351779.6417035162688310.0-20.546854269070664-20.487852684627494-20.9041488621885-20.515810315705508-20.07899851208535-20.548823931018628-20.56220332584558-20.982091690402456-20.549231389189035-20.193287348717483-20.85136340514813-20.791283926485065-21.18808843928717-20.818533810061083-20.423381433969215-20.852508302210154-20.834743218171145-21.220211343961044-20.840357035633193-20.48874518862766-20.365542322728764-20.534108826772467-21.214816217723897-20.61970226989557-19.74702572662469-20.371623753395053-20.880234775386377-21.700237905736103-20.803209451294013-20.202052098245918-20.083403775624284-20.154369202454887-20.66424659880864-20.207707723987753-19.568647987347614-20.089134386109787-20.452550532880974-21.116845326365326-20.359975499506724-19.91770687582649-19.90091733537411-19.86435678647197-20.352465336888926-19.923550445942983-19.34144333929512-19.905718892291688-20.08823598865183-20.666174232301152-20.02543835480517-19.619513907271177-20.236599575328043-20.182432689327637-20.604825346358588-20.20853608165042-19.752619640014053-20.23956303248801-20.30121513554386-20.75442093037348-20.267786274280496-19.9064106691540950.3380.3935131748754666-0.0725008092863490.343973757328031260.88999813628272313.78843.78593861451637673.7239522312419233.7744230068502383.85349852294562964.1494.1699204138838113.93791421028716564.2295680699722734.4459208056431353.9253.7862253865113342.54419516406767173.9092287088458014.950394224319491.30272623972765441.5646036342750980.93408127455713761.34726686082623682.04463639899402734.7854891099829624e-215.0649868171672125e-21-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-3.524371708473542e-20-3.908735901386585e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-2.0258036566326566e-21-2.9050656618681958e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-189.739594208664853e-211.1272173344694338e-203.979466120141786e-213.979466120141786e-211.917672252650435e-18-5.705981122524013e-21-4.555428693135808e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-6.976186318710649e-21-6.134393109266214e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-194.719323879876735205810248.38407597222442383924971255.11927456073013bin2_sub0
PHAT-M31 J004435.03+413540.8011.14594280472428941.594667037176872.017726230628628e-201.4382191840684453e-211.3308938355366436e-208.43872557595984e-211.6171244877721415e-20-2.7403147527829693e-210.010.5385991530762970.010.4389583430604071.44946909363598840.8730.98235473795047720.75136746882513740.91768873001115151.21431054763112640.87309485670.98299760948233210.74827460048385470.91568171192480211.20018151478947796.03.77297694784644032.4384926470478193.5977584509210285.247330238767736.04.0247595813029032.81198588575629543.9341826653322865.2532134963005240.030.0145183960197587840.0042366360766105770.0129106027284750030.027272630808727057907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.00.81367394551281950.50419783378755920.86370006957763411.010.09.7606960137901979.0821574203381729.77195348534931810.0-21.06739988403348-20.733102199512107-21.139267308235308-20.745535175441695-20.342571197463965-21.06934353764487-20.82151251056995-21.182876302644786-20.851202958644553-20.413429006614884-21.30298325840933-21.016880690904607-21.394996250522908-21.03680019466336-20.649249899778624-21.304123820145684-21.06899046168689-21.41653967766587-21.090558214907574-20.70930614854087-21.908785297932866-20.959146818620418-21.718174193279353-20.9594574455786-20.240459881871722-21.91481390085925-21.36114215916725-22.02938247280449-21.448519702937613-20.540643219215358-21.189751135030548-20.5052141665963-21.119332550587714-20.474038374683513-19.947482161444537-21.19547382296284-20.86528331275672-21.3989308391202-20.926617454425173-20.177006942509173-20.68257532340904-20.180096415872608-20.702377562229582-20.17988507742792-19.700435215014288-20.687336700640163-20.450665993730293-20.900679092237755-20.49927480366198-19.87928859591284-20.818035727405633-20.443895276392755-20.87502281844871-20.447599979117644-20.02968925485091-20.82098770761431-20.58641342075565-20.962169775942286-20.626929007263257-20.135530105057303-0.3140.1065890440690902-0.37588959663140460.091290806657241850.54387447566750963.71143.7624528050317113.7113582715391383.75655283064188963.80868500188661234.494.3099016494091284.0877510478671114.346665710244954.5550890665738935.5544.5035529327611133.4094869451519964.5409234044552935.7088509669073970.87670434886576121.22587589584497980.77422251855404781.0903650636411661.6281819403590587-3.8296291743766466e-213.4278283808379603e-23-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.446228833693227e-20-3.9020895003348785e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-6.442405652434222e-21-5.023969623494162e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-185.4895250010597344e-218.004684230665902e-213.979466120141786e-213.979466120141786e-211.917672252650435e-18-7.679581017358345e-21-6.283639451187888e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-7.884138394729947e-21-7.118788717000403e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-191.0819167650310035162090253.0082879753725355761655259.8672967594927bin2_sub0
PHAT-M31 J004435.01+413540.6111.14589208784346641.594612970700052.471978732812037e-20-8.965522186400696e-201.0608102454399653e-213.1409648545756225e-202.1561659836961886e-201.773993234696343e-200.011.87707277339962750.011.05458841472432273.86444761079553921.0481.01024881958196060.40333371111562040.95724555425211091.59274873640433331.04996979241.01287783111736780.407875342689057060.96761658330967071.59890733047838922.03.71014667221131232.40390259818294363.53986076102508165.1354041031645312.03.96745916326208552.7641784118626053.87463678647427835.1365011935487110.0190.015775423101511870.00517717142282178750.014328985324034440.02848567548759949907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818611.00.8079433117284340.491622930925207760.85900096268617051.010.09.7166487559395889.038150554231219.73127444197098310.0-19.69186133545107-20.65149666600831-22.230588911621233-20.409817295500865-19.58119333040519-19.692907957053865-20.93438836933909-22.808177991334453-20.47022861932239-19.775850352743614-19.87966316593967-20.91218931036272-22.421188752526017-20.71145310328239-19.84464067597841-19.88026936038928-21.0852826504506-22.822137943344305-20.756346250998046-19.953367874662973-20.82862875462559-21.555327411129728-25.042996656486142-20.895511654603876-19.688717991249202-20.839841515270532-22.473675485602403-26.20195136382335-21.54906776425066-20.540238685735748-20.04430388063852-20.84101628255837-23.567247084262423-20.24766152920076-19.381924234138413-20.053102565307096-22.01422552273299-25.740254217307598-20.79556575835828-20.079963263797058-19.43136336181124-20.316462099027845-22.602139515719497-19.850663326950723-18.9825978953347-19.43687443099269-21.239362378845954-24.222581729697247-20.1225924410769-19.59088772406159-19.481815454059248-20.411065467035208-22.140813876670173-20.10972396633266-19.295384095288973-19.483877692076387-20.880917166443126-23.02899961070236-20.21303091862863-19.6260856919922061.0290.10318657991126835-1.72037967803758550.446446599551939941.30297189532710523.67453.705592970477113.5375596903267793.7110938156194543.8357752786442343.0794.0301251563146443.13981867198892764.1712021052438874.8342377479851952.1974.5120868865012341.51178149182854333.65305174595601929.070008696264394.8770045510986022.4689693676820680.399329909976897931.49997167836321624.6737651626983293.2227413500106193e-207.769004393919891e-21-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.811894990802553e-20-3.9702361915183306e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-1.6864111718050575e-21-7.147382352380974e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-184.1880530427349703e-201.5762563405233377e-203.979466120141786e-213.979466120141786e-211.917672252650435e-181.1749118479815233e-20-1.0130103318978867e-22-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-194.957030890163424e-21-1.7879113503345323e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-190.855922513657313275468248.6974369932743822962832256.70337816560055bin2_sub0
PHAT-M31 J004435.02+413540.8211.14590738154246541.594672446616963.005461322585575e-201.3336214252271036e-20-1.399228237850261e-202.1149163354142527e-201.621208135468536e-201.572075305543914e-200.014.7070922547444341.04657047283222784.63433137933689658.3853190465100860.20.41262099541833260.1777421811357630.31765778057265680.66103472947758560.2000000030.412937784901017350.178653715424074350.320494502399433170.66869472463889312.03.64042093268937262.36154322147988443.475413750291985.0092417681220642.03.9014099387458352.69881759434369253.80818558297530845.00920533944133250.030.015791626911289420.0052728904069241880.014338398506640980.028567239014896065907820.5301781861907820.5301781864907820.5301781861907820.5301781861907820.53017818611.00.80315931590041080.47862234162660690.8552856513885121.010.09.9088829644981819.2298799373068059.91276853055064710.0-22.695360677390212-22.199603697612975-22.811718576100517-22.39920091532786-21.50135509962169-22.696397784629713-22.883161436966297-23.71311468863416-23.02848591236596-22.11829232011442-22.911719242848285-22.411381347555764-23.033156155876565-22.597907042983355-21.674856799204417-22.91232352827978-22.838075580736167-23.548883356952583-23.015314233251143-22.118705130512573-25.545443154181353-24.622196379883814-25.665127670763294-25.22387151822748-23.20659145292515-25.552653282544842-26.205539142549316-27.454348330188434-26.521873180237368-25.267845573612043-24.06236610673095-23.312123527471442-24.226595565373756-23.748539151788645-22.087931320534725-24.070991690906162-26.107658298647795-28.189925672021356-26.50070061290776-24.051602005008895-23.13774595506965-22.434421864867762-23.229353855894455-22.77327582663816-21.41873249313129-23.143200745490617-24.718021530028373-26.715822830326104-24.81523166871432-22.948256007765263-22.620593928818764-22.07766837781717-22.745928187102134-22.32231075682519-21.31636298588381-22.62257373712634-23.226738438156637-24.361918139538307-23.336369680330474-22.239648999921112-2.5-1.7123255705960905-2.5302212624290665-1.9387097107417088-0.82654280340755483.45113.5472866421474913.46785444328775273.51865381233236543.64965678322336734.9964.8232615786786764.6137145693235374.9007524075137425.07214777011159511.0219.0509647288394626.8354613675069719.61582282098200611.0945720147867860.234667615744427070.53338762497533380.205510337639140120.33598147163246230.66316197677249024.503384990234952e-214.464722707323373e-21-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.019927688975977e-20-4.01361206903956e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-1.7505726047035988e-20-1.6936203817357627e-20-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-184.0032486933770836e-214.4062796238849116e-213.979466120141786e-213.979466120141786e-211.917672252650435e-18-8.511887768400036e-21-8.1775848553636e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-8.368352112107116e-21-8.045339810521697e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-192.175457188358515117877252.7601362520254312671632260.46615762377166bin2_sub0
PHAT-M31 J004435.90+413607.1111.14959236188068641.601975894490973.464995830608325e-20-3.1005764227969083e-201.5847073298443655e-204.0413747795539675e-202.6788728888346585e-204.802762171982783e-210.010.62115924693053610.010.54468326610142161.60115935084484381.551.4712414031291150.94442183250707081.45115655311010251.99178735805222781.54999995231.47280110245431860.95933695413417711.45649349271138661.98323877662220842.03.70622847508011732.40221604787093853.5365533539864765.1267207324993812.03.96333021741562772.76139909737016963.8702548342702045.1273571854303980.030.0171519047069621270.0057022110722043820.0157513209655383220.029920131244354695907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.00.80790818226168270.49172830875482010.85891745737615341.09.09.3429201301973038.446142796062349.36254337176485810.0-20.19510484622564-19.96059913193318-20.30612719127283-19.92227595422891-19.58394559834193-20.196195834837035-20.06143924611632-20.340723428413664-20.02654316850486-19.73312632623973-20.549282622139735-20.28319375238829-20.676661433172686-20.259902517752703-19.88440357659361-20.549891370715184-20.34189939581413-20.679241942853633-20.33349707161132-19.961822588804534-19.918223800439392-19.978977277928806-20.94146338276442-19.81541307340982-19.144613368124144-19.930053013958617-20.48382307493895-21.26606113524431-20.3191186289773-19.787171815611124-19.640476628223155-19.617509060694342-20.205920611427903-19.577259990846933-19.041146821542466-19.649362019861933-20.047873216876017-20.503217312633186-19.948111613181048-19.569079167161647-19.417678215819908-19.279385374492307-19.68593591460069-19.27803636157667-18.784148266557178-19.423390323912272-19.59671245334538-19.89395310021796-19.503237428759924-19.221685192010714-19.849550735247973-19.644225634097314-19.98582838147841-19.60686378676127-19.268392245358214-19.851650950682117-19.80710859774914-20.031180851316755-19.757100323492725-19.510868607837990.7550.97586253163703230.5989601001717220.99805682520150951.40550591557230663.83443.8109452025350073.6886801117744293.83325397147859233.89975352657903864.1633.7995261120702163.20354078933680463.96141314129293364.2547214817512372.8822.3303617075775751.25548266721783652.274053864770253.2717756484013771.7035432376013742.84991570122393251.4928124993285682.33077900790102444.2910510060271023.3538108105199917e-202.790170551454629e-20-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-3.3208138787456643e-20-3.603450135284845e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-186.552446940602217e-211.713440093120825e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-181.8502395937227747e-202.512096699275581e-203.979466120141786e-213.979466120141786e-211.917672252650435e-18-2.1669221975520064e-213.3285238745933494e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-5.561501178294643e-21-1.0862427147200517e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-190.2501448669933298200923250.442899158432710661430256.79127421677686bin2_sub0
PHAT-M31 J004435.01+413540.6011.14586077975399441.594610786429143.850582256880288e-20-1.0459775884134147e-19-2.1801928357201742e-211.9788078583826416e-208.657333116355908e-212.5528195328557133e-210.013.0136090906532220.063504504874776171.7896268574771547.1187462948612380.6730.67244337226924230.220185700154080760.63689775732672851.05865165108854380.67317253350.6728019037004520.221674851053888870.64045117963759061.05867272778376292.03.70189404086764062.3962496550189533.531806100323625.1269164143772852.03.9591211933245312.75133878337756783.86673276850725725.1279825866388960.0040.0151709382898116730.004892907234007010.0137256719698518970.027793604531471727907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818611.00.80778641247905330.49056741830362060.85900657526964971.010.09.8232036002336959.1448958293046629.83186616865643610.0-21.32532823678483-21.561201156293187-22.675314728468596-21.506674319843583-20.456380978037405-21.326388318461664-22.004221255587847-23.467998961850796-22.10515259867406-20.524114837909472-21.56018219077681-21.805610555402996-22.908283458214903-21.691498505975265-20.754666079587345-21.560789157550055-22.08060200379629-23.36398035805215-22.10516802680434-20.807431403302992-21.866310605783195-23.06227737503184-25.51840747567177-23.144387898613424-20.584662489807283-21.877896387219796-24.180270700464554-27.135552256640604-25.24560943742982-20.897755294096076-21.323177883931834-22.112762198843278-24.064200667690276-22.046930143244964-20.168518149097817-21.331998345442113-23.920195531588956-27.749296330308812-24.00991882791097-20.422410906483904-20.92025161445917-21.462812932506772-23.07550897353269-21.388545933371446-19.87314200409724-20.925824864182193-22.929247377529368-26.07490389855313-22.92086501678753-20.036406349787327-21.07478492779242-21.36845633774829-22.617969724175556-21.312433686823407-20.149027389813938-21.07685681288068-22.109820758984018-24.007066888139896-22.224633854155364-20.2528644501472-0.561-0.9227047314213337-2.352160173735842-0.82432714407341570.40983897203607593.71223.63907785431926723.48514887995046643.65114995323906483.7798965783338374.6284.5920921294306374.1783399632415074.646015576188785.0168157670987836.1737.0768622182342213.7445689775667416.82992233036601110.6494282291717970.65728415181642550.85892095886664480.24321052425861930.62766919910340471.4467718037624725.327709550452713e-224.442259047864839e-21-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.381249859209011e-20-4.0323202112963177e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-6.947173173377488e-21-1.1902129254548252e-20-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-184.8172075660811435e-216.617473466628315e-213.979466120141786e-213.979466120141786e-211.917672252650435e-18-8.060365433770735e-21-7.045874554657362e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-8.105666301500592e-21-7.517455556648203e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-191.62903177897805863228251.7670491549987740824946259.28608520147225bin2_sub0
PHAT-M31 J004435.08+413540.6611.14616255190440541.5946263905207453.9034023152737074e-20-8.218395337533972e-20-4.555626820907827e-208.334026747473985e-204.0754804010015076e-201.6730342701201285e-200.010.86967909378817950.010.78035020712374771.85170018486991151.0491.31720636870910580.88163514851550871.05595328461476922.0483390328134081.05043613911.33547727200541870.94944381835307621.11335439950956272.04176843965530042.03.6957137388634262.38836449580927823.5255662018924655.1251320234197232.03.9523053295698952.73715146822452443.86093301809171675.1262410050095260.0190.0169537999924167270.0061173449240694150.0155443267949407220.029247888709606238907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818611.00.80807567280702870.49035705607328970.85942206711307231.010.09.7217800191567219.0432540633033269.73474816507275310.0-19.636761027317537-19.330287969064397-19.693043786168587-19.29491604799616-18.985259426562795-19.637807004897336-19.46527713343218-19.743925376539547-19.44105587693523-19.19404044542893-19.822163256303618-19.54806941230371-19.923907924316005-19.491791758937683-19.177259951185135-19.822769409155896-19.628317251802397-19.953159762101276-19.593043016826034-19.32056892691437-20.79561517572881-20.35762070206784-21.013171677236866-20.45885596567463-19.702310080493465-20.806814695824713-21.039737100383526-21.497931925551217-20.980071434903074-20.598749268536555-20.00349488662563-19.592294064160246-20.04502377439001-19.61210172925069-19.140466244157988-20.01229220209362-20.200975372727378-20.50066658297991-20.13169720510673-19.843082255158915-19.38293833565753-18.993511238626912-19.39442786940602-18.958335000159245-18.650236710661645-19.38844707038205-19.431703664533575-19.678388908030115-19.404185953182424-19.16149326321764-19.428712602992977-19.099342881635334-19.459325378369844-19.064293240105854-18.788001320611507-19.430774338487-19.322750956821828-19.56765171755133-19.317899410715693-19.090402764195521.0821.43352022030053441.0533046414870351.44929698170983021.74161244918960633.67253.70253103031941063.65388855981617233.6840858437298453.7218055333525313.0192.85176632776318242.40336667950009762.83023795066009453.20802599888742672.0661.18626582912781520.41805964699013071.14731407308176262.1359370967060545.2318244227015117.4055249567066414.32232963923084957.51474054038609610.6471779272614493.7104689885949184e-203.694274883236897e-20-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.759432340308314e-20-3.9474200863746714e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-1.2664174592635125e-21-2.0292245585900058e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-184.516522322655732e-205.608161879961565e-203.979466120141786e-213.979466120141786e-211.917672252650435e-181.4492641195016916e-203.962689271485453e-20-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-198.704619108543779e-212.6552869530011744e-20-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-198.601933066333634123729244.6447136913055522972833250.7234999018597bin2_sub0
PHAT-M31 J004435.02+413540.7411.14591182055179541.5946511057497054.0777085079719925e-20-1.6063227250634582e-19-1.0087459389153045e-202.743109306329377e-201.9887364281440227e-204.211431093750669e-210.010.55835481539989810.010.45219010413700541.56467664998863271.0181.18478131713477120.84053183278825851.03773261174111321.68906746004337281.01913547521.18574562770670220.84271663680694841.03832480939095121.69187895938229782.03.7115496878422782.40380673919382033.5441290496655535.13218938652767952.03.9686382334706742.76047104160392733.8812857512976165.13309807056310950.0190.014373849389922820.0051641639124399460.013270059431613340.02520569854846135907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818611.00.80920943923879560.495697714293169560.85990227425422591.010.09.6256134618417638.8465096394776459.64168477103303810.0-20.480533719055046-20.32933468200931-20.787715722811484-20.371583122549154-19.78497432363912-20.481603752158396-20.42097044802942-20.89813073974005-20.413088428010102-19.945876919816406-20.753211712084653-20.630391561274436-21.081903578263017-20.677249945322338-20.103917827418076-20.753819270828597-20.683903553728044-21.138284791242423-20.711718183331527-20.199574654409755-20.6792294197491-20.442762235289717-21.070714885314246-20.62536695154307-19.461824643778957-20.690850297362044-20.888010734721448-21.70891452110661-20.777655833109982-20.362237741922577-20.245347379184587-20.03967889811257-20.527580208329613-20.144394368652957-19.319462276576612-20.254187859991273-20.421387598133364-21.081805082204713-20.302498211243826-19.943755756679458-19.949471085429686-19.716738223127283-20.224848494317712-19.778631303065605-19.068402945626804-19.955091518292736-20.000598074984772-20.61895239915505-19.909491596823056-19.520164209182987-20.197352605926724-20.02738616539259-20.498867408269504-20.07432995098596-19.48055155417639-20.19943389918109-20.174857760361004-20.692734485746943-20.13514009577575-19.7192703847825080.3360.55012591608307350.0246042638030567470.48797949017004541.15053354965730373.75073.78343305013253733.7082946110601033.76900927733376623.8651338259316944.0654.0236441752993463.58895050204540134.1198951274172334.3906795901202033.933.39470870405954451.89286970577993973.5492216037674074.7076364148807861.54615546869643381.9798418486793621.03328387633534221.58800198599089673.06745188706140142.5816449654128326e-219.205148270655048e-21-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.5401576307847165e-20-4.208952680926733e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-3.2662672759648592e-21-2.969355550690471e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-181.0297205411386088e-201.49699452756898e-203.979466120141786e-213.979466120141786e-211.917672252650435e-18-5.232900740379237e-21-2.381048440062279e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-6.617879719421357e-21-4.7321162753703474e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-195.9493083334479073228247.9536783216106822742810254.37167819782496bin2_sub0
PHAT-M31 J004435.92+413606.3611.14968548929668341.601767908721875.387645956128798e-20-4.109197668766986e-203.250765138633514e-202.4394827037203998e-202.7115420704058136e-208.422862187501338e-210.010.31974630511467040.010.28668890670416370.99266517763831521.5881.51204837461815941.0190180551608691.52517517810527761.90210138538586041.58787930011.5124231882041551.02599351008762831.52356311749992451.8683935329539776.03.77094903927372862.4340852810606793.5961416726701995.2488418304704466.04.0213874908278972.8028412192366993.9319954973731375.2548566953620910.0190.01580365570193340.0049669954219049570.0143494286922110220.028505310165605008907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818611.00.81464319586860860.50562392251011250.86454882103931341.09.09.1276473678846618.312006866209839.1401235286101529.869648723067895-20.131881864808044-20.15205315530207-20.43280678917141-20.139207558906943-19.778562603287966-20.13387408685939-20.206278605071436-20.45636884477554-20.154211207389526-19.893015200803365-20.504340424173797-20.51440457176326-20.787961305938474-20.520926534087636-20.16263422473638-20.505488741618382-20.545827921677187-20.812548094102205-20.52677243629086-20.24786629076301-19.618094840617818-19.809780493337293-20.513842162374026-19.64139860949332-19.224386068701985-19.62419277111549-20.06039953076785-20.679581161001114-19.78412075998505-19.45497981397492-19.480705333340275-19.593672076603596-20.05833070222295-19.495414281903468-19.14347234388858-19.486441870780407-19.808553401814724-20.211042194502692-19.63605139254731-19.341397389148735-19.283002633295126-19.34079458205498-19.728521143399686-19.266023561539495-18.902541839117646-19.28782540420385-19.50299245394515-19.82762025073626-19.36483037597527-19.109877809902073-19.773470905945572-19.803819315094913-20.073817541756526-19.77241494248958-19.425836917612173-19.776445476910673-19.889836999529447-20.13442195389409-19.806152594701686-19.5603313980408870.880.85389804481462640.51139541696232920.90335200076050671.26585837178335183.86083.8530591421931253.7633488769987643.8587230877352893.92137166176813164.1544.1091617286294813.90008840628188754.1724011612850494.360292860337382.5712.63526785406932571.604563438120252.5108111730460763.49068296193107041.74202009651667061.93051675641407041.24004595279361671.68772004750809962.51701225795268664.9012085769120567e-204.2285460639113553e-20-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-3.2211382264691606e-20-3.3819655145915936e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-181.6206365579906808e-201.0020312579246566e-20-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-182.1882655042858444e-202.2318723584545698e-203.979466120141786e-213.979466120141786e-211.917672252650435e-18-1.1847380400480102e-21-1.3740205958177756e-22-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-5.258025802125815e-21-4.2888463053513415e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-190.5077199666840535156702249.85188165479644363262577255.87952918447064bin2_sub0
................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
PHAT-M31 J004431.63+413612.2011.1318041403340241.603388910561612.56177283208085e-163.418105333565266e-163.807202414615826e-169.663701869244331e-174.0509785148231426e-171.629766142444608e-172.012.01000000000000021.332.012.6899999999999995317.832317.83200000000005301.63198675963474329.0980000000001329.0980000000001350.0012512207350.00125122070006321.4337178617237350.0043334960999350.00433349609994.04.03.324.04.684.04.00241802685430153.6605360587874154.0016695899708274.3416695899708260.0040.0040000000000000010.0040.0040.008419999999999999907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818611.00.99916520501458660.82916520501458660.99916520501458651.06.06.06.06.06.68-16.04855298687023-16.048552986870234-16.126134170674092-16.051514547246086-15.976894923818076-16.408512920563563-16.40850126573938-16.42888234961896-16.36512203112092-16.301361712622878-16.559251364392242-16.559251364392246-16.691791950642575-16.613644033210218-16.535496115777857-16.763311568502957-16.76330945168995-16.844218587787445-16.780411054684542-16.716603521581636-13.798928736327-13.798928736327001-13.9157629585656-13.782931022529482-13.650099086493364-15.347541769008426-15.347553937983365-15.432380483561117-15.315293858169044-15.315293858169044-14.123229395669263-14.123229395669265-14.270929146840995-14.162762693418738-14.054596239996481-15.440722154144488-15.440769969107004-15.633380025180546-15.506551801402765-15.379723577624983-14.624686701421611-14.624686701421613-14.737491483498443-14.648267509950706-14.559043536402969-15.649194724213332-15.649197850696982-15.768781021417647-15.652805490776855-15.536829960136062-15.520816931442322-15.520816931442322-15.597967918033047-15.521893383379-15.445818848724953-16.0776912311465-16.077684314058004-16.13616320638509-16.066300928701224-15.996438651017366.9676.96700000000000056.8176514285714296.9145306122448987.0114097959183684.62664.6266000000000014.6086937959183674.6275714285714294.646449061224493.4313.43100000000000053.37511591836734763.4420612244897973.5090065306122455-12.648-12.648000000000001-12.75901469387755-12.516795918367347-12.27457714285714256.6178222803888656.61782228038886452.35185778150284457.52129713740336663.477982616175162.250144208168341e-162.2501280641632804e-162.2265144186520133e-162.294357383591425e-162.3622003485308364e-164.500961080790764e-164.500835735783369e-164.482820652879354e-164.5500940152441e-164.617591661297239e-163.6322789747063527e-163.631885347058532e-163.554953668073007e-163.6215186510989556e-163.688305556136619e-168.364214375117416e-178.364347758765443e-178.242688347623166e-178.433851543805578e-178.625014739987989e-173.936140986221385e-173.936247259801078e-173.869716072171873e-173.962613543553066e-174.05551101493426e-171.7361986840877267e-171.736207150274602e-171.7136734284841638e-171.757942581460321e-171.8022117344364784e-171045.408901035386288316-319.813164413560588316642-319.8098196461156bin6_sub0
PHAT-M31 J004431.64+413612.3111.13183257065668641.6034194385187354.77493327876513e-164.669542805417029e-165.499292376667305e-161.66471137292508e-166.533836314230875e-172.596087660531234e-172.012.011.332.012.6899999999999995311.812311.812301.63198675963474329.0980000000001329.0980000000001350.001739502350.001739502321.4337178617237350.0043334960999350.00433349609993.03.02.323.03.67999999999999973.03.02.663.03.340.0040.0040.0040.0040.008419999999999999907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.01.00.831.01.06.06.06.06.06.68-15.877738480497358-15.877738480497358-15.906664690003478-15.832045066575468-15.757425443147458-16.192538376354626-16.192538376354626-16.241352001095308-16.177591682597267-16.177591682597267-16.385130957586718-16.385130957586718-16.461945134665047-16.38379721723269-16.305649299800333-16.562074135157925-16.562074135157925-16.6565493727789-16.592741839675995-16.528934306573092-13.66534375239501-13.66534375239501-13.720421876159543-13.587589940123426-13.454758004087306-15.51936363692911-15.51936363692911-15.604566697372988-15.487480071980915-15.370393446588842-13.982662948862325-13.982662948862325-14.111860832984735-14.003694379562479-13.895527926140222-15.460088916823162-15.460088916823162-15.633380025180546-15.506551801402765-15.379723577624983-14.469605229445543-14.469605229445543-14.606279757692947-14.51705578414521-14.427831810597473-15.539122528266887-15.539122528266887-15.598228770475306-15.482253239834513-15.36627770919372-15.354474939824438-15.354474939824438-15.48609360236533-15.410019067711282-15.333944533057233-15.86707433458782-15.86707433458782-15.930685919079604-15.86082364139574-15.860823641395746.9796.9796.8176514285714296.9145306122448987.0114097959183684.57214.57214.5531713469387754.5720489795918374.5909266122448983.1933.1933.07976897959183753.14671428571428623.2136595918367354-12.678-12.678-12.75901469387755-12.516795918367347-12.27457714285714273.7824650641192173.7824650641192169.5111617244709776.3749818508277584.284082792093872.89773208327004e-162.89773208327004e-162.825128815176235e-162.892971780115646e-162.960814745055058e-163.031594766513852e-163.031594766513852e-162.999179774042614e-163.0664531364073603e-163.133726498772107e-163.4737635884319637e-163.4737635884319637e-163.359501177491006e-163.426066160516955e-163.4926311435429034e-161.357847029338674e-161.357847029338674e-161.330289059951053e-161.349405379569294e-161.3685216991875351e-166.469214203997883e-176.469214203997883e-176.328766785203473e-176.421664256584668e-176.514561727965862e-172.7592423848346842e-172.7592423848346842e-172.69019886178175e-172.7344680147579072e-172.778737167734064e-1712569.3981431109180955-6083.89903562070580955646-6083.899035620705bin6_sub0
PHAT-M31 J004434.52+413626.2511.14385107101472441.60729097374946-1.3733215182289095e-20-1.7931044372801392e-20-2.3754339851876524e-20-1.361084770316103e-203.02189929533178e-203.490295632491992e-210.011.84689348825827060.190281704522907821.65428765739827993.5304950703763910.550.84542923581803380.63561971211017880.79826249497657451.0256681419554640.55000001190.84644903354160990.64266661068332680.80115626564146611.02675931872260586.03.6401643303933212.3689490153505463.47476070367602264.9960148986249056.03.9039135263275372.71730942623642863.80657336407973724.9969975894514230.0040.0162957877586969170.0053662835780303840.014829433782263980.029173675045171956907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818611.00.80056973524092990.473676993155652370.85284720770942871.010.09.8706622278820089.192181887546819.87688577755075810.0-21.723086913713882-21.032525090472745-21.53824609902833-21.146864054508477-20.576975388612425-21.725006202866158-21.31770717459445-21.653725348144697-21.40455813040668-20.997284688644015-21.88412652262523-21.264126694900977-21.706113835690168-21.37935205719452-20.860555359041797-21.88526191973585-21.435259717618237-21.766751503367026-21.535100344106016-21.12765640719761-23.489771091192253-21.9169339418805-23.279375714983665-21.762827423422067-20.781452447114116-23.49568525932897-23.33301847001913-24.13124427716369-23.39395722695622-22.59027772460191-22.406911565682726-21.178862675627087-22.178136397536335-21.157859452188937-20.313201317990696-22.412614837302737-22.464642797469967-23.109453919366565-22.48425257694475-21.845001522870778-21.650066021424532-20.671874472137326-21.403105182029254-20.728263651543603-20.00047110714066-21.654806364584523-21.59824289061159-22.059589090069398-21.63182996550562-21.15754784893315-21.54688861098329-20.78957350213449-21.354053345474743-20.87420474546141-20.273930999758235-21.549821576935987-21.26229680005745-21.59556584178674-21.329314640692466-20.93655386967302-1.04-0.2647747280462432-0.8444252973677335-0.363604160404527030.276919636213719733.63383.70983297174861633.64733815523050533.70906384414738933.76985735453506584.7064.40686047641150854.2146412907174444.52413587874411954.65432417470911557.3715.4319438158701124.07799076039344755.6793748702751126.8814837263290920.54331683343081551.17741887340244820.63085446229966190.7978543696070521.3080229100196505-1.3595986242125455e-20-1.3087312813401e-20-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-3.25321559565299e-20-3.353322374483019e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-18-1.3422079795006679e-20-1.1798436182506173e-20-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-18-1.039399874189321e-20-9.832379042153697e-21-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-183.1967497999623258e-213.912934533432138e-213.1715540226750354e-213.1715540226750354e-219.381164283310888e-19-2.20592449371011e-21-1.493547389803298e-21-2.2281849087323182e-21-2.2281849087323182e-214.411190713751039e-193.8870709962286973307925259.2053028361969364994941265.35543663894674bin9_sub0
PHAT-M31 J004434.54+413626.4811.14393716433676241.607356729264711.83285602625166e-20-1.7557480948368033e-20-3.0913181999017394e-215.1930618928983626e-204.246993604250068e-202.0768701284249874e-201.011.50456403014702330.491526754068299651.53528202340268832.50485828817056651.081.29963266853960960.85813914775672381.04963873216501422.01400789513337351.08264899251.32421127141441540.931493552334461.09885927188647712.03360822622025732.03.4601858472319872.3067786310485563.3297579161173184.6650242236716922.03.7435205973076612.63843117859069183.65415891233066374.73988767747093750.030.0154580540036057360.0049749388037782590.0139704156593947450.028339128788758296907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.00.78091949101637470.43660599209184860.8347820515005481.010.09.7391829127398519.0610023438205429.7516137104137810.0-19.28246725057895-19.15261130374897-19.350677828217272-19.12514556316142-18.974892031713825-19.386030779184075-19.378070852256215-19.474724760201237-19.369680177768945-19.27662804482838-19.444169886388828-19.35609947748035-19.540950548750487-19.32621904052648-19.17015312454773-19.505329987315896-19.49097550395703-19.609193285652537-19.473617464447738-19.362123344080377-21.253806156273704-20.328042347958267-21.02394060693458-20.325514873951445-19.695313148748312-22.188337807643734-21.523069048766462-22.018120836955603-21.514205451793-21.0161011251915-20.01529019042115-19.49949054762853-19.894203054920283-19.506997623286072-19.12983595308304-20.89657144877886-20.573792834180928-20.939362109335004-20.581828522573606-20.170730701971515-19.155643651663393-18.86349942840975-19.156260780079837-18.856649496005485-18.614080736838098-19.699756883979322-19.622415298525553-19.814939740967947-19.62673307245874-19.40184817827353-19.10414010494045-18.933403518998425-19.158266051043352-18.913117902370313-18.744292810326268-19.30976109956992-19.312220799762112-19.397352551711194-19.311642235047334-19.2076793938830231.4091.58941697180256151.3559613848438231.58271886808841681.78863843103859053.64843.68826343394193673.64719781739999063.6784034094696213.71321511864690332.6082.63007925605042822.3728536948765432.5991421879139062.85960087215592741.2480.79647142175413630.2985176644315940.81334056057251641.38026068497981278.5183045062717918.8888889907754847.15557820326608959.03380024558774210.7251465354970462.539668143122612e-202.96370969079529e-20-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-4.068791333324955e-20-4.3789862989267145e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-183.0136238784355522e-211.2270364013744571e-21-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-184.591506887419393e-204.5942835936122e-20-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-184.4120445907470315e-204.541056823182231e-203.1715540226750354e-213.1715540226750354e-219.381164283310888e-192.890088739328018e-203.079592075749793e-20-2.2281849087323182e-21-2.2281849087323182e-214.411190713751039e-190.746774857500789679724254.41401042317747382661708259.94374329900137bin9_sub0
PHAT-M31 J004434.48+413626.0211.14367870295883941.6072277208254065.968666598456414e-20-2.3534495739301832e-209.794597664951826e-223.423651691487428e-20-4.0836476963942965e-222.148983674550855e-211.010.74661672173355760.0222462347572670340.72954034715219451.60830920234676762.0331.72168838321401220.98926022903689611.8946029128800072.30711545774548332.03266119961.72258380911891781.00725005191070821.88048761108840062.26943559252916632.03.3881547242995932.2421409813872563.25160292727129364.5977547795980462.03.66701127887238652.50525864718137873.58364604553822154.6905890278149570.0190.0165969821273205980.0053549200984697370.0151535478754495980.029460849452124103907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.00.7819702500920530.4313632702596550.83760565378694221.09.09.2752592157035838.4163097891444129.2851591763066259.986929091944432-19.581842325947736-19.616777500420458-19.757822074717367-19.609849456558344-19.469458011173636-19.691647892978985-19.730184832730007-19.838848387856387-19.718961043254247-19.613211130681336-19.962735260430463-19.951705360338742-20.09267456147304-19.940274814988836-19.795968483517427-20.024222228151757-20.01709478894593-20.166798954477056-20.00974270164858-19.863608712618944-19.10151603148278-19.55931995341687-20.535088163507066-19.340339494415556-18.977289019778457-20.299261734114605-20.231098957725287-20.624779435723468-20.15869427843202-19.85870527043984-18.964323843913192-19.23752815566815-19.844491952910428-19.055598887120553-18.826029854107045-19.859789899497176-19.787336651558313-19.999309715912563-19.766729505185303-19.563489173343438-18.713055742779154-18.896804582531843-19.347371856683484-18.797933287042795-18.605791730886224-19.28585542235525-19.288863267662144-19.451730194753132-19.27451379539409-19.11466270588921-19.221882851935934-19.292561941451712-19.47910177087278-19.28303930114179-19.11866148840054-19.432355208955084-19.480356365447047-19.60078500015695-19.471584878271727-19.3536366147798381.4331.3365174834602241.06236303801334581.3584167365442591.55954981060921673.86363.8215290480606753.69457716515861943.84593669142947723.90285119231357853.723.54886494592011833.10222236738063063.64717866674824933.85514916602175051.1891.42886202461867830.87126590336854591.37412201969054732.1142907550321043.25052238255000653.6459097315179392.72358291455467773.5541900124108854.7344969046746544.9445947506078046e-205.139463506139579e-20-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-3.5137570208305006e-20-3.522342394922159e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-187.641700325131997e-211.2111613779631108e-20-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-182.920822362404232e-202.509992609436065e-20-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-182.3348441836196606e-202.2103799828806414e-203.1715540226750354e-213.1715540226750354e-219.381164283310888e-197.121368361736452e-217.773483768941656e-21-2.2281849087323182e-21-2.2281849087323182e-214.411190713751039e-195.17889960367138739872253.58432046379187390042608258.7604390619035bin9_sub0
PHAT-M31 J004434.53+413626.2211.14388391738543841.6072836291592341.6743958510714009e-19-1.3448283279601044e-19-1.7897105367852176e-201.8531692641996174e-198.984024932067452e-208.30748051369995e-200.010.0105118987586994130.010.0105118987586993920.69051189875869931.0811.05721989655389170.94615801905227671.062485198790391.22248647481222681.08479928971.07339977504365610.99284402471229671.11220221199418611.26398909388781846.03.6711717934169962.3791040082732753.50414725242264475.0675349465389666.03.9302023692845692.72531340571210563.83787396652564945.0675830467152710.030.0272653606606711630.0237236234922094950.028895013983458030.03907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818611.00.80563117209465880.48527046627764390.85719321383859031.010.09.9995500477608389.3195500477608389.99955004776083810.0-18.831774137085002-18.87800427022069-18.985943471013574-18.86913358863811-18.76585162796398-18.833676141298426-18.879625677109647-18.990973312765842-18.88491784244975-18.78855103469769-18.960472972488578-19.01834875715259-19.137152815361013-19.011038682238578-18.901900854308224-18.961606146490023-19.01931545777823-19.1362495679498-19.029814043680684-18.933158647417134-21.43494573230589-21.256697504386434-21.59649660061805-21.361160846143264-20.908379746655974-21.440097739519164-21.263994347316824-21.4647383709646-21.271535055868-20.882868867266268-19.894423069961142-19.828365807325863-19.998278309684576-19.826704699721525-19.64012098793635-19.90011649839133-19.83568821937638-19.940711279437558-19.782883250217544-19.65476216163529-18.833834284045675-18.83418363159709-18.958945688289482-18.828655114672408-18.685173538355997-18.838550246645486-18.83944090243339-18.952197659223383-18.83331763890152-18.71504568501638-18.686988027295918-18.72162950073329-18.81046876954554-18.715426838101756-18.601721443017563-18.689918264186115-18.724330908279487-18.844185971156858-18.73631375734867-18.6300221448791671.8421.80226038479680281.67139916097699911.79261378522218221.91983315657939073.6233.6319175168082483.6031626525018733.6273115832564593.6488340675054882.0732.13902631756224932.03056374708685052.1497846788078892.2583327630548110.1640.2640060451280654-0.0294844330557211260.28857881586052480.591629497468850915.76351850308370214.52986521151597512.40675847360320614.4312721110124516.8392841436820541.3287371913370048e-191.3380357541223436e-19-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-4.127926023231756e-20-4.288268509190453e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-186.1399700301966e-219.019463352110728e-21-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-182.121417518247452e-191.978393084949051e-19-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-181.494013288689578e-191.3605133823428362e-193.1715540226750354e-213.1715540226750354e-219.381164283310888e-191.1332658702939834e-199.935861843649883e-20-2.2281849087323182e-21-2.2281849087323182e-214.411190713751039e-1921.0375461254757933945240.94273592054884339451721244.64134368096688bin9_sub0
PHAT-M31 J004434.47+413626.0411.14362352933326341.607232049268331.679677856910743e-19-2.988507395466899e-20-1.5293890041619133e-203.790097591187918e-193.438431360363998e-192.596087660531234e-191.010.97490062327084290.29490062327084290.97490062327084281.67835962970439720.9111.33105221102499050.84716480842853771.00787285125392122.40032101130504350.92229610681.35353970076440570.87737556340672671.03691115002015842.17885909857916763.03.3940999721830352.30228384239230353.25882737623672244.4973709150172714.1938775510204093.71362846326537672.68413644518796043.60969504270755874.6198206506352350.0040.0122747943465264480.0040.0086243103807933410.028436042596331907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818610.250.74536936232102340.375925873119204670.80230545681668091.010.09.7052188460451939.0252188460451929.70521884604519210.0-18.34454778305779-18.34514596886508-18.47032074650687-18.356710826497146-18.26477096806103-18.486806646231962-18.489358941599694-18.55313821915494-18.47522757410825-18.390647319124174-18.480617431505813-18.48518801755628-18.607108399649633-18.506145934048114-18.411930409159574-18.567428489690474-18.571977062224263-18.677393948583408-18.582340069008488-18.506132578777606-20.20215333719786-20.43799219177489-20.831602281508236-20.273868994374954-19.99630502722957-21.007731368666512-21.150853691580856-21.430287554050125-21.09905947060173-20.872797258617627-19.11779568785308-19.211404565671934-19.389035588466196-19.192796112690193-19.002278618506736-19.867997409264152-19.907537882717726-20.05712131837717-19.899444800284677-19.732477366787837-18.251516461991955-18.272926217068974-18.39250864596669-18.275479603872366-18.157058868139597-18.761342341038404-18.76195208729984-18.92807103139964-18.78825300471971-18.67413263223474-18.18089915325129-18.184470128238708-18.25002390737981-18.152880889946285-18.046347942085415-18.42788019540662-18.428997222030844-18.50967033216678-18.425991992065608-18.342382032488562.3442.3396135678008652.20179168651227772.32101331486189542.44426194362968063.63513.6342534003214143.62018136177101953.6396481243379983.6623442341181671.5461.6671171719817091.48962637320510871.60018254556749941.9562066941498235-1.091-1.0793292842646105-1.3406174944357623-1.032481564567934-0.734413604874183626.5737693308611126.58131787762169724.42492908647462427.18226510595717530.8872794879908061.5987150456699575e-191.6021149084756076e-19-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-4.6582440434433046e-20-4.4800256978089625e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-187.324654710313677e-216.214956356216739e-21-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-183.7845516862609264e-193.779605579395363e-19-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-183.3464574653628153e-193.3298664209840716e-193.1715540226750354e-213.1715540226750354e-219.381164283310888e-192.6810812132671347e-192.660989218064506e-19-2.2281849087323182e-21-2.1906618178017277e-214.411565944660345e-193.10900671870808559885249.33713801569425453465026251.7238312227992bin9_sub0
PHAT-M31 J004434.54+413626.0511.1439128562587141.607236016682842.677976960546373e-19-8.965522186400696e-203.0490159508504524e-203.0257961432411827e-193.8917162546637646e-191.903797617722905e-190.010.0115487404103568670.010.0115487404103567970.69154874041035690.9791.00375822049008720.86202109860051080.99375392514298651.11341858674504171.05919814111.04826431040394970.9833292266356521.10291279282394041.25995624657737062.03.67157441990442.3786725643854723.50425790955401475.0701856050192132.03.9303140897536672.7242446925940543.83783323486382385.0703302311107420.0190.0176365431208439330.0115793167285491330.0161657173001300770.021491060263940626907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.00.80582238169529090.48564228306334050.85736859141718781.010.09.9976661977985399.3176661977985419.9976661977985410.0-18.587778822732048-18.580140586129584-18.636553805702306-18.54772298941494-18.44406017019738-18.588807730849904-18.581957139010814-18.663391410662086-18.582566841361384-18.49960517323177-18.713488269004678-18.70375586642771-18.763716980796225-18.673353604678955-18.56798818687838-18.71409339784631-18.7048398761363-18.796438522001697-18.694877502056258-18.60770712010707-20.804071668041523-20.872904150732715-21.06351422366998-20.871035060515855-20.668641379625427-20.813941451292067-20.88114854550803-21.01426143232847-20.84758776444845-20.67691054863898-19.4718135286374-19.517722872409745-19.645391709070704-19.513166746234113-19.376468487700613-19.48054192139061-19.525638646384188-19.68645744665447-19.529973784757335-19.36576524205168-18.539411913349575-18.550650999065663-18.709319396004737-18.592086101487613-18.479196458314185-18.544842477384368-18.55639910162421-18.623552976188066-18.509460125325823-18.388224560783023-18.435459770936887-18.43177028778741-18.502671477399083-18.40879272551435-18.314637628697724-18.437506787381007-18.434774268662768-18.509494725031587-18.426420615506334-18.343123264629662.0972.1008244200353292.0219361497351092.14124582741345962.26756474400975663.62783.62455524813091223.60014262156694283.62199618732927683.64107262402706771.7951.78848377039197651.69742478240704921.77867830728877261.8517595452042426-0.472-0.48193980492929467-0.8988539109032374-0.5830419037884739-0.2847538105155142420.68012506490255521.1211760749861818.86906233591678421.6556887217734524.1652166099551842.7436827091574524e-192.671198252217394e-19-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-4.7413039960478154e-20-4.7115834955912954e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-182.7598613360107134e-202.466098831698802e-20-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-183.7040727422292555e-193.729779298005612e-19-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-182.641548518285481e-192.688352915261054e-193.1715540226750354e-213.1715540226750354e-219.381164283310888e-191.9590306126647444e-192.0042246156737256e-19-2.2281849087323182e-21-2.2281849087323182e-214.411190713751039e-1919.642648983296022322241.3094695709981723282944244.80122395959603bin9_sub0
PHAT-M31 J004434.52+413626.0811.14383203869067441.6072453021890144.801343307961841e-19-3.3994271623435975e-202.4828166173947658e-207.402207173949884e-195.145396097456814e-194.2402765122010153e-190.010.0101432620952933290.010.0101432620952933620.69014326209529330.9640.97256375162008620.84013381420221060.93941517326739781.0565593413333050.97584813830.9851289802282110.85439455005935370.95622541356854251.07642187653162256.03.6778398271955822.383114950442483.51023797980398645.0798762089352276.03.93635968729698772.73142356708850283.8438705889151175.0800313215337160.0080.0081671474745699160.0060957711612397590.0105512512448395720.015004297419543821907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818611.00.80616572028799730.48670218641811290.85761106658873781.010.09.9925789732673379.312578973267349.9925789732673410.0-18.24766015288705-18.253631572796408-18.351280555133243-18.262574606520687-18.17386865790813-18.249556533911672-18.25519553285275-18.314491088038316-18.236585752500915-18.158149457093273-18.365636791580226-18.372389227778694-18.473497009724003-18.383264361764866-18.293044638000893-18.366769173285665-18.373325607542213-18.470547598033818-18.39458261212486-18.318677719740908-21.010829245948003-21.007756167891717-21.174328581951286-21.017188709062236-20.859940125135267-21.015642225606793-21.013746582418-21.103548544303752-20.97093214914452-20.83822400855049-19.491235783634767-19.488116787865312-19.637497394529266-19.502950727084436-19.370983474557946-19.49692273743676-19.49512884972419-19.588502575915278-19.460509280176527-19.332434262959296-18.304868768951078-18.30731129152037-18.380169205452-18.26743824895783-18.154629303987154-18.30957516878668-18.312353113104418-18.44491186786532-18.330819017003073-18.216726166140827-18.117856783264372-18.122967455547503-18.22664183641542-18.132895047986064-18.03914825955671-18.120783931404485-18.125575561048137-18.17221767176472-18.089151841306723-17.9890196567112042.4192.4133887784138712.3577783876057742.4769203540927132.61190494486069643.61263.61320848143941033.59839619001111453.61744585788195843.63650597384499941.4051.41533768761714221.38612690938945171.45685885751202431.5276429669611957-1.278-1.263971040270585-1.7597445272198744-1.4222673251611988-1.124398529404416832.1331396052145431.84490416732107629.00593765388168432.2027550586269236.3158526213494644.840644668117536e-194.809849522243468e-19-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-4.643061227283805e-20-4.646726358286693e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-182.638317567654483e-202.653774583942033e-20-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-187.602131839931891e-197.522202680021029e-19-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-185.634671509584809e-195.567768738607468e-193.1715540226750354e-213.1715540226750354e-219.381164283310888e-194.315518985265441e-194.2518209772367427e-192.064058180483671e-196.497530743322034e-191.0931003306160396e-182.116664130037098535753249.13977763829718357533961251.4799237559774bin9_sub0
PHAT-M31 J004434.51+413626.1511.14379429649718741.6072652244003154.980931506499466e-194.557473778087021e-202.3949581001344e-204.8999051731379715e-194.2469936042500693e-192.307633476027764e-190.010.010904257663356580.010.0103015101020589380.69050653697145892.3932.2807144071806622.23770171791817642.52820679185900852.86683285905253672.39334988592.2854376709172511.93801200492643382.19140364746740432.48622954330482676.03.68564771407195042.38859054093154553.51740482717091445.0927263700073716.03.94446454080876132.74097392371955943.85192954817909835.0929406548744560.030.0282033466586782240.0246493560535228220.029446045269954060.03907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.00.80617067975297560.48678840343919470.85761089035120531.09.09.0748865678951428.345690341739839.0749091469518719.755114173821271-18.436508594647943-18.435508839370893-18.482953688816497-18.394233706496035-18.30466796558686-18.438420944333842-18.437232541867914-18.542824881823293-18.464885176072407-18.386979840535-18.597193240451-18.595286891227442-18.735632447075684-18.63927205093343-18.549025125011337-18.59832847069289-18.596309982581225-18.693805793665536-18.617858860281753-18.5419539678978-20.53555991393377-20.531617830274374-20.721610974715418-20.55985965547256-20.38972582477465-20.54128868033189-20.53970211499126-20.721482707079083-20.584974534609177-20.44139203764663-19.25276888034134-19.25381054867478-19.442883641609125-19.30720594149043-19.175217811109594-19.258474149220994-19.261315013718903-19.39845934751976-19.26686598183644-19.13885598347095-18.328487704086555-18.328759347690266-18.380538244880587-18.267789453806664-18.154706241506602-18.333211342993504-18.334204707397372-18.44491186786532-18.330819017003073-18.216726166140827-18.263474974302596-18.263025679647516-18.364478030659907-18.270716411037533-18.176954791415156-18.266412477637896-18.26586486939244-18.38698072594279-18.30386944341261-18.2208036129546152.252.2510053740913222.20625594360715032.3254167589264752.44571352220654743.64463.6441552983163263.62642719231095523.64547987393091953.66453255555088432.0972.0623266871239071.99120743566275652.0671951817326752.1432281981610957-0.855-0.8574738330496734-1.3442466099807455-1.0434906877121488-0.745574767678593822.82722717257507522.90260122987412221.77584538013381324.1239079618467626.881265157090054.575075387587903e-194.564700126947421e-19-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-4.170730720878932e-20-4.172054306826738e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-184.9516679335322976e-204.931429616628205e-20-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-185.44326850481521e-195.450331588668004e-19-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-183.7248556321291615e-193.7347253065607364e-193.1715540226750354e-213.1715540226750354e-219.381164283310888e-192.5080549991810754e-192.5193854876322776e-19-2.2281849087323182e-21-2.2281849087323182e-214.411190713751039e-1924.58100797594983148245235.976712604482338141577238.2342555608859bin9_sub0
" + ], + "text/plain": [ + "\n", + " Name RA ... reorder_tag\n", + " str29 float64 ... str9 \n", + "----------------------------- ------------------ ... -----------\n", + "PHAT-M31 J004435.01+413540.96 11.145879914566734 ... bin2_sub0\n", + "PHAT-M31 J004435.89+413607.17 11.149551498429465 ... bin2_sub0\n", + "PHAT-M31 J004435.03+413540.80 11.145942804724289 ... bin2_sub0\n", + "PHAT-M31 J004435.01+413540.61 11.145892087843466 ... bin2_sub0\n", + "PHAT-M31 J004435.02+413540.82 11.145907381542465 ... bin2_sub0\n", + "PHAT-M31 J004435.90+413607.11 11.149592361880686 ... bin2_sub0\n", + "PHAT-M31 J004435.01+413540.60 11.145860779753994 ... bin2_sub0\n", + "PHAT-M31 J004435.08+413540.66 11.146162551904405 ... bin2_sub0\n", + "PHAT-M31 J004435.02+413540.74 11.145911820551795 ... bin2_sub0\n", + "PHAT-M31 J004435.92+413606.36 11.149685489296683 ... bin2_sub0\n", + " ... ... ... ...\n", + "PHAT-M31 J004431.63+413612.20 11.13180414033402 ... bin6_sub0\n", + "PHAT-M31 J004431.64+413612.31 11.131832570656686 ... bin6_sub0\n", + "PHAT-M31 J004434.52+413626.25 11.143851071014724 ... bin9_sub0\n", + "PHAT-M31 J004434.54+413626.48 11.143937164336762 ... bin9_sub0\n", + "PHAT-M31 J004434.48+413626.02 11.143678702958839 ... bin9_sub0\n", + "PHAT-M31 J004434.53+413626.22 11.143883917385438 ... bin9_sub0\n", + "PHAT-M31 J004434.47+413626.04 11.143623529333263 ... bin9_sub0\n", + "PHAT-M31 J004434.54+413626.05 11.14391285625871 ... bin9_sub0\n", + "PHAT-M31 J004434.52+413626.08 11.143832038690674 ... bin9_sub0\n", + "PHAT-M31 J004434.51+413626.15 11.143794296497187 ... bin9_sub0" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hdul = fits.open(sed_files[0].replace('seds.grid.hd5', 'stats.fits'))\n", + "Table(hdul[1].data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can hopefully see, for every source, there are now several parameters assigned to each one. These are all the parameters we originally had set up in our datamodel and specified in Step 9." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Epilogue: Visualizating!" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "from beast.plotting import (\n", + " plot_triangle, \n", + " plot_indiv_fit, \n", + " plot_cmd_with_fits, \n", + " plot_completeness, \n", + " plot_chi2_hist,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Triangle Plot\n", + "\n", + "This first plot displays a posterior distributions of the parameters of all the fitted stars. " + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "plot_triangle.plot_triangle(\"M31-B09-EAST_chunk/M31-B09-EAST_chunk_stats.fits\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### CMD Plot\n", + "\n", + "You can also make a color-magnitude diagram of the observations and color-code the data points using one of the parameters from the BEAST fitting (feel free to change this from the example, just remember that the param must match a column name from the stat.fits file). \n", + "\n", + "Inputs are the photometry file, three filters, the BEAST stats file from Step 10, and the parameter to use and apply color to after taking the log10." + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_cmd_with_fits.py:97: RuntimeWarning: invalid value encountered in greater\n", + " col[col > 99] = np.nan\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAF/CAYAAAAirDIZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeWycaX7g9+/zXnXfLN6XSN1Hq9Wt7p7umfGMZzxjG9nxxPCZtbPGJrCzcAwjSP6IYyC7wcII4kUSYIFdbHYc23C8MbzOOs56x/Z6bPecPT19674p3lexDtZd9V5P/ii2JEokRbElsVv1fICCWPW+9dZTFMlfPcfv9wgpJYqiKIqiPEjb7wYoiqIoyseVCpKKoiiKsg0VJBVFURRlGypIKoqiKMo2VJBUFEVRlG2oIKkoiqIo21BBUlEURXnshBA/JoS4LoS4JYT4jS2OB4QQ/3bj+FtCiPGNx18WQpzbuJ0XQvzkbq/5RN6HypNUFEVRHichhA7cAL4ELADvAP+ZlPLKPef8KvCclPIfCSF+HvhJKeXPCSHCgC2ldIUQA8B5YBCQD7vmk6B6koqiKMrj9jJwS0p5W0ppA38MfPW+c74K/MHG1/8O+KIQQkgpG1JKd+PxIJ3guNtrPnYqSCqKoiiP2xAwf8/9hY3HtjxnIyiWgQyAEOIVIcRl4CLwjzaO7+aaj53xpF/gaenp6ZHj4+P73YxPDM/3kYChqc9JivJx99577+WllNnHdb0e0S9t7D0/v0rpMtC656GvSSm/ds99scXT7p/b2/YcKeVbwAkhxDHgD4QQf7XLaz52z0yQHB8f5913393vZiiKojx2QojZx3k9G5tXtC/t+fl/6/9JS0p5dodTFoCRe+4PA0vbnLMghDCABFC89wQp5VUhRB04uctrPnaqG6Fsy7Edauv1/W6GoiifPO8Ah4QQB4QQFvDzwJ/fd86fA7+08fVPA69LKeXGcwwAIcQYcASY2eU1H7tnpiepPH6VQo38QoEjLx3c76YoivKYCW2r0ctd8nc+vLEy9deAvwZ04PeklJeFEP8UeFdK+efA7wJ/KIS4RacH+fMbT/8M8BtCCGfjlX5VSpkH2Oqae38Tu6OCpLKtzECKdH9yv5uhKMrjJgSIJzuQKKX8S+Av73vsH9/zdQv4mS2e94fAH+72mk+aCpLKjoT4CJ82FUX5WBJ8xJ5kF1FzkoqiKIqyDdWTVBRF6UZPeLj1WaGCpKIoSrcRgBpu3RUVJJUtSdkC2UBo6f1uiqIoj53oLN5RHkoFSWVrfhX8NVBBUlGeSUJV29oVFSS7jPQbIHSECOx4ntCzoD+2KliKoiifSOqjRLfxFsBb3fSQlDbSW9unBimKsi+E2Puti6ieZLcxDj2Y+ygb4K+onqOidAshQA237ooKkl1mq+IAQkuCpirrKEpX6bIe4V6pIKkoitKNVArIrqj+tqIoiqJsQ/UkFUVRuo0AoSru7IoKkoqiKF1HqOHWXVJBUlEUpRuphTu7ovrbiqIoirIN1ZNUFEXpRqonuSsqSCqKonQbgSomsEsqSCqKonSd7isvt1cqSCo7klLitB2soLXfTVEU5XFSQXJXVH9b2dF6rsyN927vdzMURVH2hepJKjtK9iaIJML73QxFUR431ZPcFRUklR0JIdRQq6I8awSqmMAuqSCpKIrSjVRPcldUkFQURek6AlTt1l1R3yVFURRF2YbqSSqKonQbNSe5aypIKndI6YOfA61XbaOjKM86NSe5KypIKvdwwFsFLQ2oFa2K8kxTQXJXVHdBYaVc5fpqHiECCOs0QqgAqSiKAipIKkAiFKQvFr1zv5QrM3V+Zv8apCjKE7ZRu3Wvty6ihlsVQpZJyDLv3A/HgiCT+9giRVGeKLVwZ9dUkFQeEAgFCIQC+90MRVGepC7rEe7VUx1uFUL8thDishCiIoRYEkL8jhAifc/xfyCE+L4QoiSEyAsh/koIcepptlFRPoqZy/OUcuX9boaiPJQUYs+3bvK05yQ94BeBDHAaGAZ+/57jMeCfbDw+BLwPfEMIEXrK7VSUPYlnogQjqheuKM+KpzrcKqX8zXvurgkh/gXwR/cc/5f3ni+E+J+B3wSOAh88lUYqykeQ7k/tdxMUZXfUss1d2e85yS8CFx5yvAHcejrNURRF6QICNSe5S/sWJIUQPwX8MvC5bY4fBv5P4L+TUla3OedXgF8BGB0dfUItVRRFedZ0XyrHXu1Lh1sI8TPA7wA/IaV8f4vjx4FvAv+rlPL/2O46UsqvSSnPSinPZrPZJ9dgRVGUZ43Kk9yVpx4khRD/EPjXwFeklN/c4vgLwLeA/0VK+c+ecvMURVEU5Y6nOtwqhPh1OqtXf1RK+c4Wxz8NfB3476WUX3uabVMURekm3ZbKsVdPuyf5z4E48E0hRO3D2z3HfwtIAP/7vceFEJ99yu1UFABajsviemW/m6Eoj5eg89d/r7cu8rRTQHb86CKl/OGn1ZZutVats1yu8txw/3435WPL9Xxu5vJM9KRxPY9aq73fTVKUx0/1JHdlv1NAlKcsEQpiGfp+N+NjTROCaMBC1zQCpsGRfrUoTFG6lQqSXcYy9DtBslqqEUmE0bQuGz95CE0TjKRVgXflGad6krui/jp2KSklM5fmqZcb+90URVGeMsne67Z224If1ZPsQqVGk5lCidOfPqJ6kYrSjT5cuKM8lPo2daFowGI8nULTNG5fmKVeru93kxRFedpUMYFdUUGyC5m6TirS2VglkghjWGpAQVEUZSvqr2OX6xtTKzcVpRt129ziXqmeZBeR0kZ6azueY7dsbp2bxnO9p9QqRVH2hfgIty6iepLdRNbBz4G+fe9R0zUi8TBC67LfBEXpNqonuSsqSHYRoaVA62wK7NgOQghcx6NZa5HqTQBgmAYDE3372cyPLSmb4K0hDLUtm/IJJ0CqccRdUd+mLjV7ZYEffP09qoUq66vrDxwv5ysUV/Ncf3cKz1NDrwBID7D3uxWKojxFKkh2qdFjwxw4OUp6MMWBU2ObjvnSJb94C7tynlRfQuVSbhBaFGEc3PGcWttmrapSapRPgCecAiKE+DEhxHUhxC0hxG9scTwghPi3G8ffEkKMbzz+JSHEe0KIixv/fuGe53xr45rnNm69j+m7sS013NpFpJSdL7wpTGuIoUMDrK+Vcdou2eHMnfOqzgrJwzFS1jhCSyH2MHfh+m00YaCJ7qoT23IcKq0W2Vhkv5uiKDvaebuJj0YIoQP/EvgSsAC8I4T4cynllXtO+y+BkpTyoBDi54HfBn4OyNPZb3hJCHES+Gtg6J7n/YKU8t0n1/rNVBehS0jZBOddpLQB/Z7HQfr+pnNj5gDJwDjCmwL54FDsbpTsaepu/qM0+ZH4vo9/3/vYDz3RCJPZzMNPVJR99RF6kbv70PwycEtKeVt2/uj8MfDV+875KvAHG1//O+CLQgghpfxASrm08fhlICiECDyGN70nqifZNYJgTKJpAdAO4DouTrtJskeC6Nl0piZ0EDrSfA6w9vRq6cBBtF1+BpNSgl8ALY0Qe/vcNn+98zs1dmx4T89XFOWR9Agh7u3NfU1K+bV77g8B8/fcXwBeue8ad86RUrpCiDKQodOT/NBPAR9IKe/dr+73hRAe8KfAb8k7Q2RPhgqSXUIIASINQL1cJ79YZOb6NY6+3KJ38EtAcIvndD68Ld9eJZaOEk3ufghRF4/yo+WANwtaBAg9wvPuGjiwu6kJKeWeho8V5Zny0fMd81LKsw95hfvdH8x2PEcIcYLOEOyX7zn+C1LKRSFEjE6Q/M+B/2t3Td4bNdzahcr5KoZl0PuCQdVII0QnQLabba6fu4rtPt0VnEJYCOtFhNhbgASwghZWcOder912uPjdq7QaahNlRXnCu4AsACP33B8GlrY7RwhhAAmguHF/GPgz4B9IKafutFnKxY1/q8Af0RnWfaJUT7ILDU724zouKUJ4Lbj+7hQHz4yj6RotI4/t96C7afSNfSeflbxJK2AyfmKEQGhvQ8iK8kx5sl2kd4BDQogDwCLw88Dfv++cPwd+CXgT+GngdSmlFEIkgb8A/gcp5RsfnrwRSJNSyrwQwgT+HvC3T/RdoHqSXWvq3Ay1FZdQMHonzcO0TJ478Rn8apArb97gSQ31SymRzlWkX3si199JPBNTw61K15M82Z6klNIFfo3OytSrwJ9IKS8LIf6pEOInNk77XSAjhLgF/LfAh2kivwYcBP7H+1I9AsBfCyEuAOfoBN/feXzfla2pnmSXOnBqFN3U0XWd3pG7C3eEEERTESafH39iwUQIgRQxEB+vHp1050FLIrTYfjdFUT7xpJR/CfzlfY/943u+bgE/s8Xzfgv4rW0u++LjbONuqJ5kF/J9n0a1ydUf3MRuO5uOFUurLK1dJxzbPD8onYtIv7TjdV1/93N9whhGPIEgWcqVqa13kvmrpRp2a/P8qpSS/FJxm3QRf+OmKM+4j1LcvMsGYlSQ7AK5ao1c9e7QZjmfZ/riHJom0I27PwLra2Wuff829YL74EW0QRDbr251/Ca51hU8/9EW/RTrDZbL1Ud6zoekO0u7PrfpsUalQaveAmB1do1KYfO1XcclN5fHue/DAYAwxhBaYk9tUZRPGin2fusmKkh2iQ+nF6VskkxMc+SlEQLhALc+mKbV7PQAg5EgR188ypHjpzY91/cl00WB7W7/42JqIbLBY+ja0xtC9WWImYvnqJXuBsqhgwP0DHWS+Q8+f+DO1+1mm1KujGmZHP/UYQKhnXOTpV9FSlWzVnmGPeGydM8KFSS7QG8sSl88CtBJs7BOE44lGT4yyA/+w3us3F4FIBgOkO7v7BJyfwUbiaTu5ml55W1fx9QezLV8mHQkzEBib3OAutnL+MnnCMfDAHiex6XvXaVefrB2aqPSpLi03FkwJH2k9DaqD23DvQFy+/eqKJ90qie5O2rhThfyXANwCQQtfuJXf5R45sEgNXNpDtescPDocTTNYDKboeos4+9z78r1WmiyiND7EELHCkrwi6D3oOs6I0eHCMUezLdM9SVJ9obBWwUEeIsgq2AevzOXamj39C7NM3uu/rOVD1cKq5W1ivLJooJkFyksF7Gbzp3FOpom6BnO3MmH/FA5XyE7lqYmGvjSQ9uonhMzB556m+9XaN8gRolQKA3ooI/y4WIb6S0Sz2TuBDcpJU7zNmYwi9DinYVCRie/WeqDQCfgV51lhNBIWnf3iXzUAOn5PpoQ2wbBsjOPlD6pwPgjXVdRnhj1eW1X1HBrF5m7usTy9CqDk330T6ZpezXs5oMrUhdvrSBdwUD8+Obe1cdAT+gYodBn71QJEkKnk1cM+DWQdxfkrK9VmL4wx1Z/DTrP68yfJq0xEubIA+c8ipu5Agul7YdnI0YvUbP/I72Gojw2AtDE3m9dRPUku8iZL5y883XdLWNlbW5fmmX8lQzJ4CBCCCrNFt5IHCspabolQkZq2+tVSzUWbiyRzCaeWlUe/cOAuAVhHtl0P5mNE469BsKi6qwSMTJ3esWbnrdN78/26njSIWQkH9qu8UwKbYeh1L3M1yrKk9Rtc4t7pXqSXWL2yjyNavPO/YjRw2j2FP0He1iamaNlVym2pwkYBq2FdSqVEqViYcftp8yASTgWxrG3SBn5GBBCEAgFkHi0vBKedHH8Fo7f2tXzHb9Bzc1Rthceem7QNLAMHcfz+GB+iYb9YIrJTqQ7h/T3lgqjKMqTo4JklzADJmKLYZLSYo3pb+dYvPI6N96+hXRcRvszRI0s+Ws2rfr2BQKC4QBjx4cZPTq07TmPm+M3WWtd27SAqObkdszPbLhFEtYophak7uaoOaubj9sOpUbzgedFzCwJcwj5wOYF2zM0jaFknJo3S91Z2/XzNgqFPcL5ivIRqWICu6KGW7vE4OTW82GHX5igVa1TLxdY+KCB0bqGoev0jZ3i1GePfexWY+rCJKSnEdxdnNPy1rG0CPo2e1+6soUhO3Or9849VuwlJJJWK0Gl1SIVfnBVrKVHsPTdbxEmhKA3FqXl9aI/QkUhYYzt+lxFeRzUcOvuqCDZxaSUOLZL/8QAty86lPM5KmtVCsslesd6SGQTROJhmhsVbEKR/Z9X04RB1Ly7d6QQgp7g4R2fs3nVqsDxW9SdNUJ6ipnCOgHd4VBvzw5X2FqnhrO25UrYoB5/5OspylPThUUB9koFyS7iSxdX2lhaJ/m+Wqoxc2meUCxIvVTn0AsH+PR/+jJLU6tUS3UKzRYnjo+TXygAMHLkwWFV6dwEfQChRZ/qe/kofN9HSp+AHmUosXVvb2m9Qk80gnVPeoyUHsjm3ffq3uyU6jNGt7yGonxcdXYB2e9WfDKoINlFmt46dWeN3tAxAKLJKKNnxnFsh8DaOulIuJOQf3gQ2/W4spzD9rwtgyN0KtxIz3wgz3I/tL0qphZGE1u3xfXbCKGjC4PLS+uMpbMQgGjgwSAppaTSWCIeSGMZnV6r9OtIbw38JUTgtc6JxiT3T9BIvwG4CE31JBXlWaCCZJcorpQwA0F6kp2hSd+XLKyXWS1XSNqClpBMPDdGYbmE03boH+/l+ZGdiwcs385hNwUTzz04l/e0ldozhI0sISO5Kd2i5ZWpu3mQEkMLkbCGONSbIWxtTiWR0r6TNymEIGy0KdaKREMbQdK5AO5tMO/Wtd1yFxNZAr8BKkgqH3eqJ7krT3V1qxDit4UQl4UQFSHEkhDid4QQ6R3OlUKIX3yabXxWtept7JaDQOPSG9dYWM6zVC5SeWuWylyB2ECCiu9gWgZm4MFcRM/1WJnJbUoJGTjQy8jRQey2Q3Fl5220dqPUnqHm5Pb03L7QSTzZfmDlqi4CBLU4MXOQiJ7B8Tzytcamc6RfBufcnYLmUjbJRur0xIc37rtgHITgVxDm5uLv9xP6EMI8tKf3oChPk6rdujtPOwXEA34RyACngWHg9+8/SQjxMvDjwPJTbd0z7MPVrbO3l1lPGEQCBpYzzeipXhzXx1isUrq2zLW3b23aPgs621nZtkNuLs/S1ArFegPfl+iGjmmZtGot8ovFh7ZBeisbi122FjJSBPRHn9uUsoUQgqQ1ummRDnSS+CNmlqq7TN3L07RdbuXyeP496RYiDuYpxMZQrRAhgqGThAMbbZE1hDeH0GK7Wu1bqjdZ2WL7r6a7zlrr+iO/P0V57ARqF5BdeqpBUkr5m1LKD6SUjpRyDfgXwOfvPUcIEQB+F/ivgEfbnFDZkWHqhIMBDo/1o/ka3lwCQ4Y4cGIUYehUogIj7uNL704eou26TOdLeLrGxHNjOK7P7XyRlns32MUzMQ6/OLnja0vpdYqLy+0T+YN6AnNjUdFuSb+GtN9DSgexTe3UcrPF4lqIuDlE0NQ51NeDqd/90e88b/OQ8b1zikJLgnkc6T+YS/mhG6t55ovrAPhS4snNOY+VYhUNE8tPkZt7lPxJRVH2037PSX4RuHDfY/8T8LqU8s2HfWoXQvwK8CsAo6NqheHDJHrumSeLwUs/chbHb1Aor3PktVGuFz5g4EAGoVco21UoJ1meWuHFVzfKvQUsoskIB/bw2kLoYJ3e8ljNyRHQY5ja7uc2pWyBexOpHwRkJ/huU7IuZJoMJBIIIbAMg/HM9qX27l5fAu7durDeMleXVhnInMYvtyivVRg/OQISdENnMBnH0DqBNxMNs7ZQ4PbcLCMns+TqN8lf0kgcdbG0CAuLC6SGXsPU9z+lRule3TZsulf7FiSFED8F/DLwuXseOwv8DPD8bq4hpfwa8DWAs2fPqnIlj8DxHEqNOvOrs3zn669z9MgkfYleevqOMXd9nsHJPqx0EN3qY6V5iZ7AoU3Fzj3pom9RB/VepXqTSqvNWGbn2qe2X8fQApg8ygIgA7RMp9C5+QJihx6oZehkYw8WBJBSgjeL1LIIfIR2z5Zh/mqn5/thYNcPkA2nSYSCuJqO03aYuTSPEIKJ58bwqi2sWKizulWEiGeitGotps8tYcQDpPti9GWSrDavcPCFA+ja9jVoFeWpUEFyV/YlSAohfgb418BPSCnf33jMojM/+V9LKWv70a5ukquvcGFxlp7AKIfPfp5PPz+J7hvouk4gEMLQLXRDJ5ZIYHjepsLinnRYbV4mGzy84/CorgksQ0dKueUwqGM7GKZBOvDofVMhDNAHN+6Ekf46kiiaZlB31vCkS9x6+NZe0lsBJPglsF64e0DLgpbE98rgr9ComSxfbpJ+LUogFMBpu1ghi76xLM7GfG1mKEUqdROMIwRCCfoO9NKsNlmq1fFMwY035xg6foBU9NELF2yn2mpzYzXPmZFBtC7bnUH5aKQqSrorTz1ICiH+IfC/AV+RUr5xz6FB4ATwf9/zBzUF/CshxI9LKX/h6bb02dae9RlYj9P0phgfjSEcCCeDCKExfOhucOmkQ2Tu3G+6JaanrzKQOYQZDiOlT9VZIWL24nliU/J9PBSEhsPlN65x8jPHHmjDzfdu0zfeS2bg4cOfO6k7eSqNb7Luw4HYj6JrATT54I+275XALyD03rtzjsJEaBnQN5eFE0KnXm5x8bvv0ztkM37qFMc+NYJhdq77Yb3a9bUy89eWOPXZzvuT8vk7qSFWwMT3fNJCEokE8aMRIolHm3N9mLBlMpFNqwCpPJourMG6V081SAohfh34J8CPSinfue/wPHD/xOKbwD8D/ugpNK+rCE0QCARoR0s0yz43Fr/HwIk0Vji9qczbQqmM6/uMZ1LUKw2WpguEo1ksPYzddnAcG8doUG7UubVW5cXRQZCS8lqFdH+KSDLM2Imt92ocOzVKzfvoO4g4fhPfOEhaBNExMfXNw7a+OwvODXAugHUG9N7OrhvSRki3EyiF1hl+dS+CfgBXhjHDAYLRLJd+sIgZlowcudubLq6UCMXDWCGLgy/c7Qnfnzs5fXGW1dk8pz9/glRvgoZbwPCCd+rBuq6H76xiBvsfeaNnAF3Ttqw5qyjK4/G0e5L/HHCBb947/CaljMpOktqmPYmEEB5QklIWnmoru0D/eC+Xvn+RsJUnnTzJfK2GFIOEjc4fed+XrNtzhIMJ9I25QsPUiSXi9I93EuxvvD9Ffb3BmS+cQkrJiYEQuqbRqDZZmc6RyMbRdZ1Yauu0DmEZLK2WyEQjGPrWAaIzx6fd2WR5KxEzg65ZrDYu4uPQqx8DBMvrdYQQDEQkeEUI/SzCGEQIHQkIBBIdIR0QIYQQSK2P6Uur/N03LzMw0ceLJw6Q6Iljtxw8z0PX9U7O6HSOUDSEa7scenHivjaXQCQRQqDpOgOHkyw3ckTtMIvzcwyMjNwJkrnZZeqFCxx86QuAWsijPD1q4c7uPO0UECGlNDeC4p3bDuePSyn/zdNs4yeFlD5Sbr+N1cMYpk48laI+f5DF61VOPncEUYSg1llkM5UvMLOaxxcF4sFO4JSGTmYwRWG5Uzgg1Zekd6wzvyaEILJR4i0cC3H81SPo+s7l6sKWyZmRwW0DJAD+Eng7p8uaWpio0UvCGkcTOqvFW5y7+hegVYlYFsIYRgTPAnXwljrt1eIILUa7aVNafBO58RpC78MKhclmE/gNm8JyiYGJPlJ9Ca69dQvf99F0j2Mvp0n2xckvF3njP36HuVxnkbaUNri3QDZZt+cZfj7B6NEowVADz/XQailC+t3h5b7xAcaf/9KOHwIU5YlQeZK7st8pIMpe+Wud4GHtaiHwHfVKg8tvXCMYDXL0pQMMjq1y4XsrrOf6aVRaSF9iyzrZQJDSJYGTbCMDfqdSz9IKoarL9MwKX/6xs2SHMg99Pc/1EJpA0/b4eUzfOf/yQ0IIUoERPOnQbLhEW9foC2uY5kbwMSbBrwI60ssh/RrCGMNxBqnVJSntbuAaPjRI70gPS7dXWV65zfT6Mj2JEYyAxvy1RUaPJpDuLRKpQYYO97O2vEw6OownHXRhIc2znQ2ftTaaMAkEexgLDFBtevgD0U0fHnRdf+iHiftJ6ePI1p1C9YryqFSB891T65s+qbQsmMcf+WmtehvDNFi8ucz3/uxd3vrrVSprS1x98zLRZARH1LlV+B4L16dJppJEGKDUnkNKn15b48J/PIfn+YCgWuosQp69unCnd3m/uasLLE2tbnnsYT5cFXv/yljpreLbFzfOaSOdC0hpU24vcqn0/0K0xuEz/wmGMbCR7wi+/Q7S2xi1F0Hw13CaU0RTEXqHTC5+5wLNWvPO+yg0p3D8GkNjY0SCSdbsK2QOmiRHQ51eqHmCeqVOpF8wdNYmZNa4Vfk7KvYyUnZK9+laAMdvbKwGvgRam1ggsPm9ODeQ7hyuV+7kfu5CyytTbE3t6XuqKHeoTZd3RfUkP6E6izx2v6nvhzIDKdL9Scr5CuVClfxinETmDO1Gm3hPjJqzSHnKJ22GKCwUaDea1J0Co6MhEtkY+liK1147Dq7Hhe9c4bkfOk48EyMYvtsWKSWu42JaJkOHd5+acG9e5fLtVVr1FgdObV51KqXsVNnxmrTcArpsUbTXSWs+UauPYCveyd+U7U7Qca4g9UFw10DeRJrPI/QkwjrD1Nu3yA6XSPcF6TsUp+00WJ7NEcsGiEV7yB6Pb+SGjlNzhqg6K9iUicsMQotTXI2xMrfKkRcGEAGLTGCS1cZlyuYCI5GX8KVD3c0TMbJkg0c66TL3jaq6pKk4eVz3ItngEYR58KHfp075vthDz1MU5aNTQbILCSFIZhNEUxHKuTLpgRTX3rrJ2997l/FTMcL0M/n8OAMTfYSiQVr1NjNX5rCCJiePjBKLhrGCFtnhDK7jkepNbLp+cWWd1Zkcx189grVFsfTt6Jq4Uy4uM5jCc71Nx6X0KNf/PaZxilW7jOmeZ8DKYBljGJqFEBrH4l+G5p8i3Z5O3qO0ofV1CP40yAJtO4EuFjFCCSZPH6TVaLM8YxMcNkE08A6d5/LiDUKrx0meXCFljRMwYphahKq9gifbJK0RwkaaseMjxNJRwvEImmERIUjNyNMX7KSDmCKEJ21c2aJiLxExswT1zveqUW2ycGOJwOEiEofB0OcQG4t56s4aCEHE2D6fUntIIQdF2VEXFirfK/Wb1kWkXwYRA9rg13HaUQpL60w+PzdeY7oAACAASURBVI5vacwuX6b5eobhyZM0qy2mL8xx9JWDaIZOvjpHb9Tg+ODd9JAP67XmFwtYQYt4ptO7SfUliCYffb4sHgp2cisBK2h1CqI7swjzKACucx0NgYWP8G4Ql1Ec7QWazgxR2Ych2+DOdQIjoU7Kh4iA6IHGvwG9j4XrhxDem/QeeRvhfZX3/2aW3iMRpOvjyDrr7QWGYy9hBtqsNC4SNfqw7Qbr9hyaZiCkRlBL0naWqDW/QTL5CmtejZR7tLODifSx/SaedAlqPv1aHYFN0EiiE8DzbXTNwgwYpPqSpCLD6BspKB/qfL23v2Ce77NWrdMbi6rcSWVn6sdjV9ScZJfo5ADeQPplVmZmqZRmef/dG1gRCyRoHmizCVYl2L0OX/+dv2EuX8IMWORm81z9xjxO/sF8PM/3abUdps7PUCl2dr7QNI1AKICU9ra7fjh2J6Wi0zYXab+D9DcXWpIihq/d7U2ttmZoksSwhhmIfJ6yu866M0dv8NjGZssmwsgggq+CdQi8PDhXQQyAFgEMBsdtCvke5isGpVonTWXwaC8hPYrrtxiLvUoyPEQgrtFsRbiRm2Wx/h7pwAQT0R+iJ3iEkjODoaWQfoTr1dep2Mv4SGy/Rm/oCBIfiUfNKbNYLrNSLqN5QVqt75JrXgLAdTxqpRpX37hNq2Fjtx0ufvcqrUabsJEhbNzdQU5KSanevDO/uhPX88lV67j3bGmmKFtRW2XtjupJdgkhBNJ8Edfx+NZb56gurdMq1Hn5h09ye62I73vU1tuc+tQwLNsc/8xR2uHOj4cm4IUfeZHhiZFOAYG2Q369hl9uIgZi3FhYwbm1xsTp8c0v6t7G8yyazd4HciXnri4SigYZnOxHCANpTILY3PusuWVsv06P3oP0S4TNYxh6mLpXZ61dIGoNkLKGKbanKbZvMxQ5Q8wcBH0Q6VUh8AL4Psg1RPi/AL+Ap02hHzfI27MMD75K39ABLOHh2re53V5kLPoqmeBBcs1rVL0ZbFGmbdfxqg49wYNUnRWWKkX8xvMkY4eIRtKEjTT51jV0LYDtN0laIzTaN1mpf5tKM0u+tMDhTIhaqUrYd5FHOh8cDMtg9NgQetBHCBg9NkQg1JnbtdsOru0SjoVoOW1url7n9MgJAubOw9cB0+C54f6P8JOiKMq9VJDsItVinVypwvjZAwxjkZ8rMHlmnNe/eZ7KlRXS/UksP0rPaJ30gEErN0K71eLCd68yfnKUaqlGvdygmK9QimhMJmOENJNo1SXzwgTRRJjiSolGpcnw4UEwJpi5PE9x+QYv//gLm9oyemwIjVWkcwVhHkdom/felu4MIa/N+lwIb6KJJm8hRBwdH91dpO1OoWkpevQkEfs8UrfQ/XWkH0B6ebAvgD4K+OAuIM0KQkTAb6PbYWrLAxQyZYLyNj1mL2t2g5ZXZKH2Lpbm03TmiAcDJM1+mrJIUE/SdNdBaPSEemhbSxyIv8i6Y6ILjZa7TMw83Xk9oO6skrYOEouWCQUtemJx0sFPYfmdFbahSJDeg3EEGiV7BkuLkurpFJzypUtxuUR1vUr2uEVMT3J2WEMYT37gx27Z5OYLDB3s39XemconmPrv3RUVJLuI5/kEPHjlUOePsWnoVNcbBFJhyqUqYwcHWJ3O0XcwQ3He5Y3/59scPjvJwGQfPYMp1nNlRo4MEYoFGfQ76RmVtQrxZBQraKIbOgWnzVKhSP2dBkdeOkg4HiA9MPFAW0zLRMosyLuLfqQ7B/gIYxy0XoTu4DnlzopW4iSsA53cUPMoKU8joGcQQiMcPE2o/nVwVpDihwG9My/p3AYtjLReolLwSWajxIJjHBhxcRLL+JpLrnmZIC6apnEq+bMs2xdZqr1DQASJGn00ZY6xyGdJB8fwpEPZnsc2muiaSa71Ad+fvsRXDn+VGEV82SRpjVNs3yYZGMGgApFXSDk+FxfOM9Y3Qig8gRAGl9+5jJW1CQaCiFiLpNVZxdtwi1ScJfrHT9LjJ6k4C6CF0PTncP02hni0nMpH5fsS13a3LUqvPDu6bdh0r1SQ7CKp3gQ33p1i7toi8UyUWqnB0OEBRLNCu1onlonSM5hh7VaT6cvzVJw2iWwMDY2e4TSm1RnqazdsPNejvt7gg9cvYgYMXvxyZ0spWxM4cYtgtDO82j+Uo9nyaNYChKL3bWwsAiACnQ2ZcUFL00lzBqGFMSw4cDLRmdf0LCQSQR2p9aLpWSpegZgzjdB6O/tJ+kVk408QwU8hIj+LlA74LZzyXzB3rorzwjCp1Bcx9BoJw2U0dAI39Dz59g1i5hEa7hrV9iIhPUXVt+kzBL3Rr6KbnQVJs4USEauHUnUJXa4xXYkRFy9T9yqE9S+StHq5vrJGMgaJcB+SGIIgjfYUxzM3aRtpXBnAd3yWxN8Snhkmrh9n4swRAhsrW33fv7PjiidtZtZaDMaaJKOSYnuagdAphNAo1BokQsGdqxU9hPSL4K8jjLsfYoLhAOPb1NpVniFdmO+4VypIdpkDp0axWzatehvTMrj+znVWK1cJRkzmC+ssTuf44s9+GtvzGJ7MMDIxzMqNZXzPx2476LqG3bQJxUJERl1e+OIw8ewYiZ44vu8zoFskB/uo2w6F5RKFhSDBmIZpVR4Iknf4OaS3itCHEXpnoY70GwitswUWIoir9eNLm4B5HKQko7tUfR1hXwDzLAgPX3+B1eabJDxJu/k+Qc2kbi/Qoy8y8ZLOuj9F23sFRzZIhz9FG4nvt1hvz1JuzzMQPkbW0HC1MHW/jNv+Aa3QBGH9GMgKHlO4jBKyUswVW1xZWWA808ti0SYThkxUJxYMETNSyPZFhJzH1XqZLQ+RjL7MmDWJY7vcunCLgfQA0Ug/kVgvkehG6oebZ611hbDRR75WRzPXqLmL5Gtp+uJ99AaPUm2vY+oh5krrHDQyxPTA1t/TXbEemAdWuodUIwW7ooJkF1mdXePS964ihOALf/+z3Hhvive+cYnsSIa/98uf5cr1Ba6cP49ru4wc6sduOlx/8zqjR4dpVFsUloqYAZNGpUmyN0Ek5hFLZHn37+axAgZHXznE8u0ch89OYKZMHNshEBojmuwEASmbID1wp0AfROhZADyviCCG8OaRWppS+ypRmcPWD9Fs/oC4FcfWT7LavErIyJDRj3B79hxecoHDloOpZ8EYR/MrpKxRTM3Ely1M2oSs0xSas0gZJqZXsVt/R4AYldb7nG/XiFuTuJ6DS5uo0Yuv9aCLJLV2gTU5wCm3SVhcpGIHEW6GUChKoXaFwcRB1urguTqzaz6kHQ5mJQOJGO/NLjISnsPxqiy1XCayHro5QNtxmL48RdWfZ0i+hhYwCEY6Qa7u5qm3KwT1BAsFh1ozx0sHejjWG6LVCgItdPcSV3JtspEhzox0dh7JLxZw2i4DE307/t9/+L0X2t0FVJ2vty2drCgKKkh2lVa9xcBkH9Fk5w+jFTI5+ZkxNE2nUW4yMZxFvniIS9+7Rn6pwOBkP4demCAUDXD7/CwTp8fwJbh2jup6jUiiFyEEk6ejSCAQCnDitSNAJ21BN/Q7ARJAujmQLYRxoFMabsOavUbcmiRinQHAFEEEJnW3QMGpEQkcJmoOdBIrpI3nutj2ABPhA5jetztzj6IG0iUoYpRyNzHCKyxqMdKRQWzjENXmB6QCR6i0btDwAujGBGFxFcdbBJElYQ1TaN8mpcPV4nvkq6MMpkNUynnCyc9xbqlEwDRo2HW+dWuVYEBnoifDaqXKrbUS/YkYhVqdm7kil3MXaaTinOpZIdJ0qayH6Mmc4dziMvlijTOnj7O+ukxfduTOqt+Kvcil1VscSp1hKJ4l2OOBcAhpKc6vzoPMMJya5MWhBLrQ8HwfXdMIhAPoxi7mKb01kG3QDj2mnyblE091JHdFBckukJtbI5LoVMnxpcRu2SzcXOLa27cIhVzqtSYzl+dID2Z4/ounCIUtzn3zIuVijevvTDF0cID+A724jkdhsUi90uD8ty/z5V/6PNFEhHR/Csd2kFLie53Vncu3V7n+7hQHTo1QXqtw5gvPITQDfA9kDfx1fG0Yz/XIhl+9Mw8npSTiT4ExRq+VpdcMgT7MUv0HhM0BkuYYde8mBw9lCMsS+CZoYSAF3hV8+lldWCTYcxkROAjWB+h+kBh1llqL9AVfYq72XYKeSYsIQRHD9ho4XgvPtyn4LTQ/ygvpUVbtKDfXe/nmze8jRQbflxzIptGMfhq2y59+cJlTQ/0c68uSCocoN23y9Qa2HeA7Uw2kfoKTvcepNDwKc+ukEiHsWIRYOE30MISNzo4rdssmGzzKSwNDmIZGxIxRbKzy11cv89kDLzGUraDrKYSWwQTaTptzC8s8NzS07TZk9xPG/Vu1Kt1MFTjfPRUku4Dddgm6PnbLJtWXJBCy8D2fYy8forC8jlgrEQyF8HtCXFxaYSIcxQyYDB3sYeXWDVzXw2m76KZBOV+hul7nx3/5RwgGHHyvhJAF3v2rFXrHh/E9HytoEghb9AylcdsO9XIT1/XQRAahpwAXhEd+oUApV+HQi2P40kUX1saejjEQmc4KVS2F685Ra1/B1MJcmPkb6pUrPHd0Ep8S680GEeNNAuYx8OvUW1cJDS6wap9FL9xkuX6JSOYV+oKnGLVO4Ng5LMIENDDNMA27QMNvQmuFtDXKcrvMXLXAzNJpSs0Mx7Iea9UmplGh3M5Ta7eJhoIMRqPU2zYT2TSVRovpfIkfOjROb9xgrRZgMJ4gZvTRcA3KjRKi4mDGMqSG0sQjYdq2AE/Dkx5X37pJ31iWtlMnODBPyPOJB36IydRxImaA20WTZOLur6olVjjaUyVk7b7kn6I8QAXJXVFBsgsMHxoAOikgsWSESrGGFTAYOz5Cokdy4+2rrCwkaOaKNCI6AbOOrgkmT4/QN9jAMCXruXVEXqPVsGnX2wQCJtXCLJEoCNNg5Pgwmh5g5fYaB188gNNyGDo0gK5rmEGLK9+/TmYwxdDBTlvyS0VC8RDJ3gRVZxXXb5IJbhT3Np8H+43ObhrmCTRhMRz9HK32OUKBLOHEGW4s5emPlllt6EzEemiV38SLhnFJse41Kcnr2EvXSfeGcBKLzNWPINrvs9D4AboWoi9wlogRZ9H+Dqv2GuFAhIVynVbzU1TWqhzPVnl/XuLaeXytl/nCOi+M9aGLCC+ODtKTaDKYDVOqLzC33iYV7OEbV24SsKocH4oSMQYI6AaVZptb5RVOj4+QDcc5v7hMcXWdt9/5Bo0lg8//9KcZO5Ol0sihewkygUnKre9wa2WBVDhM0DI5PXAMkyWkWwItSctNE48O7Or/3rEdbrx7m8nnxwmG7y7y8aWr6r92M7W6dddUWboucf3dW0ydm6FZazF/fZHZq4tI6ROL5+gdG6NZaSINwZGRPqIxH+m1ufrmLNnhMMK7iRXyacsc/QeyvPCl0zRrLW5+0ODtv62QW4zSe2AYvSfGyc8eY3kqR7vl0jOYJtyjY1sF0v1J+saynRJ0UnLu9QssX/sOptUmqgmSZoaKvUS1fQPhXgT9EOCBO4Pwlgj5U6R0ODQ0xshgiPPX5li+ukqyHMPwGjTWmxihH6Egw6yZETQ8/EiY7GAQz1tgqvZd5mpvYbsthO8z07jMrerfEtBfIpfrp10dwiZMT9IjX7O4tAKeDwOpk9hOgNm1GvhRPnVghOVKjeqKjluMIPwIq+U2qXCQ6XyJd6frtFoxUvECq82rpKIeLw4fJxNOE7JMxjMpSqslhhJJXv3CKO3AKjLQwo9USI4GEFoAI/DDDCUS1JoLOO2LCFml2LRAS7GWP8f5+Ska9u7+3w3TYGCiFyu4ude52rzSKY6gKMqOVJDsEpnBNM997jjRZISRYwMEhxq0vCpT61O4YZOJ58ep31xBq5YxxetEei4yN3OV6Rmdhell+ici1JwPSA14GPEg3794k/X8Kp5TYPHmChffvsnlyzPU1+sEB2Isyjae5yF9QUCfxY++jTAA5zL4q3zmJ2JMPD8GIoTwFhHebQzZxPCXkfoR8HM0XBe3PUelrXVqsLY/gOrvETCDfOGETn+vze1LkmJ+hP7Jk1Tat8gvVtBbTVxrjdHDcRwtzKLjEg40sLQAIT2GBfRZGRLaAdYbEUwR4FuzFWZzAd64WWSuUOLiaosj/T1YpoVhWJwe6cPUdH7/jfc4P7tMueHw/kyOpZKgVPd4e2aRtWqNU0P9PD88wFLJp21HKTVcAqZJvnkdxy3jLZT54O8ukeqbpH/iGKuFFMI1GY+9RsRIoHnTRM0kg6kEzw1YGEKj3brMarVG0w3z/fNhou0EkcDutkkTQpDuTz2w6XVP8CBBPf74f9CUTwxVu3V31HhLl+gZTNNwC1RaRbx6jFqpidG3QsBPUKtptP15Xv5ii+OfWuTid2ym8gHK2jrVwk0M7QimNcBg/Et8608u0/f8m7Tn4/SnoySyBumhETRNw3NqWCGL8vklBkZTLFy7BVoE4UYxRAXhV5HGMI1WgPXGCradJiWnSJjjCE0nJFLACEJY1L1+qvYbOLbOYjnDK4N94BeQwke6C4xmHEgbrMxdoLIapeC9SHZgjWMDi9SEzbKfZdFuo0sdzWtQ9aZoYxPiBE2WKFZ6McQBTvcPsrp+mpl6gaVGmGurZXqjaQyzSUCs4No54sHnmas3SQVMWo6L0Op8a3kWK2ZRb7X5dE8votTimtMkFQryZx98wERPglcmxik7MywuLyFnq7jReUKRGAdOjdI3PshsIYcvHULaMlL2IUQAaZ69U+lGGCMgDBrFGkszK+QrM5wYazExsf0WWjvxXA9N1xBCdPa2VLpblwW7vVI9yS5SnGvQWjOxeiQ9o2kMc5zRgc/hOR4L03PI5EEWa4cIxg/QT4gzk0GOHq8xPimxAibpoX6qpQa5q1WOHBpj/LnniCQP0qy2SGbDZLKLhKM+B18cI5CZon/oLcIRl+zIIP2jryH8HPg2mhGgxUHy5TYBHKSsslLJUS2XEcLCky4Vt4QV/jKm5RNZf49GYwVEgao2QKX6xzS9FWp+P0veEOVmH7m5AuXFHKVim5Y+gOaV0HDxZJO2FiBrDqGjU20ssrY0yGoNlmpXOLcwRyQ4xe18jeVyGYCeaATpx1muG3x72uVmLs/cWpHf+5sfUKjU+MrxPnzPplRrElyqs/wfLvHCsXH0UpuZS/N8eug247HrhI0YfaEjBAouertEI/gBtvE3GEaO8tJ3sRf+jMlsikDoZZBNfN+/EyBvnZtmebrG9MUcFy7MUVxbZzwQwyvqaFsUEJi7tkh+qbjj//+tczOszecf/w+W8omkepK7o3qSXaC2vk4kPIsVTlMVK6StIzTXW8wVZxmZGOPQsRMcOtJHizYr+RC3r47ROxnFjyzy1jszZLMf0JftZ/7aRYSTJ5U4S3Z0FN+ZI5YM0qpMI50+0I8iZJNgKIVjj6NbR1i7WuD2xRaHXwoR6UnQan6PaOAYEz29xMx/j/BfBX2SavEy5cYC8WSSqrOCj0syMAHmLxKdvEowooHxFaIk8WWFQnsB5Lc4eyZLOnKW+fnbVOtxrMHj2HaDWrnJULyHnGhgE6bst4hwmJiZYpkogegtNCNHrpTkB+fD2DLIsViJ98uS+WIFTdOJWRaWFSAeNJnsGWNmNsdzA32s5CN8990ZBkez/PpXvsT70uTd/+9djo0lSWrLhP1F1haSDGdvoNHPcH+D+PFDvH+hRi43xeHjccLRCLWqRUgP4joO7dYHLNxYZvTQWfTwCLFsDF8IVksVPv3p4+iGTiBowUQ/KzO5Tq9Q0yhUaiSycYJhi3Bsc0Uj6TcAB6F16uOOnxjGMJ/sr3y9bTNbXOdoX1btZ6k8E1SQfMa1m22mzi1w9KU0Pb0DxPwo6/M2b33jHP1nV0nkh1i6bhMISUaOj1C/egXfHSAe0QhFh/H0LOvLt7H1i6Al+cn/5ue4+tYi1UKNWqmM066RyPZSvlgkO5YmHi8AQSr1IBUMjr96lKtv3aC0WsaKJSi6DmFxDU1PkNBMKtVb6NUrOMWjBAcFq7NrxPqKtP0Sq/8/e28eI1ly3/l94p358r6Puu8+qu+e7jk4wxHFQxIlimtJ9Mq7a60WsgUYu7ABA/7DBmQsjP1jF/A/C6+xWO16bcuWYFiiRVESKVEiKc59d08f1UcdXXdWZVbex8uX7wj/UT3NnoNiS+QMNWR9gETli4iMfIV4+b4vIn5H5fdQ5ZChPySimeBpoGTRxJC0CtVgFE+NcLP7x+TyBfq9MgfeKN3AZtvWaemreG1oGB7JSB6XbWzvBnWOY/Rs9ivHGQ7CtPoe3b7D606Eoe0RlgPyuQSWYbG9G8GKDLh1uwKmRseE9coac9JGbPfoNrrMnpuhulWjeXsd4/Qe5e0nGDajOD3o1L6K2+tgRROIUBVXW6C+O6Cnt7nzmiSQBxiWQTMY4dbSPqUpg516i/39GjnVYGQyR/h+OL/2sIylJYilIgSB5LWvv8Xyxh6zZ6ZYPDH5PpFEtiDown2RNK0fJITdo6GrKgkrdCSQHweOhuiROBLJjwEyaIFfQeh/82gppmVy6ukTKCoge4QUk2xxi5HFJPXVdba7B1x/boMTn11kr/Mdur0yRniIohiUxj3aPYERjxLNKcw+dp7Keo29vQPu3niRz/7SHLZ9ktGFArWdJr6n4gVhVP9l4mocX19ESknp+CgvfucFrEiMSPEcbnAXRB9nuMvW8g5augS6i0EU194hpIQJgDo+fe8amueDH2XouzS8gBQefeoEMk3L7VEPYrSVDLVOmbx3QCjkMVqYpDpsUatvosRCdJQG7bKKHzfoDV0avThhuYjt98lYfcJaFlVRcIyAXq1Lq+2QmBlh2Oiz/+oOwlJJLxSROy2a6/e4FE2xe7PL9b+8weM/f5HcRJb4MM6wWcRrZbn50nUm57ukcnEGZhp/uIVb3sX3t+lnz1Mz01z6fIp0YRQpJVf+47cpZjx6vS1e+bMGvqmSefIkO29tUHo2iu8HHNQqjI5GiSQOA66ffOoYo/MlZCCJJt69x9jzDtBEDFN/NFeRHxaGpjKaPDII+jvPT+Cy6d+WI5H8WKCDEvn+zb4HqqYigwbSXaHfzRO2Vlk8c5LKyA5Bt0sqe5fR8ShK+BILz7xIrd0mVSqihnOMz/0OO46NDAo0BuOsV+8QzDnMz4+AOku71sVol9FiIbbfVijNFMiMfJIYz7Pvfh3b/zSxWIrzz5ynEFNZq0NXnCQVG6CEn6CUa3J3N0XpmEGuUMJNLdML4PrtG0znIWSoDI04jSBJY/g8aRV6pPBlE49pVp0rpBWfiDnFWHGBmv0cviiQ0gIawy6h2T7SU6ivBdQ2DHKPqUStGnV7kpXlPeLRPNFGDz8lWKk1KYQ9SnqI5noDseMwNfRxMlFS+SQ/dXmSnaVbpM5kkTWNrcE9PHeSr/7bP2XmzAipQp7A85k+M0mnUUEGAyo1hXptyOSIhqnMcu7xLF5QZGv1DtnjFnZvl+p2CysWwswe50pdY35eJxqNs1euMXG8hBEy2Fkus3W1i3muy+j8oUiWpgoM+0MUVSGeib1rzB2/gxQeXVshFjIxHiV03RE/WRyJ5CNxJJIfA4QSBn4wa0ShpOjbU6xefZ2TT3+esNFC80rI/IBP/GefJ9CmqDuvIVSdWOkyUrTo2is0PY+iPM5re3Wed/9vfvrYBU6Yx8FfJa73acguYTZo7fZoeccppX18z0BRT5IWAwbDVVRjjmzcQsgqM9kxhNCpHGzh2bP0ezsUjoUxYxrbvTfpOhtoXg43ZtGx0kTUDGubXycpV9EzCoaSQYgNAq+NoVxh2vDxiNF1buIaF2m40+SMU0SVJRx6SE/S7loMhYYy6rJVTbK6OY4iDNpCsFatMKVHybnwTHGEprOMrNSZGKjUhWDv2hbTI0kirT1eXq7iDhy6lXVmfv4C5ZpLfrdBc38He84jns3TbfXptRssv/EGN19Q+NXfepbJfIxh9QBJAj0ygSXfYGLuOAFRPLeNa28yeXKOkdkxNu06I9NNouFxsrtJcuMZAPSQjqKqbG7fITsTxVQPRTFetIgnUg/G2bEdBj2HKjVSeplKZxE1VURXTYRQH+TETBoTR8EEftI5EslH4si69ScIKx7n5NOzNPZbuP17eJ1NVE/HV0x058uMhM4zHvsMaT1HoMTpOZvUO2Gq7TgZZYKz+VniCsSNY2wN9qi7+4wVj6EoBrFSieSxEl23iu3ts1yts9OJI2WTnlum51aQ7irYf4b07qAHYcTggPHjCoHucrARUO2vovgbuM19Bu0+w36Vt958FcuzYThJVCh43MVza1SGIbygQkx2CYZ9VH+PZu/b7DfarFc7rNYkOln67TRRGSWa9Wm6ESoHJY7nThKTFrYToArJgeLwRqtOq7EFWy4xPY/h2ww3qiRjYULWgPREmuiJEfZWqwyGfbx6n/G5SarbdYonpgjPJgn8JtX1FTaXKuzvhghEBrs9SdpqUBzrMH4sx0t/tMT2xgRv/MUuzapOIrdAOHWB0vw4V2vrBKJMPH4BoaYoTObwGbJbXyKSDPHEL1zk+OPzKPcTL/e7fW7cfoG+892gAN1mn+r2AZVuD08ucmpshoRZOcy8AoBAETpHd8gjjng0jh4lf4IQ9FBlg3ZtQDh2nLHT87y5dYV8J0cuMokR7FNz9+mLMIXIE2zaJsmIizAdZkKL7Pa7KNooIthFFWFUEULxlrnVu0beOsN0zqTtplH8q5TCYTRrlkjocw++P/AEDK+BtEnmopCewpUeduc17izVOPeJTyP1Mj0joDRq47b7CC3KzPRprmwuYdkzmOEIQ7mN1PpUBho3diwO/IDJMQ1bKEyk+gTaDTq+ypA2ltmlOwjTtS0U6dB1fN6qbaF7XQwlSdwVuLZHdKtDdfUAE4Xir8zRsxxClaUqUgAAIABJREFUQYXBwCNwfa58bY3c6E0yeWgywc3n73DhiWPcW6sy6Y7yxu/uksl1iCRUMqU0lz4zwv6Ww9rVdYKBx8zJEJlSl6kzc2TGMqRKAbH72Vhcx0NIiBsZpBdif7CGlD6l8BkECndf3EX3O1z6ufMkrRGEEHQaXZqVFpcf+xym8d1VhkwpRaaUYiIooov7hjzqCO8ks1aFRtI4Sqp8xNGe5KNyJJI/IUgpEUqafbfN+NwSeuQ4BBX8vRZ7nRWyj8fpD2/Q8zX6lSka0a+QTGXJxhbxlBFWml+m7VZQBoK1fpeMVaRh1zFTc8wmvkSYHpriEY2co7UX8MKdu0wu3ONkLkNt6zbR3ONY0RnQZgjcZVr9v6DSTZIxhlwYu0g+9Rq67tF0AsJWiMbuGG/fqJNbEHzzTYWEEsW0yty5WcNXY7gZl1x4wHS4RcpTqIkoNh61rT6GYRAvStyBh3At7IFLo2dR6WQZ1AR6v0d+zKHe9yl3JdGejzISIzGWxeoErF5b57jYoK5HEf2ARkUjO5knP7JJYTzB+nKKbsNh5swU7WqH7HiGZCHJ9e/cYnt5yKf/8wJTJxbYWXZQzRKdVpNKdZJULk5mrsNb336FXkNijCR49qnzlI4n6XtVTo9OUh0s0xruMxF9Aj8YoikGT33uWQAq3lUUT2ckco5us0e73mX82CiO7bzLctVzPQh0hHk/KIF4tOg8R/yEcSSSj8SRSP4YIqUL/i6o4wih4Lh1Xvurlzh1ZgzCWfbbFmbwTcKBoHnnOtPHbuL18gyss7iKiZaawlNus9/9Bjpt0olfZzxyAaP7Te6t38UVOcKcpRfcxVb/Penoz6KEzmASpT/Y4aB1k3MTc+QSAwLndfrtOqHkY8igB8LCdna5s9cip2/Q01J0u/Nc3YFi9EXCoR7xepRuv8Tuyy+jtht88+Asnzw3j6zeZTS5QVtCpWvRdy1GkwOEK4lIj44AdcJH68KwXaAdGBidCIrdprFXpN9N0ev0kTt1pvpdGiNJ9EBD0QTRjks6ZDGlGdxQB0gtTatWp17ts/j4Mayoy+mn+7z89ST5MZ+ZM8dJ5RM89jPniCZ8mjXJhc+d4cRjYTTNZuNmhcXHqhBaQDrXePFrO3hqAkPX0cMhJh83eeFrV8nIENFciMJ9Y5ysOUfGnMEN+uzY10iZM8TMPIH0cQZdkuZhsmUrGqJZabGzUuZgp86pp48DsH37BgiF7bt9zv30IpH4UVLlI96P5J21hSO+H0ci+WOJBGkDAaCgBneZOmEQCW/j2lOs39zlzKU9rNAMP/Wf/gaD7i6RRIF67yvEzZM0lQMUt0JJG6Pl65SXXiMTmeKACLnxAtnoHGsrdxlLl+iILL5j0G0GBJll2k6Let8mPRiwb/tEc9/ByCywv/Yy5tw1sL6Ao8wz9Gv0winyOtj9v2SrcwvcS6yuv439yiqLP1enMDHgxnaYGl262xUGmXUark4QBEjFQIRsWihUlABLCnJKQHtggDFk7W6LXtygWlZor2YJzdoYlQ5KLcDbcTFiNspSF7Xl4gSSMTcgMt3g5dcdOmEFMxKFaARLN/HzYTavbKCnThOLOyTzFu6gTjyzSK+xiddb4bP/8B8yaK8TiuWQsk3icg436OD64LTPM+x9DSXfYe9uHFXROPfkp8n84gT796qYWpioXqA93MWTA9LmDIYSxVLT2F4de09BDyls9suoiRIhrYYbq3H66ROYEYMgGOAP3sIPxtHVMunxk8igjeM8z+17Y8wW5kmE+kgZIEQIoRwJ5088H0EWECHEzwL/GlCB/yCl/JfvqTeB3wEuAjXg70sp14UQnwX+JWAAQ+C/k1J+6/5nLgL/B2ABXwP+Gynlh6r3RyL5Y4gQBlIdA1xAQzUuYGXu4WhxUpEUxx+P4PcvosQFA6fMwFwiLQaMxn6Bcu85qncatMwLWKU/o1F2UTph3Po21bpHbHyIn4my2XeRfhlHzeNaGZzK20SDCDv3qiTyYbRMiEK4S693mXpHxQr1OPB0nMEeWesYschx1iqvYGSOU4ylyblblOsqJxdSvGnv8NzGPlNZ+NQnWjR/O+DOdZedpSRRfC4/VSeRqFO7aWCeCJjJ20gkt4M4ng1BCNKlLhE7Ss2N0GCWwWs9ErdrWGaS6GyM9Q2b2m4FVYJMW2jTaQZqF3/oEqm7FB8f5c5alYipMV/sYP3KcfbWfUaOa9y7uYll7dDYS3HpZ89T33GprPw5sdw0qOMcdL+OLhtYkS8w8PYYhG1OfurTpPMTdBffxHZGUFWVVCFFr2kzMltECEFYy+BLl+Zwk6hWQFctpBzg+AGBhNHIabKhSUxFQdV1QpkYw8GQ1/70OrGMQ2FcMnN6DDOco7jg0x76JDyNjXqDM/kyoNLzk3SHkuJ9X8vOwCGs61S7PfKx6IcSBEBKG6SDUJI/9L6P+LuJEEIF/lfgs8A28LoQ4qtSyqWHmv0G0JBSzgkhfhX4V8DfBw6AL0gpd4UQp4A/B0bvf+bfAr8JvMKhSP4s8PUP8385EskfV/wyUkqkbCGM8ySNcYTQUBUD00+zvrlMKmMgndcInDJtfQxLzdJZHiVfmqLZshnYCwg9imsdsKtsM7NwionIZdZWh/SWbdQnmhzTXN5cXqJWvcIXF/4p4yfP0GzuEzZDSCvPXv07DIIOc3MzqMopGh2TfnuLyegUWSXC7o2reKln8bw815oVTvtVommd3p9UqRkBrqmi1HtU9y28go4ceLQ8jfa+ie5LKnWfQOrsNEyqhRBuPcJ4tokZ8thfaeH3U5SyBuVaj+KUgRpVaK+HKL8xRE+CjkK049F+ax9HaJjdBu0a3Hp1mUQ+ysh0Hk10KY1Xef4PDhid0CmMNNnbzqGrOzR3bmGoIULhAZo2C7JKRM0wEKNYWhoz2GYnWKcZN7DcBLs7NkL2iWY6RFMWsQWbndVdpO8wNudSGzroSgg06DhbDIZXieYuYxoTTCpTmOqhMY7G4R7kwU6d7GyJquhTnA0Ip04ivX1MMSQf/STJkIftegijhADcnk1v2AfA8wNu71WJmgb77S6psIWpfAi3hKAFQROORPLvFh/uTPIysCKlXAMQQvw/wBeBh0Xyi8A/v//+D4B/I4QQUsorD7W5CYTuzzrTQFxK+fL9Pn8H+HscieQRfyu02cMb0/AuUkrUYAtECJRJ3HAFY/4GnjvGrtNltWUzLldRK3ep9MeJ+hGuLl/n1LiB4hapl6vECk9z0OjQyXyLvPEpxlIWudwMm3dv02g2OD3y8wjD5M7mNo8dX6C8do+16v/HzIVRRjJZ7H6TeHySres32bl1l8WnDCaOP8VecA/Hb9LwdGbVKFvVFLHqn7OOTmVP5fb/2aeph8imuwy6Fn5E5d6mykgJ9BkPM6uw24LoVEDH1nBjPlIX1LeitOyAollle2+NxBtQGU1zsDvErB6QLVnsWAauomB4Dp7wUCYy5Fo21R3wqwHDfo9kJsKVb3dpVB2gh6rtc/rxBJ75LOmUTibxHIp+HIen0aOXwLuN6V9D0xYInLfAvUXBTKLKMYTu409m8JUatuUjvCyWmkYvKfi+R2u4ze32i5xOfQlNMbG0LC03RxgVLxgAPPCPfAfDMrjwzAl8U3CjvEnHcdh6s8n4iVHi6QCXFoauACEAUhGLVOS+0KoKFyZGqPds8rEo5t8irqv0K6DEESL0/jrpgRwg1CKoxb9x30d8uPyA1q1ZIcQbDx3/tpTytx86HgW2HjreBh5/Tx8P2kgpPSFEC8hwOJN8h18GrkgpHSHE6P1+Hu5zlA+ZI5H8McTze1QG18lZZ9GtXwAgkBnwyyAlCWOM4SDO3uA6CfUxjkVctsq3iAUR0qUeaW2UaSOAlolrmohEhFanQTLh09mNcfpTKdTgp7l9Y5OwdZ7FiSRqNMwLz73Gt9bKZDSLZm2bYmaBkHC5vrtLTNlnRouROVEmUcwQK22x3/wTZh+bYa+qkVzb5fipZ9hfr/DnL8VpKFHaqo/XP8BIC1qqS38nxInP1DE8n4ZtoNsaMCRkejhNBV94BH2NSs/k7doI3SBMeADFYgvzXJr9FRdd9Rk54RLbadPq5AhJhf6+g9CGRIYH7JDkxJMdhnaCZ35xEqlkWX27hvRqzF/KYbtFhgSU5t4i1D/A1AsMCbh3vcb8hVfRjZv0ZALHE2SDFfpijpA+jeG3iOsjzKTjOEEHTXFxfRtV1XH1FgO1iSITnEh+geF+mJrZIFtaIKxnaQ93SBjjNPs2vDt3Mql8gkFvQCwc4cnpY6iKgnZ6gnq5QXO/RXbBpO+3EELBkDZ9d41w6HEUoVLpdHFcj/H0DzDDC2ogtMMHsPfVHUBQAeXM377/Iz48fjCRPJBSPvY37P29e4d/bRshxCKHS7Cfe5T2HxYfaTABIcS/EkLcFEK0hRC7Qoh/L4RIv6fNrBDiD4UQrfuvV4QQ+vfq84j3o9IhpYKKIBh8k8DbQSgxkF3wN9EVi2L8ZwmbF6lX9rFqDgEhynctgrVpXnr1JrHxIqWzeRYuJMjPrxAfjWGFfdyDPquvbJEqhRkZ6fPqwSYvL6/w+otvMdh8nXMyTj2okDqhsLPbY79hkhGTzI//Em9WrrDvaExPZklY5ymvPMWVlQoddY2z58vs1L/OxvU3WQw5PH1myNi5JkZUQRwM6awolEbr9G3J5h0D3VNoLxmsf0Pn9ksJFEPBb6h07Dh1dHqehXRUpuQeqzc0tsOCYcYiHxki9DDbTonA9og5ewjHJ55WiXdtnGt9NBFh9tQ4u/civPRHt0kXspx4fIp8qcQzX7jE7EIUpdXlxssdfG8FQ6xw/OzLdNUy/UBFenfIaXWGSoJ64GJLHyklbmCjaAMyVgFFUQnrabpehdZwi7R2nKg2R0wromgSVTv8aZpqnJTSoDeo8K3nrrG1usfu6h4AUga0ax02lg4frtX7iZWjyQjZySxkwphKkmo7YODaSMViIDWk9Ol3bBRfEtJ17K6N53oMPR8/CB5cRw+//14I/QRCSX9wnVoEbfEHupaP+NiyDTzskDsG7H6vNkIIDUgA9fvHY8AfAr8mpVx9qP3Y9+nzh85HPZP0gX8E3ACSHFo2/e8crk0jhMgBzwO/Dfw60AXO3//cEe9BSh9k6303KaEWCSl5wEUqaVCS+P4BilSRUkf2v4yvLcJwHSupsrbXYrfqMJlNEtLaXJzMceOF5/FGLfLHY+y+sUZjz6G/kiJUTJNI9rEbW1T39ghtw8BdxlTGOfe5Zynf9nnu68t88deeRLHWub09RN/tEgmvkLFKZBNzfPnN28xNScrGFrZmE1IGBF2TF79RZ25slMXLA3x9m+2/imL7Ho2my9iUTfoi9O6auNWA57+aZP58Db9jkTvj0rJ0LNMhMWjjDX0uT61w62aCtzZyWHnYvBdFdQfY4zEKe210R0PLx5kMrWNvh1C7BZqNGm5fUttPMhwe0K3dJJrWEdYemtVjQIZMPsDSNzFT/4TFBKjWq6CNokmFsDqLpZcQg2+DSCC186hyHT9wCWtpKoPbIAPaYodi+AwgcTUbTYS4W19C+Hmm05skcjnC5vihbysCwziNIWJ88rJH2+5w726X4nSend4Sew6cfez4u8a/79XwlBD7zj76YI/AzxFS06iKRjp0iWq3R3ulSjwTpTCZ484bq6QKCeq6JGzoTKSTVDs9tpstzo+P/EDXqBBHMWP/rvIhBxN4HZgXQkwDO8CvAv/gPW2+Cvxj4GXgV4BvSSmlECIJ/Cnw30spX3xwvlKWhRAdIcQTwKvArwH/y4f6X/ARi6SU8n946LAqhPg3wO89VPbfAptSyn/+UNnD695HPIzsg3cPqScR4t2LAofHJsI4D0DNWSUUtIgoMdDPs9ZZ5u0VBXVd0NArRHwTVwi60SQvfeUvaJYPOJ64yM7yFksbU5zMQu6TVdpah5YxQqcjUdRjfOqiy07fx2zlaCC5ev3bFI1zvPqNP+byk0/DMMvmwW2u3bpHMnUC3WgwZhRIaxbRgoIMn0V4VcrDcfqRP4VoluU7e2y8WmBq3sab7POJ81Ve+0aErS8ryL5k6pJDeSPNxksm45/2kYpKqDogXPAZNkxu38yQnu9jRhV6hNiuJdBcl0TcIVK1qCVG0GNNJtoBO/0TdNw9aDsoAw3SHvXaLoFrclD2EPEI80/2ySVPYIzG2FneJZUfIzd6nXjyAohLoKQIghZCBuDdQSphAgxawzuYSp6qc4eonsOXLpaaIGlMsNl9BUMJkzInCSkJ5jIJhsEASzuBriaQckh/8DK7Tp+J2NOYioYZDVFpt5g/O42iKGRD02gJF/09wcu7boWEMcaliQUC6TMaMdmoNQlpKuVWB4RgbD7PQa9PAZg7P4WiKAQ7NSKRw8ADqbCF9dfsUXYHDhHTeJAk+oiPGR+yC8j9PcZ/xqFlqgr8RynlTSHE/wS8IaX8KvC/Af+XEGKFwxnkr97/+D8D5oDfEkL81v2yz0kpK8B/xXddQL7Oh2y0Az/6PclPA9ceOv4UsCyE+CPgGQ6n1/9KSvm7P4qT+7uOUGJgXPzAOhl077c59IlLh04inC4IC6GNovnw7LFZzOkmQytPr1aiXxngd9Z4/FyfP15Pk1XG2dhZI7WYQ25IFMWm0WgTKZYRrmDtzWWWbZtnv3Se84+f4eWrZUaSjxOeS5NNjmArglZrG+eUSjH+STa3ffapszA2TT41RWu/wdCZZ8cecPf1FzleOMXynmQ+/1Po57cJp5sYtxQCrUuy4JOfFdx+y6LWE8QWPYy2znB3yK4bJmZ6JFJ9BB7ZkTbVVor2rkJye5/0aI2Gk8CSPcxKD29/n+F0nP2hx4nsKJZusr5SRgx9QlYILVAxLJ1Ln1EgaBJxFHr9MnvOMqfOV1G0zOFenPcmUkQIrAt4g9+j5fWxjTP46iz50AJ5GaAqBkljDE869L0DQloKU41SsE6iChPbq9Nyt8mYczh+nZbbIm3OkNBHCemTJKWNIlVaw2126gqmmqDS6TCWimOIEIWYRbvZRIkOiekFAPLWiQfXwTtBzPv2Eh1ZoBDPU0rGcFyPtYM65WaHUjLG3b0D1td2uHxiCmKHRj3b1Tb1Xp+nZiffdW35QcCtvSrHClni1gfsRR7x8eBDfr6RUn6NQzeNh8v+x4feD4AvfcDn/gXwL75Hn28Ap364Z/rX8yMTSSHELwP/JfDsQ8VZ4BKHvjK/zKFo/rEQYkNK+cIH9PGbHPrMMDEx8aGf88eK4L6B2H2RVOQAR51ifW+FaH8NNZkG6dJUy8SUPOXqCiGpsXjBZGXtPLnRO+hC4nkaIUfFyEeo3ouhDnfJzyu88pbOyIkUopBn/Y5EDP+EWzdbSJliv7HDcJiivLKBtpchfCxKWbtHfS1G7bkWL2Y3+aXPSYxuEU/tMLUwymY6SaKlsjPRZPHMFGxW0bQpZh9P8vrLNfY6gtiei6kE9K0EObVGZVtFuagycq6NY8OrWyly8SG6EmBsOjSMEsGUJB30iAY9fKnhKQMiYyZ6v093Y8iN8j3OnM0gWz3siM+5T4W4uxwiqA9J5vroGrz8px5f/I1NCiMlwloPQw+B/hT4Lh3nOq56l5CIMQyaeISIivChu40AN+hTdZYpWItY2ncNZMLa4RK5qUbQ1TCWmiCq5xj4ncOHfKEykDGqzjUiRhEvcFiu9DheKDFwPSqdLtdevsOJqRLVyh6j5yNsViEbjeD6h7sTY6nEg+/Lx4sc9Azy8cOUa6auYbse1W6PUjJGx3GYPTFGItVC+l2EOkrMNAGJPXQJ6dqDWaOqKJwfH0FTj/IjfJw5it36aPxIRFII8SXg3wG/KKV866GqDvCylPIP7h//hRDiz4BfBN4nkvdNjn8b4LHHHjuKsvQQQpt6d4G/Dl4CS58mkgiRzKfYa/U5aLYZeN8hHDxDKpZCN66TyfgYM332xTqlkslaQ6M8MHDMIacuTxITJhF3mVb8gGjrOCsdk90lBSfw6MccEpqFveMzNZ4n0CxuvLjLwuIsIR9SI20WZ1qUO0ucyxyjW9coxqOcXRjl7Ve2mRgp0ZVxBnaJ139vifmwgruXwZM2ra0AViXhZoPNjk5oxKF2XcOZNklGXey9MJvtgJwYoKIy1mlyZyuBp0OvY+Em43SdPhEfrHqfaMgiSCikCvvgFsCMIqMbTMzWiZ16lnzpbTw3xJkFhdGZPcob0JAjpHIDZOQc9uCPCPnrRGmz6lv4YpoFcxxFidL36jh+F4FAQeUdI7xmf0AsZDwwsgGIaIfpsFzfR5EWhnb4swxpcaZizxDWUoS1FF88C51hlRt7O4T1U5y9OE8uFWN0voSqqljaAOu++D2M5wes1g1OFnP4QUDbdkhFLD45P8XAbwFwcfLQkl4GKqBQtzcJhwPy0TFeX99mcaxI4qFZ45FAHvGTwkd+pQsh/gmHAvkFKeW331N9lQ826T0SwL8BQ8+n5wzfXagt0vHS9KRJqpjDCwTbzQbzKRfNO49uGbz9rausXvfw7GnioWMURvKM5s6RtgawtQyVa2y96uLYY8Smwxg7Js07daIx+MQnJziWiHBayWA6Ot+8vo7byTN+8jyxiVnu3W5x79omn/lPPsHJJy4ymtxitfVnXAluU7U3mJo+y4lLKrHuDfq9NtnYKE1lSGyhyUgxzcK0SaIIStijb5ukngCRCUHBJON1EJU+x3IVLNFh67qBp/Tp1CCdtqlXBcbQJnZnj7DdIxEdgBEQTYXRogZ3NjXWrg4ob1W4fsVB92H0p8e40xuh2/Cp7w1oiYtk58aJJPPs75/BUwJ6IoujLaJoI0xEn2Ys9gSq6CHo4QZ9JAGaYmCqUVrDHdygz3KlSqVbOYxjC6zXGqxWawDsNNvcqzXxg4ArW7vYQ0lYS71rGHUZ5kxhhnrfxoqGUDUV5b7gJqwQhqaRsEIkrBBte8BLqxsIAdOZFKqi0BkM2aw3qff6LO1t03DW8aX7oH+hJBk6JuuvVDG8BAfbNVIt710Cudfq4LxHiI/4GCJ+gNdPEB+1C8h/DfzPwM88bLX0EP8OeEII8feEEIoQ4lMc+sh85aM8z48z0r1BpbXJvYMqDbvFZr2JlJJASup9m/G0SWu4g66qzKa6hEIFtPEo8UyZ/OSQt5d0djs6c/ECllej02zyzPwlLl46hX6gkRBFtne2iTNgMv9JLlwYYaQtee2FJQZKBds9YGquxxd/fgzCFe7U38Tv1Zi7UGDiC0WW9iuoO9PEO89iv53hWKmIN4yx2+pwECgoIYXa/j3CUZ2f+y+K2KUwbsGlOVQIDQMyF1xIq/SqOsnMgOmn6ughSSgt6CkqtY0Qd74T5+ZfjdLpa+gbA8LVLhouWlIhL4bEohEmUikiow69xpB0SEHR25gyRiQoMuASd+69wfDmOolklSd+Zo+0+iqWgKi1wdjYChExxA2q7AUGTX+IInTK/bfpBFE6vqTrVgmkR0hNEtFyKEJBAqfHkqDeQ7o3kDKgEItSSsQBGE8lmM2mqXR69AYu2ntCxPm+z8rrm9TXbXRVQRUC3/O5/vxNuq0GALbXZK9/nb5XQxEK/aGL4/nU+zaNbp9MNEw2FmGj3iQRilMKn0UVh/Fw3aGL5weYlsnUCUGltkJuPMP82al3nUejb+N4HyySD4fRPOj2GHqPZpgugy7S23zEq/yIHwpHIvlIfNTLrf8a8IBvP2wVJ6WM3v/7ihDiH3DoQPq7wD3gH78ThuiIR0AdZTQdITqs0rLLBJ6K72ygGGcwNRURlEHRkTJgt7lL1c5yeWaCLbuJsRCnubXDqLMKTghHOHRra7x+ZQNFwsGW5NKXLJbe3qEUO6AfvE0tbPPcV/pMzE0yefkc6ekQw9Rd0vkWX/nyFulBQM6Ios9EKHWGaP0NblRW+OnP/hJNv0bjlkowc4CpdjlRXCSbnkH343z72lUs3aO6lydQriHTMWrVBIYbIOoOelygRHwYCjo1lU7XYGRqSMtLIU8mGLR8uvE8RneAodcQdRXNHtCL+BwcdNA2fYrNMHOlMLPzIdxKm0/+skmjOU2+UKd1UMZdNLj4mRCZtI1PDBmU8YJVDBEDr8xE5Cx9MUPb3cRUBihCpedWCOsZHK+NpSWx/ToNZ4O4NsPQ1YiaYUrak0jpIoSCZShIKfGDANcPcDyPdt/mzn6FU6N5Qvp3XYTtzgDfDyhO59GNw/JGz0bKOsIfAI/R8yqYahyDgPbgbS5OniJs6IxZYd5++TbOpRBjiRkKseK7lkyrWzVuXF3DL0T4zOWT6PE5bn3jLTLRAfH0uwOinyjlv/f15y0hlQxCLVJuddAUFUP7/m4gUrqIowWjjw5xtCf5qHzULiDfd1iklL8P/P5HcDo/lgjlcHkuYYyQMCSDoc3b5S0WR1xGUyGC/hD7IARjAjMUJaruovg1SrEnuX71Ok53ie2mzeT0aXy1hYePOehT8RQyizqabFM8fYrlbzqUJnYZmfgC6Qu3iBb2eeOFLcKFSbQn7zBd9BgJ56iuNcg/PcrOG8vYPZPST7XJFYvcvnUDPd3hYPsAzR5Q3QvopyMsOQMa3xzgomF39+l4e/RFiNZKl1PTHunjXXZe0dj3dSpvRdnbguScZMuYonmvBk2bkGmQHffYq1vohsfJJ4d4nsbm8xK77OPKAb6uY85FyBZNhobL3DPT5EdbFD6xR/VGhPFTn2Fs/A57mwHTxwM6fpX9IEAXx0krOjERI9DGqfXfxpc+jmxTsBapDG5j+w00xWLoDklFpqjYd7jXukngFrg4dvJwnO7Hxxj4LW5X1tApkg5HadsDjpXyTGRSWMa7Y2iEIibhZJiW7ZC9X7fbakOsiBo63FMcbEZRVIXkTJKOm0F6PeqNBoankjlWwPYaKEJ5sCdqd23Wrm0yd3GGU+dzDNEQ3ptEQyf47Oc/gW7oNPsDwob+SGKdt/mjAAAgAElEQVSHOgHiMK7s6dHvhqKzewNCYfMDXUakHCL8ZdA+UqPFI45E8pH4UbuAHPEDIoM+yAYoJcB7kGD38GYksMwIC8VppNLjYLBF1B2nXdsiNy6YzV8+9BEUJrghLDPD4rPH2Fm7xcz4HHdXXb5x9wa/+YUvsPZHL7C6sU7smw6J+RZX1mvc3h9yevcWsf0W8RmdXszjle8s03/O5dlfmCGmK+TTLlLrs/zWOu2GIHcmiWPF6FcbZPs7WJE4C9lTXL+7hFi4R6qSoh3eI3MsihgmWL/n42345MK7oCvU3lBQkj6ioaMrLrm0T3HCJaWsISdDlP9QoWQdoEqdvqMziIRYuxlB3GtTGhtihH1qK4Juc0jTs+g8d0AiDeMnVeKZBPmRXRKxp0gr28RjdaSWoq8uYHg3SYoihjFG0+9R7d/DkbeQAhSpUe5doxQ5Q0TNUxsskzRmuL1fJchZSAnFaIZ2N8a9gwax6AEhNUG1pSOEg2X2iGkupXiM0v3sHO8VyHfGtOd59Bot4hGLoeexOFJg31XotYaEwhFSxSRCCITQOeib9DoraO0Wg0GewvER5tPHUR8KYq6bOrXdOvWowoXZLuHQGIg5EGF041BItxpNSokY2WiEoedzbafMyVKB8AedoxJ7X5mUkuU315haHCeeeX+9EAZSO4lQwn+bn8ARR3yoHInkxx4Pgj5QQfpl0I8jhPWuFlFTImWMuJdj6OwzfaKPbT9HZZAjYU4TskxeWV1DKYVxVxLgWezd3kCr7xO9vUvjs7ucPVMkEsBE6hoddY+ZWJy7bp3l+qvEohFOGJ/k0j+aoVv9FnvlJn1/m73Xd4nLPDOnzmFu7zMe3yKghGMnke4a284QEiGaTgXp9YnGkpxUv4VxKUu6MM/yc03SqSW27wr0qM66X8SKRdFknYO7OvFYn4NWhOxBh2Y9xP7rBhfONrAbBvfumMiMSqnoMbAU7IZJp+Zz/ITL7qZGkNWIJWqUTnRo7+okVJ8Xvyp57Bd6hMav0XCjpMQ2yRGTjogSCv0ySWnTcpfpBxo9b4NS9DIZcxw9OKDvNYgoFhX3FglzlLHoWdKmy0bvz4loGSJ6jngyw26rQ63j0xu06Q80AimZzi7S6rlkjSGdRo9MKfWBI61qKucuzgOHxjM3dveZz2eJGhqafjjLC0cDpLuElBcoJWLUegUi0TyZMxpLe/vUOyGKD7mGaLrGhZ85y9fuXmfbjpEQ+0T0HDo+X79xjVREoxDLY6iH/Ruaykw2/dcGGngvQghOPDH/YIm45wyJmMa72xzluPxIkRwttz4qRyL5MUcocVDiSBmA9MFdeleAASl9cO8g1AJ2c5fy/gAvvEjK6uIH0LRttu5eoyjiZPNJlDM6tfazbF49wG4GPLZYIlxZYV+ZxNaX6bkpXv1/D/Bdlac/H8URQxRvwFsv3Ga97OGVAs6fPsXEzG3eOgixU43w4stvkpsdcOnXF3j1bg2n8xLUqljhcdDXsNsqkZxGajhgpZclNKKgaB3UkyayOcLMZ2o0v9NHD5UJ+h2slsP0SYV2T4O9PptCRYT7DK0sByt9tK0B6azOWtlDrjcpTIE+5bJ/RbDbCTEcusQVj82/0jEXLZ74rMqNlxXyxzoMgiLjYdjf3cHLKEhhEVNsIqHL7Pf+EkuNkFQmDpedjVHs4asI/QLxkIWUPQrWSQwlRs+rYWpRYnqRlDmNqUbRFIOoorJTqTMxMUMylEMIUIVCICX9Vo/GXvN7iuQ7uEGfeMTl8tQYQghiGfO74x00AR8hNEaScUaSh0ZB0i9zJpdk5eo22aciaLp2mKUjqBCJlvj8mRmadp2VSpOzI4fLpKYhSURc/EA+cEsBSEfCSH8fqcTf90D2vXhHIIeex43dfU6PFj9wJnrER8iRSD4S31ck7yfDfFFKufX92h7xo0MIBdQRUHMPymRQB+8e6GcAjexEETvaYqvRZWlvyLFCjmIiRkXNsvJKhatfe5OTz8bYsDVGUzu0HR0zFKFR99l/e53dWx5yskd2tMjqrR12XnRJL6QIe2G8hsfSi0vMzmxBUxL3M0xMQnmtjxbRyJ+K8fzv93AOXHKXz9LsxLDiTULuKLXlCqk5nc32Gvt3ouy3WsiD13FKOt3NLnK5Q6GQJrnocPuajgjDXKFL68Bh5VaGUKxL78BnMrbJ3jBJVStRaLcYUbqETqn0mwLpq8w/2Wb5WgjDlJRKQ8IZE0363HgrxOnHJd64QTBoI4ZxMmYUQRkpu5jeVYQbI6PF8Jy3iWsagVIiEB6eP8BV6oTNcwAkAp/mcJNA+lihJElzgs5wl4Ogy2TsSeKGgSPHyUcPhcj1fbYaLcZTCeLpGPH0+5cj34sbDHD8Ninr/YHFhZoH5f0iK9QSkQQsXLTRdI1yq0Or10QTO8wW84ggQSaUwMqOEzMOlz0/NXWCju/SHgwxxTbSNxDq/ViuQROEDo8oku9gaBrnx0e+5/6mdG+AOo5QEh9Yf8QPkSORfCQeZSb5e4AUQuwALwEv3n9dlVJ+/zQBR/zQadkDes7wwSzhHQ73IR9axhIJ0BZAdkCEkVIS08pcadloWo/lbZ+1rU1Oj4Robjc495nLbN3eIaoHhE5eJjK2xf6rK6jpAjdXlghFNIYdiWlVOf9pk/pqj4OVHsqoytkzKks3u+w3BPt/cZs7r4X4+X+a4bFPhFCagnBQJmCaoZfF39xl6Hr0wgr3Xthg4RcnCUezuBjMn6wjylG0iGBns0/i5JDYhElIvUdfBGRGoqzetRi8ZNARYaotE7etkoh16C4JOn0QMR//wOby0xW2ZIrxgs2tF6AV1YhPKaiTCkEFSrNQHO8xkCrTMzaGFcXuDFmqzPDEgoLDPHHzNH33Cqoygi67SGWUipcjouxT711DSoekVqfv1tCUEJu9V2m7ZYLAw5cOCXOcTGieQXDoohGJh4ksfnfvLQgkA9flzpsrFCfzpPIJDro9mv0Bc/nMB46/pUaxlA+ehQlhgHj3Uqbjeqzf3qY0mnkgwgPXIx5OEA/lAcFWo0VU3WU0nQMOz2/1yj1GF0aYy2fuBxn47u1C6Mce4Ur9YHRVIL01UMce7KE/QMn9jYX3iCM+TB5FJBeA/5+9Nw2SI03v+35vnpV1333fBxr3DDD3LGcPcpda7oqyZNJmSJYs05LJsGzaliPssPiJDsqWQ/pgRlhmhGVLpugQbZ5e06R3yd3Z5c7uXJgBBvfV6Pvuuq+sPF9/KAADDBqDBgZLcnf6F1ERXVmZb2VXVuXzHv/n/7wKvAy8Qs+tXQAdIcS79ALmm/Sccuo/qBP9tBCEIefXtpgt5ohHzD33CcNe3uPH0ctXUxBKgtC9CkoOocRIWirHBodImTc4e+kWV9ZKHOrPkx+IoGsam7e2KY6paBmHxT9rMpUc5Pm5FkO/OM3GlVvEssf49m99l3BzFGkqFHNlnGoLY+w4x74cY2WpBFaFTrnEmd+vM3RIY3Fpl45XQxUKLbdLdqTL5NBJqk4JqSp0vC7VG4JYvkFVbxLLBFQ0H/e7WfJ9GZydFuV8CpoNop2AcNknNeZRueUzZu7iRgSjk5LqkEJ2pcz1jkk7mWB+xSZzOmS1rBPJKSRiDtGwTBedyFiI4to4gY6JYGVxhuGjL7NVeodT06soxs9gEYLcRioZhHGcmpPCViNYQlIPGgSaiaJOYJmnuFr7GgjImbPENb+Xo0kWTZhoiomuDtxz/UIURcEPQnZbbWaKeZqaiZXoBQdL15EWdDsOuqGhfnTUFZYhrIJyZF/fqVK7Q9lxGL6nnYl8hk7LxlRsvPYVhiPHiCXHubdg5dizE5hm77lQPkHNyb2QAXt5hAi17+m+zwF7c5ACsm8eGSSllPPAPPAbAEKIJB8GzJeB/wz4ZXqjzStSyoMKq58AVVEYy6b3VDfe4d7q8g9jfreMrqqM5zKsLSSR0mV0ViC0SSbzKqHXZHDkJqODg6QzL/HCV6Ks3djg+S8NMjxtUi1FGHBWkX0e3/pGh9SRz1L1F1g6v4w2NMypl17k/PevUV6P4Gse1z9ooBhNHKXFxOko7sUkN98osXa9TOaURmVJxRyvsvotn0uyCazQqJt0pc/hlwZpjGzy/hvD5ApNFHOT1opDftiDjE4sbvDWb+jM/aSCo4Uc+SseE5kWsqjQEknUUOPMWZMjI1WqRpSB1W2cqTwIjZ1ShNZWSLbToRXqlHc09HzIi6/adEsOzraGq8boH19hs+3gpnxSGYPN1ct0nNPMHJkkKQQVbxknbNKROjGWiBqH6I8cpoPAUC36oscQUiGuF7GDBKGdw1CSlFseHbdDOlRolBqMHRnh5vsL5AYzJPtSNLoOfcmQVP7DWYGYaRAzjV4Jq2KS4mjhvmsr1AG4J+g+iqF0kqHn7p91KG9Wee8bH/Dsjx9DBn3slHeYPDZK1FC4ceZtcsOHKAkfy+mVznqaCKGAPvNU2zzgCfiUBEkhxLiUcmmP7WNSyuVHHf/Ywh0pZYNe+ZNvCCEywGeAXwC+DBxUWH0K5OIPl8JXd+oEnk9+aO+pOCklYRAynE6h3M5J6xvL90QawXUQMRBRWm6cRjXD6qV1lM/ViJmb9A/dJJXZZOnaBNFUEVMInj1e5Pcu1zBvbjI68hqvv3WOdbuEefE9tE4Z1Q+o1UPUbJnWgsnxFzwy7UWWO0fJzxXZXPCxtx3iaZ2rb+gUBiGUTYioDB6zyIw5xHWdbOIWF8wMmbSOSETZXRaIGZvF1QaoBjP/TotqOYKwdWqtIt5KQFfR2RYWkRtNinYHHxdbMxkakzj2LuuNOPaZgNnxOsef77A0bxLJCJJpn+YOdBsqmUkDK91he9Wmf66PydwMVlolDBaIW68BDrgXaIczRPQMo5HXaDtpXG+TqnONbOxzuGGbnDlJtVNlrbHGaHqMYn/+7jXRFIUIAnk7KX9kbggjoqNpGkc+JjF/+plxlI94pPqej/YRZakMW+BfA/0ZhNjfTzqVj/LSXz2Okghoek3M6ADVjo3tdiBVJZ42SZspkB2kdBBi71mNO3hBgK4e1I484C8lF4DkHtvPAXtXDL+Hx7KlE0LMCSF+XgjxvwohrgAl4F/QK4r8y8AXHqe9A54AKQnDh0+13vpgkT/7nTexDB1T17j27k3a9Q6RaAxhnLqbi+Z6dfRIlZnTp2ncqvIH/+L3uHlxjaqTIDduksmc44Wf+gqm8RLPHVUYOOaSLozws7/005ycGyarlbH9LY6/WmF0WmNk+CiOv0V5Q2LvZChO9ZGa6vLK59LULxmce8fEMgaZe3WW7YUCGxccPnjX5ex3AhYvzXPjjRLhezWihkqn2iH2YpuGEcXe6VKfDwgaKRQ1TiQqqSw2KasaiwspOo6Fflwnd1qSTrnEAo+RiTbxiEf/YJuxsTbFOZ+matH/jMCcVfBmoti6wZWzUdq1kERSY+pwwLOjgtr199hYO4cqQGt/h6b9Jr7+MopqsNW5QMO5ReitcHO7DN46F8u/yeXq1zCUODWnRNUuo5Ph0vo2tU6XeMQkF49ixS2y/T1BTTRhPRDo9kLV1PuS7wM/4PKb12k3OvfvKKKgTT40QIbyQWs4VeySiJ1nfvcChGlmi329qiHSI57tx7SiqIqCEq7Tsde4sV1CyoAgDHFvW9JdXN9ip9lCSsn5tU2qbfuR/5OUIdK7cNe79oC/OKR48scPGQ+csei5eezL4mk/6tZ/RG9q9SUgRS8qvwX8d/TWIW89ztke8MnI9H381FduKMvazU1qzQ7pRJShmQEiMRMpJb600ZUovueTjat0Nw12txpU19aQqwGl1QJGpI/k4Ajnvv42ufFpAneDpXkXdXqBzprO1Q8WCJducuK1MWKjHa42dEZedOnO1xFVnflqHUPaBHKX3Q2PVQ0CU+PwTId8Zh3N0Wk0bNpeSHa0ihVPQLfK9WWNyFGXzSWfndIYLb3E9Csule4I9V3B8Mwuq/NJZNLix39ik/lzCQrpDo3Ap1D0KDouK6/rZBM22/U4DamR0G1Wmib+CohOhLmxFmpcQ2l4nH0jythIFzOwqS4rnP58lERmgdHPSOKqQrd9koWFBfyZNcbENEPWKNlQxfPOInAx42PEYyeZ8G+iKkN0XI9DuV6B6416k3K7w3g+w1q1jqXrHzs7sF9UTWXm1CRW/P4ajkIoIPbuEIfSZ8u+RN6cwVBj9zQ2CNInZ0hiWj+e66EbOvnkKHBP2TltFiF96p1VKtVLOGKO1UaZ2f4Yo9l+LF3v5UH2F7H0R6d0CKEgleID4qIDDnjaCCH+lF4gNIUQf/KRl0eBsw8e9SD7mZv5VaAN/Gvg16SUNx7nRA/48yWVTzL5wjTXS2Vmux6JdC8nzgmalJ1b9FvHeev1D8iPrWG6E0ydGKMbhLzyC5PotYBIPIMekcT7P4vnhXzv91ZITEQJ5jfw1rZI52LMvtLH1XdqhMVZgsVNkkM7qOE5jn0OypsF5m9E8MQttEwf/dk61ZJF13IxjV0uv6cRBhbpvMVYsk3TrtE30cH3MkTSHfqSVzn/Z3HGXzFZOqcQpk0a7Rh/spTBwMO4WmK9EuH8mxFUR+DHAq5ux1lyTLQBSOckpVshoR2w6xSoNqFpeUQSUTZ3PVpbGk5Nw1BCClMeTV9nZ0cjfdGnb6xB6BXoaCrl1joxY5akqRNTFFBz+CKCK2IEwmSuMIsi4ihKCtu3WCptc2p0AE3VGEwlGEgmUBRB23FRlCfvepc3q2i6enfNMpp4POWnIjRy5jT6R9xshFAQ+jijBfBcjytv3WD29CRW3PrIfgLbdbm1UkHJpHn2aJF0PI6qgKl+GKw/ag7wcQi1/9E7HfCD54dvRPi43Cmv+Fl6AtM7hMAW+7Q/3U+Q/Af0BDpfAn7xdirIW7cfbwLnpLyn1s4Bf6EoisLoeB/9fsD8mXmUmQFS+SSmmqDPOkqr2kGRCpm+z6C2BZ6pYqQsAg+S0W0qa2dxmhFalSR6Ns8X/s4hqkqbjbURVlsmVrJBfiyOdtFHUkJxPC6/2UenHqAUobGiELoOsXibRmmLUq3F3JxHtSIhLahVDDzFxHJsVt4vEg40ee9tC2fNY6Da5ZpjsnUF1K5J4ctpjBWP1oLD6nQae9cnSKS4teKh5l2E7RKmNPoKLbYvawyM+diah+UFbG1p9A+3iAzrxCIeYbODpwXMzLXZ3jFwdiTn51M880KL+koIg4KtTcgXLRSjyaVKm+O5bWLGaxiqwVZ3hZz5LFbYouUuUumcQxERSt1dBiIhw+kkVWeJtt+iLzp+t8ByX/JDJ5lqxyYZMe+rJel7PmEoMcy9R2HBHiWpAj94UPH6MZjqx7vZ6IZ+e4T6YYDstrtUVl+nf/olbE9ltj/PcDzB5a0dZop5TPXBW4frB1zf3r1dNLo3uvwkHYQDfsD8iF8aKeWvAAghrkopf/tJ29mPuvXXgV+//WYFPlS2/g3gH/c2i7PcDpxSyt9/0pM54PFZLFUpJmIP9OQNTeXIy/fnsqlCJ5ZSGJ8aQOsobK2tE7oWdtNmdmaQSDSNrg9Q2vCZO73FcsPDaQVcf2+ZTsVBy1r4t5rEDo+TmEyjNBe4udvBCR1mjhe4cLFLuhgyd7xJW4fuJZvNt+PoKVD7Xa5dNdhZ9ckO6mwt+xx/cQfbhIjnMffTNleu5CnXIaj7rK3atL/WpVWTqHGF/HiCnZqLl4HopEf9hobwIVrvMDXb5oN2jKsX00STIQWtw3IqwvPjt+hsdwgiKm+/H8dYVEj0SbIZD9uymF/LUusInn22hluyWLNTdA3J7IjJ8ZEQXynQ7LxPPPEfk/Yvo7qr3LQbOKFAX/LZbGwx/cxfR7pVlj/YYHh6mrXAxsgFWB/J5w9DycJuhZlijqQVIfADELC1tIvXdZk4Prbn9f2osrVVa3P17Rv0jRUYPTz8yb9At/noCFXRVKQ6CUqS4YzGcCbVq1bSaKE/pOCypijk4zFWKlXaXY+5/gL33olv7pTIx2KPVGYf8OfAD+fa4pNyTghRkFLuCiGiwH9FrxrVP5NSdh918GOpW6WUu8D/c/uB6CkFPgv8F8A/vL3bgcTtL5Cly6uk8om7a5e261FuVRhKNkGdQlVVNEOjVWuTHvPwQ6iWO9TSDQI/JJaIc/3Md5k9lWSyeJy33v2AiFLg4sI1ZFVQLER58+tXaIZJokKhL6vghDu4ySIUo1TKLfAUdq+YtPwoQeBy44zg8BGbylqAl0pQ2rJJj3rcugChqZGPuwSGzkrH4ujJGsuKyVrDpLLRxq/7CBOyQzYqCknLJiFcKqNpBlWPvnKLZkWlo0dIVDp4gcpq0yA56LMdiWNmXd75IM3LL1WZX4myvarx7oUE3bIg9lmByAYsLmlUdqJ8+ec8VjdtKm6Cl6YVFK7SrJ/GaXaIp5/DczdAuURU0UgPD9MomQjvLEb8OF39Gun0SRJKlfNLV8jFX8a8R5yjKIJTo4N3hTgr19bRDY2Bqb7HKikeS0WZPDGG3dr7ty2l3LPSxuNimDpDM3P3bRNCMJBKIMMOMqiBUqDrSS5v7nBiqB9D0xhIJTBUFT8M746YW45Lq+uQjETu+0wehpQu+EsfK0Y64Cnw6QmS/wb4D4Bd4J8AnwNcYBj4xUcd/NjfQCHEJL2R5J3HUXqB0QbOPG57B3wyJvL3D1nMqIlufnhZvSCg4wV4gYKhCbYbLW6t7WCvbLBx9XUOv/oVDr0wy41ymUIuQWO7xcKtJo1IwGsvq6gqzB3JM3Hii+zudrh1ZYWOb+CUNik+U+TICxVKQZTLbwxhlnfQLI+VxTiabhGuq6jmNvZ4ina3TSwdkBzzcesKoQ+tqg5dgdO0kGWdvsE6kViAWtWJNTy8iIqigoKKTFZIbkCyLXDbgkzJQz+s0BjJEnRCFBHipgy6gSA94uMkEsh8k2qgEx23qAzCUNLBvaEQMyXpcWg1XOyaQiQisUyHty/FccMhxkZ3eaao8P73EyRicPhVGynSaLzDocSrhNJhJ7iECBPsLLXpO+TwzAsvkYym8f0Iyco1/I7D7s4uqXyCRKY33XkneC2UKqRHsiSjEdR70iYWL62QLiQ/VpwlhCA3uLdIxws7lLo3KVpHUW8Hl0B6qOJpe6R6ELYhrGGKGJP5wn3pHx8VKXlBQNNxmMrn9jn9KnqWd5+iu/gBP1CmgMu3//636ZnjNIGLPI0gKYS4NyC+DPR8rODO2uT/Tm9R9JyUcu9y5QfcRxiGLJxfZmh2ACsWefQBj0G71kYIiKd7N+akFcEL0lzcqnK836O0WiLoumT7+9lZzRBmNd568wrNdp3j/9Zr2MkY0+5z5PsbLN66zImfXqK0uM3ZN5KoYgeXKW6eWSQtFHLDcb7XSDA9WWRnpcbmlW2KOSifKhDVtpHLPs3lgDDXxdNDSBrgCbyWirseIFUdM+cTNX2quyqLVy0qmz4BPqEWcPh4h5s3LXzpY2+bZAoerZZG2UrRqPiItsD2LJotC2VGIbq1SzymMnBUYft8h5vnUnhFg7bQMRZsoqh4Zpq5z5So1CJU5hUaiwq7YYrtBYvRssfgq7tsbWhs1+PkBjYZHOwQWB12uwYGOdJqClVYmL4FW2WOf/4ouqaxXKkR031MPcLJ146jqirNanvPoKArCkbEuJsGEoYSNwhIF5JE4k/+fdCERdoYuxsg3bBDqXuDPuvY3W33snp9HaEoDM/s35gA6PmqKqleHUgUsrpGGEo+OoC9vl0ibhoMpZPsNtssV2oPdOr2bF/ooE08sF1KD8JdUAaeymj5086naLpVAKoQYhro3DEWEEI82iiZ/Y0kv0cvD/Ii8Lv0xDpv7sep4ID7sdtdli+vMv3sBIls/G55o0+CDOsQVhC3byoTJ0ZRlAfXjKYKWRYvLXPj+9f5a//Jl1EUhYkXp7ly9XXc9QYvvhYnnW6zeqHLH/zhO8weyvPFVw+zdjkD0T706nWamzB5Ks/mUJkTJwdZ3dlk7rkizx3J8/1//l3UigODFmGjhhI0iQ3r2Csez72yy1t/HCFlhuRyLcYPu7TyGqtvWmiGT99AFyVUaduCeJ/C+pZC0NXRIzWSwwq2aWFIG82K43QtPOKY41ALIFCiENfQ7QayGtKxBZeWkwjfQyvbWJqKsmyzLWIYLkTrNRoRjcauQFRd0kmHyxeixOI++YE6o7EasdlBdqstlOQYfvEY+DXyegFVGUcoMRx/B8PwaccVzr5znoS6ybu7cV576TgThRza7VFVfiRP6AdcfOMKs89PY0Z668YjH3GwKbXbrFUbnBod3Pd137i1RSwVvc+pRwhxVzAEYChRCpHZPQMkQH7owxGpDBuARstVUYTYl1pVCIO2X0JIg8vrDeb6CyTusVIcTCXujjDHc2k+8chQehBWQOnjYFXnKfDpCZLvAP8c6Af+GHouPEBlPwfvJ0j+BPCOlPIg+/cTYpg6+aEsqqbSN1b42H2r27XbgfRRl0i9L+fszvTd2o0NkrkEyVyCzUaTvniMwlCOuRdn7gZRLwg4v2Hxlb9+ipHJPFJK5k6o/GTnZTaub2LoGRbeUtCjCjWtD5nNMHt0gOZ2CbfZYP3dDUYHZhn98pcojiyzdOE8BBqhlmO5quDWVabGt4n6NmHLotzQYSMkFVMIhcBXYXa4y9Fnbb7+hxaurlCvBEwearJ5K8LVr1n85H9Y4+p1h/PXsqgGZPQakeM6jbZO9N0KzS8Moq7W8HMxxn/CpFsN2Jq38UKJn9bpNj2ilQ5GxqT4kzq19TzvrCsgFOL5Dhffh9ZawOyPd2jYUd5/HcQHLoePutQ3PVafF8ydOklM/RbJ+ByhOE6p8zYZK8fxZ3Ns7nYwGgNoy3VKOzWubWzz+aOzAFzZ3GHcsLj27jy5wSyDU/10HZeW55GPf5izWIjHSFuPFrPYfg2QWFoG7SOerjJsgYghhKDbcdB0FU3XHuyd4YAAACAASURBVEj9uJf70j3CHSDCTtPC1DSihgqyS4hFud2hmNhbIeuHXQxFZbYvT8y4P7DeGzDvLbUFsN1oYekaSWv/I2ehREE5tu/9D3gE4jEWw3+4+QV6ef0V4L+9ve0FemuVj2Q/6tbXn/jUDrgPVVMfaid3L1JKtpZ20U2deHrvS9Swu3R9//bN68Mb2B3zbMMyEKqgG9QZyXusvbdKo9zmxa+curtvPh7j8xOTaAgWL94ikVojlnuBnGawVG5z5dtXSBYSiJE06tkmSd+lHF5gcG6Fb/7LGomoRqEwya1z73D4lQjb8zY31w2spE40F2AvuayUFWpKElWB/IDPmh2ltCRQ3ZBwKMK1edheM0gmuyB18mmHFD6JySbVnMH1qxZ9Y12slYCJw10iwsfprrJ01cSphUTf36EzkkSxO+wsStpagki0hRMziW46KJqGPxHD6Ei2mzHaaYNIo4XsekTzAV0sbE/jjZsKWtsmPWaglYG6wXhB0q1UuF6fJxsfY2O7zlThJv3WEQSS0CmzXKnxyswJ/r0jp7j27k3WVnap5goMjxY50l8gauj8xN96gXhiDbsd4+xbtzAnsvcFSSHEQ0tH3Usg3bt/F0c+tL2T0gf/CmhHQMRZubpGuvCg5+vHIbRpAKZuHyKDXQjWsOVRNmpNcrHofakrd0gZPYWt9ZjqBsf30fZor/f/SKSUe86IHHDA43J71vNvfWTbbwP7SgvZz5qkIeU9v87etlHgPwdO0dPmvUfPaGBtn+d9wMcghODwi/cbQEsZQLgNSj9CKLhBgO0+uAR85c3rjMwNkR/Kcvn71xk8nMVMGYAg8CuE3gKK2bshLl5cZqPVIl1Isvp+hUtv3mT2tE51q8ZsMc/pr5xitVqjLgNejlq8+a++xZv/V5vMKZNjn51i6XyVlbPrvP4bZ9hqBtitFKgh5kqT7qaCqiu0Eim8Kw0CA9ITIfoVn4lXOgQbsFSPILsh5cCgrlgcn6qzsayz/EGcUAERSEQ84NpGBt/1qa9JmJRQiNG/3WFHUYlqDcKFEEVVcOMq7oCJWpKMmG3kgMJacZjE9g5isUndttC9gGLKwYo2qdciZEYVmpsqWizAjaXwym2KM5LdNZUjcw7901HauKCdoLyjMpgbIK2nkVLiBQrZdpVOq04+McTRV+aYOD7Wy30MwrtVXNJ9RQgFmhLnmedniKV6AdL3fG59sMT4sRFM6+O9UQHi+t4+r0JoSP0UtZ0Wtd0Vpp4Z/8QBRqgFpJIhLjSeGXm8NctH0XZc+hLxhypdtxZ3sFtdJk/snRZzwCfnh9Re7okRQnwG+DvAgJTyrwohTgMxKeV3H3Xsfvp/thDiZSnlu7ff7Dhwp+E7LgZ/D/i7QohXDxx5flAEvRJJSh4wyMdj5PeYARs/NorTcQCYOD5KNGmhKAp9J2K0ViVXz+4Sel0iVoTiaJ6VzQ8QboRjrx0mCAIc28H3fWaeneT17/wx3X748olX8LUY8b89w8J8g24yYO4Vn2Y8R5pbVBcMjpyeYf7aBpXtGqXtDn3xgGjdo+aG+KbO9Emb8rwg2PIoFw28doha7yLMEJlSGDrlcPR4A/FGnPKGgWG5aFKj5pmIXYWZiTbHT7c4V4tTudrF6o8w+5rEEh7v/L5NrZjEmNNQ1mykqdJSNbQA1HoHJ1TpZpIkrm+TMBxa6RTbYZTYxS3aVgF1RMcp24hGl854jrJjI5Y7XHgvxXIJTj2XR41m6W5u4QzDjWu3MKMmrtbkuZdfRfoqt84vMXZkmGjC4spb1xmY7LurUu0VxO6j7bhcr9c4Ho+gqyqqppLpT6MZnzzNQQiNSDxCWoj7FLP7xQmaBNIlqn040/GDSr9YqzWI6toDa7N3yA1le3mkB/xg+ZQESSHE3wT+J+D/AF67vVnSm3r93KOO309386Mf5T8FNoA5KeVXpZRfBebomZ3/6v5O+4DHRQgDoR9/sEjtRzCjBuvzW2wv7RBPx+6OKJKRCKOFAYK0TbxfvXsTP3HyWVpVWLu2QX4kT3VzhZ/5T5PEUjZHhjKcdOd5+9+8gW6EtFt53HYMrdvPhd9bJuUsYsarpIuSyekCfrtMwS8RHTLpOiblDviminw2y4bIs6ulcRMRWnqO0S+qOCMmrYSFg0llU2fDNlmeNwFBalCQnXQx/QDDbrHWMHnjT9PU3lEp1rtsLxpc+WNYf0ugiZCcV2XIr9DfrTEZL1FLWFQjSXR8imMOHMrQfzJkeK5LwawjNUHjeB87ahRrTiFq+gRJkyaw29Jx+mLsbnUor6dYW0wRBGVeeqXIhe9/m+tnXqfjLJJLjKKrUereMtVSBc/pGU8dfml2zzSOxVIVQ9PuilmEEBRH8k8U1PbCikXIFFNPdKwvXfzQeezjup6PH/QCmhcElFrtB16vdu43Pp8pZB8aIKG3dv9JVd++57N2Y4MgOAi2D0V8gscPF78MfElK+Uv0LOkALrHPqlVP0lX8MeDvSym372yQUm4LIf4J8M+eoL0DPiFhGLJxa5O+EYFmDjD1zDjLV9boGy/eDZKqABoOiXCMkckRut0OjVqd997ZoFluMzc3wsjcIIn059HUVaKJEC0/ye7mOpWuybd/9yqu7WE3bQ5N9NGdTLNiX6aZH8OtNPjuty9TyI1w8ZZNJBHiFeMMzHboNAUlP6RjmXg5INDpXGlRn4ihD2gUElWCfJR1t8CV6y6ZEQfXVlirxNBqHuG4TugKtHmXatRAi3s0Y6De7JAfdnFrKmEX9J2QctsknI7RpYuWUPE8n9CDzaBI4EtWSxm8mCA3GKCuKwTDSdK2i3sD1JKEiRhOTCHwdY5Ob5PdaVESMZYXL/GNb6/yU39jmpMvvEAmE+PytUtc2lxi2pxANaE4YOMF5wm9KWL63muB47n0vtYe/yKIaY9eK9+Lq5s7LJU3eHXcIBKZZb3WIBeL3k3RaHS7VNo2mWhPJLS5uI3dfHAq1Q9CarZ931rtJ0FK2eu0fGq0KY/Pp2i6dVBK+d7tv+98I3z2KZHeb5D86Fdtr/SPZWBfeScHPF2klGzMrxIxamQHbWLJKbqDMepdBwuFtRsbxDMxtpd3kcB8c4ml3bPE9DyqjPPiXzlJNhEnmrBIZhNsVlpEjSIjwzH+8H8LUUQLo11j4dwyJ378MMVXJBd+s8LmrSjXr7bYLdWJzyocHokykBE4hkJjucGtIEO+KCn4LYKqR6xgsVkskCs7rC6q1PQ4RX8Hud2gLxOy3MrSr9apmzop0yaT8HD6fbq7KkpeUspFYDtk46bAtEL8lEBXAoZnOmyej6D1SWp6BDYCTKVOtGPjDcfhrTp0PLrPDLDiR9heddEHFTpRFXPBJ7rVRjoBGoK+UgMPk9bYOOlpnUjbZ2AqghQzrM6PkYt4JBMpLGeUoaEV4tEO9TBk4NAx/LCF95BUYdfx7q5RSumDdw60wwjl431VnzZSSnzPR/+Yot6Pw3g+TdtpkozGiZgRZop5rm+XmC3mURRBMRG/TxlbVkKKgw+OIm3PY7VaJxuN0nIcbu6UeXZkcM88093uNaJanpiWf+C1O+iG/lCrvwM+ddwSQrwipXzznm2vANf3c/B+g+R/L4S4k1PiAdPc76oOMAaU99neAY+gVWuzen2DuRemH5k4raoqU88cwjA9BBWklEzmc8RNAxkExFJRCsM5cgOZXlsCxpwMmmJR3e5QXa2ROpHAsR0a5Q0qrse5966SsSympkcpbdTQ+wxeODlKab3EO9+rcu2NCJfeWsYOy5x+wcYQZQwzTaeloKV99KSDfsnGlQHtFDgVgarbFD9Xpf+4ZKttENMkSjLF5ls+zq5CMKgw2N+lKi103ad7PSQS8eg70oEdhcZ74GTiSC1AajZuRyGSCRi2OrQGNXbLOomgihOJcMRdp5ZKUJMuctQgMaSgWnXmW3kKbhNvSTCgNQiSBjJmEOYs5FyBMSeKl02T1Zrs7oSsexoLl9sMaVd5/+wtnp0e5TkLlt66weETQ5z47CCWGAJAV1PslcjRbnSYP7vI0VcPoelaT2ijTfXqQH5CpAx7a5638UMHN2zdt7Z4L7WdOuvzWxx7dW7P1x+XTDTKZ2Y+9AhWhEAI8YCxwN39UzHcepeFjeW7o0kpJYmIybMjvTzRmGkwWcg+1J0nqQ+hKU/XhONTyadnJPmrwNeEEL8G6EKI/5Ke8PQ/2s/B+wmS36U3LL0zh3QOGN9jv5+9/dqnGiklW4s75Iezn6i3HomZ9I8X9uUsEgQBmb7U7anVngIyHb19E1EVBib6gF6FkCCUqKKGpc0j1BEKIwPYHYf/9xtnkMs1EkbI8z81xZJTRx2JcuYb7yIkvHbiGf7k99/i+c9HkQu7OC2HofECqWKamRclm/MXuPxNl1olJB4NGZtwsQZVzqzl6IgQkYWc2mDn+x1K53S0do3IMYvy+yH6gMkLrzUYsDZYWo4RIHBLPqWagbduYcQV9K02fkwQ+B5hRMVbV6jqEdxalzVvjEY+Qbxa5chnbTa+2aKMSuC6mIFGJdSJDWp4aAyX1skOGiy28ngoFIZDOmOgLvlkfEE61k+QaKO0t1i9pNIoJog6Dpuuw8mpURavrhJNl0nFBskNF+9en3ajQ6AImr7HUPr+IuixZJTZ56dwu97dih9CeXhB9Ia70TOjf8i07R2klOCdRWrTCKU3OvNCG9uvPTRIpgpJrMcst/U4dD2fhv2gr6yUkjAIGUoncUwT554czetn5skP58jftttTFeXu9Oy9+J6PpmuY6sGE1Sfmh3Nt8YmQUv7fQog28Ev0Zjy/APy8lPJP93P8fvIkP7fPc/lvOBhJIqWk07TxveATBUlN1x5ZYPkO85dWiFkmw7N7O7bc3CmRtiy8IGCpVGW64JOPDSOVQTZ2a/iez4szo2wqJoXhHGtbLuXAxV5bp7SySzEWQ1ZtpotZBqMhHyzWmX52nBtnbuEUo1zcaTJ/pZ9go449Ege1w823AzIZCyWqooaS/G6JF14q883VflKHVVrf9ag1klBUiCstlpZ1wnQU24rj7irUW1Gckzq5OFg7NUqYuBkdGUI4kMK0u2gZn3heZ7duoIcdRJ/KxfIoVrJKJ2eilrqYVQ890iXYBTuMEcspeOtgxgzScYPALBGuekSjJmE+ytJGnU7D42TeQtUc0terKDETcSRF3WiTUl0MAtrOLmuda6i7Adu2hlypEssmILf36NCKRbh1fol4OvZIIwldsVD2oSwVQiC1GRAfTmdaWvo+152PoigKkeij002elJS+wDPDffd17gLps7q4iFtVmD09hWmZmFavEHjgB4zMDWFaHy9Ia1SaLF1a5fiPHT6wpHtafHrMBLgdEPcVFD/KU9N4SykvPq22fphRFIWpk+P3bZNSsnBhmcGpvgeK2n4Ux3YIQ4kVi7B8dQ3TMugffzA/bnt5l3QxidBVShHoH3y4qjEbjWIZOoaq4gUhjicpbfgItcq3vvk+f+1nPgNtl0QqjmM7fPC1S1z/7nmmjvik2yGzp0fom8jSlRt8/5ZDqi+O7miMzoEn2zS3YXZ8EOfkBPPrW0QWqzieQmO9jRmRhHFJVU/xp9/TyAkbLjkQMUj5HVptgVLt4juCMzJFqtthbLhDu9+kmdLBDghMjciPZZjc3mR7w6Tk+DjZCK4LTszC16NMxLYpLWp0FR+jqBNZacGqS3soTuKIj7bkYZVaNA4N4AyGxC4tsKVmSR+XTB2O0lxLUCm1cWVA2ojitNNEWcEf1nCrNgXfR49otNs+F88ajIzFqG9GWFrbYaW6xYkjs+CHzPbtvU62UWvAYIK+wqMFMpb2aH/TOwjlydSsPzCUPJoSIwhDlss1cvEoEcPHLDj09fXyc6W/AmqBylaX7aWdB0q67UUiE2f62YmDAPkU+RQJd+4ihJgDvgx8IKX89n6O2Y+ZwL8LfFNK+akfJT4JQRCgqipWIoK6jzJBpfUKnuMzfnSE3EAGVds7S6fT6LDl2iTScZ4ZH/pYr817qzKM5dJ0Ow4ry2v4js+oGSVhGLz7rctoWVCzeQ49N8X0qQk6lfd44Svj7KzrrFxexW2vorWLxAqC7ZUOsWiclbMb9I86mEGKzZs6mU6XWlMngoMPCLfD8dk2169YRAcMnptucu57MWzXIqwIYo6NlYTCcYGuC/wFSSIMuaVl8FdCnLaCHzGJbHrsLOo0VQul26EznETd7cJCiGp1icYhbXVxL2/jRU0S0qaWilF7tp/upk1iuUIkGiJuNmBApdOB+OYu/fkY030GZdWivLJJdypFOh9joeYQmS2QtyLstNo0bQ/Fsai0W0yFId1Ml8qVMqd/7jM0z63gZlXWah1GXA9rjxmEpBUhajzaD/WHHaH2OnS26/L+yjqDqSSvTo8xkLjXTs4FGdDWITPVt792hbiv5qWUkt1Wm3wsdnft0vUDqh37vkLXvX1DWv4uMS2PIv5yqosPePoIIaaAf00v1eMN4FeAPwM6QFYI8fellP/yUe3sZyT5W4AnhPgmPa+7r0kpW0985p8igiDg8vevM3ksycDwDsLof2Cf+XOLDEwW77qwDE7oSHrTYfH0w+XwE8fHOLuyju16+zKj3lzeoaoEzAwWiURN+ieKaLrK6NFhNF1j/MVB5ssXGS6MMTozgqZrfOf/vEVp5RrL1xKMHh4lmf0xauVFEpFB5tUNDs2dRtMGubZwkbrt0W451CttJga7BNKj6apUWyqLZ6P4rkrZM/k6Qz2xieUQWhk6qsbgUJ2tchLnUpOYCd6Ywtxwk6VbPnoV7IJFux7Da6r4iQDNActp4AsFRQmILdZZ/QDCooI5Y9GxNbZtA2PY4lBrh+1lCbs+g8/ZxE6GLG7k6BbiOIbDdtulcksyNbDOzKRB12vjqj6nJrJMdMa50GxxVBlmofQm0UKTTLZAsZ4jlrD45v93hvzhQardPHOxLE23xk6zRTERx/Y8srEPOyfxfVyjH3Z218rUdurMnJokbhp8+dghmt0Hcy/vWOBpWoPIEy5JeEHIeq1BMhIhotyueuL7tz//2H0jzpCAblAlqmbgIEh+mvgfgVvAP6ZnS/cHwN+TUv7W7cHfLwNPJUhCL1A+B/wmPQeeP7q97Y+llI+fgfwpQVVVJk+MEU2awN7rRMl8Aj1y7w3UQTzksuyslhBCUBjuTdmdGh166Hv7nk+91EQ3NAI/4MzXz5M5MUifaWFZsHT+LWK5Q9gNh+FDg6hdnWIwQ6QDl69cpzCcI5EdQUqDzKhGyxBM9udZvraG1/UgobO9VWb2VI4lP4WyW8fbDRG5GM2mT22zhR2NEnohXsNFDULMThvP1Si+COEFj/LVKkpSYamqIytNctmAYtHDb6ucntzkxUHJB69bSN1hre1T7kui1x0SgyFNW8NFwYhbyIIg1Bzykwq13RZG3QRNIC47tERAIinxYhq1VY3iUZ/BoMqVEmCFODsCLWWyvupy+rNF1ta6LFVUPLfGdjNAGBatosVc7jSNTol3ahXe1+r8XDRJcSTPt9++zKmfOEZ7pcJUJo6z1WJ+vYZRjN8XJOF+E/I/L1qOy/xOmeNDfXt6rz5NUoUk0cSHqtO4aXxs52DwIwKnx8HQ1Ltq2LvvFzE5PvRgR1QVOoXI01Hz/kjxoz/d+hIwKqW0hRDfo2dwfsev9XeA/2U/jez3V/M/SymPAc8Av0bPs/X3gG0hxL8SQnxJ3KtDP+AuPdcbjVBaNKu9Afj1925R3akDPaNqw/ywNy3UIYS69xSUbur3FVSGXv7dXq4iTsdhZ6WEYzu4XY+f/Luf5cdePsrFqyuU6y2OvhgwNqvz/jcvcP3MLYQQtIOQxWoVp+Nw5usfsLveIJkbwLUrDM4MEImZDE73sdBsEtnq4JQavP3u6+gtm9GYwth4H5GGi5V2UCIC1fYpGm1kRCKzOk5UJTvg4gUa62oCBjS+9NVdjAEDNaZiR6MsNZIslONc+G6ElRsGAyMBhhoQb7dJX69gbdgktZB+rYnZsYl5TYiqRGIwMtjmhddaWMMCTJVEVtI3aCOGDPRCisMvh0S0EFV0SFXqJLKC2IkRrOEI8QGPcyuCShemx7McHTxObEzFjQacPb9EJJehOJFgqn+E8UiUStdhXQ8prZZQbJ+R0TrZgRgDk0UOHRqmkIjdp/KU0qO8+j1K66uf+Dv1OFi6xlA6+QMPkNBzyrkzI3IHKUOcoHn3ec1duV3N5PGRUtL1DkrWPi3u+Lc+yeOHBFNKaQNIKRtAU0oZ3H4ess9uwmMJd6SUF4ALwD8SQrwI/BzwM8C/D5SEEL8jpfwHj9Pmp4V2rcPK1TWOfeYwAxPFRxbX9VwPu9Ulmf1Q7r6X5djSpRVS+SR9YwVatTZGRMeIGJhRk8Jw9m7Vkavv3KQ4mqdvJEcym0WxvgjojMwNYloGbtcjFrcomgalus2xn0mRkBPYaocJOUHSFXz/j84QiRq8MDfJuaVz6AmLTjNOUg/x1YC+8Qhdu4hGDV26qKaPsF3ijk8Yd1hftpj6nGRpCeThDJ0th/PvthE7XU692KARRHCqCqkZn+FBlz/62iDZoMXp11q4nZD8sMflM1F2LzvkMi7pZkCrHsErCGxb5crbcYoTHYxUQLQeEuoS29DQfQcrYdNpSryNkEY0iR9JkW+aVMolOksKdTsgdbjC7IhBrbXMdkQjbKrkfJfcXJrXjs1ycSfOq8dVtq9uog0k6GxscHhqEM2dZ2styuQRE8U4SqvWpmp3iEUjd0tBCaGjWc+jaH++066qolBIPB0Xm3uRUoK0e+WrPgYnbFF1Fum3TiCEQBMRVOXhn8FCqUI2Gv0whekeanaX+Z0yz40NHQh4DngSnkjO+8TqVinlO8A7Qoh/CHyWXsD8WeBHNki6QRtNiTzR4n8yl+Do7QTuZO7ReV6tapvt5V2SLzy4b8PuoioKUa3OxLEhFE0nCEO2lnZI5hIUR/K4XY/yRpXsQAZFURg7Moymq2zMb7G2VSc/lMdzfA6/MINhmfh+wKWVVYzFGtuX1/nqzPPgrvL9r20ghcLos1Fs16MrQrqXbuB2ba5cLJFJ79AOFBYXI7jtSyTTJmFulFJlCyMiqS526Zt1OHqsiSBk6Zs6Zc2nf6KDd63KrqOh5ySJOZ2Nr0uqG4JczOHmgoVRcQhjgvSwj5c30QOba5eijE11+ds/v8O3vpXi2pmQoO3QdVTEjsvupoadlaSP6DgRndqaTf+IQ67gc2MtSbemYsQlgjq7m2myIzGcQCEWr2KX1lndSsFEHk2t0Z+zGMxEMaIprm3s8syJGc5dWUaZyrC+uMsXnz/G6REDY9Cnf+w5Nha32Vw8QzLTIj1whL5UAiklrh9g6hrp4pNZv/2lRNbBv4nUT/Nxk0gRNUmfdexuUHtYJZN2o0Or2iaSMtHUvdtLWxFODPUfBMingeDTkAISF0LcW8FK+8jzp2pL91CklBL4DvAdIcSPbIAEqLiLJPVBotrDE8EfRuAHVLdr5Aaz+/qRZ/rSD82TPP/BLfqHUkz376Lps+y2fTZqTZ55ZoJWrY3nekQTFtOnJli6tMrQTD/RhIWUkmOfmaNbfQthJNlYCNhe3sXturz41dOkyhb9L+V55QsnKa2vUV6+SXm+xuDRfsrNDie/eBwMje7iBwReyJbi09WKZAKFybEI567YqJ6PVWoxMl4HS8fZCLBXBKWkjr8laKxqhKZP6JWRQqD3K0ST8PYfGmRTEkTA0nULW9cZHu3SsmHhmolfNNk5Z2HaEtmS/Pav59ncNhl7ySFeC1lciNDwNfyMiql5xJtd9AWoezqlmo6T1iiaVW5aYxjdLkpMwelKrMU2ruKROFJnOGHjGzYxRyAPWYxkrlLZjpCOPE/95jI3FJWg6+K5PgMTRfo3HN7a6DKTG6V6s8SzE6Ocf+N7DE9nKAzl6Nhdrr0zT6sQ4dT06I+UeEcoaaR+8mMD5B18N8QwP/5+FPgBnuMxnH54DumdupulVvs+f9gDnpAf/Y/v80+jkf0Eyd8AdvfT2J353ochhPgfgK8CI0AL+CPgv5ZSVm6/rtKrIP036SldloBfkVL+7n7e/wdNMXL4iSXkruOxu1Yh05e+r6L8fvBcj52VEmbUIBKNMDNQIJ1PIW4XvM1Gw7vpBevzW+QGM/z/7L1nkBxpeuf3e9OWN12uq9pbNBrezADj1xtyucu75YnLIzck6njShXSSIhQh6UIRlCh+0IU+nOLi4sgLkqL2QhTFPd5RuxztLrl+xw8wM/CuAbT31eV9ZWXmqw/VwAAD1zOz4I7BL6Kiu9MDWZnPa57n/w8lw7Q7HTx+E0VVKOUqLF1aYerxcTyR/SA8jO7XGN0/xJWT12jVWsRbYJXLzNfPEEn143gmSO49TU+sQyPsYf+hXaxcXOaNeZXJo4fR9POsz62Tq1Qxe6c5+MWDyIbF+TPzjMUNFI9NardNOw8nz0f5pS9vEZ1zyPqDaFLDE29hmuBmvDT/VjA4XiWmKwjg8mUVBl0md7UouQEufcfAbDnoigRH5eqCCZZg9pLGeKpGPG2hrEK9DjQk/qhNftNAShfCUJ6XVEw/8b4ysd2wvqEQrFQIT+uIBQ/N7Ci2LVCWKuz/4m62IgXquQbRhEZeW8IplIiWMzQDMBrvZf94hnNn5lh64Rz2UpmB3hjn5ouUfDpXVkzceIN8rcH4/iE0v4nvIxQgb/AgRxp4WwRg79NT9/W4DPUEb5tauJVb9WbbtsNSoUTIY2JoD8fK62PDRzxISilf2Om2Qog/lFL+F3dbtxPFnd9+Nxf2ABzgt+jalETo1rB8A/jK9vr/Evg63RbA1e3lfymEuCClvPJzvI73xPupsfL6PXcYKe8U6UqKm2VWr62TGk6w/9lpFEXBdV1sy8bwGARUg8JGEem6+IM6G/lLVJ04e8bSOLbDwoUl4v09vH7qKiOpGANjb9eSjewbA4zlxgAAIABJREFUxPAY7I8FaTQttq7VqRQsGpUWDTIsX6qz8cNX8S1v0D+e5PAzOXItnVK7w+VFlUrbJNJeI+TzMJzpsO/AINdPt7DtLCITomWrRDo6F163aRY7aP0QCtZ57Kky/983Y2Q8Nfbuczh9IkRmokmrquC2FMIBF1MVzF01iHqbNG0DqTgs1HoQSotgr4XegVLeIB7sEB+18DYlw+kyltTIxwTeoIHSbpEtG9Cx8ZZsIi2JOqgiQi6u5rLhSdDflDQaCoOHdRb1FaZKHtqal1hokJeuWPRfMBkdW2IkPYm9lKPhU+nRl/itzx9ic7aEOdzD1atrDD8xDppK2OMhEfB95F7kTatD3bJ25NbhupKWJpg4Mvq+TKDz60WySzmmj0/i0bX7ZnU/4l3wEQ+S75LfAu4aJN9XypsQQhFCPCmE2JGYopTyf5RSnpZSdqSUW3SNMD9xyybjwM+klDOyy7fpSt3tvcvh/k4pbpZoVJsP3vAhYHgMpp+Y5PFfOowQCrVyA4DCRom3fniOuXNdU5ZgTwAranL53Dx+q87u3u4cWDlXYfzQCKnhJMF4kHDi7dR7KSUnvnuKwkaJueVNzl5fZvTgMeYv5Fi9uMqXvnQcj9+HGpb0DMxy/cxlZk45LL5lQytCPWngjoaJj0H22gLLC1c49/0LYNYRZoB4u8VQrEhHWmxuGAhFobgAq2t+vv9CL3sPt3GLLrUatC1Ym/GQ3dJxFbh+zsfmssm+/jL7PtPC1sBuCpSGha47pCMWag2yV3UuXfSTFQZ1oWK1odNWwDLQOgYtYRCfArPXpNTUya5oVE9Fqc0ZNFdNVLvFwGAPAa1DMLRMxbYouVH2TX2SYmWEYKnD8V89QFNp8L1v/pQfX3iRUycvs3tqF24qDAkTn+4y9twuNFUQC3gJeIz7BkgpJc49HEM+yDSsDvn6zp4Dy3FYKVVQzffnOBJNhRk78MjR4xEPlXs2Gd5vMzdIV8ngE9s/3y2fppste4M/Af5cCDFN18bk721f44t321kI8Z+xreQ+ODj4Hk6/cyqFGkEpb1P9eL9cOzVHtDdyU9j5XpS2ykhXEk1FqBVrWE0LohBLRzGf2Y10uj6iVtPC5zFJHZ4k6H07O7CwUSLRH+PyhUXWly+zOz0G7MZqd6iX6ph+E3/YSydvo5heKvkq4USYUCxEp91ibF+YzO5jWLV1Ir0G8+eXkZ4crlVgMhZhw7RpGjqVxwJsbpQRnXVaVyA87EFXXJYuqDi5GkKVZAYsekMdZMrHnokisy9pBL2SpVoQGfXQ2Woztb9BcVnl4BMlrp4J06gbjA+32XW4zeJ5HREDfd1lbsaDZgoU08HVFbKndQy/4I3zMfSQSjwJI+M13vypQWUZ3KiCUm/jt3yEBqMsLpYpz9pMfSJINNYkHtdoF5MYsyVeWC5y0Wzymf/kKzz7+WeJqx5KC3WCao7QQIiAMMhtefAgCGtVdk0YZLcsZl5bRdmTZsvvp9q26AkFuLS0Rp/mYWj87bq+hlOg2lmn1/vza/9J+zoovQ/VfisW8N2m4HTHNUiXmr2JX0tu9/rurif8blBVFdV75yiOlPLRvOR7Rn4cEnfeDff8z9iJLN1f3me1TjcC/74QYgtASvkf7eSKhBBfBf4x3czYG8zRDbYX6DpIt4GvSymzdzuGlPKP2S4IPXr06EO940O7+3/ux+wdSWJui01bts1GpcZANHzHg29bNq7b/ef1T2ZurhdCENxW5WlaHV566QJJr5fxgbfrLFeurVPJVRjZN8iIV6dVq1LKB7h24izZy6vsOjzC4FQfuqmTbTbx9vjwBj3seWoSj8/DhTPnCPlzJOPHmHmrweXXZph6fB9qQKO4cIp4NYf3apNAJkxdBFhTCvhTNorfT6HsoNQCBIwaIqZh0WEt58fXaOPx2WgRgdGv8+rzXvbtbyIGOmRtnUURoalJzHCJg58pcOp8GL9iE5+2yec1ju7PogiXs6/72NwyGZyyKGQ9lOoKzpZFIuXS8KqsKGGs1Qa1gSBqsUZIb2JEBXnXjy8BxoKJktbYOFVFHZnFTY1hhk2sep5OyGD3QQ8e/3eJq0dZPuWhYjTJeCKM9tdJ7rd5+c9OEp4KESzrNJ00ZWOGVtqDu77B9VoDNxIgPGGil9vUPG+/1JcKJXTLxdRT3OqtJe15UJII5b2WbBi8z8Gh942LS8up4lV7HroE3LnVDfoioduGfi3bYS5XYDTe84E1uP5A8DFyAXm/7KQn+WtAFrh8n/13ZlexjRDiHwB/BHxZSnnqllV/CEwAI8AyXcWEbwshalLKH7ybc3wYCEbfbvE7rqTZsZGSO7z4btQ6AsxuFdBUheFYVwR7Y3mLpWyRqelBPBEfSuf2nYsbRXxhH6qqEvR7efzpgzSqDSoX1gj1RSltlhndP0yz2kJu1AgH/MyeW+TqG7P8yj/5HNeulxkYGeSt66exNxZRdC/TTxzix998mTevCzIeg/KWgWfvJNa5i+xNmqwFRwi3m7RqLSpLFsF4gJG+LTZKJsWSTjvn0mO2efkHAbYuquAzWXcUhg62IaaQzSlYMZ0rV8MEohYi6aHkE1x+Tac0q3JiPYgdkKTjFj1tm7nLXowejUCkg2U59E108EZdzl82aNsKMUNSBGwNEjGHhuqneWUJ3XXJpCK02xEq7TKyukkz38YbTBLweeg/9DhL5WVSdpvAoSXceT/J0TH6g2EunG9i9fmJmQY1bZ2zL53n8U8fZtezWX78/17E8SvsG5lEKDYhw6Qc0qm22uguNMsNrI7EEQrRniZC/HxGJ4T2cEdTdoIqNBKeyb+Tc43Eonfo5KqKwKvrKI96mA/kQyQK8AtlJ0HyvwV+F1gC/pmUcv3GCiFEhK7Uz38jpbzrkOg7EUL8NvAvgF+RUr7TuPkI8AdSysXtv18VQrxEV7X9AxEkCxtFFFUhknhv7gvSLYOzidBvf5F4DZ1dqTjFbJlwPHjPRIdMJHRbA1D3mQifht80OHZ0klxtlrK1Qng789Xj95AcfNuZwrEdXvyrE7hNiz2fO4Av5MUb8GC1O0wcHuGVb73A1LFBnv3qMYQQfPVrz7GaK3G5uoWv2SAYsKgXr4CqYIW9BPv76ekpow946E+H2T9exV9KsXpli/EvTqJf3cJyZhgcMJhZzlC2LExZZKkSxFuQOMsO+qjKBj6WXndRR70cGVll+RWF2XiE2ppBfyDHyeUAzbwk3G8h6w7NZZNrkRBKpQ11SXywjS1c3LTL6rJGou3S15siX26iBRwCmxrtps5axY86qqN2DJqtKjPn63iVFtFEnj1Hxpi57GPv7l3Mfv8sr+tzjD8xSSS9hRVv8FzvLxGNDFBqt3AuzDHaa3B4/zil6iqXXryG3ZKEQ0EOPjdMZX2Nhfl5WukSR/c/Q6PTIWAaZJdyGLUSI/umkW4DaZ3BUicxtRhCG3lP36kPGhVrHeGuETCnH9gAaHVsDFW9p8HyDZq1JqbPvO25CHnvFBxQFYWh2Ltqsz/iI4oQ4qm7xJhb1/+GlPIvbvx5r+12kt36L4UQfw78c+DKdhnHv9jWbH1XQ5xCiP8a+J+Bz0sp37jLJq8AvymEeF5Kubqt6vMJui7SHwhsy0Z5P8M4woB7zBk5tsPqtXU8PuOellq+d7ScY7EQsVg3EWe1UkMSIX2L4e7E4dHbz+G4TD0+TnZ5i1qpTjQV5k/+j+8RaEn8qsZjn+tFOnkUbYDiZgnDo7N+bR1vWyMzcoR2s8jffOsyVHQ+OWTS23cWdzxKqxHhmseHFRkmv7CAYzmohklk0EvZClNteLEvNTHGAwQCZWoXbcR+P4QtlKUmWqsNLqjY5LwOVakgvCpKzWJktI3Vsbi84seIGXj9LYqbAmvZwVOTSA8sL5pggxPVabYsGoUOZs8mIqRQ6EQQVpN4Jkpy0INevYIDRJ6MM/MD2FrKoylBDn/xV3CTlyjPL3MgrWF6TZy5PNVOgOaySX3CIS9WWK9kGXJD5NeXqU37MSIlBoYtbEvQIoQ/WSXZO4WqTrBa6kqwXV7P0mMLRkZCKOkaUloIxYelTpBvvELK/zSq+u7rbz+I6IoXpIaUDXC2bvZwpXRBlm4znL68kaUvEiIZvP886vXTCwzu7iMcf+96r494Bx/9OcmXhBDPA78ppazfZf0f0dUgB5i+10F2NIEhpdySUv4O8Bngy3SD5Vff5QVDV/c1BPxUCFG78bll/X9Hdz7ypBCiCvw53YD8Zzs9QVfb4OGRHEw8MNHmfgjhRah3T2ZQNZW9T0090HPyXozEo4zF01S3mljtzs3lTavD5fUsjuvSaVnU8vNU8luUcxWKjSZa1WL3/hGe+tXHSA7vQ4oxGtUmZ169gqKpHDg8zuoLM9iKoNrWsdQQQ3sG8CXjFGUPm6sGf/tvT9FZKGI1iujFZaanSgQLHQb2ZnDiUWqaF8enYSseorYPN+xDkR0OPVkjcQwGR1scGGlglOsENZdQWjI+Vieqtjn3lp9LuQgiLShugmlCYJ/JwDEHNe6idroNDNdxcOJe7JhOy9bw+ho8eXQL/3IWPWEiYybXT85RzlvEEx7qCwa9/T0MTiV57Av9dOoKpZzGhg0rGw2uvPoK0Yhk6c0sP/vfX2Rl8To9/jCjiV7spM26dZZzJ2bxaP0M7XkG02fgyA44YVYummzmrlJv1dioVNnbm8Qpt3FsD+hHbtYYmlqclO8oygPk3W7wsL/fPw+8WgSveQCBCbf6H8gG2HPcWk69J50isYNykt3HJ24LkFJKpHRZn9ukXmn8XK//Y4N4H58PB22gF3hFCHG3pJKb/xIp5T1Fld+tdusbwHEhxH9Kt3xjiXfRm5Ty/qPg2yK0/2T7865p1ppcP73A7uMTaDvwbvxFYrU7GKaOYzvvWlzgXtwQsc6tFlBU5aZwuqYqBD0mihD4w37GjiZoD60xFs3QdHWSIymEK9FNnbWtIh6/wdmT16hp4NoOAkFmIkMsE0XtC9HfSFNeylMt2swU4uweHaZnt4lVt9lcsZk+sItL8wuMfLqXlTdmmPuLNTrSwTNoIOazONECiceC9FFj7jsKbS1ClTbe3QoD+9ssrYQQczVmz6jIko1mKLRaGilvm+hTguVFLy2/QXC9TrusYjhg+sG1QCmVUcoSFMHGoskJXaXT46GpqyRrC9gDgvWtAK3VEPUChJw6YwdTRPuyZDeu4m1KJg4d5We1n8GCzo//+gxTQ2FS6T4Mbx+ltTzrxSVMGUV3UuiBBAE9Sba0RHYxz+74Xk7OX0PLWaSTFkZHsHmhQd8z0+w6OgaA67p02hbGtvuLqr2LDNDOGaQ6iFB/sRJ39baFqih47vOcCSUAysTtfxtHb9tmp8k1dzzP7hq4ZRwnCh+ChsMHkY/BtG2HbmLoN4A3hBBfkVKevGX9jr447ykVbtuochddObrngdx7Oc7PG9NnMri77+8kQLabbTYXdyREdAdWy+Lya1eplupceOUKzdp7r78s5yosz6zetmzi8ChqwMTeLg3RVZX+W7JmNyyLwlaApXNF/DZEhcba7Abf+aMf8uprlzjzyhU2Lq7y5MEJVF3Dtmx2jWcoLeR5fPcohguKKti1d5qwESCUDrMhK2wsLbJn2mVyzwEmJo4yuqsPT6zI1GN97H1yF55GC38YPNNpwrUIm+sm5UwMbTxKZ1+MTK9Lb6eBZ72JXRWIIQ96UBBLtXErGtW8n5i/zcizkuiwQyHiRx4N4SQV2hNh/E+ZHHyighnuQNvBEg5bax7i8RZpbR1ptfDXTfwhjaLTIZk0CY2oXL+6xF/+WYdvfXuWq6fnaK5XOTJ+gD3PHsHjEQzvUsns6ePFH55h4/QqSTVM+cwWgWqG3n6HSmeNQNTP2KERqu0Cg3GX4cEUNAL0JfsZ3zNw8964To384s+4fvr6bfesVqpT2Cg++IZro6C8t/nwnyerpQrZ6i/QVlZJgDpE/0T6DueRR+yAG9qt7/XzIUFK2ZZS/kPg39Adwfzauz3GTkpAfgD8V1LKmVuWfQo4IaX8H97tCR8miqL8nc1Z2JZN4z0O8xgeg8nHxrYdO3SUewg6341yrkJ+rcjo/m5x9er1DUrZ8m2lIQDn51dJeLyMj6TvOMZgcDdDhzTsjoPruGQm0ziD0C+SZFJ9FDfKPPPlx5i9tEx5s0y11mDX0XE2Fzb55r/6Dv5YAN1yGZhS+I3f/iyax+DkKxeZ+LJCrK+fv/rmq9irVcYOj1BrlBCeOpXgGOgajz8XYdMXYbOcY2iwAws6a6ZBj1ll64pL70AbRuIErQY5y0O4z8GqOigRhU5RsnpBEB1r0O/vcHleQ+QtXEPiWa/Tqrks5wz8GYmeMtCNDlvzLrW6h2bRxal6CAR0JvYFuHixQGCwgAimMRQNs23w7OP7aBW2aBs2uWIFq1omOZRE0R1a2TKZ6T6Ez0+mb4Kf/MkpAkNRnPMdkokRIv4YrY7NtY11DvTvoSbLXDj5Mpn+AYKRtx+z2WyDtpIkuacrmXdD+9RqWTRrrTvu1TsRH4AACTCZij94o4eIEEZ3fv9dIKWkbnU+Uhq6j9gZUsrfF0JcBr4hhJiSUv4eOxw43snb+TPAzSdzW1/1h3R7kh9b/GE/I/veuwqI1++5+VPcJZM1W61xbSXLpdev0rHenl/0+E0iybcbAv2TafKOxUqx609Z3Cpz9oWLjAZD+Oxs1+j3FqTbQHGXUZTucGyuWGVlaQt/LIjWGySeiTF2cJjF5S1OnZvDmwzyysU5bHuVcPBFPIaGPxWkJhzeePkSW7ZFeXEWXdVo2X4or5PZH0Dr7+rJqvEnKbQHUUWZ0CGdQg0uvFZFVkLIwG5UTSdybYn2tRaleTj5cozmvEllRTJZW0HxuKw0Axh2E38Slus9XPipB7No40ubBGMSQwU1ptKo6xSvetmY8RDOtFBGg9iPpannNdTeQXp2pWlYAtks05tocOqcTXlToJd0vvCJg5i25NAxP+Vrc4jVVfp8bTprba6+1cQbCvDJz+xhffYSl64tcuSz+/nK1z/Jrn0Z3rqwgOO6NPJVBgwvVqNFRUiOHv8croBC+SyW3aSSyyO3ZmmtS8qNFrc+oz29UfrG09Q7W+RaV9/z9+oR96bWtri0PTf/CB76nKQQ4gtCiBkhxHUhxD+7y3pTCPHvttefEEIMby+PCSFu5K3863fs87PtY57Z/tzdVuYuSCn/Pd1E0N/Zrv//+ftJ3sIHejS7UqgSjAY+0GocUkryqwXarc5tpss38GgaMuhFHdRuGz5uN96ey3JdF1/Iy7Gn9yDNPE0bOs0Oc+cWmX5iEk2pUG5UWC7X6Ne9mF4Dw7QpbZWYs5bY15dG8RtEpnqpVxqsLG4S2+fvWmdtVvnULx0lu1rgiT0jXL5QZfLoMT71Gwl0r4ezr17m3GszfP/bP2UkfglfLYVDghNNm2ePZVg95uHq0iwBFXY/nuEHL87RUy9T7S2T1EymJyosNPoZmOzgjCu8eTqIOVyGjoLXqNOeVNHTKilvjWY+ANkOZkwSGlXwHlIptzQqKxIrlSATq6GqNn7ZIed6UZIalXKL5rUK0Qkd1y8x6mUs3Yft2MysaQynTZSOzdrZJSYODtPTE+Diq5eJ9e0nHBdUi1UG9+5GC29R26px8EuTRHothkfCXPzuWSafmqRVb3P9tTyFUo2FkR6sYpVz353HCJokPjGJbmgM+3qo2xPMr+ZhJcfYcBEznuL0G5v0f6p9s7F0A1MNoSn39xp9xNtItwH2DOj7EOL+r7Ogx+TQQPrvxID6Q8FDfD1ud6b+APgssEJ3TvB5KeWlWzb7R0BRSjm+PQz6vwG/DrTolh3u5e6SpL8ppXxzJ5fxzgVSyje3qyb+mtukPO7NBzu75T1gd2wWLiwzcXjkPWeJPggpJWvlKqlg4J7edw/i6mYOr09jaPruSj4h77Zhb5jbkntqpTqqphKI+Fm+soqiKgzs6qPe6aApBj3pAIc+vQ9FURDaKD6PQ4Y21ZUibY9OfrXA4pUi+784hEfXyERCBEyd88t5juwaoicdRdM1GtUmc9fXaOTrONkq507PMrvSh8Mao4EAsWiAf/Tf/z3+zf/6l5zfTHNweoJUX4LF6wucfOl7xNL7KcwWOfPCJZ58cg+f3j9OnQAn3ywxHG4h2xWCJclaxY8MppBumY5hMOCTdEyH5qbO1ozAM+pHNnWcjs3KRBrZcXjcWiI67DA/4+I6TVKRErW2l2zCg1ZpEwq64POTH0yjY9OTqpLMqFgVHzXDg1bv0K4lCZoVCILmM3n+j/8Dh5+s8NaLTWZKDmOZGOG+CK/Or6Cakn/7L7/Nc39/ktHkIUaOlHjrzCzhsB/Vb9C/b4Jr19bwKy2MAJiqyiAmxbUqnmCEaDSG7RQYO74fRUaIKBHEuMHC1SWuVFY50j9FojfKRrOJz9BJ+ptIV71paNzu2Giq8ujlvo2UEpxlUHtBmKD2sUNrQHT1kQrP2zzUucXHgetSyjkAIcQ36RpW3BokvwL83vbv/wH410IIsV2u8bIQYvx9XsMX77Zwu7zwGWBHFRo7feru9r/5gZy91XSNvU+/9zKKneC4kmKjif0+hm36omFS4SCebVm65ZnVuybwWO1ON7mn3p2vyoz1khrqeu6lR1OkhrujDX49ga740HSNgcnMzaBqaCqxgA9VV1mf20SoCo99/iAhj8nGQlftz2l0yOcq5D2SM2sbWLbN6dPXWLi+wdpbc7i2w2NPTxOXgpF9fWQODDK6f4jZs4s0dYtD+wYgqHHp7GnGxm1CI1PU1R5sj0YoFSE4noCqJJ3Zz+7D4xz9eoae5BhOOEzeaVEzWihNB7+ikosE6KwYeOuCWs7HxqyBUqnhjAcJV6p4ZsosntZ48yWT5lQPiqKQzfkIGhLnkqQpTcrLDrlVh4y+hbRbFPM6izUfuesSQxoUAgHOqAr+ARNfRuEqZay+XmbmVVaW1hDFOvmZDd54+QztYh4dwcjYBFOPfYqDz+3hk3//CUZ7oixfWScS8LO/P81njx3HkAreBCQOaDQ7BQbGUvjDPhzXRQISlxYRhBKhdyRJ71AMUaliNVq88TenMQG/oYNbptuY7nI1m2Oz8gtMkvkgIhsgbYRQEWryAz1q9IHl4Q639tFVTbvByvayu24jpbSBMrCTtO1vbA+1/q64z42XUr58n3VNKeX/vYNz7bgn+X0hxDstC358l2VIKXc8RvyweD+2PDtBUxX2ZlIP3vAuOLYDgjuSB4QQOLZLcbN0m9myYepEEiE0/c4W8I1h11spZruWWnufmrptues4BCI+Jg53yxAqherNF0s4GuTgs91a2kqrTatjUxIuh3cN4PlEDByd4YHdvPjCD9DdLRKhPmqlOptzmwyEopTzFb7wJS8vuRl+dH6OpBlD81rkpMORzx9gZT5LKhFms1am1rYpzqa4sh5EtWukAm1yS02ScZW4GWJuuYQxrNEZ68HzRgdZ2KTV4yOl6pTnW3g8LtWRfpxLBfrCRfQ+FUsqRPUqagimjii4VYdGU8dnNzAslTYqlVUFPa1Dro0sN/FEdDbLLkYmRCcZJNUfpPyCwxNfPERnq8bVC8sMHOyjJ9JH9UqbqGLQ3qjyp3/8FwwfHyU93ce5C/N4Wi2k63L50iJGaJhh3WboUIJrJ5bRMhr1apP1fJnJsT5q9ibZ1kXGgp/E8BgYnhjPPf4sQlWwahaZeHT7bt1uqbYrlUC7z3e6YXXQVeVj00sSQoA+9eANH/EwiQshbh3y/ONtLe0b3C14vbNjtZNt3slvbvcEg8Bf0bVW/L8eeLXvg50Eyf/lYV7AB4FGtUkpWyYz1vvQz7V0ZRXd0OifvL02rn8yQ61UZ30+S7CnO5+qaiqu69JqWHTaXdPZB+ENmKi6iuM4qLe8NPsnMnQsG9txqdSb9Nxiclsr1si+tURmLMXesV4WL69weCBDbqXAUCRFu9FhVckxUzVJ1SXLi+eo5iv8ym8doLm1j6XmKmeLOTa3bHb1Rjn/0zN0MgNMKTFaMke506TXo1E7dw6vL8nmpk7xwgaWksefivJYUqOVbFPMreJtQijjoyMb+NJR9n2+w5U5C013MTotvLRYEr3YcT8ercNmU6U20yQ9oaBLh+olhXzbJBozqIyMIwxwKzmCdZeeYVgQHsy1PBFF0LRMRLZKr9dPI7tFKajyxvIVfvlzuwg9dpzZ19eJmiZmws/g3jR9/Ql+UtjiW/9+heOfO0x/NIxuufz1H3yfXc9OMfzYCGrZwqOG2f9UBKtlkV0vsLCcZSATw+MJkvBM3cxoBYgkvWDPEj7+dmBsN9vYHQd/qDvc+qBawvlcgYjPS1/kkRrNI3aIAPH+SjlyUsqj91m/Agzc8nc/sHaPbVZEd0I5TFfm9J5IKVe3f1aFEP8P3WHdX2yQlFJ+5IOkdF1c5+8m461/Mn3PoaFAxM/08UkWLy0jFIXBqT4URblZhL4TVE0lGPHfdg4pJfPnF6lXmvgHezh1dpavfukJpJQoioKUksRAjMRAd6TDH/JipiwGdk+iqz6spoWjCUbH+hlTvFy2qmRP1dhYXCfUE2b1zRyVjQajY320y4sIPYjf0Jg6FMQODtOj5TCcJuFCnPOnNrBLRVRTobqpowqFkc8r/KQ5yma2iF5botcK0cxXmZsrUG9a+JpNViZH6NgdEkj2BRepmVBfEQR6A7h+waLWS6NQohVOolotLLWDvZSnPZnG2wDPSJhqHbyXNolNgtnbj79cx1TypA8dYxWHzvU1gk6Zn/zZm8TGB0gYcWZOXMM/HKNQqTN1uMWurwzzXHAAodjkZiuMPjlO/+Ewu/ccpLRV4er1JeqVJv0TaebOLaIbKlOpBMW1Ev0TaQz1nTV9Koggt86pFTfLNKtNRvYNIaUNsn7f0o+p3sRHVtBbOmuAjlATv+hL+ejxcL8ybwAnXfemAAAgAElEQVQTQogRYBX4GvAP37HN88B/DLxG10jjJ/I+klLbgTQipcwJIXTgS8CPHsbF38pHLnHnveAP+3+uBclNq4OqKHftAdyrN2h3uiPXmq6RGe99z3MsCxeWifZGbhtybjctyvkqYweGCUYDJHp8zM5epFmwmT46zYbdpnc4jqpp2I5LvC9GsV3D1E0MxWQ9P4Ou+/jcvkk2FrJMOg6JgSHWT+VoDs/QY88zNP0V5jbyrGwKdn/pOcZ2KeSbPq5d3GLpjet0PBYHnxwkFumn3dshFNTYeGODwvplrqz10+fX+MyXvWzuGcBXmufKKyahcBSrbZL0qyhlm+p0jJyloy3USO8S+LUO7XCN9JiX2ZoPf0zFqwsKZ11aJRtP0MberGG1WuQ3oRP1Eh5W6XvKIibWObkwSMzoYWMhT67ZIJKQhBMlzPHnaJpetkpN+g4OcehTe/nRn/yYhVqHSrHOwK+Oofd2aFwtsCAuMJQe4vzVZTKRIJHBGKojWd8o4M9EqJXrjIwkbquBvPEeEEJ0MzK1AXK1Ovlag129CXqHb5mxcMvdJBXj4D3v+Uc7oUeFh2y59fFEvt+e5P2PLqUthPinwPfptgD/TynlRSHE7wNvSimfB/4U+DMhxHW6Pcibhf5CiAW6EqaGEOJXgc8Bi3Sn/vTtY/6IrgfxQ+VRkHyfdByHfK1Bbzh4c9lCvkjQY9Iffbv137E6qJp6z/nStdlNpOsyND1wM5AuXl4h0R9DmBqGpu7oZXirR+UNihslgtHAzeHVmUKeUEASDgkst07Y68HUNFZKZRpWh6neBFHz7RpQgxA6BpfXs2w2KiTrDslMjMlDowRC+yiszvHm1TKdRIuRRoDcZomV15aZfuIQuxQve77+Sc5VC1hNyeiBDqdfOY93cpTBoyWOx/J8e3kad0OgB9sM7/FSnosTnMgh1yV2VKFUNegXJsr6HKWcwlrdIHvdIKRDo9AkLFySiTaGEUEJRok+0WbxQhFRbhH3tqj6DIw+E1/ApMdMUV5P0GhbeHp8yIiPVkEydWSaVKjCajlMY7FGdH8YXbMJ9fpZCdv0/kaYtDrM2tUVfLsSuIUgAa1JrxzEWwpzdXYRbRSqAZWO4+A3VHShUJE2jWqLreUcgYgf3dCZP7+EN+ghPfL2vLbfMBCBOxtGQo0hlY+G8Pl7Qajvbe7/Eb94pJTfA773jmX/0y2/t4B/cI99h+9x2CM/r+vbKY+C5PukbTts1eokg4Gbdj+Tqfgdw19zZxeJ9kZIDtxdqaRv/M75UE1XUVSFK5s50uEgqdCDHefNoBfLtrk1pSeajtDyKlSbbQIeg9FYErUTJxzpHs+7HcvT4SD5jeId85l9A8MANDZzFK5sYGgmQ3sH8Ad9QJjUaC++0nkOhgdITPq5+OoVljt+GrUWomGzN5RhMN3Da997i9dOnSK7nufYlz7F2fMuwd1fY2J2k/kLNX54ziU4GSTiNviVL7V5y97DyuIKPmFSrW9R/JnC/k8ZTB8PcX6lQeFkC6XPT8WrM1S1YGOTTsdlSQ/jRL047Q4VXSW2J0rJstEDGu7gEJ35Ilm3jXc6g1lbgLrKyIEBzl1foVRtYc6tsXfXAPGpBCEZZG5llSvuCrnNGIPBEKLc5ls/eYsR3UOkrbJ27irDh0cwoj46r82S3Sjyq7/zGVqNPPMrCkuXVoj2Rnjr1SuMT/ZRrzbo33X7nLTX0PEaOnbHZvnKKv27MjcbS48yNx/xUHj0tdoRj4Lk+yRgGuzruz3A3ejxdRwHXVXJrxeJ9kaIZaJ3O0R3n7sMzfaNdyXl9pjJ+2Y33kqh3uD1+SWeHB0iuR1Us4s5Vkol8u02iWCAhGFy7ewiU8fGqeZr9KSjKIqCIiG/mCcc9uMNeKm3LepbFYobZaJ9UZaWNrG2qqSeHMDVVS5dW2FyJM36co4BJUC8Tyc/1yIUCzP6aZtrdpvRnji616C4mafZWuXQl57j+uoixrDO8Z59BMImRvo6PU/XOfvyRZSVNfK+GNktHy0XvJ4MUduiqoaIHm/QVCssLVZorBr0xWrkmhp54lxvdxg7BI2ii7m6hllSqXpN+jIKzZk8jifAZn+A9uImyoUs40/3U5jfYBMv1QurhHwXUdM+3OvLKHWHyycuUTXLfOHpT1Jdb+LKXqK1Bk6nSmtygFGPj2qzTUTotFwoLWTxF30MTKZp11oUijP0BKsER0Y5/dpVxo+NsaE6NJotSptlhOjeq6jPe1sQFIpA9xgPzNB2bAfXdXeUzPWIR9yNR22vnfEoSD4kXFdyZnmdyVT8phiA+h5T9N9Nar/HcslUJfnrmyQPd4Nk30QvffRSKtdp11oYoQDTT0wiJWytFAhFbVQjTHapzNSxcVRVxXUlP5mZI+HxsmcsxY+eP8n88gaTQ2mGpvoo1pucOHEFxdSouhajyTBnfvQq4UiGiUPDNPU4pdUtShtZvvu9K2xWHcYTSQqFFpmhHk5tzHLyxxscibc4fuwAK7bg+NePc/rEC1jZBpV2ANEsYCdiFIpVRhIKpu1hab6JxxwjHNXYWpG4UZvE+gq1gk7V20O80eQrv7bEi3/px1f0oG0mUDIDPDO6zpVKFW3IT3tNQV0rYSktQlqEeCLCylaR+FKRRKaHakSjvGXj0ZKMH5lg/vkC+8IJ1qfCxDsCbyrME5mDvHL2GltrBfom0/y7P/ge6dEU//h3fx1XSLKVVVRlkvlCiWSmB49pcGxyCMdxaFdanPrJBcR4jH2Daby3BDpVVemfuFNv951sLGRpN6ybGr6PeMS74obA+SMeyKMg+ZBQFMHudBK/oSMG3rvM2DuHPh+E1bHJpHroSb/da72xv+pIatkKW/Nb7H16ClVV2X1sAmmdxrYV6pUG9UqTar5KfCjBaDxC0ONB+Aw+8YVDPF5t0ay1EIqgtlzg6Wf2MJiOIwRUNudwahfQR+qceaVMZEihkS1QvJDH6PHz+BPT9Kgm8XQPUgVXtVlfOE1tLYtV+SGZ3WF8vk/RXB0kM1hhY1UwHU2zXFyj4PgoLUHEq1Pu6TC8J0x5TbCwIsj0DdEUqzz5TJKePTE28wF+dsVH3VvHFjqBQ6OMagZydQ37Wg53w0N8dASXGvGSxbX1Kv0DKYajfjyWZOjZQVZfnaGDn75YmO//4Q/Y/fQEwUiWLemSn1/nhavz7N67j0je4sXnv094PMnYU7t48gsH+NFPz+AYCiE3QHNulePPTXPqrau8eOISu1IJ7I5DrVgjHAsyNtgNhq7rUivW8Ud8d9xr6ZYAHaHcnljWO5JEuo9ecvfDdttoivngDT+GCN53CcjHho9yWtwvnIBpvK/5pGatyYWXr9wmcP4gVp02RjqEL+hFSsnFV2eolbqm3JFEmIkjY0wcHsUFio2uwo8wDqF7EowfHEHTVKx2h9lzi9SqTTbLNdodm2iqK8A9sn+ItWoeLegwkOjB1DUMTSMcH2T/M19gU/NwsVakZoUZi47x3GefRhch9sRSrC5mKVxZJxkN0+OLcGTfKNHeBC+e9FO87qWTvcjhpxyefvZpDg6OY6sq7WsNhpo+OppOxePhmV9O8enPDuEqGhWh0FA6xIY8VHo9dPwu1fwWa6c7yIhA39ODd+0SnbUTXF7wMnkkRbtUYfn1y4weHgElhaapFM8uUynUEWMxdCXH3r0KhgOpgThlTfLCuetcWw1SP7HEyPAcB59sIXoMfBMJPvlPn2Xg8SGe+/IYjneJ7FoeveUQUDR0j8bM61fRFIX6TJZTZ2dp+BTGD42QHkmiGzqzZxbIrRa4ePIapy4v3im+7eZAVu64z6qq7tgSrmKt47jWjr9DHwVaTpls6wpSShbyReZzd9qQFevNR2Lnj3ggj3qSH2A8fg9jB4bf1bzTdG/y5vCsEIK+iV68gbd7skIIfEEvhXqDc1eXmYpG6R1OIu1ZQMUXHGZ4eoA3/vY0bk0nvW+AWMB3c3/LdlgrFxhNGXi83VZ6s9YE4eDvKbEr2M/E5zNQd+ibTNNutFm7tMqpH75FreOyWbIoewR7poc4MgibIXj9+2OsLdVxZZDWsuCt0ipapYUdNqi3HZyNIrFYCJ+r4fUNc36uyHplg+EDw0RqFjJiY5YbXPzGAsKx2XN8nEbUZe/wAIt/lef0hSqJ0BZS1FCnepHLBnOnLhD1R1k7t0ZHCzKQjBJWNJYuSzrLUK03eOPKIpkvTrGUL7OarTLgehgJPUNPaoCZU+sM7Ruk0GiydyTGqZfeIBYa4HOfOkRxs0LWyFHflCQ8QWTMRzDoo38iTSIU5NKrZ+kbLhGKfZH+XRlyqwX8IS9SCKr5KqbPxPRpONJG1969fKW7Xfer6RpSSjpuA5cwKg+2iLJaFvPnlxg9MPShnu80lRAJzy6EECQC/jtkXFxXMp8vMJ6IdTWSP4Y8mpPcGY+C5AcYIQSByP3rN8vNFgv5IlOxHoQQmO+Qqosk7l6E3uP3cXgwg2M7SLeO6whcIuha97yxTA+O7TDYE7ltP6+hc2zodkmw2bOLFLMlJp4aRfHCaseieX4FzaOx2mqSmk6SPXeC537tS5w+ucDCjy9zeGKQWLyHKycWOfrMY4zEImxtlrm2uE4o4DLc6+dPv/kT0k+O4lzMYhoGHl1n/m+ucXlzndB+L08fHcGoO6ytFViq6Zj+OOGjk+wKa3z/G69R+uVBWpP7sZrzJAIKVq8P9TzE+02SI3D1ep3hr00zOXoUe6lELruJHvPR2TOAWmywtbyO9+pJCuUIyZEBQkmdN9/Ic/qN1zmwZ4Txp0ap5+vUsgLLSnH+5WWm9u3m1MkraL02E73DTB8a59qpecpNi+unF5CWzchkCd0osHhphcx4V1xi6rFxdF1j8dIKqt9Ej7dRtQYJT9eRznLqCCHQFR8PIruUo1qoMXF4tHsvPe9CjEJXifZG7ppI9mFCCIEuusHPfxf/SEGVQ30qQv14Bkh4NNy6Ux4FyQ84ju1w+cQ1xg4M3VW03Wfo9EfCbMxnUTX1Drm7+xGKdesmpZMjt7pBraowdqAbFMcODANdB3pVCDRVIeb3kVsrUFgvMjTdf3O4b/exCWbXt1irWByMDxDItGmoXmbenKXSbuNLBsk8/gQdadB7ZJgjx6cIRQMsXlllavowSxdW0HtjZDI9hHsCvH5xjni6wu7hPFc6XkI+lV1HRlFNi5cubWJZfnR/mHDHodW+iOFNYRci7P/qINnFVex0m4HHxqHfpEcRpN7SMW0vbiPA1NEwsfEkeq3GarmArphsnlzkN/7zTzK/us7575yj4LYYmUxTDzVZLK/ja7jEhUrRlLR7fUTTEUoeyXdefQW13mLq2c/SWFpjcM8Aq1c3GdnVT2IoTsg0sZoWw3sHuHzyKo7lsLAvSUxNsDv6GFrQh2HqpHf1UG2sE9X6Gd4zwEqxTLWuMJZ8O4Gn4eSRriDquXeQXC9XKTdbTPTH6OmN3HO7+6Gq6j3LlD4qrJYqSCdPX/jD3RB43zzqSe6IR0HyA46qqfRNpO8QCLiBrnZdPqJTntvmP11pd4fr3uFNWMlXUbUyvlAfQggs20HKCPGhY8TukgjScRxajosQgpCmszGfJbucIxQL0mnbuI5LfDxFSGjUN4so46Jr8zXswes3EXqF03N1rHAAf9BL3Ahy6bWrjB4YpubYXDyzyMJPrpBdz3P8q8eJBzX8MT+eSIb9h4/yhCfFgr5K7xOjLJw+QUBbZdwbIe338PIP3qDkxoi5GkeeHMBtQaivl7MvXOXpXz/Oa8//FMXVGRrrEDAUtt6qoyXqbJgF1C0P0aqkcP46+XqBf/V7C/QMDCHHe9kfDFD12ow3+/DZHpqaSfHSBvGpXhJSRxwcYsus0xNNsXZtkRf/9i0i+zIcPzzFuVMvMza5h+p6mY6hsXRtg61Wg0NPTpEZTjK3tMlgYg/egJ/lmVWqhRqxYT9LM8s4CS+aoeEU60zsvt1CTXGSzGzmODzo3lNUIurz4jf0bib1h7wn+DAJmgaO7EVoD88p6H50nzmJucM55YfC+9du/djwKEh+CIgm763beQMhXOhcROqTCOGlbudpOUUSnu7QaKVQpbhZRlUdfL5r+EIxwMt6uUo+V6bf5yeaCuO67m01esOxbpbsVrXORqPBvqd3Y7U7aLqKdCXlRpPL61kOD2ZI3JJRuza7gdcPkfAGid4UPsXD/JtzTB4dZe/TU9StDo2wQVwaOEdGuLqUpXPiAkf3LuKKIQx3iPF9n0Ztb/Ctf/5jrpXa/PrXPkFIyxD5pTirWxVKuTq1hcss5f0ojT4m9w2T/e4l1LyLkWuza49JLHGA+eIMjdZ1gu4AXi1K9vU1NufX6envEA3ohAcdGok45UCNHr2H0pUNito64YkUz37FYPmsTWlGUndcIkEf5dkcU2xBTWOkP4HYaNI+u0EunSQcTHH95DLSERgeneHdfcSwCQT8XH1rlnA8iKw0eev16/hCPiRd+7M9ex9H01UKa4WblmnNWpNGtUUsHSVgmkz1Ju6ruuTRNTy/yBfvh4T7zUE6tsPq9Q36xnsfWkNjrVyhbTvsSn20e+wfFR49UR8ZVFBTsJ2cEdCS+LW3rdl0Q8Mb8JAciCNlBpwlFmZUPEE/mYAft+Myf36JUCx4Uzv0hpSedCWb85t4wj7o6dp3ATiug2jaHBxIo4gOp5cXGE8OEfJ66GgldC2Ire1lPKnz+plrpP9/9t4zRrJ0ve/7vSdVztVVXVWdc8/0xJ3NuzeSvJeZEimblAxKACEBCoAB2R/8xbJh2B9sfzBgWBAgwZYoAhItCZREG6TJS3H37k27926YPNM5p8o5nDrBH2qmZnq6p6cn7uxu/YDana7z1jlvnao6z3me93n+z0gYl9dFqVJnqVDgTCpOug4TkqDx7TOsvn+bD38gMTsZZL9QwXIpTMYmSfzW6ywu7XDtp4t8dGuV//z8MB7bxHB4kAoytmXhzlfZ+WCB+PkUr6QucPn96xAxaW4v4pFMSoU+NLcPG8HwcAB/JExEbJPfV/EMnCIWVdnJ7eOX86gTQSaCDoZnRln8Xp6ByRihM3BtaZ+qV2VgMIZX9OML+BieTjJ/bY1gIsSfb24y19fHmbdHWbm+wfL1DbSol/5oAFWROf/NOW58tMAn719BaduEMw4q+Qr9Q1FWV/ZQh0KMerz4Ql5s26bV0KkWqkQSISRJ4HP2yhmeN7ZtY5kWVnsDSYoiJN+jX/SYDIWC2C9BO95etPVk9IzkC8C2bbDrh2rdHvWaplnCKQdOVEYihOh0ar/vb3Hfx+vyurprmrZtU82XCcZH0BxOrudyTMejhBMhlj9bRdEUoskwK1c3CMX8WJbNwnu3OP32NAxDrVxna36H5GQ/W4u7nO7zg1Viv7jNgM/E5xghmPBhWi2W1y+T8J0maMkkokEa1Qaf/OgWjX6Zc323GJr9GpKkoTd1Wq+NsvJ+le1yk2+cjVJtZ6lVK+jYvPa101wYGuTjzBa5UpHPPryN0NyMvjLBb//6efLbBdK3mrz1tRD/4t/e5OrmZS4145w7P0Y626RP1PF6PSjCREm4OTOY5Gf/wYF/SGPDsLhEhGRYYnH1J+xt+IjHU5RViXx5h/3tFsMRPyW5jNfQ0S9XCP/cHLGwn7/4wWcMJKPMnh7Gk/dxbnAAp6rw6eVldlsNXLkir39tjkatyfLyDqtX1pHOxHDaMs6qQWI0jsvvwqkoeCUZRVNIjFhg3CLYd+qhiVc9ng+KqjByehDbWOd59ZXvyFd+viZKPGeB8y8TXxojebeLxovCsiyK6RKhePDRRswugbGIrb5yoJfgcZi2TlFfp885gyKerQdhtAXr806mLrlxuBycccRxqgpCCIZmUzjcDmy7zch0BdmVBFvlO3/rG91OKQ6XRiQVplFpUi3XyefLbNTbfPPUuyjWGpZlENBS2LZNpamQLmaZuzSBYVlYNrz57mlajQKZjTViEx3BhM/+8hq2LDEXi2JaHWm/hewqZitM261S3yhwdbvKr369n5inTuRCAeKv8t5faHy0aXPWlAkG9pBoM+mTKQ0N0zc1ScUr49m3WP10gzO/NsNi9RaRvTFuXF2g0N7HZft5/c2LrLx3i8XddSJTEr/8y9NsVnz4NSfDX+/nn//+VRaCEb71i2dIBfysOqrcXNrGGDLxhRqYjXX2c2GGE2Y33Pn6t84yMDdE2JK49dEC129vwmiQqdfGqeVrvPmd8we+N8GwF6/DyeInK6QmwxgtN7FhGyHEgZKOB7Ftm2pLP9LLrBZryKqMy/PVzeB8UoTy5Vcy6hnJk/GlERN40YkKerPN7kr6RMZZSEFQz3UNZLNtsF08XCB+P4rkIOE+91wUQzSHypl3Z3HcqXN0aWr3gu0JeO5cjGU0VxRZ1lBUBZfPpN38EZaxiaJ2PM1QPMhVvcJPPl2g39nEocgsF0OsZlusXF1jfz1DYrSftWub5HcLfPLZEvObe7g8TrJbTRauxrBMQTFdxga8Xid6qYGUb9I2TPRmArNoM664OP/qJJn5dT76g3U+/bN9hmZ/EdMOcLY/jnwzy5VPM2TlBEHPeZz1Jv6WC7e7xIj2n5CcTebemeXV1+e4MObGGdJxqQ76gwGKO2VM2yLdqNHwB5Dbp/ngny/z7qlRmvkfQ7HJ28NzRKsSXtXDn/z+j2moFnWHgZry8faFt2iHx9itQ6McvtfyTJLIlitk01kUn8E737nAL79xlpHxBH6fG8u0yGylSa8vAB2d3kDEx+wbk7j9QSpFu9tSK7uVY/nK+oHP0DAtLMumrrf5ycoGuWodgJK+RaG1BsDND+dZubz2zL8/PXp8lfjSeJLPulNCtdlio1Bitr/vyH073Q5OvzV94v0Jca9WyzBNqs3WY89p9do6kWS4W7rxJJQbTYqN5qH6x0p7F92qE3GM35mvBMq9DMvFm8v4onn6w/eSDVRN4Te+eZ7s0h4BOQMkGY0EufnjefpSEULxAJpT49Xvnie3WyDh9dLX12n7NHF+lPGzQTCukS5FcQ6GmZ0dYubVKIgQkiwzFYtiiyp7hSx7S/u8+1cGWck72LtR4NMfbjH4+gSnf3WY8r/6AJ+7D4fXzU//LEt0cJJvnHWD2yCg+VlfaJEc6+sY5K1JHC2dd94ZZHu7xHe+ESfnsDn15iD5Kws0NrZJTCdoeiv09UeoFRos1xu4Bn002zV2pBbW0jYukUXKhJH8ASaScXYX9sgVLDL+LNWaxPRgHL3Y4Mb8MqX6BufOf5ud3Txvvj7D3NszLH22iqGXaVZWcfUFsRUTv5ZA1VRUTWXs3CACQaPaIJIKE+jzH/i8FtNZvA6NwXCQ8Wi4u8blViLcDRPOvDqJJH9p7oNfOA29zc3dNGdS/Uf2hv2i0xMTOBlfGiP5rNEU+VCHhmeF1+lguv/xO637Ij401+HC6LbeppzrJHg8is5a5WFcchiH5D9iSwe3GiPonULSDq6rWuo6Y+eGcSmdLFpNgelXxnG4NCzT4sr7N/AEXKgOQXTUg6reF+IRPlBG2avusprJc3Vpma+d0Snv9BMc7GPJWqSvEYNgEfOncLXsJTAZ5q1vDfLJ1hX6Sj6ciRjf/a23qBarVIt1Ws0gSxu7mPV5bqyXadacRJomaqtO9vufklX6UYvrlD9YJb8Oi5bE13/nXQJWi++OSXheS1LWh7myvE4tD0rRxGGrVK5kWDXcOPCQrjbw9CfAGaLWaOENeXCG3HhG3TQrn2E1R1krlWC9iCw5Ub3jbG+kafo0vNHODU5qOsFSxkG7BpYpsIVFrVxHcWkYVpuSOY+rNcDG1X3m3p7pev13GYuGu5mu47H7ErSke2UNT3Mz1QMcisJoNPSlNJAAUi/ceiJ6RvIhaIpCIvB0F5mbP5knNZkgEH248bmftRubBGP+hyZrRJOHm+/WSjWWr6wjOSwCcfdDw7P75SqZao25ZPzI9StFcmBZKnqr3c1evZ/B6dSR+404JroX5r1ShbDHRb5dY2HtChdTp/GGPLj9LvpTGxStKpbVhyZ3DK0QCjZBvnkpxFttg/WNfSRbYBo5anWDoD+J5vbQdJzlu7/Xz+52lu3NfXRL4d1TF7CNztfXMk2u//A2IHjtNy5xrbTLxs8ylJDQ8DB7aYb0ThqzLTF9NkPDB4UFm2CkTTA+REuvsJWDmcl38Y1G8DT3cTLLfG2HwnKR7OZ1CMVpLmxw8Y0ZcraJcCtkFvfYLKxw4dcuYQUchD2QWR/l3PAQmsfBrc0SAZ+g1ihjtn2c6Y9Qb+ksFgqcH0jg8zjB7UQTXurFJrsb2zjHo2wv7DA+FCWYiuB9M4CsyKzf3MQf9ROKBdhd2adZbzE6N4RtpkHyIcTnU/P3MmMaJvVKA1/o0X1Yj0KSBGHPoxWOHnp802R7cY/EWOzEEn/Zao3tYplzA4/uBPM0iF6d5InpGcmnwLZtsq1FAmqqe+G/n4GpJJ7AyX9k3pDnoaIBR6EbJrlWk/7RGHJfkYZZwCcdbt4MEHI7cT2ihi63UyC3k2fmtckTz+Hu++7I4xVxaypuTWV9OUNE32V8LIkn4MG2/QRxHvLMr+/sE/N5EcD4aAJZkgiGfWytpUn6U2REjYTHj8vjwhVTCTlKnBo6R63SJrORZSNX5Ed/8AMyS3t866+/i6YonJ0S9GVduCKXWF9J40m1eW18hNUPM8gtidyCl61qk3qrxbuhKOffCjAwqvLBv10m3MyyXNhgJHEKs2Ew8vY0rcsSyWScqVCIxc/WqPhkxFQfslOw0q6x+t7HvHFpGofUZPa1USzhYyNf5NJ3LiBLgmsfL7DdbOAN+/C5ISUpSJLESDRMw+miWWsR7POT2cqScLsIjCVxuB3sraXxBj2omoo35MXp7kQRwokg+b0iq9c3GJmug1CgZyQPUS3W2JzfYe7tmUcPfh7YYD+mgHrA5USRXozn2jOSJ6NnJOFA4K8AACAASURBVJ8CIQQuOYgsjr5LfNxw14Oe4ur1DSKJ0EP3o5smZcNgcCAGRI4NDWtKp1vHcUSSoUNrX3dp1JroDf2hXnGl2SIV9N0p1Hbyu7/ySxT2S2zO7zB8ehBFVVC1w/MbiYRotdv86c0lfnluirDHjT/s41TYx8rWPj++tsRvf+0i85t7DMYjxP1vsbWQZnczw8+uLvPaL16kbziKW1Nwhr3YNkylLuJ6JcWPtnOc/dZpVMvA2ZQIn3IjOUcZeDODz7bY/MEilmnzZ/MmHl3F4bPIXd3kws+HaKJwyVPhex8W8LUk9OUcyb85R1bXqS9uYmdyOAZTGMNB1N06lYU0681+4uMGbn+TD/+fj1n1uQnFwxTqdW7upjk9kKCeWye7niX+ThyAZq1FOVchGAsQ7AtgCh0rmMHlGKecq9z7bO4LpTtcDoKxAPVyA6EOHTqnW4u7RFNhnI9xw/VlJBD1f64hZ1mRGT41+FivUWWZoPvLGd79otIzkk9Ju+Bgd2uLyYtjz3zfvpAH1fnwMI3XoTGXjD+TY+2XqzQbTaIu95Hh1lqpTrVQe6iRHAgdDBFLkkQkESLcH2T58hrekKcrUnA/PqcDn9PBb54/hfsBIeqgo82bSRftUpGNhX1SfSFsW2N7aY+R04Pgd1IoVhkY7CNnC37ykxvomuDUWIq+RD/nXS4ikoYmSwSiflqZHKah8x//5H0mEqN8/ZvnaBom169tMDPuYdvM4Gk68ZhOXHabfL2BYShUDIP+V0f56NZtYqEw42Nh5H6J5Z+s83f/9s9RWc2TGI9x+6fLFNyCETXON75+lvVsgbSuM5py4VKiFLby5DUHydHzrN3eQtNUhICh2QGEEJiGyc5Chv5TPgQSoXgQ0zDRW21kRTrQa9Llcd6ptzuM2TYey4NpmybVlk7I/eXzRp9HTsGXhd6pORlfCSN5ey/DQNCP9ykUS0zDxGgbhxIoPAH3c/uyRVORRw96RqiyRC5fwzJqjJ4ZPiRPF02Gj1wThU6N6q0PF5m4MILs1Kg0W932WkIIxs4NI4RgYT+LS1VIBnyUMmW8UR9Xt/cY9fkJh1zYxho2bgQVhDKOUSuTDEE4vMm3vjbF/kaBbLPN5MUxgjE/br+Lm5dXmXl9DOnSBL7v38CHjGGaLPxsmdG5IXZX0zSqTebeiTIaWGe/OsVv/M53GEoNgN/Blb+8hsOwGInEuLJ3G1ciwo01B5cueFlTE/wXf+MMjdU8E3MhPv30fQrNIO54nFgywrXQZ8SCfobfjSNEm4nzQeq6h8ZmgbpbxZUIMujz4GQJqdkmbcAP/vIyv/ArrzF/dY2LU4PddlaNapPYUBTbstHUzs1CYb9IvdLA0E1CMT+xoXvJXqZh8un3rpGc7Gf4AZ3Xx/Veqk2dtXyBkNtFtloj4HJ22631+LJi9xJ3TshXwkj6nY6n/tFntnLd9kP3ozlUtOegilLX2zgU+VitzkfRqDVxuLQDxu5hhD1uwrOdAup6pcHSZ6ucenPqRI19FVXpihCUGi12SmUiXjeWZZOp1ujzehBCkAz6USSJVl1nby3DWMANu1V++P9e5+d/900cWgOhhLEti9xOHtWdRJZl3l9YY2JAEE+GMA0Lt6/j8fjDPi6+NdN9f+e/fprLm7tUbn2GP1DBFz6FrEjozTYlI4OwXPzsxzfxItMfbrG4n6ZWqKEu5Pl0r8nf+of/GduVIvniElrtBn7dwO+aQXJo3PzRDiqTxB0qy1dWGQgF+Bu/+CalTIXvf/8azVKWppXF5xil79IIM/0RLAAhiHpfwTlRxV9pcPrv/wputxPbrTAymMCpqeyvZ9ic3z5QuwoQigfJbOYYOzdMfq9Iq9HqbpcVmdGzh0OtT0LI4yLk6TTp3iqU0WQZ1dUzkl9mBL01yZPylTCSyeDJskuPIzYUpW/g6T27ht4mU60dqlN8kPn9DKmgn5jvyTLzAJY/WyU1lTyRQPr9uLxORuYGT2Qg7xKI+qk2W9R0nTOpTvKQYZnslioEXU4ckoL3bjhVVTj1xlSnI0mjjT/qpZRrkduCuXf86IaLrcUFZl4dRwjB3nKRkb44ezYMBHwHMnBVh8rSZ6skxuN4/G5OJ2Ms7xbA48U0TDSXhux20K4rrFxZY9QfgKibj66uYFau8Nrrl0jEBtBcMoMDfVSvVegLhNm+CbEBQW5jEbNvCkmYlIs1VMnGMRFj5epVbEvH5RlA0gRBd4RazY2o6JT2ipSCPoIeN1uFEk5FId1osPz+DcYujSON9pGIBFEVGdu2Wd9IMzI72DWA28UypZ0iatNgZG4Qj99NbjuPdadLS7Peot1qozlVJFnCaBvYtv3QDErDalEzMvjV1LHhRyEE5wefb1Zlj5cH6SXQj/0i8MKNpBDifwL+OhABmsAHwD+0bXvjzvbfBf47IAFcA/6ebdufPO1xS9kyWwu7jyUAcD+SJD0TfSLTttEN85Hj5pJxlMfwIg3TQhLiwDrVzOuTj2Xo7iKEwB9+eMJDraUjSxKNQo1aqc7AZOfCureRwfSocGd9UlOUYy+6/oiP0+/OsrCbIRQP4bvTYFpzqCiKzM5KmgYWP//NC1hqgY38NhvXJUJOJ3OvT3fnmrXalFZ3ODWewuV1ER1KcDufZ/Ont3G1LBp9LjSPg8Hxfmi02S9UyKgWupbCHRoh3NonEPVg2zaLS7uoQoKSRq1kUy3UiF0q8MP3rvLar11i58YWDcNgzyPj0C3sG+ukJmKU4jW2d9aI2IPom5uMjrioynFOJWJsF7fY3y2S3S+yd3uFNyIupuJRyrkKmt+JMhzCF/ejmzVkSaPabLFtNLgwnOh+DveHULPbOW7+eIFTb01RK9a4sV2gf7SP8XOjR57n/Y0Muco6Z+aSfN6aoT16fNH4PDzJPwD+F9u2S0IIN/A/An8IvCWEeAf4J8BfAb4P/JfAnwghJm3bPl7H7RF4gx4Gp0/ekPh54XVoTMQe7ZE+bnh4OZPDqaoMR+55qE9iIE/CdrGMU1WIOFRMz73wYD5fwaV2vPbcboFA1PfIOUhCwu9xoSoyBWGxn8kx3hdh6tI4W/PbzN9YJ5AIEvc6CPQP8L2ry4yOJtnbzbFVr3F2OMXc3Ag7C7u0GnonvNkfYkIV7LtrLP/5dZQVwcXffJ2wx40mS8SH+5gTY2TWMghLZfzcGSzL4kcfXOPimzOk4mHausHS5RX2ltMkfB5+5zdPkxxPURxJorfafPjRJ4T0DJXTYcxBmUBcYX8twuJOkfBAlN1Gm7iio+ttNj5dRGOHX/29t2k7+gl73NQbLVavbzBxYZSLQ53v5UrxNvmKxOn4FMPhIM6HeIb+iI/h0wOkJhK0W21C8SBbi7sPrXGNxvsIhsMn1g2+S7Pe6nirTxHy7/GSInqJOyflhRtJ27Zv3/enACzgrnv3t4E/sm37zwGEEP8r8A/oGM3ff5rjyor8hVcgMU2T9RtbDEwl0JwHM0FHIqGHZjs+ayZj98pNPAEPpmXRaBucvjCObppYlkVmM4vTraEEjv+KKbLUDT37nQ5caucirzlUxs6OMHqmk/RjG0sokpdf+aXXWc0WWLy9RTIVRZUlNEVm6swwpWyZpU9XmXtnmut/eoXUVJLv/s67tHUDt8eFaVjImspKOsP68h5fe+MUrYbO9dsbpMsVyhjI1SoD/RE0h8rMq5PMr+3TurHKyGgGTbEoZxO899F1nJYgGp7Eo9XYvtrANdpHIJLgzakoll8lv5vHHZD53j//FI/fzfAbl1gqm0xFbLL5Mv/mB58yPZFkXLt3M5TyzOCTdW7tpRkKObn64Qa+VB+z453EHNOyWErniEoq/ogPIQSaUyM21Ic35D1gIC3LwrZs9KaOy+vC8QSJq0ufrZKa6CcUP35poMcXD0FPceekfC5rkkKIv07HY/QDBvAP72w6B/yLu+Ns27aFEJ/def4rjxACh1tDHGEMX2SX8wfXtfK1BlvFEhcGk9yVVHgcQYK7eO4rASnnK+yupBk/N0y93MAfmehui/u99L8+i/sBTysQ9TPzugvanzJ5IYQnHMHQTQIRP9tLu/z0gxuc+fop4okQGYdGoVrHrrVxtC30fB0jW2F4qpO8VCvXMdsmQxMJokEvn9xepb89zcCIk1ca42ys7qNFg0yEg4yPtllZ32coGaJwO8MHC6s4XC0GXEk8oRCn3pzCEfXxw49vsvfBFi6nymzAx0gs0glb15osFookAj76fJ5OQbm1yMfrKzj999bTBQKnquIL+NBiBw3X3WSmuyx8vIwkS9iWzfSrEzwObb3Nxq1txs8P43T3Ooh8Wekl7pyMzyWOYtv2v7JtO0Bn3fG/p7P2COADSg8ML9IxpocQQvwdIcTHQoiPM5nM85ruS4MkSaQmEt0EDdtYxjb3n+kx9svVxxZf7/N5OJs6qPSzt5YmvZl96GtabYPWnY4Z6c0stVLt4PaGji/kplqssbW4e2+/pQpt0zpgIFezBbYKna/NZqbAbrWfzLZBMV3i5ocL5HYLlIwWVY+M4nPgc7sIDob4/ntX+MHVBdw+F9/+1nkmUjGckoxtt6hmPqSQydA/U2PXKDI1msLv9pKp1snpOpqqUFvPs7Wwh9vnIhj1c/vTDzn9Rpzf+1vfoS+c5Opf6Hz249t8urRN2OPmojvI8HSKRq2Fz+ng5rV1yuUqCz9bJunzYFda6E0dTZER6hSv/+ov4HBpFNIlNrezWLbNcCR4rJaoaZq09TaDMylGzwwxcfHodcrjkCQJl9eJ5tR6dYY9vvJ8rtmttm3vCSH+GbAihBgCKsCDqZhBYPkhr/+nwD8FuHTp0pfytsg298AqINTZwxtFEJ5Rr0nbtrFtqOk62hOUyzxYquL0OI7tQLFVLCEQjPWF0ZttHC4Nw7So6ToeRWF/LU3/SIxgXwCH28HG7W2GZlIYloX5QKF82ONCFoJauc7a5XXGzg7jDvnBrbF5e5t6pcEtpUV8rI+BSIjFdBaXpjE8N0DU4SLg96JqKqffnr5jFGRiI+dACpNv5Nhv7jE7GUeWJDx6jXg9Q9p0UlBs1FqDSCrE/7eyghaScQSzCD3CsOQicqYfu21hbxa5+eE8p96YppQpYTRq7LeaFCWTnN5i5o1J2gJWbu2gqTLFTJlwf5BcpcbWfgGPJPPZ6jZuv5Pyeh6X13mkMANAej1LrVRn4sLjG8fuZ6nIJMePljfs8WWhVyd5Ul6GEhAF8ABJ4Apw8e4G0blinQf+6POZ2kuAFARxdMhLyM9ObGCzUKKht4/sTtI2TfK1BnH/yctRJK+DjUKJOTrrwFsLO2gujdhgp9XWaCSMEB3P5252bL5WZy1XZMLrw7BsfPeVrtx1aB5U9mnobTyahiJLLC+sobZM+iMBWlE/S+kcv/b3v0O2XMe5u8tw1Eer2sDrcBBw2gx6M3f6fHbCvNuLe0jsMzgzTKXkpJzbIzEa45zaIF0qI0kCr99J3Sfx2qtnufy9q1y/vcbo8j6Omzle+folrn50DW8oxIVvn6F/NMapd2Z5/w9/xP5WjgnDwB9uMPemRN92EvwOSlsFdor7WFE3/skYLWeeraVdvMEL2A6F0VMDmBWdym4Rq6qzv55h5rVO+FRv6mwv7TE0m0K3yzhkH7HhKJb5eHqhD6Pa6twwfVm7YHzV6YVbT8YLDbcKISQhxD8QQsTu/D0A/GNgDbgN/DPgrwohvi06V67/CnAC//5FzvNFsZEvPrL5shDOTtPm50y/3/vQ2s1W22C/XO3W6Z0Ep6rS570n+u6P+A6IvUuSoFlrcv2Ht2nrbaAjaHBhsFP24JmOsVPqaJe6PM5DXUgsyyK9keHK5g5XNncAGJ0bYuLCKIoqE3A5uTiUxOF04PY66R90ks9v06g2SQR8uDQfKOMH+nwOTidJTg6AUJEVGVXr3EPu1Wr8p/kVru/sUbNdDA2fYeXjVYZmUrz666/iHQpz4Y1p8ptNZs5+m4uXprn90yUuv3cdp8vB6bdmMAMOlvdy5Gpurqb9eBIBfnx5ga3VPfKajWXpXLm+yq3NJlMX53D7XIxGwgyFgjhVhYCqIdnw6nfPU5QsdMMgt1voNnkutbdpWw1kWWZ/PUt2OwdAfq+AeYKSo6NYzxXI1epP9NoeT8aTLHc8CUJ0Enee9PFV4vPwJH8J+EdCCA+d9cb3gZ+zbdsAfiiE+Ht0jOXdOslfetryj5cVv9PJC0pIPZa75RraQ0oOvE4HZweODr9VWzpuVe1m1m7ki/R5Pbg09YDn2ag28UcPZhc7PU7Gz41011h1w2QhnWUqFmE8Gjk2Rd0yLYqZMqMjAapmZ6AkSSRG72nZ3l1PC7ldhNxjEB7Dsk3qRh63EgZxUGZPVmTy+052lvY49eYUbl+nn+jZc+Nou/u0TRtVlthutoiPxYgnw+yvb/Px/DrKeoHIaIy8ZJFUZYZmUlSLNS6/dx1ZlQkKhe0PFnCcG2ZsLEG2Wme4L4QvKBgZVLHa21S9AfzBEK22jM/RyfwFiA9EkRWZ6+u7vNsfom2aWDYYuoHm1DB0g37X3L3PK+hG1RRM02RvLYPT4zyU2HMSZvtjSJLAtm10q4pD/mJnh38RqOk66gtqlN0TEzgZL9RI2rZt0TGSx435l8C/fDEz+nwJvgSZg7Ztk944ulzDtm0ym1kiyTDyQ0Jut/fSjEXD3b57umFi2vd+fIVaA5/TQbPewtM+2DZMCIE3eM/bVCSJkNuFLEldo2sa5pHHVlSFyQshMJaJa6+e6L0upXME3AJT3sEpB5CEfOd9tsGYB2WSSq6C3tQxDZOfvn+d8QujaKZNq2WgqjIbn6yiOyRur2QQr09xKhFDifXRSDaIJEJk9or8q3/9PqfPKMy9dZb5j3cJ9AdQHSp9yTDxkRiSJCH2q/SpTlSviqbFQAty9pzGVmWflcISTvUiHk3Ftm0kSeLbf/UNqo0W7ZbOZCyKbdukJpOsXF2jXm7gcDmwrSoIZ6ebiGFimRan3pg60bk5irufgWE3ybWWiTtPIUuHm34fh23rYJUQ8uM3Gf8qMhY9Wh+5x+dHr0r4c8C2bUzzyUJgzxohBLOvT+IJHO6HaVkdb62tGw99/fmB5IHGtBOxSFd+zrZtVnMFarrO8OzAAYN4FJIkSAX9B5KA5n+2RH6v8JDJh0A5feApo21QSJcwDZP0RgbbtsmVLqO31vE6NIRl4pKDXQOZ3sxSKDew8FNrmqSmU1z89lnyxSrLlRK2KrGxuEnl1nXapkVwpI/Tsx5OvTHJarMKgMfrIpoMI4QgGPXRaLX48b+/jm3L1MtNPvjzy3z003lSUwnWb27RrDVRHSrhZAhJlrj6/Vs06vD+v/kRXt2B3xGnWG+Q2cqx9Nkq0FEvaufrrN/cAmCvXOXG7j4T50fv1TEaS2DlO9vX0mze3jn2fN9PIV2iWb8X5rNtm7UbmzSqDVTJRb/rzAEDWa80TrZjuwHmyefR48UhhP3Ej68SL0PizleOzFaOwn6J6Uvjn/dUjkWWZaZeOX6Oiixh2yZY+yD1d1VdCvtFfGFvV03mSRmZG8LhPtp7EUKAOOid1isN9lbTuH1O9tYztHWDstuHrPjpD/j49PuL9E14ccUNFEmimC6RrQlmBvvZLJRIBCxiPi9Op8bZ6SESQT/mQJBye4uk4iCZ9CGMDfqHTuHXQ7g1leVMrqOx22hjmRbvfusctfwE2a0tfIE9Cvkyia9N0jQtQvEArVqWaCoJisT6XoZiOo98WaJZbyFJCjN9o2wv7bG5nmbqPkH9stNAHewYxJDLgetBJRz1DOKO8e8fjWGfcA251WhR3C+CHej2oOwIFajdDOW7NxXQqaNc/HSFqVfGcHmPD+MKKQBar8z5OOz2Ikg+hPziMopFL7v1xPQ8yc+BcH+QodnUowd+YWiDlQM63rFt2+ytZWjWHi8BoVBr0LyTiGJZFpVijaXPVtGb7QPjGrUmazc2se3DP3J/2Mfs65NUCjVMw6RV15lNjhP0dJoWz74ySyoxwdXtPYqNJlOvjBOuWsgNgzPJ/q6gfMDvYXokQaPWJDGUYrDvFAs/mKdtyHy4GqLStEkv7rG1s8jGrRVs0yK7nWNzfpv2ZhErU2NrqUJsZIZXvnWWqKXgUhWCcZWN/Z+Qzua4sr1HMhbirV98hVA8iNEyWLu+0U1K+uSzJTKVGrXyneQZdQev506izm6J/fk9dMPg+s4+umF0DSR0bnBOIktYLda4/dMlhk4NHFLWSY73H2oNB3TKZd6aPmAgs9s5Nm+v0FlR6fFYyFEQT9+E4XHpJe6cjJ4n+TmgqMpz01U9DttuI8TDmzg/CW29jaI6EOqZ7nNCiG6ZwuOwX6kS8bhxqgrFdIndlTTDpwa63s1dZFlCdRx9/m7uphkKBQj2+XF5nXj8Bz3NliQoVmrM9vdR2ipgDGnEB6MsfbZKcrKfxEgn8ce2WxR2r2ExwMBkkuREgkgqgkNTsPerLGzOU85WmfpmlLFkBK/LQdXj5OaP5/GGfegtnYGJBJIc4vzZBKVchUK+TDDkp2/0O6RCIaKG2RVFsHWTd3/zjU59qSRx4VtnmH5nhlomz+q1NebePsWg7zQ3drK4FJ2+wQilbJn06m2CQQeydPSan26Yx5ZweIMeZl+fPNDQ+SQ8+P11eZ3I3AA7eCghqsfxCCn04o9JT5bupPSM5FcE28yCuQ7aK0+1H8uysG27e1Fd/GSF+EiMSOLgD31rYQfbhqGZk3vMM/fVaIbiQfyRowXSNadGauLo7iJBlxNNkVGUo29EbNvGtCycisJupYFpmITiQWR1C+n+dFrbJDESJLOrsHR5lYnzo12v6vW3TnHrowVuzi8wNJ3qFu4nR+P4/tqbSLIMtn1gnXdpaYdMVudb0SBDkU59q1uT2CqUSJf2qcyvcOmNd3H73OiGwUa+xGg0hCuWJhzrnFun6mQkEsatqpiGQbtlkNvOMhrshLQ38sXumm5ut0Cj1WbbbnF+IHGsbOGDOsBPgifgwe1/40BJTY8eXwZ6RvKrghQ+tH73JOytpmnWWoyd7Wicjp8fQT2i80RsKMoR0dBjKecrWKZFsC+AEOKJvO1H9Q5tpstk1zKkvnGa4VMDtFsGbb3N+W/MHRgnJDdIUwRjOp5gJwRr2zZCCGRFZu7tWaZfnThUuO8Ldcok6tUqlqUDCoufrjI0HicuHzwhi5+u4Onz4aiAK5U4YFQFnTIXSZlGuu9nqrWtTjKNpuD2OYlPvonb6UA3TOp6G9OykaVOHZzLoXI6HOwayK1CiYjHjUtTqRSqeIOeZyo71zOQXyBEz5M8Kb01ya8IQkidC/9TEhuKMjB1z4tzuBxHtlJyuByHwqSPollr0ag2n2p+1n2SdXpTv+PR3rsYqA4Vy7LvlLfkuPr9GweyQE3TZH89092P5tTw+N1UClVu/Oj2gf03Kk2MttEt3L9Lsd7gZ++/x97mFYQQhPuDmDJsFSsH5hIdCBPpCzA4FSI8HKFWbZDdyVOoN6HcYunTVYTQDrS4KmXKVAs1NKdGdFxjM/1HGEYbTZGZ6e/rhlbD/SGCMT+O+4xgo93GsCz0VpuVq+sHsll7fPWQsJ/48VWi50k+Y2xbB2MBlKkv5Z21oirwbJc1u4Tiga6wwJNgWRY3fjTP6JkhvMFOE2WjbXY9QIBoMkw02VkzS4zFiQ5GsE2rW4/ZbOrk9oq4Il6W8nnmkv1oiozb72Lo1MCBG4LMVg7NpVEv1QknQt1tNpC48Arbeh1/q4w35KGYLnFxtBMWrettbu7u4043icQC+FMql/f22XrvOmNDcQbfGMfX58OX6MxzJZPDNmwaK9k7nTkc2LaNR3MyFBlElo/+GafXs9TKdSbOd8LBk7EobdNkPVdk5q0pHOpz+iB7vPT0sltPTs9IPnPkjvB479Q+Fm29zc0fLzB16XBZgWVZrF3fJDnRf6x3KkkSI3ODuP2d1ztcDkZODz50vBACTVPZnN/GNCxGTg+yValSi7uoGm2GwkFUWcK2WwgMzAcM7vi5kUP7tG2b3MIeyZE+RGkRw9hDmBcopstYto0dchH3eYkpDpbTu4yeGcQpw7jiZ9erERyJkroTMm41WlSbOUr1Jm5NJTXRT13ao6kLauudVl/t6BgXPZ357O7l+A8/u86vvXuBVNDf1XE1rI7HqEgOsE0EbWTpxeuxFjMlFFV5ZL1sjx4vE70r+TNGCBmUgc97Gi8UvdVGlqWHqvKcBFVTmXxI3Z0Q4pFdRe6S2cxh2zb+8Mkl1BJj96Tsxvsi5Gt1FFnqiiTYxg56o8H2koQ35Hmot9uoNSlmyhT2S/QNhGnVQ5hWAKPWwp0KUK00qZZbRJ0bxCNjbA0EO0Uz5iYOuch3f+ESgei9NdXVW6ssrnzGmdfeRXJoBEMBTLtzflwD4DeCmErHQDb0NqulMq+ODNDn7cxblmVkWabQWkMImaA2iEKasVDphdbk3aVebqA61J6RfEnoeZIno2ckezw1m7e3cXmdh9orGabFSjbPSCSIpjz6q/YwfVEhxIlbN/kjXhyuk4e5bbuFzAYonaJ9RZaIPdjtRB7B4YW5t+9J5RX2i4TjDQQmQukkMa1d3+CDP/mE6YtjuP1uxs7OUtzJs7u4iTQVRXgUVMkmW1NIRZy8dW7yzhxGiQwKNgtlyhtp2sUGY2eHmTgzQWI4ScU2+XBti0TARzlTp5yr0HBKCLdG2OPm6vYeCb+PiWQfQU07dK6D2vB97yUJdG4Ksts5ZFUhFHuwO93joRsG1ZZ+QHnpKHrtt14eeiUgJ6eXuNPjqRk5PUh85HCdnhCgyvJzbdxbzlW6XUQAoqnIkQXwD0eAUDr/f9gIIQ68B72pk93OY9tekO4ZmIlXxhj/xizevk5/yk9urHD16iqD00lSkgN3psFwOIxO/EDhvxByNznH5XUSige6CT7lbAWHbjPckKhmK9za3QiJywAAIABJREFUTrO1mycgKbjrJks3NsCGlmHQTle5/oPb6E2darHG0uVV9KZ+YP5CSN1aWdu++58Oud0CC58c2br1WKot/ZHdbHq8fPTEBE5Gz0j2eCxsu4Gtf9xJULqDrMhHFqPLksRoNIT6BE2cT8ruappq8cnbOQmhIZTRAxmkj8LldTHz2iTlPKQ32+ws76E3dW7sZjhzYRznYJitQokLE4O8+uYMgUSIYCxAajJBwO3qilhblkXbNFlMZ2mbJkmfF6ll0NYNstt5Pv7J99F8ArfXiUdWkBSZmZEE/X0BkiNxwmEvpb15Uu4WqaCfSq7C4EwKzalhGib7GxmqpYefm76BSFdlZ3dln1a9Rf9ojMxWjlL25EYv7HFzJvV8vcRqs/VYrdp6HI+gl916UnpGssex6K02rcb9pQIOkEdfmszd6UvjDw0XNuutAyUbzxpJlpBkiVZDp5St4KkZRHweRmMRYj4PXp+bhiK4vraD0Taolerd3o7Z7RwLHy9j2za1Qh2BoJStsHZji1qxRjgRZOL8JNFEHx6/u9PKzKHgcztwuRzc/MkCQpI4d3qSgNd3R+Vokr6BjlBBIOrHH/Kyt7JP2zQxH3EeXD4nvrAXf9iHbVmUaw22CqXndu4eB9u2ub2fodR8uvKgHj2ehJ6R7HEs6fUMuyvp7t9CSAg58vnNZyNDIX2yi/fSZ6uUMg/3iBq1Zrdp8fbSLrVS7dj92bZNq23QarS4+ZN53H4XfQMRBmYSeNy38KotzLbB2se3sdsdY5gM+Am2bPI7BTZub3Pth7cBCMYCDM0OYDbbKJkaWBaRRIgL3z7D6JlhZFkm6h9CvhMaTY73IztVHC4HA1NJkuNxXF4nqak5FO1oGTh/1E8kGWY5k2ercLxnWM5VUdSOxx8b6sMfCxypjft5IITg/ECSkPvxe2L2eAhPEWr9qoVbe4k7PY4lOfFyJVsISTq2GfP9TL86fqxqz+btbYQkmDg/2qlxfMSOi/UmS5kcFwcTxEdi3X1f3U4zFh6hfyyBbZWJD+SQVYlqS8fr0Bif6yTO9I/GqJc7LaZkRUZRLTSnxtw7s/fe3/1rn4ZJ2zTxODQK9QYr2TyXhjuZ0w+KkR/F8OydsYZ5UHLvCCRJHHj/AZeTgOvz73d6F+UFNSL+KiGJnhj9Seh983ociyRJRyrqfF70DUQI9p0sG1PV1GOThoZODdCsNmk1dBJj8UNi6A8SdDs5k+pHlmUiiVB33zP9fQQ8KYSQKWUFtjxLtdnm5m6a9n19QxVVwR/plKYU9otc/XCea9t7tNptPl7fonFfAlK50WS/XGU9XwQg5HZxqj9GMdPxopv1JttLu9i2zfzWPj/70c2uV2zbNra5i213emvmNrKPNDIDU0lcnpfHKPZ4vtzNbu15ko/m5bn69ejxgnG6HJx599QhgQLbtklvZLrrh3dZv7mFcUT7L49D63hiXVQ2Pl1jwu3rJi2ZlsViOotudAxZKB5k9tVJYj4vmqIwHo3gvOOZWpbN/H4Wv8uBv2ayfnMTIQT7S3t88r2r1Ct1rv3gNpVCFb2p43WohCM+pDvCB7a5A1YWbB1FlY/smLK7ss/S5dUTn6v8XoFGrbcm+GWil7hzMnrh1h4vPXulCmGP+9iWT88Sy7QopMsE+vwHBBJcXieKdvAnU6g1qOk6Ec2BqindMKgn4Mbl7XhmumEgSxKyJHG31EQIgcfj5G5ZfcjjYnNxh9xWjlPvzjIVixBwOdESIQrVOvN7GVSvRjAWQEgS06+O4wt5ufzedYIxfzeka1sthF3qti7zhcAXeqDuE9hfzxBJ3uvc0qg1aVabDw3jlrIVhCT1vM0eXzl6nmSPlxrLsslUa10P7Hmxt5buJu7Iisz0pfFD9Zbx4b5DXqcQAkkItuZ3yO8Wus+7fS6EEFiWzSdrW2QLFYbDQTRFppyrsH5r68B+yrkKa9c2sCybbLXOdqkCgMvjxO1z07YscKsMnxpAc6q0jRY35z/EEXCQk0x0w8AwLW7vN9GZOvT+jLbB7sp+Nxln+rUJUpP3hOoblQa313bRH/Ces9udcpDRuaGnFh3o8fJwV7u1F259ND1Pssczw7QsdksVEgHfHa/p6ZEk8dxr8KCjovMkdXhBt5Og24l5znPk2q0kCeKWyt7iHhv9FS4OJVEdStfLvIs35OHit89022UlAvdk9YJuJ25JOtD3UZZVXGqQofPjbBRKgGDz9hamKii46jT3ygxOJrr1q6ZhUivXsSwLWZYPeYTBWJAQxp1SkXves2lYyEovwePLSC9x52T0PMkeT4RlWdz8cIFa+V6xumnZlBrNR9bkvYykJhJHhiUfRaHWoKG3sYD1fPHI9z46meTUKxNMx6PIkoTL6yI2GMW2742VJOlgP0khaDVarFxbZ+3mJrc+XDxQrxoI+xkZnUaRZcaiYTRFJhDxMZ6MspUrUSzXsO8z+g6Xg4nzo0eKPnSOL5jp78P1gC5tfLjvRJm0Pb5YCAGysJ/4cbJjiO8KIeaFEEtCiP/miO0OIcT/fWf7R0KIkTvPR4QQ7wkhqkKI/+OB17wihLh25zX/u3iecl536BnJHk+EJEn0jxwMP2qKzOlk/EQ6rbatY7fnse32I8e+jDRqTbYWd0lXa1RarU4NpWEe2WhaCIGqyvjvK6mwzQy0rxx7jMJ+iXq5TjAWYOrVg+Hf9EaW5ctrB8aH+0O4vC4ujQ9y/rXpJ2pa/STorfZDayrL+Qqr19ZPtB/bttla2HlAvKLHFxHR0V38x8AvAqeA3xFCnHpg2O8BBdu2J4D/Dfif7zzfBP5b4L8+Ytf/BPg7wOSdx3ef/ewP0jOSPZ6YcH/oKTp/SCA0vrBfQdvGMi2m49Fuhup0PHpkqYVpmIcFEKQQKJOHx95309A/EmPk0jgL1TKK86CHF04EGZhKdDVanweVZotP1rcfGYZe/GSFwn7xyG2aU8P7GB66aVpH3mj0ePY85+zW14Al27ZX7I6G5R8Cv/7AmF8Hfv/Ov/8d8G0hhLBtu2bb9g/pGMsuQogE4Ldt+yd2567sXwK/8RSn4ET01iR7fC4IoYAy+nlP44lxeV0MzaRONLZZa7K1sMNGq8ZELIrHoXXevzhoPGzbZr9xk5A2jEu5kyWrqcz29x3Sv1U1FVVT0Zt6t/YSYLd+i0xOYcSfxB94upZUbk1lLBp+oLylQylbxh/pyOFNXBhBdRzdPszpdhzbA/R+hBBdAYQezxv7ea9JpoDN+/7eAl5/2Bjbtg0hRAmIANlj9nl/xtvWneeeK1/Q2/gePb44eAIezrwzS9zvw3FMKFoIQZ9zCqccOPCcz3nPyOhN/YD4uObUiKbC3U4oXiVBaV9nb/WelGAxW+aDf/djzPuEDZptg6Z+ONRtWVa3HnL9+iZUD4c+23qb9ZtbNOudbQ6X46USnOjxaJ6BmEBUCPHxfY+/c8QhHuRBF/QkY55m/DOh50n26PGcaOttJElivVDC49DoDxzfCNpoGwhUhPrwXIRaqU5up3CgOXN2O09hr8j0qxP4tCDvXgoeWCPUHDoe7zam0UaWZbYWd/nZ/gLhUImvzX4LIXlpNVpoTo1Spsz20h5zb88Q6g/i9h2ui1Q1lTPvzj5Uzcg0TPbXM8RH+h6aKPTg+Kdp2N3jyZCfzr5kbdu+dMz2LWDwvr8HgJ2HjNkSQihAAMg/Yp/3hxqO2uczp3f716PHc2JrfofdlX2Cbicex6O7pmwv7bG9tHfguUqzxbXtva7RC8WDTFwYxbZtDKvjyUWSIUbPDB143f0GzOWNcPEXfgHN0TF4/rCXt6dGOjqwonOfvPjJCsVMmVA8yMxrE51jxQIP7c15XFKhaVrUK40D2bX3c39ijt7Uuf6j212vtMeXhp8Bk0KIUdFpGfTbwB8/MOaPgb9559+/BfylfYyqvm3bu0BFCPHGnazW3wX+47Of+kF6nmSPHs+JwZkUpq2jixJeNfHI8QOTh8c4VYWYz8vm/A6SLHXHtKwK+dYqEWkGo2UcKB95ECEEiHshXH/Ehx8fMNx9burSeHdd8WmzYjWHysT5o9ebLcvi9k+XGDs7jC/kRXNqTJwfOfG6ZY9ng3jOa5J31hj/AfBndApv/y/btm8IIf4H4GPbtv8Y+D+BPxBCLNHxIH+7Oz8h1gA/oAkhfgP4Bdu2bwJ/F/gXgAv40zuP50rPSPbo8ZxQVAXLbKG363B0XkuXVqPF8uU1Ji6OHQg9qrJM3O+lLmTEfQk0TtlPzDlDYadKMV0iOhChmC1T8ilM9IXxOo82OrZtAhZCHJzQ/UIFzxNJkph9ffLA8Y4z8D2eH89bOce27T8B/uSB5/7Rff9uAn/tIa8decjzHwNzz26Wj6YXbu3R4zmiyR4iznGgo+FabnSSYkzTPJCAozpU4iMxVO3o+1a3z3VIJUeRHPQNRIikwti2jT/kJRX041SPscjmJhjLANQrDZY+W32ufSPXb26yv5458Nz9BnL12jqZrdxzO36Po3kRYgJfFnpGskePF0S+1mCr2DGMzWqTzdvbWHcUeiRJOtB+63EoZcoIIJII0efz0Kw02F3dP3Ls/9/evUe5edd3Hn9/JM395rnbY2diJ7GdG5BNU8g6oS0Ny63L0lPKktKedtlus4fCoaHd3VLKQrYlUEq2hbbQNtzacja9ZZeeHEoLoRBaEgM2Cc0NO7ET3+I447HH47nPSPruH88zjkaWZp7RSHo0o+/rnOfM6Hke6fnqsUdf/e5zc/2QugyAVGOKzt72kq4ZVe9QD519xTss9W7toaNn9TMdubVLkC15qyeeJJ2rks1dHVy9ZQAIqhivvfmqJUMnJhaev9AZpxgzu2hw/45rh5dMHWdmBTvNzE7PcXDfERbCSzQ2NTAw3H/h+MjxUU4ePnXR89aifVMbLW3NmNmSISiLOns6vD3S1TRvk3RuFczSgF3UplcO89lpmhKdQPGkcezsOLPpNLsH+4qe09HdXnAe2ubWJq66cWfR9seW9uaL1tAsl5Fjo0ycneSKf7N+J5DYSBZXAXEr8yTp3GpkjgIGqSvK/tK9TZeveM6WrnaiLlZy+sQZmloal8zIs1wHnVImeI+qd6h72WpXV33JOqs2LVXVq1sl3SnpWUnnJY1IulfScHjs5yU9JGlM0qikf5D0kmrH6FxRyUuDLSaNqRTNEYdoZDNZMpnKfxCmF9Irdv5JNaR8weYaUoYZd+pGHG2SXwCuM7NOYDtwjGDyW4AO4IMEMylsBR4GviqpJYY4nbuIlKpIVetazE7PFewhOnhpf1UWSj647/BFE5xns8bDx55jYjaeSQKy2WzBNlDnVqvqSdLMDpjZ4pIIArLA7vDYJ83s/nAW+Dngw8Bm4Mpqx+ncejE/O8/kuSnMstj8I1h2oiyvu5DJ8PCxk0wXmOM112Uvu5RNeck4kRDbe7tpbYznC8WpZ0c48vjxlU+sW0ZS2ZK3ehJLm6SktxGsC9YJpIFfLXLqLcA0cKjI69xGsLYYw8PDhU5xbsPr7Omgsydo77PkMESseJnPTtOYaC16vCGZZLini+YV1gctVo3a0xa89nw6zcjEFNu6K1+qXdR/SS/ZKlQ1r1eCqEte1b1YhoCY2T1m1gVsAe4AHss/R9Iu4DPAr5lZwa/GZna3md1gZjf09/cXOsW5DeXE2DizC+mix5XsDZbhWkE6O8fo7EEWsrPLntfX3lZwqaxCMulMwTlY5zNZJufmKzppQb6Gxoai8866gJcko4l1nKSZnQI+DXxJUs/i/nAF628Ad5nZn8QVn6ueTDrDycOnvB1pBVPzC6Sz0T6kzOzCslf5UokmBlteQkOifJ1pzjw/xtEnTyzZd/7sBPNjU1y5uZ/Z6bmqJkpXnBTM3VrqVk9qYTKBFNAGDAFIuh54APgdM/vdGONyVZTNZpmZnC26coQL7B7soz3CiiIAE2cnefp7z2BmzKfTTOZ1oklGKHFGMT0xw8F9h+gd6uaK67YvOTY/u8DcTFCKfPp7zzBxdrIs13SuWqqaJCUlJL1L0kD4eBvwSeAIcEDSTcA/Ae83sz+sZmwuXg2NDVz+su1rXoHCvaizt4OrbtyJJE5PTnN8bHzlJ0U0PjPL0yPBAvKNzQ30DnWTTCZ59uw5zk2/WHrtG+phy45BJHHVjTuXjNl08UpiJW/1JI6S5BuAxyVNAd8h6JjzagumMvkQwcKbvydpMmd7ZQxxOrfuNYS9S7du6uTKzeVrt29IJmlrDEq0qYYUfVt7AWhraqSxyALKDWXo6erV8eURjJP06tYoqvq13cyyBEmy2PFXVTEc5+qKJMyySGv/btza2FBweMdgR9uS+WgLmRibJJFM0NYZ9H41M0YmpuhrbyW5wnN/sPcptu0eYlN/9XrKbkz1VyIsVS20STq3LixkMpydmo47jJJNLZxmdO6psr1eNptlfnb+wuPTJ85w6JFnAXjh6GlOHRkp+Lzx0+eXtE2ms1lOnZ9gIcKQjR0vGfZVQ1xVeQOQcxFNzs1zfGz8wvi/9aY51U3DMuMiV+vsqXOMHBulbecA6WyG4YFO2rqC12/paKZYQWXbrqEljxuSSV62bUuka/oCzeWxWN3qVuZJ0rmIultb6G5dvzMkJpUimVz7n/yZ2cO0pnrp3dJNZ28HaUHWjIbGhgvtjouTG7ja5ROcR+NJ0jm3Ki2pTaQSzUgimUowNTqxZD3LRaOTU0xNzcCZGS65cuuKbZWuenyprOg8STpXBWazkD4OqcvL0nEmTq2p3gu/z03Pc/LwC3T2dZBMLu3VmpCCxJhMIEWbtSeK6YkZzOxCxx9XGi9JRuNJ0rmqSIBSBK1BG0drRwvX7NkNBKuRzEzOXlh5pKetNWi/LfOMkedGxslmsp4kXVV4knSuCqRGSO2IO4yKmF1IMzE7R2p6gbEXxiu+PNfQ5Zsr+vr1QFB3c7CWypOkc3Xq/PzzGFm6Greu+rmnjoxgZmzZMcjM/AKjk1NctWWgYNukq0Xmq4BE5EnSuRpw6sgIs1NzbL/mkqpdsylZ+njD1s4Xe/l2t7XQ3VZ6r9/5dJqzUzP0tLVemK3HzDh2dpwtXe00rrBUl1s9yUuSUa3vHgTObRCtHc1Vn3KtKdlBU7K0oRqdPR00NKbKEvPY9Cz7jj7H6cmpC/vMYDadJuMT3ldMgmzJWz3xJOlcDUg1NiC0bpaSeu7ceR781hOMvbD2SdMHO9v5iWt3s3VT54V9iYTYPdhHSxnmey1FJp0hG3FJMrexeT2GK6v5dJq5dIaOZl/wdjVaO1q47KWXxh1GZJtamrn+5qvpaS9PD9OoCztXy9EnT9Dc1rRhOwkJI+njJCPxJOnKamx6ltOTU1w7NBh3KK6C2poaaYu4ruVaTI1PkWxI0dzaxEImQ1KJggl17IVzmBk9m7vLct1tu7aQSG7cijbh4ySj8iTpymqws53BTp+Aup6YzUN2FCWHVj55lU6fOEtzWxObtw9w4NRpettaGcqpll2UyWSDhswyaWyu/BeAuPncrdF4knTOrY3NQ/YclthS1pl1gCW9fXcN9JEqUrrrG+op63WdW+RJ0jm3Jkq0Q+LqSOeePztB+6aV15wspKnBP67KRZhXt0a0cSvdnXM1JZPJcPSJE8xMzMQdigOSspK3euJfzZxzVZFMJrnmpt2+GkgNENTdeMdSeZJ0zlWNJ8haYT7jTkT+P9Y5VxVjL5xjYX4h7jCcWxUvSTrnquKFo6dJNiRp6IlnFh33Ih8nGZ0nSedcVVz58p1leZ3RySlaGxtpjWnKuo3CVwGJxqtbnXPrytmpGabn5+MOo6D0QprHv/UDZiZruwevFLRJlrrVEy9JOueqbmx6hnPTs+zoW/00crsG+yoQUXmkGlJs3TVEU2vtz12c9JJkJF6SdM5VXUMiQVO4duRKzIz5ufXT4ad7oMt78W4g/i/pnKu69uamgnOwFnJuZJyn9h+ucET1ZXGcpK8nuTKvbnXO1bRNA120drbEHcYG4+Mko/Ik6ZyraZJoaqn9Nr71JBgC4m2SUXh1q3POOVeEJ0nnXCQnxsYZmZis+HXMjNnpuYpfp5hMJsMzjx5lbia+GKohISt5qyeeJJ1zkTSmkjQmK99CM3F2kqf2H8bKuIjyakiiua2JRJG1KzeCxaWySt3qibdJOuciGehor8p1Onqa2P3DvWVfwDmqRCLB0OWbY7l2tXibZHSeJJ1ztcUmaUyNAINxR7KshewsKTUirc8SZ71Vm5Zqff7rOuc2LCV6UMNL4g5jRWfmDjGTGYs7DFdhVU+Sku6U9Kyk85JGJN0rabjAeR+VZJJ+rtoxOudqw/jMLJOztdmBpr/5SlqSPXGHUZLF6tZSt3oSR0nyC8B1ZtYJbAeOAX+Ve4KklwOvB56venTOuZoxNj3DuZnZWK5tZjz72NGik5UnlYqt3bQcPElGU/U2STM7kPNQQBbYfWGH1AR8FrgN+MvqRuecqyXbe1c/AXq5BL1cmzdkL1cBifWb36sqlo47kt4G/DHQCaSBX805fAfwdTPbu56/pTnn1r8tl9V256HS1V+JsFSxJEkzuwe4R9Jm4BeBxwAk3QC8BbguyutIuo2gxMnw8EXNms7VlUwmQzIZbWUN51w0sdYjmNkp4NPAlyQNAJ8H3mlmkab1MLO7zewGM7uhv7+/kqE6V/MO7jvMmedrr7fl+TMTPLn3YNxhuBzBKiClb5GuIb1O0kFJhyS9t8DxJkl/HR7/jqTtOcd+I9x/UNJrc/YfkfSYpO9L2r/6d756tTBOMgW0AQPANcD/yalm7Qb+WNLrzexnY4rPuXVhx7WX0NjSGHcYF2nramXbrqG4wyi782cnaOtqXZ+ld0Gygq1ZkpLAJ4F/B5wA9km6z8yezDntF4ExM7tC0q3AR4G3SroauJUgHwwBX5O0y8wy4fNeZWajlYt+qaqWJCUlJL0rLDUiaRvBjTwCPA0ME1S1Lm4ngfcB765mnM6tRy3tLTX5gZ1MJens7Yg7jCXSmbVNrXZueobH/vUZpsanyxRRdQmRXMMWwcuBQ2b2jJnNE4xgeFPeOW8C/jz8/V7gFgUlpDcBf2Vmc2b2LHAofL1YxFHd+gbgcUlTwHeAaeDV4Q05kbsBGYJvGmdiiNM5VwEL8wuxXn92Ic3Dx08yu5Be02tc8tJL6eypreRfRX2S9udst+Ud3wocz3l8ItxX8BwzSwPjQO8KzzXgq5K+V+CaFVHV6lYzyxIkyajnb69cNM65apsan+LQ949w7U1XkkzFU+ptbkhx1eZ+mhtK//jb3LX+k+MaS0ijZnbDMscLFTfzu9MWO2e5595kZifD2sj7JR0ws39eOdzSbbwBQM65mtXa2crO6y+LLUEu6miu70WcBSSlkrcITgCX5DzeRtB8VvAcSSmgCzi73HPNbPHnCPBFqlAN60nSOVc1kmjtaIk7DAckUMlbBPuAnZJ2SGok6IhzX9459wG/EP7+0wTj4y3cf2vY+3UHsBP4rqQ2SR0AktqA1wCPr/lGrKAWerc655yromDu1sp1bzWztKR3AV8BksDnzOwJSb8F7Dez+whmVvuCpEMEJchbw+c+IelvgCcJJpt5p5llJA0CXwxHP6SAe8zsHyv2JkKeJJ1zzpWdmX0Z+HLevg/k/D5LMHlMoefeCdyZt+8Z4GXlj3R5niSdc64ORaw2rXueJJ1zrs6IyB1w6p4nSeecq2Hnz0xU5HUT3m8zEk+Szrm6NnJ8lMxCpmZX/Ag6fJZXMHerlySj8CTpnKtrLe3NZNKZlU+MSVdfZ9wh1DVPks65utbR3X7RPsuchkQXwRC/jUgk5dWtUXiSdM65fNlToAbYoEkyqG71JBmFKlHfHQdJp4GjZXipPqBqy7DEyN/nxlEP7xHq+31eamZlWzRX0j+G1ynVqJm9rlzx1LINkyTLRdL+FSbu3RD8fW4c9fAewd+ni4eXt51zzrkiPEk655xzRXiSvNjdcQdQJf4+N456eI/g79PFwNsknXPOuSK8JOmcc84V4UnSOeecK8KTZAHhith/KulpSROSjkn6mKTmuGNbK0nJ8L2cDt/b/5W0lvFSNUfSRyU9Iem8pJOSPi2pJ+64KkVSQtJDkkzStrjjqQRJr5b0bUmTkkYlfSrumMpJ0mZJfx3+XY5J+rqkqq+d6C7mSbKwFMFg3jcCm4BXAj8OfDTOoMrkvcCbgFcAix+oX4gvnIrIAD8H9BIs0roN+HysEVXWe4DpuIOoFEk/BtwL3EXwb7oN+EycMVXAp4AeYDcwCOwHviT5elZx8447EUl6J3Cbma3rb3eSjgK/ZWafDR9fDhwCdpjZkThjqxRJPwHcY2ZdccdSbpJ2Af8AvBl4BLjEzE7EG1V5SdoLfNPM3ht3LJUi6VHgj8zs7vDxbuAA0G9m9TDLUM3ykmR0twCPxh3EWkjqAoaB7y3uM7PDwHngpXHFVQXr/t+uEEkJ4HPAfwfOxRxORUhqA14OzEp6OKxqfUDSRpuR5mPAmyX1hc06twHf8gQZv7pLkpL+LGy7KbZ9qMBzbgduBn6z+hGX1eKaO+N5+8/lHNtQJL0Z+CXgV+KOpQJ+BThlZv8v7kAqqJvgc+qXgP8EDAFfBb4saVOMcZXbg0ASOA1MAj9F8J5dzOouSQLvAvqX2T6ce7Kk9xC04/24mR2rbqhlt7jEeX614yaC0uSGIuktwKeB/2BmD8cdTzlJugL4NYL/zxvZ4v/Zz5vZo2Y2D3wEaAD2xBdW+YQ1Al8DniL422wF7gT+RVJtrgRdR+ouSZrZpJmNLrNd6AAh6X8SfBD9qJk9Hl/U5WFm54BjwPWL+yRdRlCK3FDVkZLeDvwp8EYz+0bc8VTAzQRf6h6XNAosfgl4VNIvxxdWeZnZOHAEKNR5YqN0qOgBdgB/aGbnzWzezD5D8Pl8Y7yhubpLklFJ+hjwXwgS5MG44ymju4Ffl7RDUidfADFuAAAF1ElEQVRBj92vbKROO5LeTdAT8rVm9mDc8VTI3wCXA9eF2xvC/a8B/iKuoCrkU8DbJV0tKUXQBjsLPBRvWOURtjs+BfyypDZJKUn/GegAHos3OueLLhcg6VLgvwHzwL/m9MI+ambXxBZYefwOQTvPPqAJuJ9guMRG8gkgDXwjtwe9mV28BP06FdZ45NZ6LP4tnzKzyXiiqpi7CBLG14Fmgl68rw9LmRvFTxJ03jlKUJV8CHiLmT0Ta1TOh4A455xzxXh1q3POOVeEJ0nnnHOuCE+SzjnnXBGeJJ1zzrkiPEk655xzRXiSdM4554rwJOnKRtIdRebD/VqR828Pj9+bt3+5+XV/Jue8B4qc0xwevyV8fHPe678j3P/+vP07w/1vq8a9kNQp6eOSjkialvSD8J4o55x+SX8g6buS5iUdiXDti+5rnPfCufXMJxNw5TYOvK7AviUkDQAfIJjQOd9vA3+St+8dwNsI5rjM9Q3gfXn75sKf3yFYW3IP8K2c43sIBuLnz/25+Lhcs/SsdC/+DPgRgvgPAa8Cfg8Q8PvhOVuBtxK8l+8DA8tdcJn7Gve9cG5d8iTpyi1tZt+OcN5HgL8HLsk/EC7fdTh3n6TPAl8zs/wP/7PFrmdmk5Ie4+IE8G8Jpm57qyTZizNq7AGeM7OjEeKPoui9kNRKsPj17YtrCAJfl3QNcCsvJslHzWwwfM5dwE+vcM2C97UG7oVz65JXt7qqk/TDwH8kWF0lyvkvBa4G/rKEyz1IkAgWX2uAYM7TTxBM7H5Vzrl7qN58oCmCv79Cy5ZdqG41s2zUF4xwX2v1XjhXszxJurILJ2jO3XLb2AT8EfC7ZvZcxJe8lWBC678rcOw1YXvetKSvhAk110PAQLi0FARJ4jkzO0Cw8smeMK4ugkRc1urFYvfCzM4TTFL+PyRdJ6lD0r8nSHKfLOE6Ue5rrPfCufXIk6Qrt15gIW+7Jef424HNBJNWR/VW4MthYsn1TYKFh19LsJL7MMEafNtzzlksDe3J+bk3/H1vzv4bCf4eypkYVroXPw8cIJiw+zxwH/DbZvbnJVwryn2N8144ty55m6Qrt3Hg1Xn7DsKFEsqHgXeb2UyUF5P0CuAy4Nfzj5nZB3Me/kvYc/QAcHu4YWZHJD1HkAD+Ivz5xfA53wZ+M/x9sQPL95eJJcHSL5bZFapDi96L0O8DryBIcM8QrBF5h6RRM/vsMq+bH1ek+1rOe+FcvfAk6cotbWb7ixx7H3Ac+KqkTeG+FNAQPp4ws0zec24lWJ3+71e6sJmdkvQgOYtKh/YCeyQ1AD9EsB7h4v7dknoJEsN3zSy9zCU+AOQm5v8F3LHM+UXvRVgt/A7gNWZ2f7j7nyV1AHdJ+vwq2iNXc1/LdS+cqwueJF017QZuAMYKHBsDXknO8ISw5PYW4O+iljxD+eu/PQT8FPCjBCXBRwDM7JCk08BNBCW6P1jhde8GvpTz+OQqYsp3Zfgzv7T2CLCJoKq20PCYQlZzX8t1L5yrC54kXTW9H/h43r6PE1RLfpCLV2H/EYJxgpF6tUoaJPiQ/1zeoQcJEsJ7gIfNbC7n2LeB/0qwqO+yvTnN7CRrS4y5FodWXA98JWf/DwFTwOgqXms197Us98K5euFJ0lWNmT2ev0/SOWDUzB4o8JRbgTPA/fkHwurKjwB/S5BwhoHfALJcnDAeAWaA1/Pi+MNFe4E7CUqfe6me/eH2OUkfAJ4laJO8HfhEznhFJC2OjdwFtOY8/qaZnV7lfa3Fe+FczfIk6WqSpBTwZuDeIm1jZwjGE36EoGpyAngA+EkzO5Z7opktSNpHUDLN//DfG77Ok2ZWqLqyIswsI+mNwIcI2jr7CZL9HcD/zjv9b4s8fhXBe17NdWvuXjhXy5TzhdU555xzOXycpHPOOVeEJ0nnnHOuCE+SzjnnXBGeJJ1zzrkiPEk655xzRXiSdM4554rwJOmcc84V4UnSOeecK8KTpHPOOVfE/weD6TmjDDdenwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAF/CAYAAAAirDIZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeWycaX7g9+/zXnXfLN6XSN1Hq9Wt7p7umfGMZzxjG9nxxPCZtbPGJrCzcAwjSP6IYyC7wcII4kUSYIFdbHYc23C8MbzOOs56x/Z6bPecPT19674p3lexDtZd9V5P/ii2JEokRbElsVv1fICCWPW+9dZTFMlfPcfv9wgpJYqiKIqiPEjb7wYoiqIoyseVCpKKoiiKsg0VJBVFURRlGypIKoqiKMo2VJBUFEVRlG2oIKkoiqIo21BBUlEURXnshBA/JoS4LoS4JYT4jS2OB4QQ/3bj+FtCiPGNx18WQpzbuJ0XQvzkbq/5RN6HypNUFEVRHichhA7cAL4ELADvAP+ZlPLKPef8KvCclPIfCSF+HvhJKeXPCSHCgC2ldIUQA8B5YBCQD7vmk6B6koqiKMrj9jJwS0p5W0ppA38MfPW+c74K/MHG1/8O+KIQQkgpG1JKd+PxIJ3guNtrPnYqSCqKoiiP2xAwf8/9hY3HtjxnIyiWgQyAEOIVIcRl4CLwjzaO7+aaj53xpF/gaenp6ZHj4+P73YxPDM/3kYChqc9JivJx99577+WllNnHdb0e0S9t7D0/v0rpMtC656GvSSm/ds99scXT7p/b2/YcKeVbwAkhxDHgD4QQf7XLaz52z0yQHB8f5913393vZiiKojx2QojZx3k9G5tXtC/t+fl/6/9JS0p5dodTFoCRe+4PA0vbnLMghDCABFC89wQp5VUhRB04uctrPnaqG6Fsy7Edauv1/W6GoiifPO8Ah4QQB4QQFvDzwJ/fd86fA7+08fVPA69LKeXGcwwAIcQYcASY2eU1H7tnpiepPH6VQo38QoEjLx3c76YoivKYCW2r0ctd8nc+vLEy9deAvwZ04PeklJeFEP8UeFdK+efA7wJ/KIS4RacH+fMbT/8M8BtCCGfjlX5VSpkH2Oqae38Tu6OCpLKtzECKdH9yv5uhKMrjJgSIJzuQKKX8S+Av73vsH9/zdQv4mS2e94fAH+72mk+aCpLKjoT4CJ82FUX5WBJ8xJ5kF1FzkoqiKIqyDdWTVBRF6UZPeLj1WaGCpKIoSrcRgBpu3RUVJJUtSdkC2UBo6f1uiqIoj53oLN5RHkoFSWVrfhX8NVBBUlGeSUJV29oVFSS7jPQbIHSECOx4ntCzoD+2KliKoiifSOqjRLfxFsBb3fSQlDbSW9unBimKsi+E2Puti6ieZLcxDj2Y+ygb4K+onqOidAshQA237ooKkl1mq+IAQkuCpirrKEpX6bIe4V6pIKkoitKNVArIrqj+tqIoiqJsQ/UkFUVRuo0AoSru7IoKkoqiKF1HqOHWXVJBUlEUpRuphTu7ovrbiqIoirIN1ZNUFEXpRqonuSsqSCqKonQbgSomsEsqSCqKonSd7isvt1cqSCo7klLitB2soLXfTVEU5XFSQXJXVH9b2dF6rsyN927vdzMURVH2hepJKjtK9iaIJML73QxFUR431ZPcFRUklR0JIdRQq6I8awSqmMAuqSCpKIrSjVRPcldUkFQURek6AlTt1l1R3yVFURRF2YbqSSqKonQbNSe5aypIKndI6YOfA61XbaOjKM86NSe5KypIKvdwwFsFLQ2oFa2K8kxTQXJXVHdBYaVc5fpqHiECCOs0QqgAqSiKAipIKkAiFKQvFr1zv5QrM3V+Zv8apCjKE7ZRu3Wvty6ihlsVQpZJyDLv3A/HgiCT+9giRVGeKLVwZ9dUkFQeEAgFCIQC+90MRVGepC7rEe7VUx1uFUL8thDishCiIoRYEkL8jhAifc/xfyCE+L4QoiSEyAsh/koIcepptlFRPoqZy/OUcuX9boaiPJQUYs+3bvK05yQ94BeBDHAaGAZ+/57jMeCfbDw+BLwPfEMIEXrK7VSUPYlnogQjqheuKM+KpzrcKqX8zXvurgkh/gXwR/cc/5f3ni+E+J+B3wSOAh88lUYqykeQ7k/tdxMUZXfUss1d2e85yS8CFx5yvAHcejrNURRF6QICNSe5S/sWJIUQPwX8MvC5bY4fBv5P4L+TUla3OedXgF8BGB0dfUItVRRFedZ0XyrHXu1Lh1sI8TPA7wA/IaV8f4vjx4FvAv+rlPL/2O46UsqvSSnPSinPZrPZJ9dgRVGUZ43Kk9yVpx4khRD/EPjXwFeklN/c4vgLwLeA/0VK+c+ecvMURVEU5Y6nOtwqhPh1OqtXf1RK+c4Wxz8NfB3476WUX3uabVMURekm3ZbKsVdPuyf5z4E48E0hRO3D2z3HfwtIAP/7vceFEJ99yu1UFABajsviemW/m6Eoj5eg89d/r7cu8rRTQHb86CKl/OGn1ZZutVats1yu8txw/3435WPL9Xxu5vJM9KRxPY9aq73fTVKUx0/1JHdlv1NAlKcsEQpiGfp+N+NjTROCaMBC1zQCpsGRfrUoTFG6lQqSXcYy9DtBslqqEUmE0bQuGz95CE0TjKRVgXflGad6krui/jp2KSklM5fmqZcb+90URVGeMsne67Z224If1ZPsQqVGk5lCidOfPqJ6kYrSjT5cuKM8lPo2daFowGI8nULTNG5fmKVeru93kxRFedpUMYFdUUGyC5m6TirS2VglkghjWGpAQVEUZSvqr2OX6xtTKzcVpRt129ziXqmeZBeR0kZ6azueY7dsbp2bxnO9p9QqRVH2hfgIty6iepLdRNbBz4G+fe9R0zUi8TBC67LfBEXpNqonuSsqSHYRoaVA62wK7NgOQghcx6NZa5HqTQBgmAYDE3372cyPLSmb4K0hDLUtm/IJJ0CqccRdUd+mLjV7ZYEffP09qoUq66vrDxwv5ysUV/Ncf3cKz1NDrwBID7D3uxWKojxFKkh2qdFjwxw4OUp6MMWBU2ObjvnSJb94C7tynlRfQuVSbhBaFGEc3PGcWttmrapSapRPgCecAiKE+DEhxHUhxC0hxG9scTwghPi3G8ffEkKMbzz+JSHEe0KIixv/fuGe53xr45rnNm69j+m7sS013NpFpJSdL7wpTGuIoUMDrK+Vcdou2eHMnfOqzgrJwzFS1jhCSyH2MHfh+m00YaCJ7qoT23IcKq0W2Vhkv5uiKDvaebuJj0YIoQP/EvgSsAC8I4T4cynllXtO+y+BkpTyoBDi54HfBn4OyNPZb3hJCHES+Gtg6J7n/YKU8t0n1/rNVBehS0jZBOddpLQB/Z7HQfr+pnNj5gDJwDjCmwL54FDsbpTsaepu/qM0+ZH4vo9/3/vYDz3RCJPZzMNPVJR99RF6kbv70PwycEtKeVt2/uj8MfDV+875KvAHG1//O+CLQgghpfxASrm08fhlICiECDyGN70nqifZNYJgTKJpAdAO4DouTrtJskeC6Nl0piZ0EDrSfA6w9vRq6cBBtF1+BpNSgl8ALY0Qe/vcNn+98zs1dmx4T89XFOWR9Agh7u3NfU1K+bV77g8B8/fcXwBeue8ad86RUrpCiDKQodOT/NBPAR9IKe/dr+73hRAe8KfAb8k7Q2RPhgqSXUIIASINQL1cJ79YZOb6NY6+3KJ38EtAcIvndD68Ld9eJZaOEk3ufghRF4/yo+WANwtaBAg9wvPuGjiwu6kJKeWeho8V5Zny0fMd81LKsw95hfvdH8x2PEcIcYLOEOyX7zn+C1LKRSFEjE6Q/M+B/2t3Td4bNdzahcr5KoZl0PuCQdVII0QnQLabba6fu4rtPt0VnEJYCOtFhNhbgASwghZWcOder912uPjdq7QaahNlRXnCu4AsACP33B8GlrY7RwhhAAmguHF/GPgz4B9IKafutFnKxY1/q8Af0RnWfaJUT7ILDU724zouKUJ4Lbj+7hQHz4yj6RotI4/t96C7afSNfSeflbxJK2AyfmKEQGhvQ8iK8kx5sl2kd4BDQogDwCLw88Dfv++cPwd+CXgT+GngdSmlFEIkgb8A/gcp5RsfnrwRSJNSyrwQwgT+HvC3T/RdoHqSXWvq3Ay1FZdQMHonzcO0TJ478Rn8apArb97gSQ31SymRzlWkX3si199JPBNTw61K15M82Z6klNIFfo3OytSrwJ9IKS8LIf6pEOInNk77XSAjhLgF/LfAh2kivwYcBP7H+1I9AsBfCyEuAOfoBN/feXzfla2pnmSXOnBqFN3U0XWd3pG7C3eEEERTESafH39iwUQIgRQxEB+vHp1050FLIrTYfjdFUT7xpJR/CfzlfY/943u+bgE/s8Xzfgv4rW0u++LjbONuqJ5kF/J9n0a1ydUf3MRuO5uOFUurLK1dJxzbPD8onYtIv7TjdV1/93N9whhGPIEgWcqVqa13kvmrpRp2a/P8qpSS/FJxm3QRf+OmKM+4j1LcvMsGYlSQ7AK5ao1c9e7QZjmfZ/riHJom0I27PwLra2Wuff829YL74EW0QRDbr251/Ca51hU8/9EW/RTrDZbL1Ud6zoekO0u7PrfpsUalQaveAmB1do1KYfO1XcclN5fHue/DAYAwxhBaYk9tUZRPGin2fusmKkh2iQ+nF6VskkxMc+SlEQLhALc+mKbV7PQAg5EgR188ypHjpzY91/cl00WB7W7/42JqIbLBY+ja0xtC9WWImYvnqJXuBsqhgwP0DHWS+Q8+f+DO1+1mm1KujGmZHP/UYQKhnXOTpV9FSlWzVnmGPeGydM8KFSS7QG8sSl88CtBJs7BOE44lGT4yyA/+w3us3F4FIBgOkO7v7BJyfwUbiaTu5ml55W1fx9QezLV8mHQkzEBib3OAutnL+MnnCMfDAHiex6XvXaVefrB2aqPSpLi03FkwJH2k9DaqD23DvQFy+/eqKJ90qie5O2rhThfyXANwCQQtfuJXf5R45sEgNXNpDtescPDocTTNYDKboeos4+9z78r1WmiyiND7EELHCkrwi6D3oOs6I0eHCMUezLdM9SVJ9obBWwUEeIsgq2AevzOXamj39C7NM3uu/rOVD1cKq5W1ivLJooJkFyksF7Gbzp3FOpom6BnO3MmH/FA5XyE7lqYmGvjSQ9uonhMzB556m+9XaN8gRolQKA3ooI/y4WIb6S0Sz2TuBDcpJU7zNmYwi9DinYVCRie/WeqDQCfgV51lhNBIWnf3iXzUAOn5PpoQ2wbBsjOPlD6pwPgjXVdRnhj1eW1X1HBrF5m7usTy9CqDk330T6ZpezXs5oMrUhdvrSBdwUD8+Obe1cdAT+gYodBn71QJEkKnk1cM+DWQdxfkrK9VmL4wx1Z/DTrP68yfJq0xEubIA+c8ipu5Agul7YdnI0YvUbP/I72Gojw2AtDE3m9dRPUku8iZL5y883XdLWNlbW5fmmX8lQzJ4CBCCCrNFt5IHCspabolQkZq2+tVSzUWbiyRzCaeWlUe/cOAuAVhHtl0P5mNE469BsKi6qwSMTJ3esWbnrdN78/26njSIWQkH9qu8UwKbYeh1L3M1yrKk9Rtc4t7pXqSXWL2yjyNavPO/YjRw2j2FP0He1iamaNlVym2pwkYBq2FdSqVEqViYcftp8yASTgWxrG3SBn5GBBCEAgFkHi0vBKedHH8Fo7f2tXzHb9Bzc1Rthceem7QNLAMHcfz+GB+iYb9YIrJTqQ7h/T3lgqjKMqTo4JklzADJmKLYZLSYo3pb+dYvPI6N96+hXRcRvszRI0s+Ws2rfr2BQKC4QBjx4cZPTq07TmPm+M3WWtd27SAqObkdszPbLhFEtYophak7uaoOaubj9sOpUbzgedFzCwJcwj5wOYF2zM0jaFknJo3S91Z2/XzNgqFPcL5ivIRqWICu6KGW7vE4OTW82GHX5igVa1TLxdY+KCB0bqGoev0jZ3i1GePfexWY+rCJKSnEdxdnNPy1rG0CPo2e1+6soUhO3Or9849VuwlJJJWK0Gl1SIVfnBVrKVHsPTdbxEmhKA3FqXl9aI/QkUhYYzt+lxFeRzUcOvuqCDZxaSUOLZL/8QAty86lPM5KmtVCsslesd6SGQTROJhmhsVbEKR/Z9X04RB1Ly7d6QQgp7g4R2fs3nVqsDxW9SdNUJ6ipnCOgHd4VBvzw5X2FqnhrO25UrYoB5/5OspylPThUUB9koFyS7iSxdX2lhaJ/m+Wqoxc2meUCxIvVTn0AsH+PR/+jJLU6tUS3UKzRYnjo+TXygAMHLkwWFV6dwEfQChRZ/qe/kofN9HSp+AHmUosXVvb2m9Qk80gnVPeoyUHsjm3ffq3uyU6jNGt7yGonxcdXYB2e9WfDKoINlFmt46dWeN3tAxAKLJKKNnxnFsh8DaOulIuJOQf3gQ2/W4spzD9rwtgyN0KtxIz3wgz3I/tL0qphZGE1u3xfXbCKGjC4PLS+uMpbMQgGjgwSAppaTSWCIeSGMZnV6r9OtIbw38JUTgtc6JxiT3T9BIvwG4CE31JBXlWaCCZJcorpQwA0F6kp2hSd+XLKyXWS1XSNqClpBMPDdGYbmE03boH+/l+ZGdiwcs385hNwUTzz04l/e0ldozhI0sISO5Kd2i5ZWpu3mQEkMLkbCGONSbIWxtTiWR0r6TNymEIGy0KdaKREMbQdK5AO5tMO/Wtd1yFxNZAr8BKkgqH3eqJ7krT3V1qxDit4UQl4UQFSHEkhDid4QQ6R3OlUKIX3yabXxWtept7JaDQOPSG9dYWM6zVC5SeWuWylyB2ECCiu9gWgZm4MFcRM/1WJnJbUoJGTjQy8jRQey2Q3Fl5220dqPUnqHm5Pb03L7QSTzZfmDlqi4CBLU4MXOQiJ7B8Tzytcamc6RfBufcnYLmUjbJRur0xIc37rtgHITgVxDm5uLv9xP6EMI8tKf3oChPk6rdujtPOwXEA34RyACngWHg9+8/SQjxMvDjwPJTbd0z7MPVrbO3l1lPGEQCBpYzzeipXhzXx1isUrq2zLW3b23aPgs621nZtkNuLs/S1ArFegPfl+iGjmmZtGot8ovFh7ZBeisbi122FjJSBPRHn9uUsoUQgqQ1ummRDnSS+CNmlqq7TN3L07RdbuXyeP496RYiDuYpxMZQrRAhgqGThAMbbZE1hDeH0GK7Wu1bqjdZ2WL7r6a7zlrr+iO/P0V57ARqF5BdeqpBUkr5m1LKD6SUjpRyDfgXwOfvPUcIEQB+F/ivgEfbnFDZkWHqhIMBDo/1o/ka3lwCQ4Y4cGIUYehUogIj7uNL704eou26TOdLeLrGxHNjOK7P7XyRlns32MUzMQ6/OLnja0vpdYqLy+0T+YN6AnNjUdFuSb+GtN9DSgexTe3UcrPF4lqIuDlE0NQ51NeDqd/90e88b/OQ8b1zikJLgnkc6T+YS/mhG6t55ovrAPhS4snNOY+VYhUNE8tPkZt7lPxJRVH2037PSX4RuHDfY/8T8LqU8s2HfWoXQvwK8CsAo6NqheHDJHrumSeLwUs/chbHb1Aor3PktVGuFz5g4EAGoVco21UoJ1meWuHFVzfKvQUsoskIB/bw2kLoYJ3e8ljNyRHQY5ja7uc2pWyBexOpHwRkJ/huU7IuZJoMJBIIIbAMg/HM9qX27l5fAu7durDeMleXVhnInMYvtyivVRg/OQISdENnMBnH0DqBNxMNs7ZQ4PbcLCMns+TqN8lf0kgcdbG0CAuLC6SGXsPU9z+lRule3TZsulf7FiSFED8F/DLwuXseOwv8DPD8bq4hpfwa8DWAs2fPqnIlj8DxHEqNOvOrs3zn669z9MgkfYleevqOMXd9nsHJPqx0EN3qY6V5iZ7AoU3Fzj3pom9RB/VepXqTSqvNWGbn2qe2X8fQApg8ygIgA7RMp9C5+QJihx6oZehkYw8WBJBSgjeL1LIIfIR2z5Zh/mqn5/thYNcPkA2nSYSCuJqO03aYuTSPEIKJ58bwqi2sWKizulWEiGeitGotps8tYcQDpPti9GWSrDavcPCFA+ja9jVoFeWpUEFyV/YlSAohfgb418BPSCnf33jMojM/+V9LKWv70a5ukquvcGFxlp7AKIfPfp5PPz+J7hvouk4gEMLQLXRDJ5ZIYHjepsLinnRYbV4mGzy84/CorgksQ0dKueUwqGM7GKZBOvDofVMhDNAHN+6Ekf46kiiaZlB31vCkS9x6+NZe0lsBJPglsF64e0DLgpbE98rgr9ComSxfbpJ+LUogFMBpu1ghi76xLM7GfG1mKEUqdROMIwRCCfoO9NKsNlmq1fFMwY035xg6foBU9NELF2yn2mpzYzXPmZFBtC7bnUH5aKQqSrorTz1ICiH+IfC/AV+RUr5xz6FB4ATwf9/zBzUF/CshxI9LKX/h6bb02dae9RlYj9P0phgfjSEcCCeDCKExfOhucOmkQ2Tu3G+6JaanrzKQOYQZDiOlT9VZIWL24nliU/J9PBSEhsPlN65x8jPHHmjDzfdu0zfeS2bg4cOfO6k7eSqNb7Luw4HYj6JrATT54I+275XALyD03rtzjsJEaBnQN5eFE0KnXm5x8bvv0ztkM37qFMc+NYJhdq77Yb3a9bUy89eWOPXZzvuT8vk7qSFWwMT3fNJCEokE8aMRIolHm3N9mLBlMpFNqwCpPJourMG6V081SAohfh34J8CPSinfue/wPHD/xOKbwD8D/ugpNK+rCE0QCARoR0s0yz43Fr/HwIk0Vji9qczbQqmM6/uMZ1LUKw2WpguEo1ksPYzddnAcG8doUG7UubVW5cXRQZCS8lqFdH+KSDLM2Imt92ocOzVKzfvoO4g4fhPfOEhaBNExMfXNw7a+OwvODXAugHUG9N7OrhvSRki3EyiF1hl+dS+CfgBXhjHDAYLRLJd+sIgZlowcudubLq6UCMXDWCGLgy/c7Qnfnzs5fXGW1dk8pz9/glRvgoZbwPCCd+rBuq6H76xiBvsfeaNnAF3Ttqw5qyjK4/G0e5L/HHCBb947/CaljMpOktqmPYmEEB5QklIWnmoru0D/eC+Xvn+RsJUnnTzJfK2GFIOEjc4fed+XrNtzhIMJ9I25QsPUiSXi9I93EuxvvD9Ffb3BmS+cQkrJiYEQuqbRqDZZmc6RyMbRdZ1Yauu0DmEZLK2WyEQjGPrWAaIzx6fd2WR5KxEzg65ZrDYu4uPQqx8DBMvrdYQQDEQkeEUI/SzCGEQIHQkIBBIdIR0QIYQQSK2P6Uur/N03LzMw0ceLJw6Q6Iljtxw8z0PX9U7O6HSOUDSEa7scenHivjaXQCQRQqDpOgOHkyw3ckTtMIvzcwyMjNwJkrnZZeqFCxx86QuAWsijPD1q4c7uPO0UECGlNDeC4p3bDuePSyn/zdNs4yeFlD5Sbr+N1cMYpk48laI+f5DF61VOPncEUYSg1llkM5UvMLOaxxcF4sFO4JSGTmYwRWG5Uzgg1Zekd6wzvyaEILJR4i0cC3H81SPo+s7l6sKWyZmRwW0DJAD+Eng7p8uaWpio0UvCGkcTOqvFW5y7+hegVYlYFsIYRgTPAnXwljrt1eIILUa7aVNafBO58RpC78MKhclmE/gNm8JyiYGJPlJ9Ca69dQvf99F0j2Mvp0n2xckvF3njP36HuVxnkbaUNri3QDZZt+cZfj7B6NEowVADz/XQailC+t3h5b7xAcaf/9KOHwIU5YlQeZK7st8pIMpe+Wud4GHtaiHwHfVKg8tvXCMYDXL0pQMMjq1y4XsrrOf6aVRaSF9iyzrZQJDSJYGTbCMDfqdSz9IKoarL9MwKX/6xs2SHMg99Pc/1EJpA0/b4eUzfOf/yQ0IIUoERPOnQbLhEW9foC2uY5kbwMSbBrwI60ssh/RrCGMNxBqnVJSntbuAaPjRI70gPS7dXWV65zfT6Mj2JEYyAxvy1RUaPJpDuLRKpQYYO97O2vEw6OownHXRhIc2znQ2ftTaaMAkEexgLDFBtevgD0U0fHnRdf+iHiftJ6ePI1p1C9YryqFSB891T65s+qbQsmMcf+WmtehvDNFi8ucz3/uxd3vrrVSprS1x98zLRZARH1LlV+B4L16dJppJEGKDUnkNKn15b48J/PIfn+YCgWuosQp69unCnd3m/uasLLE2tbnnsYT5cFXv/yljpreLbFzfOaSOdC0hpU24vcqn0/0K0xuEz/wmGMbCR7wi+/Q7S2xi1F0Hw13CaU0RTEXqHTC5+5wLNWvPO+yg0p3D8GkNjY0SCSdbsK2QOmiRHQ51eqHmCeqVOpF8wdNYmZNa4Vfk7KvYyUnZK9+laAMdvbKwGvgRam1ggsPm9ODeQ7hyuV+7kfu5CyytTbE3t6XuqKHeoTZd3RfUkP6E6izx2v6nvhzIDKdL9Scr5CuVClfxinETmDO1Gm3hPjJqzSHnKJ22GKCwUaDea1J0Co6MhEtkY+liK1147Dq7Hhe9c4bkfOk48EyMYvtsWKSWu42JaJkOHd5+acG9e5fLtVVr1FgdObV51KqXsVNnxmrTcArpsUbTXSWs+UauPYCveyd+U7U7Qca4g9UFw10DeRJrPI/QkwjrD1Nu3yA6XSPcF6TsUp+00WJ7NEcsGiEV7yB6Pb+SGjlNzhqg6K9iUicsMQotTXI2xMrfKkRcGEAGLTGCS1cZlyuYCI5GX8KVD3c0TMbJkg0c66TL3jaq6pKk4eVz3ItngEYR58KHfp075vthDz1MU5aNTQbILCSFIZhNEUxHKuTLpgRTX3rrJ2997l/FTMcL0M/n8OAMTfYSiQVr1NjNX5rCCJiePjBKLhrGCFtnhDK7jkepNbLp+cWWd1Zkcx189grVFsfTt6Jq4Uy4uM5jCc71Nx6X0KNf/PaZxilW7jOmeZ8DKYBljGJqFEBrH4l+G5p8i3Z5O3qO0ofV1CP40yAJtO4EuFjFCCSZPH6TVaLM8YxMcNkE08A6d5/LiDUKrx0meXCFljRMwYphahKq9gifbJK0RwkaaseMjxNJRwvEImmERIUjNyNMX7KSDmCKEJ21c2aJiLxExswT1zveqUW2ycGOJwOEiEofB0OcQG4t56s4aCEHE2D6fUntIIQdF2VEXFirfK/Wb1kWkXwYRA9rg13HaUQpL60w+PzdeY7oAACAASURBVI5vacwuX6b5eobhyZM0qy2mL8xx9JWDaIZOvjpHb9Tg+ODd9JAP67XmFwtYQYt4ptO7SfUliCYffb4sHgp2cisBK2h1CqI7swjzKACucx0NgYWP8G4Ql1Ec7QWazgxR2Ych2+DOdQIjoU7Kh4iA6IHGvwG9j4XrhxDem/QeeRvhfZX3/2aW3iMRpOvjyDrr7QWGYy9hBtqsNC4SNfqw7Qbr9hyaZiCkRlBL0naWqDW/QTL5CmtejZR7tLODifSx/SaedAlqPv1aHYFN0EiiE8DzbXTNwgwYpPqSpCLD6BspKB/qfL23v2Ce77NWrdMbi6rcSWVn6sdjV9ScZJfo5ADeQPplVmZmqZRmef/dG1gRCyRoHmizCVYl2L0OX/+dv2EuX8IMWORm81z9xjxO/sF8PM/3abUdps7PUCl2dr7QNI1AKICU9ra7fjh2J6Wi0zYXab+D9DcXWpIihq/d7U2ttmZoksSwhhmIfJ6yu866M0dv8NjGZssmwsgggq+CdQi8PDhXQQyAFgEMBsdtCvke5isGpVonTWXwaC8hPYrrtxiLvUoyPEQgrtFsRbiRm2Wx/h7pwAQT0R+iJ3iEkjODoaWQfoTr1dep2Mv4SGy/Rm/oCBIfiUfNKbNYLrNSLqN5QVqt75JrXgLAdTxqpRpX37hNq2Fjtx0ufvcqrUabsJEhbNzdQU5KSanevDO/uhPX88lV67j3bGmmKFtRW2XtjupJdgkhBNJ8Edfx+NZb56gurdMq1Hn5h09ye62I73vU1tuc+tQwLNsc/8xR2uHOj4cm4IUfeZHhiZFOAYG2Q369hl9uIgZi3FhYwbm1xsTp8c0v6t7G8yyazd4HciXnri4SigYZnOxHCANpTILY3PusuWVsv06P3oP0S4TNYxh6mLpXZ61dIGoNkLKGKbanKbZvMxQ5Q8wcBH0Q6VUh8AL4Psg1RPi/AL+Ap02hHzfI27MMD75K39ABLOHh2re53V5kLPoqmeBBcs1rVL0ZbFGmbdfxqg49wYNUnRWWKkX8xvMkY4eIRtKEjTT51jV0LYDtN0laIzTaN1mpf5tKM0u+tMDhTIhaqUrYd5FHOh8cDMtg9NgQetBHCBg9NkQg1JnbtdsOru0SjoVoOW1url7n9MgJAubOw9cB0+C54f6P8JOiKMq9VJDsItVinVypwvjZAwxjkZ8rMHlmnNe/eZ7KlRXS/UksP0rPaJ30gEErN0K71eLCd68yfnKUaqlGvdygmK9QimhMJmOENJNo1SXzwgTRRJjiSolGpcnw4UEwJpi5PE9x+QYv//gLm9oyemwIjVWkcwVhHkdom/felu4MIa/N+lwIb6KJJm8hRBwdH91dpO1OoWkpevQkEfs8UrfQ/XWkH0B6ebAvgD4K+OAuIM0KQkTAb6PbYWrLAxQyZYLyNj1mL2t2g5ZXZKH2Lpbm03TmiAcDJM1+mrJIUE/SdNdBaPSEemhbSxyIv8i6Y6ILjZa7TMw83Xk9oO6skrYOEouWCQUtemJx0sFPYfmdFbahSJDeg3EEGiV7BkuLkurpFJzypUtxuUR1vUr2uEVMT3J2WEMYT37gx27Z5OYLDB3s39XemconmPrv3RUVJLuI5/kEPHjlUOePsWnoVNcbBFJhyqUqYwcHWJ3O0XcwQ3He5Y3/59scPjvJwGQfPYMp1nNlRo4MEYoFGfQ76RmVtQrxZBQraKIbOgWnzVKhSP2dBkdeOkg4HiA9MPFAW0zLRMosyLuLfqQ7B/gIYxy0XoTu4DnlzopW4iSsA53cUPMoKU8joGcQQiMcPE2o/nVwVpDihwG9My/p3AYtjLReolLwSWajxIJjHBhxcRLL+JpLrnmZIC6apnEq+bMs2xdZqr1DQASJGn00ZY6xyGdJB8fwpEPZnsc2muiaSa71Ad+fvsRXDn+VGEV82SRpjVNs3yYZGMGgApFXSDk+FxfOM9Y3Qig8gRAGl9+5jJW1CQaCiFiLpNVZxdtwi1ScJfrHT9LjJ6k4C6CF0PTncP02hni0nMpH5fsS13a3LUqvPDu6bdh0r1SQ7CKp3gQ33p1i7toi8UyUWqnB0OEBRLNCu1onlonSM5hh7VaT6cvzVJw2iWwMDY2e4TSm1RnqazdsPNejvt7gg9cvYgYMXvxyZ0spWxM4cYtgtDO82j+Uo9nyaNYChKL3bWwsAiACnQ2ZcUFL00lzBqGFMSw4cDLRmdf0LCQSQR2p9aLpWSpegZgzjdB6O/tJ+kVk408QwU8hIj+LlA74LZzyXzB3rorzwjCp1Bcx9BoJw2U0dAI39Dz59g1i5hEa7hrV9iIhPUXVt+kzBL3Rr6KbnQVJs4USEauHUnUJXa4xXYkRFy9T9yqE9S+StHq5vrJGMgaJcB+SGIIgjfYUxzM3aRtpXBnAd3yWxN8Snhkmrh9n4swRAhsrW33fv7PjiidtZtZaDMaaJKOSYnuagdAphNAo1BokQsGdqxU9hPSL4K8jjLsfYoLhAOPb1NpVniFdmO+4VypIdpkDp0axWzatehvTMrj+znVWK1cJRkzmC+ssTuf44s9+GtvzGJ7MMDIxzMqNZXzPx2476LqG3bQJxUJERl1e+OIw8ewYiZ44vu8zoFskB/uo2w6F5RKFhSDBmIZpVR4Iknf4OaS3itCHEXpnoY70GwitswUWIoir9eNLm4B5HKQko7tUfR1hXwDzLAgPX3+B1eabJDxJu/k+Qc2kbi/Qoy8y8ZLOuj9F23sFRzZIhz9FG4nvt1hvz1JuzzMQPkbW0HC1MHW/jNv+Aa3QBGH9GMgKHlO4jBKyUswVW1xZWWA808ti0SYThkxUJxYMETNSyPZFhJzH1XqZLQ+RjL7MmDWJY7vcunCLgfQA0Ug/kVgvkehG6oebZ611hbDRR75WRzPXqLmL5Gtp+uJ99AaPUm2vY+oh5krrHDQyxPTA1t/TXbEemAdWuodUIwW7ooJkF1mdXePS964ihOALf/+z3Hhvive+cYnsSIa/98uf5cr1Ba6cP49ru4wc6sduOlx/8zqjR4dpVFsUloqYAZNGpUmyN0Ek5hFLZHn37+axAgZHXznE8u0ch89OYKZMHNshEBojmuwEASmbID1wp0AfROhZADyviCCG8OaRWppS+ypRmcPWD9Fs/oC4FcfWT7LavErIyJDRj3B79hxecoHDloOpZ8EYR/MrpKxRTM3Ely1M2oSs0xSas0gZJqZXsVt/R4AYldb7nG/XiFuTuJ6DS5uo0Yuv9aCLJLV2gTU5wCm3SVhcpGIHEW6GUChKoXaFwcRB1urguTqzaz6kHQ5mJQOJGO/NLjISnsPxqiy1XCayHro5QNtxmL48RdWfZ0i+hhYwCEY6Qa7u5qm3KwT1BAsFh1ozx0sHejjWG6LVCgItdPcSV3JtspEhzox0dh7JLxZw2i4DE307/t9/+L0X2t0FVJ2vty2drCgKKkh2lVa9xcBkH9Fk5w+jFTI5+ZkxNE2nUW4yMZxFvniIS9+7Rn6pwOBkP4demCAUDXD7/CwTp8fwJbh2jup6jUiiFyEEk6ejSCAQCnDitSNAJ21BN/Q7ARJAujmQLYRxoFMabsOavUbcmiRinQHAFEEEJnW3QMGpEQkcJmoOdBIrpI3nutj2ABPhA5jetztzj6IG0iUoYpRyNzHCKyxqMdKRQWzjENXmB6QCR6i0btDwAujGBGFxFcdbBJElYQ1TaN8mpcPV4nvkq6MMpkNUynnCyc9xbqlEwDRo2HW+dWuVYEBnoifDaqXKrbUS/YkYhVqdm7kil3MXaaTinOpZIdJ0qayH6Mmc4dziMvlijTOnj7O+ukxfduTOqt+Kvcil1VscSp1hKJ4l2OOBcAhpKc6vzoPMMJya5MWhBLrQ8HwfXdMIhAPoxi7mKb01kG3QDj2mnyblE091JHdFBckukJtbI5LoVMnxpcRu2SzcXOLa27cIhVzqtSYzl+dID2Z4/ounCIUtzn3zIuVijevvTDF0cID+A724jkdhsUi90uD8ty/z5V/6PNFEhHR/Csd2kFLie53Vncu3V7n+7hQHTo1QXqtw5gvPITQDfA9kDfx1fG0Yz/XIhl+9Mw8npSTiT4ExRq+VpdcMgT7MUv0HhM0BkuYYde8mBw9lCMsS+CZoYSAF3hV8+lldWCTYcxkROAjWB+h+kBh1llqL9AVfYq72XYKeSYsIQRHD9ho4XgvPtyn4LTQ/ygvpUVbtKDfXe/nmze8jRQbflxzIptGMfhq2y59+cJlTQ/0c68uSCocoN23y9Qa2HeA7Uw2kfoKTvcepNDwKc+ukEiHsWIRYOE30MISNzo4rdssmGzzKSwNDmIZGxIxRbKzy11cv89kDLzGUraDrKYSWwQTaTptzC8s8NzS07TZk9xPG/Vu1Kt1MFTjfPRUku4Dddgm6PnbLJtWXJBCy8D2fYy8forC8jlgrEQyF8HtCXFxaYSIcxQyYDB3sYeXWDVzXw2m76KZBOV+hul7nx3/5RwgGHHyvhJAF3v2rFXrHh/E9HytoEghb9AylcdsO9XIT1/XQRAahpwAXhEd+oUApV+HQi2P40kUX1saejjEQmc4KVS2F685Ra1/B1MJcmPkb6pUrPHd0Ep8S680GEeNNAuYx8OvUW1cJDS6wap9FL9xkuX6JSOYV+oKnGLVO4Ng5LMIENDDNMA27QMNvQmuFtDXKcrvMXLXAzNJpSs0Mx7Iea9UmplGh3M5Ta7eJhoIMRqPU2zYT2TSVRovpfIkfOjROb9xgrRZgMJ4gZvTRcA3KjRKi4mDGMqSG0sQjYdq2AE/Dkx5X37pJ31iWtlMnODBPyPOJB36IydRxImaA20WTZOLur6olVjjaUyVk7b7kn6I8QAXJXVFBsgsMHxoAOikgsWSESrGGFTAYOz5Cokdy4+2rrCwkaOaKNCI6AbOOrgkmT4/QN9jAMCXruXVEXqPVsGnX2wQCJtXCLJEoCNNg5Pgwmh5g5fYaB188gNNyGDo0gK5rmEGLK9+/TmYwxdDBTlvyS0VC8RDJ3gRVZxXXb5IJbhT3Np8H+43ObhrmCTRhMRz9HK32OUKBLOHEGW4s5emPlllt6EzEemiV38SLhnFJse41Kcnr2EvXSfeGcBKLzNWPINrvs9D4AboWoi9wlogRZ9H+Dqv2GuFAhIVynVbzU1TWqhzPVnl/XuLaeXytl/nCOi+M9aGLCC+ODtKTaDKYDVOqLzC33iYV7OEbV24SsKocH4oSMQYI6AaVZptb5RVOj4+QDcc5v7hMcXWdt9/5Bo0lg8//9KcZO5Ol0sihewkygUnKre9wa2WBVDhM0DI5PXAMkyWkWwItSctNE48O7Or/3rEdbrx7m8nnxwmG7y7y8aWr6r92M7W6dddUWboucf3dW0ydm6FZazF/fZHZq4tI6ROL5+gdG6NZaSINwZGRPqIxH+m1ufrmLNnhMMK7iRXyacsc/QeyvPCl0zRrLW5+0ODtv62QW4zSe2AYvSfGyc8eY3kqR7vl0jOYJtyjY1sF0v1J+saynRJ0UnLu9QssX/sOptUmqgmSZoaKvUS1fQPhXgT9EOCBO4Pwlgj5U6R0ODQ0xshgiPPX5li+ukqyHMPwGjTWmxihH6Egw6yZETQ8/EiY7GAQz1tgqvZd5mpvYbsthO8z07jMrerfEtBfIpfrp10dwiZMT9IjX7O4tAKeDwOpk9hOgNm1GvhRPnVghOVKjeqKjluMIPwIq+U2qXCQ6XyJd6frtFoxUvECq82rpKIeLw4fJxNOE7JMxjMpSqslhhJJXv3CKO3AKjLQwo9USI4GEFoAI/DDDCUS1JoLOO2LCFml2LRAS7GWP8f5+Ska9u7+3w3TYGCiFyu4ude52rzSKY6gKMqOVJDsEpnBNM997jjRZISRYwMEhxq0vCpT61O4YZOJ58ep31xBq5YxxetEei4yN3OV6Rmdhell+ici1JwPSA14GPEg3794k/X8Kp5TYPHmChffvsnlyzPU1+sEB2Isyjae5yF9QUCfxY++jTAA5zL4q3zmJ2JMPD8GIoTwFhHebQzZxPCXkfoR8HM0XBe3PUelrXVqsLY/gOrvETCDfOGETn+vze1LkmJ+hP7Jk1Tat8gvVtBbTVxrjdHDcRwtzKLjEg40sLQAIT2GBfRZGRLaAdYbEUwR4FuzFWZzAd64WWSuUOLiaosj/T1YpoVhWJwe6cPUdH7/jfc4P7tMueHw/kyOpZKgVPd4e2aRtWqNU0P9PD88wFLJp21HKTVcAqZJvnkdxy3jLZT54O8ukeqbpH/iGKuFFMI1GY+9RsRIoHnTRM0kg6kEzw1YGEKj3brMarVG0w3z/fNhou0EkcDutkkTQpDuTz2w6XVP8CBBPf74f9CUTwxVu3V31HhLl+gZTNNwC1RaRbx6jFqpidG3QsBPUKtptP15Xv5ii+OfWuTid2ym8gHK2jrVwk0M7QimNcBg/Et8608u0/f8m7Tn4/SnoySyBumhETRNw3NqWCGL8vklBkZTLFy7BVoE4UYxRAXhV5HGMI1WgPXGCradJiWnSJjjCE0nJFLACEJY1L1+qvYbOLbOYjnDK4N94BeQwke6C4xmHEgbrMxdoLIapeC9SHZgjWMDi9SEzbKfZdFuo0sdzWtQ9aZoYxPiBE2WKFZ6McQBTvcPsrp+mpl6gaVGmGurZXqjaQyzSUCs4No54sHnmas3SQVMWo6L0Op8a3kWK2ZRb7X5dE8votTimtMkFQryZx98wERPglcmxik7MywuLyFnq7jReUKRGAdOjdI3PshsIYcvHULaMlL2IUQAaZ69U+lGGCMgDBrFGkszK+QrM5wYazExsf0WWjvxXA9N1xBCdPa2VLpblwW7vVI9yS5SnGvQWjOxeiQ9o2kMc5zRgc/hOR4L03PI5EEWa4cIxg/QT4gzk0GOHq8xPimxAibpoX6qpQa5q1WOHBpj/LnniCQP0qy2SGbDZLKLhKM+B18cI5CZon/oLcIRl+zIIP2jryH8HPg2mhGgxUHy5TYBHKSsslLJUS2XEcLCky4Vt4QV/jKm5RNZf49GYwVEgao2QKX6xzS9FWp+P0veEOVmH7m5AuXFHKVim5Y+gOaV0HDxZJO2FiBrDqGjU20ssrY0yGoNlmpXOLcwRyQ4xe18jeVyGYCeaATpx1muG3x72uVmLs/cWpHf+5sfUKjU+MrxPnzPplRrElyqs/wfLvHCsXH0UpuZS/N8eug247HrhI0YfaEjBAouertEI/gBtvE3GEaO8tJ3sRf+jMlsikDoZZBNfN+/EyBvnZtmebrG9MUcFy7MUVxbZzwQwyvqaFsUEJi7tkh+qbjj//+tczOszecf/w+W8omkepK7o3qSXaC2vk4kPIsVTlMVK6StIzTXW8wVZxmZGOPQsRMcOtJHizYr+RC3r47ROxnFjyzy1jszZLMf0JftZ/7aRYSTJ5U4S3Z0FN+ZI5YM0qpMI50+0I8iZJNgKIVjj6NbR1i7WuD2xRaHXwoR6UnQan6PaOAYEz29xMx/j/BfBX2SavEy5cYC8WSSqrOCj0syMAHmLxKdvEowooHxFaIk8WWFQnsB5Lc4eyZLOnKW+fnbVOtxrMHj2HaDWrnJULyHnGhgE6bst4hwmJiZYpkogegtNCNHrpTkB+fD2DLIsViJ98uS+WIFTdOJWRaWFSAeNJnsGWNmNsdzA32s5CN8990ZBkez/PpXvsT70uTd/+9djo0lSWrLhP1F1haSDGdvoNHPcH+D+PFDvH+hRi43xeHjccLRCLWqRUgP4joO7dYHLNxYZvTQWfTwCLFsDF8IVksVPv3p4+iGTiBowUQ/KzO5Tq9Q0yhUaiSycYJhi3Bsc0Uj6TcAB6F16uOOnxjGMJ/sr3y9bTNbXOdoX1btZ6k8E1SQfMa1m22mzi1w9KU0Pb0DxPwo6/M2b33jHP1nV0nkh1i6bhMISUaOj1C/egXfHSAe0QhFh/H0LOvLt7H1i6Al+cn/5ue4+tYi1UKNWqmM066RyPZSvlgkO5YmHi8AQSr1IBUMjr96lKtv3aC0WsaKJSi6DmFxDU1PkNBMKtVb6NUrOMWjBAcFq7NrxPqKtP0Sq/8/e28eI1ly3/l94p358r6Puu8+qu+e7jk4wxHFQxIlimtJ9Mq7a60WsgUYu7ABA/7DBmQsjP1jF/A/C6+xWO16bcuWYFiiRVESKVEiKc59d08f1UcdXXdWZVbex8uX7wj/UT3NnoNiS+QMNWR9gETli4iMfIV4+b4vIn5H5fdQ5ZChPySimeBpoGTRxJC0CtVgFE+NcLP7x+TyBfq9MgfeKN3AZtvWaemreG1oGB7JSB6XbWzvBnWOY/Rs9ivHGQ7CtPoe3b7D606Eoe0RlgPyuQSWYbG9G8GKDLh1uwKmRseE9coac9JGbPfoNrrMnpuhulWjeXsd4/Qe5e0nGDajOD3o1L6K2+tgRROIUBVXW6C+O6Cnt7nzmiSQBxiWQTMY4dbSPqUpg516i/39GjnVYGQyR/h+OL/2sIylJYilIgSB5LWvv8Xyxh6zZ6ZYPDH5PpFEtiDown2RNK0fJITdo6GrKgkrdCSQHweOhuiROBLJjwEyaIFfQeh/82gppmVy6ukTKCoge4QUk2xxi5HFJPXVdba7B1x/boMTn11kr/Mdur0yRniIohiUxj3aPYERjxLNKcw+dp7Keo29vQPu3niRz/7SHLZ9ktGFArWdJr6n4gVhVP9l4mocX19ESknp+CgvfucFrEiMSPEcbnAXRB9nuMvW8g5augS6i0EU194hpIQJgDo+fe8amueDH2XouzS8gBQefeoEMk3L7VEPYrSVDLVOmbx3QCjkMVqYpDpsUatvosRCdJQG7bKKHzfoDV0avThhuYjt98lYfcJaFlVRcIyAXq1Lq+2QmBlh2Oiz/+oOwlJJLxSROy2a6/e4FE2xe7PL9b+8weM/f5HcRJb4MM6wWcRrZbn50nUm57ukcnEGZhp/uIVb3sX3t+lnz1Mz01z6fIp0YRQpJVf+47cpZjx6vS1e+bMGvqmSefIkO29tUHo2iu8HHNQqjI5GiSQOA66ffOoYo/MlZCCJJt69x9jzDtBEDFN/NFeRHxaGpjKaPDII+jvPT+Cy6d+WI5H8WKCDEvn+zb4HqqYigwbSXaHfzRO2Vlk8c5LKyA5Bt0sqe5fR8ShK+BILz7xIrd0mVSqihnOMz/0OO46NDAo0BuOsV+8QzDnMz4+AOku71sVol9FiIbbfVijNFMiMfJIYz7Pvfh3b/zSxWIrzz5ynEFNZq0NXnCQVG6CEn6CUa3J3N0XpmEGuUMJNLdML4PrtG0znIWSoDI04jSBJY/g8aRV6pPBlE49pVp0rpBWfiDnFWHGBmv0cviiQ0gIawy6h2T7SU6ivBdQ2DHKPqUStGnV7kpXlPeLRPNFGDz8lWKk1KYQ9SnqI5noDseMwNfRxMlFS+SQ/dXmSnaVbpM5kkTWNrcE9PHeSr/7bP2XmzAipQp7A85k+M0mnUUEGAyo1hXptyOSIhqnMcu7xLF5QZGv1DtnjFnZvl+p2CysWwswe50pdY35eJxqNs1euMXG8hBEy2Fkus3W1i3muy+j8oUiWpgoM+0MUVSGeib1rzB2/gxQeXVshFjIxHiV03RE/WRyJ5CNxJJIfA4QSBn4wa0ShpOjbU6xefZ2TT3+esNFC80rI/IBP/GefJ9CmqDuvIVSdWOkyUrTo2is0PY+iPM5re3Wed/9vfvrYBU6Yx8FfJa73acguYTZo7fZoeccppX18z0BRT5IWAwbDVVRjjmzcQsgqM9kxhNCpHGzh2bP0ezsUjoUxYxrbvTfpOhtoXg43ZtGx0kTUDGubXycpV9EzCoaSQYgNAq+NoVxh2vDxiNF1buIaF2m40+SMU0SVJRx6SE/S7loMhYYy6rJVTbK6OY4iDNpCsFatMKVHybnwTHGEprOMrNSZGKjUhWDv2hbTI0kirT1eXq7iDhy6lXVmfv4C5ZpLfrdBc38He84jns3TbfXptRssv/EGN19Q+NXfepbJfIxh9QBJAj0ygSXfYGLuOAFRPLeNa28yeXKOkdkxNu06I9NNouFxsrtJcuMZAPSQjqKqbG7fITsTxVQPRTFetIgnUg/G2bEdBj2HKjVSeplKZxE1VURXTYRQH+TETBoTR8EEftI5EslH4si69ScIKx7n5NOzNPZbuP17eJ1NVE/HV0x058uMhM4zHvsMaT1HoMTpOZvUO2Gq7TgZZYKz+VniCsSNY2wN9qi7+4wVj6EoBrFSieSxEl23iu3ts1yts9OJI2WTnlum51aQ7irYf4b07qAHYcTggPHjCoHucrARUO2vovgbuM19Bu0+w36Vt958FcuzYThJVCh43MVza1SGIbygQkx2CYZ9VH+PZu/b7DfarFc7rNYkOln67TRRGSWa9Wm6ESoHJY7nThKTFrYToArJgeLwRqtOq7EFWy4xPY/h2ww3qiRjYULWgPREmuiJEfZWqwyGfbx6n/G5SarbdYonpgjPJgn8JtX1FTaXKuzvhghEBrs9SdpqUBzrMH4sx0t/tMT2xgRv/MUuzapOIrdAOHWB0vw4V2vrBKJMPH4BoaYoTObwGbJbXyKSDPHEL1zk+OPzKPcTL/e7fW7cfoG+892gAN1mn+r2AZVuD08ucmpshoRZOcy8AoBAETpHd8gjjng0jh4lf4IQ9FBlg3ZtQDh2nLHT87y5dYV8J0cuMokR7FNz9+mLMIXIE2zaJsmIizAdZkKL7Pa7KNooIthFFWFUEULxlrnVu0beOsN0zqTtplH8q5TCYTRrlkjocw++P/AEDK+BtEnmopCewpUeduc17izVOPeJTyP1Mj0joDRq47b7CC3KzPRprmwuYdkzmOEIQ7mN1PpUBho3diwO/IDJMQ1bKEyk+gTaDTq+ypA2ltmlOwjTtS0U6dB1fN6qbaF7XQwlSdwVuLZHdKtDdfUAE4Xir8zRsxxClaUqUgAAIABJREFUQYXBwCNwfa58bY3c6E0yeWgywc3n73DhiWPcW6sy6Y7yxu/uksl1iCRUMqU0lz4zwv6Ww9rVdYKBx8zJEJlSl6kzc2TGMqRKAbH72Vhcx0NIiBsZpBdif7CGlD6l8BkECndf3EX3O1z6ufMkrRGEEHQaXZqVFpcf+xym8d1VhkwpRaaUYiIooov7hjzqCO8ks1aFRtI4Sqp8xNGe5KNyJJI/IUgpEUqafbfN+NwSeuQ4BBX8vRZ7nRWyj8fpD2/Q8zX6lSka0a+QTGXJxhbxlBFWml+m7VZQBoK1fpeMVaRh1zFTc8wmvkSYHpriEY2co7UX8MKdu0wu3ONkLkNt6zbR3ONY0RnQZgjcZVr9v6DSTZIxhlwYu0g+9Rq67tF0AsJWiMbuGG/fqJNbEHzzTYWEEsW0yty5WcNXY7gZl1x4wHS4RcpTqIkoNh61rT6GYRAvStyBh3At7IFLo2dR6WQZ1AR6v0d+zKHe9yl3JdGejzISIzGWxeoErF5b57jYoK5HEf2ARkUjO5knP7JJYTzB+nKKbsNh5swU7WqH7HiGZCHJ9e/cYnt5yKf/8wJTJxbYWXZQzRKdVpNKdZJULk5mrsNb336FXkNijCR49qnzlI4n6XtVTo9OUh0s0xruMxF9Aj8YoikGT33uWQAq3lUUT2ckco5us0e73mX82CiO7bzLctVzPQh0hHk/KIF4tOg8R/yEcSSSj8SRSP4YIqUL/i6o4wih4Lh1Xvurlzh1ZgzCWfbbFmbwTcKBoHnnOtPHbuL18gyss7iKiZaawlNus9/9Bjpt0olfZzxyAaP7Te6t38UVOcKcpRfcxVb/Penoz6KEzmASpT/Y4aB1k3MTc+QSAwLndfrtOqHkY8igB8LCdna5s9cip2/Q01J0u/Nc3YFi9EXCoR7xepRuv8Tuyy+jtht88+Asnzw3j6zeZTS5QVtCpWvRdy1GkwOEK4lIj44AdcJH68KwXaAdGBidCIrdprFXpN9N0ev0kTt1pvpdGiNJ9EBD0QTRjks6ZDGlGdxQB0gtTatWp17ts/j4Mayoy+mn+7z89ST5MZ+ZM8dJ5RM89jPniCZ8mjXJhc+d4cRjYTTNZuNmhcXHqhBaQDrXePFrO3hqAkPX0cMhJh83eeFrV8nIENFciMJ9Y5ysOUfGnMEN+uzY10iZM8TMPIH0cQZdkuZhsmUrGqJZabGzUuZgp86pp48DsH37BgiF7bt9zv30IpH4UVLlI96P5J21hSO+H0ci+WOJBGkDAaCgBneZOmEQCW/j2lOs39zlzKU9rNAMP/Wf/gaD7i6RRIF67yvEzZM0lQMUt0JJG6Pl65SXXiMTmeKACLnxAtnoHGsrdxlLl+iILL5j0G0GBJll2k6Let8mPRiwb/tEc9/ByCywv/Yy5tw1sL6Ao8wz9Gv0winyOtj9v2SrcwvcS6yuv439yiqLP1enMDHgxnaYGl262xUGmXUark4QBEjFQIRsWihUlABLCnJKQHtggDFk7W6LXtygWlZor2YJzdoYlQ5KLcDbcTFiNspSF7Xl4gSSMTcgMt3g5dcdOmEFMxKFaARLN/HzYTavbKCnThOLOyTzFu6gTjyzSK+xiddb4bP/8B8yaK8TiuWQsk3icg436OD64LTPM+x9DSXfYe9uHFXROPfkp8n84gT796qYWpioXqA93MWTA9LmDIYSxVLT2F4de09BDyls9suoiRIhrYYbq3H66ROYEYMgGOAP3sIPxtHVMunxk8igjeM8z+17Y8wW5kmE+kgZIEQIoRwJ5088H0EWECHEzwL/GlCB/yCl/JfvqTeB3wEuAjXg70sp14UQnwX+JWAAQ+C/k1J+6/5nLgL/B2ABXwP+Gynlh6r3RyL5Y4gQBlIdA1xAQzUuYGXu4WhxUpEUxx+P4PcvosQFA6fMwFwiLQaMxn6Bcu85qncatMwLWKU/o1F2UTph3Po21bpHbHyIn4my2XeRfhlHzeNaGZzK20SDCDv3qiTyYbRMiEK4S693mXpHxQr1OPB0nMEeWesYschx1iqvYGSOU4ylyblblOsqJxdSvGnv8NzGPlNZ+NQnWjR/O+DOdZedpSRRfC4/VSeRqFO7aWCeCJjJ20gkt4M4ng1BCNKlLhE7Ss2N0GCWwWs9ErdrWGaS6GyM9Q2b2m4FVYJMW2jTaQZqF3/oEqm7FB8f5c5alYipMV/sYP3KcfbWfUaOa9y7uYll7dDYS3HpZ89T33GprPw5sdw0qOMcdL+OLhtYkS8w8PYYhG1OfurTpPMTdBffxHZGUFWVVCFFr2kzMltECEFYy+BLl+Zwk6hWQFctpBzg+AGBhNHIabKhSUxFQdV1QpkYw8GQ1/70OrGMQ2FcMnN6DDOco7jg0x76JDyNjXqDM/kyoNLzk3SHkuJ9X8vOwCGs61S7PfKx6IcSBEBKG6SDUJI/9L6P+LuJEEIF/lfgs8A28LoQ4qtSyqWHmv0G0JBSzgkhfhX4V8DfBw6AL0gpd4UQp4A/B0bvf+bfAr8JvMKhSP4s8PUP8385EskfV/wyUkqkbCGM8ySNcYTQUBUD00+zvrlMKmMgndcInDJtfQxLzdJZHiVfmqLZshnYCwg9imsdsKtsM7NwionIZdZWh/SWbdQnmhzTXN5cXqJWvcIXF/4p4yfP0GzuEzZDSCvPXv07DIIOc3MzqMopGh2TfnuLyegUWSXC7o2reKln8bw815oVTvtVommd3p9UqRkBrqmi1HtU9y28go4ceLQ8jfa+ie5LKnWfQOrsNEyqhRBuPcJ4tokZ8thfaeH3U5SyBuVaj+KUgRpVaK+HKL8xRE+CjkK049F+ax9HaJjdBu0a3Hp1mUQ+ysh0Hk10KY1Xef4PDhid0CmMNNnbzqGrOzR3bmGoIULhAZo2C7JKRM0wEKNYWhoz2GYnWKcZN7DcBLs7NkL2iWY6RFMWsQWbndVdpO8wNudSGzroSgg06DhbDIZXieYuYxoTTCpTmOqhMY7G4R7kwU6d7GyJquhTnA0Ip04ivX1MMSQf/STJkIftegijhADcnk1v2AfA8wNu71WJmgb77S6psIWpfAi3hKAFQROORPLvFh/uTPIysCKlXAMQQvw/wBeBh0Xyi8A/v//+D4B/I4QQUsorD7W5CYTuzzrTQFxK+fL9Pn8H+HscieQRfyu02cMb0/AuUkrUYAtECJRJ3HAFY/4GnjvGrtNltWUzLldRK3ep9MeJ+hGuLl/n1LiB4hapl6vECk9z0OjQyXyLvPEpxlIWudwMm3dv02g2OD3y8wjD5M7mNo8dX6C8do+16v/HzIVRRjJZ7H6TeHySres32bl1l8WnDCaOP8VecA/Hb9LwdGbVKFvVFLHqn7OOTmVP5fb/2aeph8imuwy6Fn5E5d6mykgJ9BkPM6uw24LoVEDH1nBjPlIX1LeitOyAollle2+NxBtQGU1zsDvErB6QLVnsWAauomB4Dp7wUCYy5Fo21R3wqwHDfo9kJsKVb3dpVB2gh6rtc/rxBJ75LOmUTibxHIp+HIen0aOXwLuN6V9D0xYInLfAvUXBTKLKMYTu409m8JUatuUjvCyWmkYvKfi+R2u4ze32i5xOfQlNMbG0LC03RxgVLxgAPPCPfAfDMrjwzAl8U3CjvEnHcdh6s8n4iVHi6QCXFoauACEAUhGLVOS+0KoKFyZGqPds8rEo5t8irqv0K6DEESL0/jrpgRwg1CKoxb9x30d8uPyA1q1ZIcQbDx3/tpTytx86HgW2HjreBh5/Tx8P2kgpPSFEC8hwOJN8h18GrkgpHSHE6P1+Hu5zlA+ZI5H8McTze1QG18lZZ9GtXwAgkBnwyyAlCWOM4SDO3uA6CfUxjkVctsq3iAUR0qUeaW2UaSOAlolrmohEhFanQTLh09mNcfpTKdTgp7l9Y5OwdZ7FiSRqNMwLz73Gt9bKZDSLZm2bYmaBkHC5vrtLTNlnRouROVEmUcwQK22x3/wTZh+bYa+qkVzb5fipZ9hfr/DnL8VpKFHaqo/XP8BIC1qqS38nxInP1DE8n4ZtoNsaMCRkejhNBV94BH2NSs/k7doI3SBMeADFYgvzXJr9FRdd9Rk54RLbadPq5AhJhf6+g9CGRIYH7JDkxJMdhnaCZ35xEqlkWX27hvRqzF/KYbtFhgSU5t4i1D/A1AsMCbh3vcb8hVfRjZv0ZALHE2SDFfpijpA+jeG3iOsjzKTjOEEHTXFxfRtV1XH1FgO1iSITnEh+geF+mJrZIFtaIKxnaQ93SBjjNPs2vDt3Mql8gkFvQCwc4cnpY6iKgnZ6gnq5QXO/RXbBpO+3EELBkDZ9d41w6HEUoVLpdHFcj/H0DzDDC2ogtMMHsPfVHUBQAeXM377/Iz48fjCRPJBSPvY37P29e4d/bRshxCKHS7Cfe5T2HxYfaTABIcS/EkLcFEK0hRC7Qoh/L4RIv6fNrBDiD4UQrfuvV4QQ+vfq84j3o9IhpYKKIBh8k8DbQSgxkF3wN9EVi2L8ZwmbF6lX9rFqDgEhynctgrVpXnr1JrHxIqWzeRYuJMjPrxAfjWGFfdyDPquvbJEqhRkZ6fPqwSYvL6/w+otvMdh8nXMyTj2okDqhsLPbY79hkhGTzI//Em9WrrDvaExPZklY5ymvPMWVlQoddY2z58vs1L/OxvU3WQw5PH1myNi5JkZUQRwM6awolEbr9G3J5h0D3VNoLxmsf0Pn9ksJFEPBb6h07Dh1dHqehXRUpuQeqzc0tsOCYcYiHxki9DDbTonA9og5ewjHJ55WiXdtnGt9NBFh9tQ4u/civPRHt0kXspx4fIp8qcQzX7jE7EIUpdXlxssdfG8FQ6xw/OzLdNUy/UBFenfIaXWGSoJ64GJLHyklbmCjaAMyVgFFUQnrabpehdZwi7R2nKg2R0wromgSVTv8aZpqnJTSoDeo8K3nrrG1usfu6h4AUga0ax02lg4frtX7iZWjyQjZySxkwphKkmo7YODaSMViIDWk9Ol3bBRfEtJ17K6N53oMPR8/CB5cRw+//14I/QRCSX9wnVoEbfEHupaP+NiyDTzskDsG7H6vNkIIDUgA9fvHY8AfAr8mpVx9qP3Y9+nzh85HPZP0gX8E3ACSHFo2/e8crk0jhMgBzwO/Dfw60AXO3//cEe9BSh9k6303KaEWCSl5wEUqaVCS+P4BilSRUkf2v4yvLcJwHSupsrbXYrfqMJlNEtLaXJzMceOF5/FGLfLHY+y+sUZjz6G/kiJUTJNI9rEbW1T39ghtw8BdxlTGOfe5Zynf9nnu68t88deeRLHWub09RN/tEgmvkLFKZBNzfPnN28xNScrGFrZmE1IGBF2TF79RZ25slMXLA3x9m+2/imL7Ho2my9iUTfoi9O6auNWA57+aZP58Db9jkTvj0rJ0LNMhMWjjDX0uT61w62aCtzZyWHnYvBdFdQfY4zEKe210R0PLx5kMrWNvh1C7BZqNGm5fUttPMhwe0K3dJJrWEdYemtVjQIZMPsDSNzFT/4TFBKjWq6CNokmFsDqLpZcQg2+DSCC186hyHT9wCWtpKoPbIAPaYodi+AwgcTUbTYS4W19C+Hmm05skcjnC5vihbysCwziNIWJ88rJH2+5w726X4nSend4Sew6cfez4u8a/79XwlBD7zj76YI/AzxFS06iKRjp0iWq3R3ulSjwTpTCZ484bq6QKCeq6JGzoTKSTVDs9tpstzo+P/EDXqBBHMWP/rvIhBxN4HZgXQkwDO8CvAv/gPW2+Cvxj4GXgV4BvSSmlECIJ/Cnw30spX3xwvlKWhRAdIcQTwKvArwH/y4f6X/ARi6SU8n946LAqhPg3wO89VPbfAptSyn/+UNnD695HPIzsg3cPqScR4t2LAofHJsI4D0DNWSUUtIgoMdDPs9ZZ5u0VBXVd0NArRHwTVwi60SQvfeUvaJYPOJ64yM7yFksbU5zMQu6TVdpah5YxQqcjUdRjfOqiy07fx2zlaCC5ev3bFI1zvPqNP+byk0/DMMvmwW2u3bpHMnUC3WgwZhRIaxbRgoIMn0V4VcrDcfqRP4VoluU7e2y8WmBq3sab7POJ81Ve+0aErS8ryL5k6pJDeSPNxksm45/2kYpKqDogXPAZNkxu38yQnu9jRhV6hNiuJdBcl0TcIVK1qCVG0GNNJtoBO/0TdNw9aDsoAw3SHvXaLoFrclD2EPEI80/2ySVPYIzG2FneJZUfIzd6nXjyAohLoKQIghZCBuDdQSphAgxawzuYSp6qc4eonsOXLpaaIGlMsNl9BUMJkzInCSkJ5jIJhsEASzuBriaQckh/8DK7Tp+J2NOYioYZDVFpt5g/O42iKGRD02gJF/09wcu7boWEMcaliQUC6TMaMdmoNQlpKuVWB4RgbD7PQa9PAZg7P4WiKAQ7NSKRw8ADqbCF9dfsUXYHDhHTeJAk+oiPGR+yC8j9PcZ/xqFlqgr8RynlTSHE/wS8IaX8KvC/Af+XEGKFwxnkr97/+D8D5oDfEkL81v2yz0kpK8B/xXddQL7Oh2y0Az/6PclPA9ceOv4UsCyE+CPgGQ6n1/9KSvm7P4qT+7uOUGJgXPzAOhl077c59IlLh04inC4IC6GNovnw7LFZzOkmQytPr1aiXxngd9Z4/FyfP15Pk1XG2dhZI7WYQ25IFMWm0WgTKZYRrmDtzWWWbZtnv3Se84+f4eWrZUaSjxOeS5NNjmArglZrG+eUSjH+STa3ffapszA2TT41RWu/wdCZZ8cecPf1FzleOMXynmQ+/1Po57cJp5sYtxQCrUuy4JOfFdx+y6LWE8QWPYy2znB3yK4bJmZ6JFJ9BB7ZkTbVVor2rkJye5/0aI2Gk8CSPcxKD29/n+F0nP2hx4nsKJZusr5SRgx9QlYILVAxLJ1Ln1EgaBJxFHr9MnvOMqfOV1G0zOFenPcmUkQIrAt4g9+j5fWxjTP46iz50AJ5GaAqBkljDE869L0DQloKU41SsE6iChPbq9Nyt8mYczh+nZbbIm3OkNBHCemTJKWNIlVaw2126gqmmqDS6TCWimOIEIWYRbvZRIkOiekFAPLWiQfXwTtBzPv2Eh1ZoBDPU0rGcFyPtYM65WaHUjLG3b0D1td2uHxiCmKHRj3b1Tb1Xp+nZiffdW35QcCtvSrHClni1gfsRR7x8eBDfr6RUn6NQzeNh8v+x4feD4AvfcDn/gXwL75Hn28Ap364Z/rX8yMTSSHELwP/JfDsQ8VZ4BKHvjK/zKFo/rEQYkNK+cIH9PGbHPrMMDEx8aGf88eK4L6B2H2RVOQAR51ifW+FaH8NNZkG6dJUy8SUPOXqCiGpsXjBZGXtPLnRO+hC4nkaIUfFyEeo3ouhDnfJzyu88pbOyIkUopBn/Y5EDP+EWzdbSJliv7HDcJiivLKBtpchfCxKWbtHfS1G7bkWL2Y3+aXPSYxuEU/tMLUwymY6SaKlsjPRZPHMFGxW0bQpZh9P8vrLNfY6gtiei6kE9K0EObVGZVtFuagycq6NY8OrWyly8SG6EmBsOjSMEsGUJB30iAY9fKnhKQMiYyZ6v093Y8iN8j3OnM0gWz3siM+5T4W4uxwiqA9J5vroGrz8px5f/I1NCiMlwloPQw+B/hT4Lh3nOq56l5CIMQyaeISIivChu40AN+hTdZYpWItY2ncNZMLa4RK5qUbQ1TCWmiCq5xj4ncOHfKEykDGqzjUiRhEvcFiu9DheKDFwPSqdLtdevsOJqRLVyh6j5yNsViEbjeD6h7sTY6nEg+/Lx4sc9Azy8cOUa6auYbse1W6PUjJGx3GYPTFGItVC+l2EOkrMNAGJPXQJ6dqDWaOqKJwfH0FTj/IjfJw5it36aPxIRFII8SXg3wG/KKV866GqDvCylPIP7h//hRDiz4BfBN4nkvdNjn8b4LHHHjuKsvQQQpt6d4G/Dl4CS58mkgiRzKfYa/U5aLYZeN8hHDxDKpZCN66TyfgYM332xTqlkslaQ6M8MHDMIacuTxITJhF3mVb8gGjrOCsdk90lBSfw6MccEpqFveMzNZ4n0CxuvLjLwuIsIR9SI20WZ1qUO0ucyxyjW9coxqOcXRjl7Ve2mRgp0ZVxBnaJ139vifmwgruXwZM2ra0AViXhZoPNjk5oxKF2XcOZNklGXey9MJvtgJwYoKIy1mlyZyuBp0OvY+Em43SdPhEfrHqfaMgiSCikCvvgFsCMIqMbTMzWiZ16lnzpbTw3xJkFhdGZPcob0JAjpHIDZOQc9uCPCPnrRGmz6lv4YpoFcxxFidL36jh+F4FAQeUdI7xmf0AsZDwwsgGIaIfpsFzfR5EWhnb4swxpcaZizxDWUoS1FF88C51hlRt7O4T1U5y9OE8uFWN0voSqqljaAOu++D2M5wes1g1OFnP4QUDbdkhFLD45P8XAbwFwcfLQkl4GKqBQtzcJhwPy0TFeX99mcaxI4qFZ45FAHvGTwkd+pQsh/gmHAvkFKeW331N9lQ826T0SwL8BQ8+n5wzfXagt0vHS9KRJqpjDCwTbzQbzKRfNO49uGbz9rausXvfw7GnioWMURvKM5s6RtgawtQyVa2y96uLYY8Smwxg7Js07daIx+MQnJziWiHBayWA6Ot+8vo7byTN+8jyxiVnu3W5x79omn/lPPsHJJy4ymtxitfVnXAluU7U3mJo+y4lLKrHuDfq9NtnYKE1lSGyhyUgxzcK0SaIIStijb5ukngCRCUHBJON1EJU+x3IVLNFh67qBp/Tp1CCdtqlXBcbQJnZnj7DdIxEdgBEQTYXRogZ3NjXWrg4ob1W4fsVB92H0p8e40xuh2/Cp7w1oiYtk58aJJPPs75/BUwJ6IoujLaJoI0xEn2Ys9gSq6CHo4QZ9JAGaYmCqUVrDHdygz3KlSqVbOYxjC6zXGqxWawDsNNvcqzXxg4ArW7vYQ0lYS71rGHUZ5kxhhnrfxoqGUDUV5b7gJqwQhqaRsEIkrBBte8BLqxsIAdOZFKqi0BkM2aw3qff6LO1t03DW8aX7oH+hJBk6JuuvVDG8BAfbNVIt710Cudfq4LxHiI/4GCJ+gNdPEB+1C8h/DfzPwM88bLX0EP8OeEII8feEEIoQ4lMc+sh85aM8z48z0r1BpbXJvYMqDbvFZr2JlJJASup9m/G0SWu4g66qzKa6hEIFtPEo8UyZ/OSQt5d0djs6c/ECllej02zyzPwlLl46hX6gkRBFtne2iTNgMv9JLlwYYaQtee2FJQZKBds9YGquxxd/fgzCFe7U38Tv1Zi7UGDiC0WW9iuoO9PEO89iv53hWKmIN4yx2+pwECgoIYXa/j3CUZ2f+y+K2KUwbsGlOVQIDQMyF1xIq/SqOsnMgOmn6ughSSgt6CkqtY0Qd74T5+ZfjdLpa+gbA8LVLhouWlIhL4bEohEmUikiow69xpB0SEHR25gyRiQoMuASd+69wfDmOolklSd+Zo+0+iqWgKi1wdjYChExxA2q7AUGTX+IInTK/bfpBFE6vqTrVgmkR0hNEtFyKEJBAqfHkqDeQ7o3kDKgEItSSsQBGE8lmM2mqXR69AYu2ntCxPm+z8rrm9TXbXRVQRUC3/O5/vxNuq0GALbXZK9/nb5XQxEK/aGL4/nU+zaNbp9MNEw2FmGj3iQRilMKn0UVh/Fw3aGL5weYlsnUCUGltkJuPMP82al3nUejb+N4HyySD4fRPOj2GHqPZpgugy7S23zEq/yIHwpHIvlIfNTLrf8a8IBvP2wVJ6WM3v/7ihDiH3DoQPq7wD3gH78ThuiIR0AdZTQdITqs0rLLBJ6K72ygGGcwNRURlEHRkTJgt7lL1c5yeWaCLbuJsRCnubXDqLMKTghHOHRra7x+ZQNFwsGW5NKXLJbe3qEUO6AfvE0tbPPcV/pMzE0yefkc6ekQw9Rd0vkWX/nyFulBQM6Ios9EKHWGaP0NblRW+OnP/hJNv0bjlkowc4CpdjlRXCSbnkH343z72lUs3aO6lydQriHTMWrVBIYbIOoOelygRHwYCjo1lU7XYGRqSMtLIU8mGLR8uvE8RneAodcQdRXNHtCL+BwcdNA2fYrNMHOlMLPzIdxKm0/+skmjOU2+UKd1UMZdNLj4mRCZtI1PDBmU8YJVDBEDr8xE5Cx9MUPb3cRUBihCpedWCOsZHK+NpSWx/ToNZ4O4NsPQ1YiaYUrak0jpIoSCZShIKfGDANcPcDyPdt/mzn6FU6N5Qvp3XYTtzgDfDyhO59GNw/JGz0bKOsIfAI/R8yqYahyDgPbgbS5OniJs6IxZYd5++TbOpRBjiRkKseK7lkyrWzVuXF3DL0T4zOWT6PE5bn3jLTLRAfH0uwOinyjlv/f15y0hlQxCLVJuddAUFUP7/m4gUrqIowWjjw5xtCf5qHzULiDfd1iklL8P/P5HcDo/lgjlcHkuYYyQMCSDoc3b5S0WR1xGUyGC/hD7IARjAjMUJaruovg1SrEnuX71Ok53ie2mzeT0aXy1hYePOehT8RQyizqabFM8fYrlbzqUJnYZmfgC6Qu3iBb2eeOFLcKFSbQn7zBd9BgJ56iuNcg/PcrOG8vYPZPST7XJFYvcvnUDPd3hYPsAzR5Q3QvopyMsOQMa3xzgomF39+l4e/RFiNZKl1PTHunjXXZe0dj3dSpvRdnbguScZMuYonmvBk2bkGmQHffYq1vohsfJJ4d4nsbm8xK77OPKAb6uY85FyBZNhobL3DPT5EdbFD6xR/VGhPFTn2Fs/A57mwHTxwM6fpX9IEAXx0krOjERI9DGqfXfxpc+jmxTsBapDG5j+w00xWLoDklFpqjYd7jXukngFrg4dvJwnO7Hxxj4LW5X1tApkg5HadsDjpXyTGRSWMa7Y2iEIibhZJiW7ZC9X7fbakOsiBo63FMcbEZRVIXkTJKOm0F6PeqNBoankjlWwPYaKEJ5sCdqd23Wrm0yd3GGU+dzDNEQ3ptEQyf47Oc/gW7oNPsDwob+SGKdt/mjAAAgAElEQVSHOgHiMK7s6dHvhqKzewNCYfMDXUakHCL8ZdA+UqPFI45E8pH4UbuAHPEDIoM+yAYoJcB7kGD38GYksMwIC8VppNLjYLBF1B2nXdsiNy6YzV8+9BEUJrghLDPD4rPH2Fm7xcz4HHdXXb5x9wa/+YUvsPZHL7C6sU7smw6J+RZX1mvc3h9yevcWsf0W8RmdXszjle8s03/O5dlfmCGmK+TTLlLrs/zWOu2GIHcmiWPF6FcbZPs7WJE4C9lTXL+7hFi4R6qSoh3eI3MsihgmWL/n42345MK7oCvU3lBQkj6ioaMrLrm0T3HCJaWsISdDlP9QoWQdoEqdvqMziIRYuxlB3GtTGhtihH1qK4Juc0jTs+g8d0AiDeMnVeKZBPmRXRKxp0gr28RjdaSWoq8uYHg3SYoihjFG0+9R7d/DkbeQAhSpUe5doxQ5Q0TNUxsskzRmuL1fJchZSAnFaIZ2N8a9gwax6AEhNUG1pSOEg2X2iGkupXiM0v3sHO8VyHfGtOd59Bot4hGLoeexOFJg31XotYaEwhFSxSRCCITQOeib9DoraO0Wg0GewvER5tPHUR8KYq6bOrXdOvWowoXZLuHQGIg5EGF041BItxpNSokY2WiEoedzbafMyVKB8AedoxJ7X5mUkuU315haHCeeeX+9EAZSO4lQwn+bn8ARR3yoHInkxx4Pgj5QQfpl0I8jhPWuFlFTImWMuJdj6OwzfaKPbT9HZZAjYU4TskxeWV1DKYVxVxLgWezd3kCr7xO9vUvjs7ucPVMkEsBE6hoddY+ZWJy7bp3l+qvEohFOGJ/k0j+aoVv9FnvlJn1/m73Xd4nLPDOnzmFu7zMe3yKghGMnke4a284QEiGaTgXp9YnGkpxUv4VxKUu6MM/yc03SqSW27wr0qM66X8SKRdFknYO7OvFYn4NWhOxBh2Y9xP7rBhfONrAbBvfumMiMSqnoMbAU7IZJp+Zz/ITL7qZGkNWIJWqUTnRo7+okVJ8Xvyp57Bd6hMav0XCjpMQ2yRGTjogSCv0ySWnTcpfpBxo9b4NS9DIZcxw9OKDvNYgoFhX3FglzlLHoWdKmy0bvz4loGSJ6jngyw26rQ63j0xu06Q80AimZzi7S6rlkjSGdRo9MKfWBI61qKucuzgOHxjM3dveZz2eJGhqafjjLC0cDpLuElBcoJWLUegUi0TyZMxpLe/vUOyGKD7mGaLrGhZ85y9fuXmfbjpEQ+0T0HDo+X79xjVREoxDLY6iH/Ruaykw2/dcGGngvQghOPDH/YIm45wyJmMa72xzluPxIkRwttz4qRyL5MUcocVDiSBmA9MFdeleAASl9cO8g1AJ2c5fy/gAvvEjK6uIH0LRttu5eoyjiZPNJlDM6tfazbF49wG4GPLZYIlxZYV+ZxNaX6bkpXv1/D/Bdlac/H8URQxRvwFsv3Ga97OGVAs6fPsXEzG3eOgixU43w4stvkpsdcOnXF3j1bg2n8xLUqljhcdDXsNsqkZxGajhgpZclNKKgaB3UkyayOcLMZ2o0v9NHD5UJ+h2slsP0SYV2T4O9PptCRYT7DK0sByt9tK0B6azOWtlDrjcpTIE+5bJ/RbDbCTEcusQVj82/0jEXLZ74rMqNlxXyxzoMgiLjYdjf3cHLKEhhEVNsIqHL7Pf+EkuNkFQmDpedjVHs4asI/QLxkIWUPQrWSQwlRs+rYWpRYnqRlDmNqUbRFIOoorJTqTMxMUMylEMIUIVCICX9Vo/GXvN7iuQ7uEGfeMTl8tQYQghiGfO74x00AR8hNEaScUaSh0ZB0i9zJpdk5eo22aciaLp2mKUjqBCJlvj8mRmadp2VSpOzI4fLpKYhSURc/EA+cEsBSEfCSH8fqcTf90D2vXhHIIeex43dfU6PFj9wJnrER8iRSD4S31ck7yfDfFFKufX92h7xo0MIBdQRUHMPymRQB+8e6GcAjexEETvaYqvRZWlvyLFCjmIiRkXNsvJKhatfe5OTz8bYsDVGUzu0HR0zFKFR99l/e53dWx5yskd2tMjqrR12XnRJL6QIe2G8hsfSi0vMzmxBUxL3M0xMQnmtjxbRyJ+K8fzv93AOXHKXz9LsxLDiTULuKLXlCqk5nc32Gvt3ouy3WsiD13FKOt3NLnK5Q6GQJrnocPuajgjDXKFL68Bh5VaGUKxL78BnMrbJ3jBJVStRaLcYUbqETqn0mwLpq8w/2Wb5WgjDlJRKQ8IZE0363HgrxOnHJd64QTBoI4ZxMmYUQRkpu5jeVYQbI6PF8Jy3iWsagVIiEB6eP8BV6oTNcwAkAp/mcJNA+lihJElzgs5wl4Ogy2TsSeKGgSPHyUcPhcj1fbYaLcZTCeLpGPH0+5cj34sbDHD8Ninr/YHFhZoH5f0iK9QSkQQsXLTRdI1yq0Or10QTO8wW84ggQSaUwMqOEzMOlz0/NXWCju/SHgwxxTbSNxDq/ViuQROEDo8oku9gaBrnx0e+5/6mdG+AOo5QEh9Yf8QPkSORfCQeZSb5e4AUQuwALwEv3n9dlVJ+/zQBR/zQadkDes7wwSzhHQ73IR9axhIJ0BZAdkCEkVIS08pcadloWo/lbZ+1rU1Oj4Robjc495nLbN3eIaoHhE5eJjK2xf6rK6jpAjdXlghFNIYdiWlVOf9pk/pqj4OVHsqoytkzKks3u+w3BPt/cZs7r4X4+X+a4bFPhFCagnBQJmCaoZfF39xl6Hr0wgr3Xthg4RcnCUezuBjMn6wjylG0iGBns0/i5JDYhElIvUdfBGRGoqzetRi8ZNARYaotE7etkoh16C4JOn0QMR//wOby0xW2ZIrxgs2tF6AV1YhPKaiTCkEFSrNQHO8xkCrTMzaGFcXuDFmqzPDEgoLDPHHzNH33Cqoygi67SGWUipcjouxT711DSoekVqfv1tCUEJu9V2m7ZYLAw5cOCXOcTGieQXDoohGJh4ksfnfvLQgkA9flzpsrFCfzpPIJDro9mv0Bc/nMB46/pUaxlA+ehQlhgHj3Uqbjeqzf3qY0mnkgwgPXIx5OEA/lAcFWo0VU3WU0nQMOz2/1yj1GF0aYy2fuBxn47u1C6Mce4Ur9YHRVIL01UMce7KE/QMn9jYX3iCM+TB5FJBeA/5+9Nw2SI03v+35vnpV1333fBxr3DDD3LGcPcpda7oqyZNJmSJYs05LJsGzaliPssPiJDsqWQ/pgRlhmhGVLpugQbZ5e06R3yd3Z5c7uXJgBBvfV6Pvuuq+sPF9/KAADDBqDBgZLcnf6F1ERXVmZb2VXVuXzHv/n/7wKvAy8Qs+tXQAdIcS79ALmm/Sccuo/qBP9tBCEIefXtpgt5ohHzD33CcNe3uPH0ctXUxBKgtC9CkoOocRIWirHBodImTc4e+kWV9ZKHOrPkx+IoGsam7e2KY6paBmHxT9rMpUc5Pm5FkO/OM3GlVvEssf49m99l3BzFGkqFHNlnGoLY+w4x74cY2WpBFaFTrnEmd+vM3RIY3Fpl45XQxUKLbdLdqTL5NBJqk4JqSp0vC7VG4JYvkFVbxLLBFQ0H/e7WfJ9GZydFuV8CpoNop2AcNknNeZRueUzZu7iRgSjk5LqkEJ2pcz1jkk7mWB+xSZzOmS1rBPJKSRiDtGwTBedyFiI4to4gY6JYGVxhuGjL7NVeodT06soxs9gEYLcRioZhHGcmpPCViNYQlIPGgSaiaJOYJmnuFr7GgjImbPENb+Xo0kWTZhoiomuDtxz/UIURcEPQnZbbWaKeZqaiZXoBQdL15EWdDsOuqGhfnTUFZYhrIJyZF/fqVK7Q9lxGL6nnYl8hk7LxlRsvPYVhiPHiCXHubdg5dizE5hm77lQPkHNyb2QAXt5hAi17+m+zwF7c5ACsm8eGSSllPPAPPAbAEKIJB8GzJeB/wz4ZXqjzStSyoMKq58AVVEYy6b3VDfe4d7q8g9jfreMrqqM5zKsLSSR0mV0ViC0SSbzKqHXZHDkJqODg6QzL/HCV6Ks3djg+S8NMjxtUi1FGHBWkX0e3/pGh9SRz1L1F1g6v4w2NMypl17k/PevUV6P4Gse1z9ooBhNHKXFxOko7sUkN98osXa9TOaURmVJxRyvsvotn0uyCazQqJt0pc/hlwZpjGzy/hvD5ApNFHOT1opDftiDjE4sbvDWb+jM/aSCo4Uc+SseE5kWsqjQEknUUOPMWZMjI1WqRpSB1W2cqTwIjZ1ShNZWSLbToRXqlHc09HzIi6/adEsOzraGq8boH19hs+3gpnxSGYPN1ct0nNPMHJkkKQQVbxknbNKROjGWiBqH6I8cpoPAUC36oscQUiGuF7GDBKGdw1CSlFseHbdDOlRolBqMHRnh5vsL5AYzJPtSNLoOfcmQVP7DWYGYaRAzjV4Jq2KS4mjhvmsr1AG4J+g+iqF0kqHn7p91KG9Wee8bH/Dsjx9DBn3slHeYPDZK1FC4ceZtcsOHKAkfy+mVznqaCKGAPvNU2zzgCfiUBEkhxLiUcmmP7WNSyuVHHf/Ywh0pZYNe+ZNvCCEywGeAXwC+DBxUWH0K5OIPl8JXd+oEnk9+aO+pOCklYRAynE6h3M5J6xvL90QawXUQMRBRWm6cRjXD6qV1lM/ViJmb9A/dJJXZZOnaBNFUEVMInj1e5Pcu1zBvbjI68hqvv3WOdbuEefE9tE4Z1Q+o1UPUbJnWgsnxFzwy7UWWO0fJzxXZXPCxtx3iaZ2rb+gUBiGUTYioDB6zyIw5xHWdbOIWF8wMmbSOSETZXRaIGZvF1QaoBjP/TotqOYKwdWqtIt5KQFfR2RYWkRtNinYHHxdbMxkakzj2LuuNOPaZgNnxOsef77A0bxLJCJJpn+YOdBsqmUkDK91he9Wmf66PydwMVlolDBaIW68BDrgXaIczRPQMo5HXaDtpXG+TqnONbOxzuGGbnDlJtVNlrbHGaHqMYn/+7jXRFIUIAnk7KX9kbggjoqNpGkc+JjF/+plxlI94pPqej/YRZakMW+BfA/0ZhNjfTzqVj/LSXz2Okghoek3M6ADVjo3tdiBVJZ42SZspkB2kdBBi71mNO3hBgK4e1I484C8lF4DkHtvPAXtXDL+Hx7KlE0LMCSF+XgjxvwohrgAl4F/QK4r8y8AXHqe9A54AKQnDh0+13vpgkT/7nTexDB1T17j27k3a9Q6RaAxhnLqbi+Z6dfRIlZnTp2ncqvIH/+L3uHlxjaqTIDduksmc44Wf+gqm8RLPHVUYOOaSLozws7/005ycGyarlbH9LY6/WmF0WmNk+CiOv0V5Q2LvZChO9ZGa6vLK59LULxmce8fEMgaZe3WW7YUCGxccPnjX5ex3AhYvzXPjjRLhezWihkqn2iH2YpuGEcXe6VKfDwgaKRQ1TiQqqSw2KasaiwspOo6Fflwnd1qSTrnEAo+RiTbxiEf/YJuxsTbFOZ+matH/jMCcVfBmoti6wZWzUdq1kERSY+pwwLOjgtr199hYO4cqQGt/h6b9Jr7+MopqsNW5QMO5ReitcHO7DN46F8u/yeXq1zCUODWnRNUuo5Ph0vo2tU6XeMQkF49ixS2y/T1BTTRhPRDo9kLV1PuS7wM/4PKb12k3OvfvKKKgTT40QIbyQWs4VeySiJ1nfvcChGlmi329qiHSI57tx7SiqIqCEq7Tsde4sV1CyoAgDHFvW9JdXN9ip9lCSsn5tU2qbfuR/5OUIdK7cNe79oC/OKR48scPGQ+csei5eezL4mk/6tZ/RG9q9SUgRS8qvwX8d/TWIW89ztke8MnI9H381FduKMvazU1qzQ7pRJShmQEiMRMpJb600ZUovueTjat0Nw12txpU19aQqwGl1QJGpI/k4Ajnvv42ufFpAneDpXkXdXqBzprO1Q8WCJducuK1MWKjHa42dEZedOnO1xFVnflqHUPaBHKX3Q2PVQ0CU+PwTId8Zh3N0Wk0bNpeSHa0ihVPQLfK9WWNyFGXzSWfndIYLb3E9Csule4I9V3B8Mwuq/NJZNLix39ik/lzCQrpDo3Ap1D0KDouK6/rZBM22/U4DamR0G1Wmib+CohOhLmxFmpcQ2l4nH0jythIFzOwqS4rnP58lERmgdHPSOKqQrd9koWFBfyZNcbENEPWKNlQxfPOInAx42PEYyeZ8G+iKkN0XI9DuV6B6416k3K7w3g+w1q1jqXrHzs7sF9UTWXm1CRW/P4ajkIoIPbuEIfSZ8u+RN6cwVBj9zQ2CNInZ0hiWj+e66EbOvnkKHBP2TltFiF96p1VKtVLOGKO1UaZ2f4Yo9l+LF3v5UH2F7H0R6d0CKEgleID4qIDDnjaCCH+lF4gNIUQf/KRl0eBsw8e9SD7mZv5VaAN/Gvg16SUNx7nRA/48yWVTzL5wjTXS2Vmux6JdC8nzgmalJ1b9FvHeev1D8iPrWG6E0ydGKMbhLzyC5PotYBIPIMekcT7P4vnhXzv91ZITEQJ5jfw1rZI52LMvtLH1XdqhMVZgsVNkkM7qOE5jn0OypsF5m9E8MQttEwf/dk61ZJF13IxjV0uv6cRBhbpvMVYsk3TrtE30cH3MkTSHfqSVzn/Z3HGXzFZOqcQpk0a7Rh/spTBwMO4WmK9EuH8mxFUR+DHAq5ux1lyTLQBSOckpVshoR2w6xSoNqFpeUQSUTZ3PVpbGk5Nw1BCClMeTV9nZ0cjfdGnb6xB6BXoaCrl1joxY5akqRNTFFBz+CKCK2IEwmSuMIsi4ihKCtu3WCptc2p0AE3VGEwlGEgmUBRB23FRlCfvepc3q2i6enfNMpp4POWnIjRy5jT6R9xshFAQ+jijBfBcjytv3WD29CRW3PrIfgLbdbm1UkHJpHn2aJF0PI6qgKl+GKw/ag7wcQi1/9E7HfCD54dvRPi43Cmv+Fl6AtM7hMAW+7Q/3U+Q/Af0BDpfAn7xdirIW7cfbwLnpLyn1s4Bf6EoisLoeB/9fsD8mXmUmQFS+SSmmqDPOkqr2kGRCpm+z6C2BZ6pYqQsAg+S0W0qa2dxmhFalSR6Ns8X/s4hqkqbjbURVlsmVrJBfiyOdtFHUkJxPC6/2UenHqAUobGiELoOsXibRmmLUq3F3JxHtSIhLahVDDzFxHJsVt4vEg40ee9tC2fNY6Da5ZpjsnUF1K5J4ctpjBWP1oLD6nQae9cnSKS4teKh5l2E7RKmNPoKLbYvawyM+diah+UFbG1p9A+3iAzrxCIeYbODpwXMzLXZ3jFwdiTn51M880KL+koIg4KtTcgXLRSjyaVKm+O5bWLGaxiqwVZ3hZz5LFbYouUuUumcQxERSt1dBiIhw+kkVWeJtt+iLzp+t8ByX/JDJ5lqxyYZMe+rJel7PmEoMcy9R2HBHiWpAj94UPH6MZjqx7vZ6IZ+e4T6YYDstrtUVl+nf/olbE9ltj/PcDzB5a0dZop5TPXBW4frB1zf3r1dNLo3uvwkHYQDfsD8iF8aKeWvAAghrkopf/tJ29mPuvXXgV+//WYFPlS2/g3gH/c2i7PcDpxSyt9/0pM54PFZLFUpJmIP9OQNTeXIy/fnsqlCJ5ZSGJ8aQOsobK2tE7oWdtNmdmaQSDSNrg9Q2vCZO73FcsPDaQVcf2+ZTsVBy1r4t5rEDo+TmEyjNBe4udvBCR1mjhe4cLFLuhgyd7xJW4fuJZvNt+PoKVD7Xa5dNdhZ9ckO6mwt+xx/cQfbhIjnMffTNleu5CnXIaj7rK3atL/WpVWTqHGF/HiCnZqLl4HopEf9hobwIVrvMDXb5oN2jKsX00STIQWtw3IqwvPjt+hsdwgiKm+/H8dYVEj0SbIZD9uymF/LUusInn22hluyWLNTdA3J7IjJ8ZEQXynQ7LxPPPEfk/Yvo7qr3LQbOKFAX/LZbGwx/cxfR7pVlj/YYHh6mrXAxsgFWB/J5w9DycJuhZlijqQVIfADELC1tIvXdZk4Prbn9f2osrVVa3P17Rv0jRUYPTz8yb9At/noCFXRVKQ6CUqS4YzGcCbVq1bSaKE/pOCypijk4zFWKlXaXY+5/gL33olv7pTIx2KPVGYf8OfAD+fa4pNyTghRkFLuCiGiwH9FrxrVP5NSdh918GOpW6WUu8D/c/uB6CkFPgv8F8A/vL3bgcTtL5Cly6uk8om7a5e261FuVRhKNkGdQlVVNEOjVWuTHvPwQ6iWO9TSDQI/JJaIc/3Md5k9lWSyeJy33v2AiFLg4sI1ZFVQLER58+tXaIZJokKhL6vghDu4ySIUo1TKLfAUdq+YtPwoQeBy44zg8BGbylqAl0pQ2rJJj3rcugChqZGPuwSGzkrH4ujJGsuKyVrDpLLRxq/7CBOyQzYqCknLJiFcKqNpBlWPvnKLZkWlo0dIVDp4gcpq0yA56LMdiWNmXd75IM3LL1WZX4myvarx7oUE3bIg9lmByAYsLmlUdqJ8+ec8VjdtKm6Cl6YVFK7SrJ/GaXaIp5/DczdAuURU0UgPD9MomQjvLEb8OF39Gun0SRJKlfNLV8jFX8a8R5yjKIJTo4N3hTgr19bRDY2Bqb7HKikeS0WZPDGG3dr7ty2l3LPSxuNimDpDM3P3bRNCMJBKIMMOMqiBUqDrSS5v7nBiqB9D0xhIJTBUFT8M746YW45Lq+uQjETu+0wehpQu+EsfK0Y64Cnw6QmS/wb4D4Bd4J8AnwNcYBj4xUcd/NjfQCHEJL2R5J3HUXqB0QbOPG57B3wyJvL3D1nMqIlufnhZvSCg4wV4gYKhCbYbLW6t7WCvbLBx9XUOv/oVDr0wy41ymUIuQWO7xcKtJo1IwGsvq6gqzB3JM3Hii+zudrh1ZYWOb+CUNik+U+TICxVKQZTLbwxhlnfQLI+VxTiabhGuq6jmNvZ4ina3TSwdkBzzcesKoQ+tqg5dgdO0kGWdvsE6kViAWtWJNTy8iIqigoKKTFZIbkCyLXDbgkzJQz+s0BjJEnRCFBHipgy6gSA94uMkEsh8k2qgEx23qAzCUNLBvaEQMyXpcWg1XOyaQiQisUyHty/FccMhxkZ3eaao8P73EyRicPhVGynSaLzDocSrhNJhJ7iECBPsLLXpO+TwzAsvkYym8f0Iyco1/I7D7s4uqXyCRKY33XkneC2UKqRHsiSjEdR70iYWL62QLiQ/VpwlhCA3uLdIxws7lLo3KVpHUW8Hl0B6qOJpe6R6ELYhrGGKGJP5wn3pHx8VKXlBQNNxmMrn9jn9KnqWd5+iu/gBP1CmgMu3//636ZnjNIGLPI0gKYS4NyC+DPR8rODO2uT/Tm9R9JyUcu9y5QfcRxiGLJxfZmh2ACsWefQBj0G71kYIiKd7N+akFcEL0lzcqnK836O0WiLoumT7+9lZzRBmNd568wrNdp3j/9Zr2MkY0+5z5PsbLN66zImfXqK0uM3ZN5KoYgeXKW6eWSQtFHLDcb7XSDA9WWRnpcbmlW2KOSifKhDVtpHLPs3lgDDXxdNDSBrgCbyWirseIFUdM+cTNX2quyqLVy0qmz4BPqEWcPh4h5s3LXzpY2+bZAoerZZG2UrRqPiItsD2LJotC2VGIbq1SzymMnBUYft8h5vnUnhFg7bQMRZsoqh4Zpq5z5So1CJU5hUaiwq7YYrtBYvRssfgq7tsbWhs1+PkBjYZHOwQWB12uwYGOdJqClVYmL4FW2WOf/4ouqaxXKkR031MPcLJ146jqirNanvPoKArCkbEuJsGEoYSNwhIF5JE4k/+fdCERdoYuxsg3bBDqXuDPuvY3W33snp9HaEoDM/s35gA6PmqKqleHUgUsrpGGEo+OoC9vl0ibhoMpZPsNtssV2oPdOr2bF/ooE08sF1KD8JdUAaeymj5086naLpVAKoQYhro3DEWEEI82iiZ/Y0kv0cvD/Ii8Lv0xDpv7sep4ID7sdtdli+vMv3sBIls/G55o0+CDOsQVhC3byoTJ0ZRlAfXjKYKWRYvLXPj+9f5a//Jl1EUhYkXp7ly9XXc9QYvvhYnnW6zeqHLH/zhO8weyvPFVw+zdjkD0T706nWamzB5Ks/mUJkTJwdZ3dlk7rkizx3J8/1//l3UigODFmGjhhI0iQ3r2Csez72yy1t/HCFlhuRyLcYPu7TyGqtvWmiGT99AFyVUaduCeJ/C+pZC0NXRIzWSwwq2aWFIG82K43QtPOKY41ALIFCiENfQ7QayGtKxBZeWkwjfQyvbWJqKsmyzLWIYLkTrNRoRjcauQFRd0kmHyxeixOI++YE6o7EasdlBdqstlOQYfvEY+DXyegFVGUcoMRx/B8PwaccVzr5znoS6ybu7cV576TgThRza7VFVfiRP6AdcfOMKs89PY0Z668YjH3GwKbXbrFUbnBod3Pd137i1RSwVvc+pRwhxVzAEYChRCpHZPQMkQH7owxGpDBuARstVUYTYl1pVCIO2X0JIg8vrDeb6CyTusVIcTCXujjDHc2k+8chQehBWQOnjYFXnKfDpCZLvAP8c6Af+GHouPEBlPwfvJ0j+BPCOlPIg+/cTYpg6+aEsqqbSN1b42H2r27XbgfRRl0i9L+fszvTd2o0NkrkEyVyCzUaTvniMwlCOuRdn7gZRLwg4v2Hxlb9+ipHJPFJK5k6o/GTnZTaub2LoGRbeUtCjCjWtD5nNMHt0gOZ2CbfZYP3dDUYHZhn98pcojiyzdOE8BBqhlmO5quDWVabGt4n6NmHLotzQYSMkFVMIhcBXYXa4y9Fnbb7+hxaurlCvBEwearJ5K8LVr1n85H9Y4+p1h/PXsqgGZPQakeM6jbZO9N0KzS8Moq7W8HMxxn/CpFsN2Jq38UKJn9bpNj2ilQ5GxqT4kzq19TzvrCsgFOL5Dhffh9ZawOyPd2jYUd5/HcQHLoePutQ3PVafF8ydOklM/RbJ+ByhOE6p8zYZK8fxZ3Ns7nYwGgNoy3VKOzWubWzz+aOzAFzZ3GHcsLj27jy5wSyDU/10HZeW55GPf5izWIjHSFuPFrPYfg2QWFoG7SOerjJsgYghhKDbcdB0FU3XHuyd4YAAACAASURBVEj9uJf70j3CHSDCTtPC1DSihgqyS4hFud2hmNhbIeuHXQxFZbYvT8y4P7DeGzDvLbUFsN1oYekaSWv/I2ehREE5tu/9D3gE4jEWw3+4+QV6ef0V4L+9ve0FemuVj2Q/6tbXn/jUDrgPVVMfaid3L1JKtpZ20U2deHrvS9Swu3R9//bN68Mb2B3zbMMyEKqgG9QZyXusvbdKo9zmxa+curtvPh7j8xOTaAgWL94ikVojlnuBnGawVG5z5dtXSBYSiJE06tkmSd+lHF5gcG6Fb/7LGomoRqEwya1z73D4lQjb8zY31w2spE40F2AvuayUFWpKElWB/IDPmh2ltCRQ3ZBwKMK1edheM0gmuyB18mmHFD6JySbVnMH1qxZ9Y12slYCJw10iwsfprrJ01cSphUTf36EzkkSxO+wsStpagki0hRMziW46KJqGPxHD6Ei2mzHaaYNIo4XsekTzAV0sbE/jjZsKWtsmPWaglYG6wXhB0q1UuF6fJxsfY2O7zlThJv3WEQSS0CmzXKnxyswJ/r0jp7j27k3WVnap5goMjxY50l8gauj8xN96gXhiDbsd4+xbtzAnsvcFSSHEQ0tH3Usg3bt/F0c+tL2T0gf/CmhHQMRZubpGuvCg5+vHIbRpAKZuHyKDXQjWsOVRNmpNcrHofakrd0gZPYWt9ZjqBsf30fZor/f/SKSUe86IHHDA43J71vNvfWTbbwP7SgvZz5qkIeU9v87etlHgPwdO0dPmvUfPaGBtn+d9wMcghODwi/cbQEsZQLgNSj9CKLhBgO0+uAR85c3rjMwNkR/Kcvn71xk8nMVMGYAg8CuE3gKK2bshLl5cZqPVIl1Isvp+hUtv3mT2tE51q8ZsMc/pr5xitVqjLgNejlq8+a++xZv/V5vMKZNjn51i6XyVlbPrvP4bZ9hqBtitFKgh5kqT7qaCqiu0Eim8Kw0CA9ITIfoVn4lXOgQbsFSPILsh5cCgrlgcn6qzsayz/EGcUAERSEQ84NpGBt/1qa9JmJRQiNG/3WFHUYlqDcKFEEVVcOMq7oCJWpKMmG3kgMJacZjE9g5isUndttC9gGLKwYo2qdciZEYVmpsqWizAjaXwym2KM5LdNZUjcw7901HauKCdoLyjMpgbIK2nkVLiBQrZdpVOq04+McTRV+aYOD7Wy30MwrtVXNJ9RQgFmhLnmedniKV6AdL3fG59sMT4sRFM6+O9UQHi+t4+r0JoSP0UtZ0Wtd0Vpp4Z/8QBRqgFpJIhLjSeGXm8NctH0XZc+hLxhypdtxZ3sFtdJk/snRZzwCfnh9Re7okRQnwG+DvAgJTyrwohTgMxKeV3H3Xsfvp/thDiZSnlu7ff7Dhwp+E7LgZ/D/i7QohXDxx5flAEvRJJSh4wyMdj5PeYARs/NorTcQCYOD5KNGmhKAp9J2K0ViVXz+4Sel0iVoTiaJ6VzQ8QboRjrx0mCAIc28H3fWaeneT17/wx3X748olX8LUY8b89w8J8g24yYO4Vn2Y8R5pbVBcMjpyeYf7aBpXtGqXtDn3xgGjdo+aG+KbO9Emb8rwg2PIoFw28doha7yLMEJlSGDrlcPR4A/FGnPKGgWG5aFKj5pmIXYWZiTbHT7c4V4tTudrF6o8w+5rEEh7v/L5NrZjEmNNQ1mykqdJSNbQA1HoHJ1TpZpIkrm+TMBxa6RTbYZTYxS3aVgF1RMcp24hGl854jrJjI5Y7XHgvxXIJTj2XR41m6W5u4QzDjWu3MKMmrtbkuZdfRfoqt84vMXZkmGjC4spb1xmY7LurUu0VxO6j7bhcr9c4Ho+gqyqqppLpT6MZnzzNQQiNSDxCWoj7FLP7xQmaBNIlqn040/GDSr9YqzWI6toDa7N3yA1le3mkB/xg+ZQESSHE3wT+J+D/AF67vVnSm3r93KOO309386Mf5T8FNoA5KeVXpZRfBebomZ3/6v5O+4DHRQgDoR9/sEjtRzCjBuvzW2wv7RBPx+6OKJKRCKOFAYK0TbxfvXsTP3HyWVpVWLu2QX4kT3VzhZ/5T5PEUjZHhjKcdOd5+9+8gW6EtFt53HYMrdvPhd9bJuUsYsarpIuSyekCfrtMwS8RHTLpOiblDviminw2y4bIs6ulcRMRWnqO0S+qOCMmrYSFg0llU2fDNlmeNwFBalCQnXQx/QDDbrHWMHnjT9PU3lEp1rtsLxpc+WNYf0ugiZCcV2XIr9DfrTEZL1FLWFQjSXR8imMOHMrQfzJkeK5LwawjNUHjeB87ahRrTiFq+gRJkyaw29Jx+mLsbnUor6dYW0wRBGVeeqXIhe9/m+tnXqfjLJJLjKKrUereMtVSBc/pGU8dfml2zzSOxVIVQ9PuilmEEBRH8k8U1PbCikXIFFNPdKwvXfzQeezjup6PH/QCmhcElFrtB16vdu43Pp8pZB8aIKG3dv9JVd++57N2Y4MgOAi2D0V8gscPF78MfElK+Uv0LOkALrHPqlVP0lX8MeDvSym372yQUm4LIf4J8M+eoL0DPiFhGLJxa5O+EYFmDjD1zDjLV9boGy/eDZKqABoOiXCMkckRut0OjVqd997ZoFluMzc3wsjcIIn059HUVaKJEC0/ye7mOpWuybd/9yqu7WE3bQ5N9NGdTLNiX6aZH8OtNPjuty9TyI1w8ZZNJBHiFeMMzHboNAUlP6RjmXg5INDpXGlRn4ihD2gUElWCfJR1t8CV6y6ZEQfXVlirxNBqHuG4TugKtHmXatRAi3s0Y6De7JAfdnFrKmEX9J2QctsknI7RpYuWUPE8n9CDzaBI4EtWSxm8mCA3GKCuKwTDSdK2i3sD1JKEiRhOTCHwdY5Ob5PdaVESMZYXL/GNb6/yU39jmpMvvEAmE+PytUtc2lxi2pxANaE4YOMF5wm9KWL63muB47n0vtYe/yKIaY9eK9+Lq5s7LJU3eHXcIBKZZb3WIBeL3k3RaHS7VNo2mWhPJLS5uI3dfHAq1Q9CarZ931rtJ0FK2eu0fGq0KY/Pp2i6dVBK+d7tv+98I3z2KZHeb5D86Fdtr/SPZWBfeScHPF2klGzMrxIxamQHbWLJKbqDMepdBwuFtRsbxDMxtpd3kcB8c4ml3bPE9DyqjPPiXzlJNhEnmrBIZhNsVlpEjSIjwzH+8H8LUUQLo11j4dwyJ378MMVXJBd+s8LmrSjXr7bYLdWJzyocHokykBE4hkJjucGtIEO+KCn4LYKqR6xgsVkskCs7rC6q1PQ4RX8Hud2gLxOy3MrSr9apmzop0yaT8HD6fbq7KkpeUspFYDtk46bAtEL8lEBXAoZnOmyej6D1SWp6BDYCTKVOtGPjDcfhrTp0PLrPDLDiR9heddEHFTpRFXPBJ7rVRjoBGoK+UgMPk9bYOOlpnUjbZ2AqghQzrM6PkYt4JBMpLGeUoaEV4tEO9TBk4NAx/LCF95BUYdfx7q5RSumDdw60wwjl431VnzZSSnzPR/+Yot6Pw3g+TdtpkozGiZgRZop5rm+XmC3mURRBMRG/TxlbVkKKgw+OIm3PY7VaJxuN0nIcbu6UeXZkcM88093uNaJanpiWf+C1O+iG/lCrvwM+ddwSQrwipXzznm2vANf3c/B+g+R/L4S4k1PiAdPc76oOMAaU99neAY+gVWuzen2DuRemH5k4raoqU88cwjA9BBWklEzmc8RNAxkExFJRCsM5cgOZXlsCxpwMmmJR3e5QXa2ROpHAsR0a5Q0qrse5966SsSympkcpbdTQ+wxeODlKab3EO9+rcu2NCJfeWsYOy5x+wcYQZQwzTaeloKV99KSDfsnGlQHtFDgVgarbFD9Xpf+4ZKttENMkSjLF5ls+zq5CMKgw2N+lKi103ad7PSQS8eg70oEdhcZ74GTiSC1AajZuRyGSCRi2OrQGNXbLOomgihOJcMRdp5ZKUJMuctQgMaSgWnXmW3kKbhNvSTCgNQiSBjJmEOYs5FyBMSeKl02T1Zrs7oSsexoLl9sMaVd5/+wtnp0e5TkLlt66weETQ5z47CCWGAJAV1PslcjRbnSYP7vI0VcPoelaT2ijTfXqQH5CpAx7a5638UMHN2zdt7Z4L7WdOuvzWxx7dW7P1x+XTDTKZ2Y+9AhWhEAI8YCxwN39UzHcepeFjeW7o0kpJYmIybMjvTzRmGkwWcg+1J0nqQ+hKU/XhONTyadnJPmrwNeEEL8G6EKI/5Ke8PQ/2s/B+wmS36U3LL0zh3QOGN9jv5+9/dqnGiklW4s75Iezn6i3HomZ9I8X9uUsEgQBmb7U7anVngIyHb19E1EVBib6gF6FkCCUqKKGpc0j1BEKIwPYHYf/9xtnkMs1EkbI8z81xZJTRx2JcuYb7yIkvHbiGf7k99/i+c9HkQu7OC2HofECqWKamRclm/MXuPxNl1olJB4NGZtwsQZVzqzl6IgQkYWc2mDn+x1K53S0do3IMYvy+yH6gMkLrzUYsDZYWo4RIHBLPqWagbduYcQV9K02fkwQ+B5hRMVbV6jqEdxalzVvjEY+Qbxa5chnbTa+2aKMSuC6mIFGJdSJDWp4aAyX1skOGiy28ngoFIZDOmOgLvlkfEE61k+QaKO0t1i9pNIoJog6Dpuuw8mpURavrhJNl0nFBskNF+9en3ajQ6AImr7HUPr+IuixZJTZ56dwu97dih9CeXhB9Ia70TOjf8i07R2klOCdRWrTCKU3OvNCG9uvPTRIpgpJrMcst/U4dD2fhv2gr6yUkjAIGUoncUwT554czetn5skP58jftttTFeXu9Oy9+J6PpmuY6sGE1Sfmh3Nt8YmQUv7fQog28Ev0Zjy/APy8lPJP93P8fvIkP7fPc/lvOBhJIqWk07TxveATBUlN1x5ZYPkO85dWiFkmw7N7O7bc3CmRtiy8IGCpVGW64JOPDSOVQTZ2a/iez4szo2wqJoXhHGtbLuXAxV5bp7SySzEWQ1ZtpotZBqMhHyzWmX52nBtnbuEUo1zcaTJ/pZ9go449Ege1w823AzIZCyWqooaS/G6JF14q883VflKHVVrf9ag1klBUiCstlpZ1wnQU24rj7irUW1Gckzq5OFg7NUqYuBkdGUI4kMK0u2gZn3heZ7duoIcdRJ/KxfIoVrJKJ2eilrqYVQ890iXYBTuMEcspeOtgxgzScYPALBGuekSjJmE+ytJGnU7D42TeQtUc0terKDETcSRF3WiTUl0MAtrOLmuda6i7Adu2hlypEssmILf36NCKRbh1fol4OvZIIwldsVD2oSwVQiC1GRAfTmdaWvo+152PoigKkeij002elJS+wDPDffd17gLps7q4iFtVmD09hWmZmFavEHjgB4zMDWFaHy9Ia1SaLF1a5fiPHT6wpHtafHrMBLgdEPcVFD/KU9N4SykvPq22fphRFIWpk+P3bZNSsnBhmcGpvgeK2n4Ux3YIQ4kVi7B8dQ3TMugffzA/bnt5l3QxidBVShHoH3y4qjEbjWIZOoaq4gUhjicpbfgItcq3vvk+f+1nPgNtl0QqjmM7fPC1S1z/7nmmjvik2yGzp0fom8jSlRt8/5ZDqi+O7miMzoEn2zS3YXZ8EOfkBPPrW0QWqzieQmO9jRmRhHFJVU/xp9/TyAkbLjkQMUj5HVptgVLt4juCMzJFqtthbLhDu9+kmdLBDghMjciPZZjc3mR7w6Tk+DjZCK4LTszC16NMxLYpLWp0FR+jqBNZacGqS3soTuKIj7bkYZVaNA4N4AyGxC4tsKVmSR+XTB2O0lxLUCm1cWVA2ojitNNEWcEf1nCrNgXfR49otNs+F88ajIzFqG9GWFrbYaW6xYkjs+CHzPbtvU62UWvAYIK+wqMFMpb2aH/TOwjlydSsPzCUPJoSIwhDlss1cvEoEcPHLDj09fXyc6W/AmqBylaX7aWdB0q67UUiE2f62YmDAPkU+RQJd+4ihJgDvgx8IKX89n6O2Y+ZwL8LfFNK+akfJT4JQRCgqipWIoK6jzJBpfUKnuMzfnSE3EAGVds7S6fT6LDl2iTScZ4ZH/pYr817qzKM5dJ0Ow4ry2v4js+oGSVhGLz7rctoWVCzeQ49N8X0qQk6lfd44Svj7KzrrFxexW2vorWLxAqC7ZUOsWiclbMb9I86mEGKzZs6mU6XWlMngoMPCLfD8dk2169YRAcMnptucu57MWzXIqwIYo6NlYTCcYGuC/wFSSIMuaVl8FdCnLaCHzGJbHrsLOo0VQul26EznETd7cJCiGp1icYhbXVxL2/jRU0S0qaWilF7tp/upk1iuUIkGiJuNmBApdOB+OYu/fkY030GZdWivLJJdypFOh9joeYQmS2QtyLstNo0bQ/Fsai0W0yFId1Ml8qVMqd/7jM0z63gZlXWah1GXA9rjxmEpBUhajzaD/WHHaH2OnS26/L+yjqDqSSvTo8xkLjXTs4FGdDWITPVt792hbiv5qWUkt1Wm3wsdnft0vUDqh37vkLXvX1DWv4uMS2PIv5yqosPePoIIaaAf00v1eMN4FeAPwM6QFYI8fellP/yUe3sZyT5W4AnhPgmPa+7r0kpW0985p8igiDg8vevM3ksycDwDsLof2Cf+XOLDEwW77qwDE7oSHrTYfH0w+XwE8fHOLuyju16+zKj3lzeoaoEzAwWiURN+ieKaLrK6NFhNF1j/MVB5ssXGS6MMTozgqZrfOf/vEVp5RrL1xKMHh4lmf0xauVFEpFB5tUNDs2dRtMGubZwkbrt0W451CttJga7BNKj6apUWyqLZ6P4rkrZM/k6Qz2xieUQWhk6qsbgUJ2tchLnUpOYCd6Ywtxwk6VbPnoV7IJFux7Da6r4iQDNActp4AsFRQmILdZZ/QDCooI5Y9GxNbZtA2PY4lBrh+1lCbs+g8/ZxE6GLG7k6BbiOIbDdtulcksyNbDOzKRB12vjqj6nJrJMdMa50GxxVBlmofQm0UKTTLZAsZ4jlrD45v93hvzhQardPHOxLE23xk6zRTERx/Y8srEPOyfxfVyjH3Z218rUdurMnJokbhp8+dghmt0Hcy/vWOBpWoPIEy5JeEHIeq1BMhIhotyueuL7tz//2H0jzpCAblAlqmbgIEh+mvgfgVvAP6ZnS/cHwN+TUv7W7cHfLwNPJUhCL1A+B/wmPQeeP7q97Y+llI+fgfwpQVVVJk+MEU2awN7rRMl8Aj1y7w3UQTzksuyslhBCUBjuTdmdGh166Hv7nk+91EQ3NAI/4MzXz5M5MUifaWFZsHT+LWK5Q9gNh+FDg6hdnWIwQ6QDl69cpzCcI5EdQUqDzKhGyxBM9udZvraG1/UgobO9VWb2VI4lP4WyW8fbDRG5GM2mT22zhR2NEnohXsNFDULMThvP1Si+COEFj/LVKkpSYamqIytNctmAYtHDb6ucntzkxUHJB69bSN1hre1T7kui1x0SgyFNW8NFwYhbyIIg1Bzykwq13RZG3QRNIC47tERAIinxYhq1VY3iUZ/BoMqVEmCFODsCLWWyvupy+rNF1ta6LFVUPLfGdjNAGBatosVc7jSNTol3ahXe1+r8XDRJcSTPt9++zKmfOEZ7pcJUJo6z1WJ+vYZRjN8XJOF+E/I/L1qOy/xOmeNDfXt6rz5NUoUk0cSHqtO4aXxs52DwIwKnx8HQ1Ltq2LvvFzE5PvRgR1QVOoXI01Hz/kjxoz/d+hIwKqW0hRDfo2dwfsev9XeA/2U/jez3V/M/SymPAc8Av0bPs/X3gG0hxL8SQnxJ3KtDP+AuPdcbjVBaNKu9Afj1925R3akDPaNqw/ywNy3UIYS69xSUbur3FVSGXv7dXq4iTsdhZ6WEYzu4XY+f/Luf5cdePsrFqyuU6y2OvhgwNqvz/jcvcP3MLYQQtIOQxWoVp+Nw5usfsLveIJkbwLUrDM4MEImZDE73sdBsEtnq4JQavP3u6+gtm9GYwth4H5GGi5V2UCIC1fYpGm1kRCKzOk5UJTvg4gUa62oCBjS+9NVdjAEDNaZiR6MsNZIslONc+G6ElRsGAyMBhhoQb7dJX69gbdgktZB+rYnZsYl5TYiqRGIwMtjmhddaWMMCTJVEVtI3aCOGDPRCisMvh0S0EFV0SFXqJLKC2IkRrOEI8QGPcyuCShemx7McHTxObEzFjQacPb9EJJehOJFgqn+E8UiUStdhXQ8prZZQbJ+R0TrZgRgDk0UOHRqmkIjdp/KU0qO8+j1K66uf+Dv1OFi6xlA6+QMPkNBzyrkzI3IHKUOcoHn3ec1duV3N5PGRUtL1DkrWPi3u+Lc+yeOHBFNKaQNIKRtAU0oZ3H4ess9uwmMJd6SUF4ALwD8SQrwI/BzwM8C/D5SEEL8jpfwHj9Pmp4V2rcPK1TWOfeYwAxPFRxbX9VwPu9Ulmf1Q7r6X5djSpRVS+SR9YwVatTZGRMeIGJhRk8Jw9m7Vkavv3KQ4mqdvJEcym0WxvgjojMwNYloGbtcjFrcomgalus2xn0mRkBPYaocJOUHSFXz/j84QiRq8MDfJuaVz6AmLTjNOUg/x1YC+8Qhdu4hGDV26qKaPsF3ijk8Yd1hftpj6nGRpCeThDJ0th/PvthE7XU692KARRHCqCqkZn+FBlz/62iDZoMXp11q4nZD8sMflM1F2LzvkMi7pZkCrHsErCGxb5crbcYoTHYxUQLQeEuoS29DQfQcrYdNpSryNkEY0iR9JkW+aVMolOksKdTsgdbjC7IhBrbXMdkQjbKrkfJfcXJrXjs1ycSfOq8dVtq9uog0k6GxscHhqEM2dZ2styuQRE8U4SqvWpmp3iEUjd0tBCaGjWc+jaH++066qolBIPB0Xm3uRUoK0e+WrPgYnbFF1Fum3TiCEQBMRVOXhn8FCqUI2Gv0whekeanaX+Z0yz40NHQh4DngSnkjO+8TqVinlO8A7Qoh/CHyWXsD8WeBHNki6QRtNiTzR4n8yl+Do7QTuZO7ReV6tapvt5V2SLzy4b8PuoioKUa3OxLEhFE0nCEO2lnZI5hIUR/K4XY/yRpXsQAZFURg7Moymq2zMb7G2VSc/lMdzfA6/MINhmfh+wKWVVYzFGtuX1/nqzPPgrvL9r20ghcLos1Fs16MrQrqXbuB2ba5cLJFJ79AOFBYXI7jtSyTTJmFulFJlCyMiqS526Zt1OHqsiSBk6Zs6Zc2nf6KDd63KrqOh5ySJOZ2Nr0uqG4JczOHmgoVRcQhjgvSwj5c30QOba5eijE11+ds/v8O3vpXi2pmQoO3QdVTEjsvupoadlaSP6DgRndqaTf+IQ67gc2MtSbemYsQlgjq7m2myIzGcQCEWr2KX1lndSsFEHk2t0Z+zGMxEMaIprm3s8syJGc5dWUaZyrC+uMsXnz/G6REDY9Cnf+w5Nha32Vw8QzLTIj1whL5UAiklrh9g6hrp4pNZv/2lRNbBv4nUT/Nxk0gRNUmfdexuUHtYJZN2o0Or2iaSMtHUvdtLWxFODPUfBMingeDTkAISF0LcW8FK+8jzp2pL91CklBL4DvAdIcSPbIAEqLiLJPVBotrDE8EfRuAHVLdr5Aaz+/qRZ/rSD82TPP/BLfqHUkz376Lps+y2fTZqTZ55ZoJWrY3nekQTFtOnJli6tMrQTD/RhIWUkmOfmaNbfQthJNlYCNhe3sXturz41dOkyhb9L+V55QsnKa2vUV6+SXm+xuDRfsrNDie/eBwMje7iBwReyJbi09WKZAKFybEI567YqJ6PVWoxMl4HS8fZCLBXBKWkjr8laKxqhKZP6JWRQqD3K0ST8PYfGmRTEkTA0nULW9cZHu3SsmHhmolfNNk5Z2HaEtmS/Pav59ncNhl7ySFeC1lciNDwNfyMiql5xJtd9AWoezqlmo6T1iiaVW5aYxjdLkpMwelKrMU2ruKROFJnOGHjGzYxRyAPWYxkrlLZjpCOPE/95jI3FJWg6+K5PgMTRfo3HN7a6DKTG6V6s8SzE6Ocf+N7DE9nKAzl6Nhdrr0zT6sQ4dT06I+UeEcoaaR+8mMD5B18N8QwP/5+FPgBnuMxnH54DumdupulVvs+f9gDnpAf/Y/v80+jkf0Eyd8AdvfT2J353ochhPgfgK8CI0AL+CPgv5ZSVm6/rtKrIP036SldloBfkVL+7n7e/wdNMXL4iSXkruOxu1Yh05e+r6L8fvBcj52VEmbUIBKNMDNQIJ1PIW4XvM1Gw7vpBevzW+QGM/z/7L1nkBxpeuf3e9OWN12uq9pbNBrezADj1xtyucu75YnLIzck6njShXSSIhQh6UIRlCh+0IU+nOLi4sgLkqL2QhTFPd5RuxztLrl+xw8wM/CuAbT31eV9ZWXmqw/VwAAD1zOz4I7BL6Kiu9MDWZnPa57n/w8lw7Q7HTx+E0VVKOUqLF1aYerxcTyR/SA8jO7XGN0/xJWT12jVWsRbYJXLzNfPEEn143gmSO49TU+sQyPsYf+hXaxcXOaNeZXJo4fR9POsz62Tq1Qxe6c5+MWDyIbF+TPzjMUNFI9NardNOw8nz0f5pS9vEZ1zyPqDaFLDE29hmuBmvDT/VjA4XiWmKwjg8mUVBl0md7UouQEufcfAbDnoigRH5eqCCZZg9pLGeKpGPG2hrEK9DjQk/qhNftNAShfCUJ6XVEw/8b4ysd2wvqEQrFQIT+uIBQ/N7Ci2LVCWKuz/4m62IgXquQbRhEZeW8IplIiWMzQDMBrvZf94hnNn5lh64Rz2UpmB3hjn5ouUfDpXVkzceIN8rcH4/iE0v4nvIxQgb/AgRxp4WwRg79NT9/W4DPUEb5tauJVb9WbbtsNSoUTIY2JoD8fK62PDRzxISilf2Om2Qog/lFL+F3dbtxPFnd9+Nxf2ABzgt+jalETo1rB8A/jK9vr/Evg63RbA1e3lfymEuCClvPJzvI73xPupsfL6PXcYKe8U6UqKm2VWr62TGk6w/9lpFEXBdV1sy8bwGARUg8JGEem6+IM6G/lLVJ04e8bSOLbDwoUl4v09vH7qKiOpGANjb9eSjewbA4zlxgAAIABJREFUxPAY7I8FaTQttq7VqRQsGpUWDTIsX6qz8cNX8S1v0D+e5PAzOXItnVK7w+VFlUrbJNJeI+TzMJzpsO/AINdPt7DtLCITomWrRDo6F163aRY7aP0QCtZ57Kky/983Y2Q8Nfbuczh9IkRmokmrquC2FMIBF1MVzF01iHqbNG0DqTgs1HoQSotgr4XegVLeIB7sEB+18DYlw+kyltTIxwTeoIHSbpEtG9Cx8ZZsIi2JOqgiQi6u5rLhSdDflDQaCoOHdRb1FaZKHtqal1hokJeuWPRfMBkdW2IkPYm9lKPhU+nRl/itzx9ic7aEOdzD1atrDD8xDppK2OMhEfB95F7kTatD3bJ25NbhupKWJpg4Mvq+TKDz60WySzmmj0/i0bX7ZnU/4l3wEQ+S75LfAu4aJN9XypsQQhFCPCmE2JGYopTyf5RSnpZSdqSUW3SNMD9xyybjwM+klDOyy7fpSt3tvcvh/k4pbpZoVJsP3vAhYHgMpp+Y5PFfOowQCrVyA4DCRom3fniOuXNdU5ZgTwAranL53Dx+q87u3u4cWDlXYfzQCKnhJMF4kHDi7dR7KSUnvnuKwkaJueVNzl5fZvTgMeYv5Fi9uMqXvnQcj9+HGpb0DMxy/cxlZk45LL5lQytCPWngjoaJj0H22gLLC1c49/0LYNYRZoB4u8VQrEhHWmxuGAhFobgAq2t+vv9CL3sPt3GLLrUatC1Ym/GQ3dJxFbh+zsfmssm+/jL7PtPC1sBuCpSGha47pCMWag2yV3UuXfSTFQZ1oWK1odNWwDLQOgYtYRCfArPXpNTUya5oVE9Fqc0ZNFdNVLvFwGAPAa1DMLRMxbYouVH2TX2SYmWEYKnD8V89QFNp8L1v/pQfX3iRUycvs3tqF24qDAkTn+4y9twuNFUQC3gJeIz7BkgpJc49HEM+yDSsDvn6zp4Dy3FYKVVQzffnOBJNhRk78MjR4xEPlXs2Gd5vMzdIV8ngE9s/3y2fppste4M/Af5cCDFN18bk721f44t321kI8Z+xreQ+ODj4Hk6/cyqFGkEpb1P9eL9cOzVHtDdyU9j5XpS2ykhXEk1FqBVrWE0LohBLRzGf2Y10uj6iVtPC5zFJHZ4k6H07O7CwUSLRH+PyhUXWly+zOz0G7MZqd6iX6ph+E3/YSydvo5heKvkq4USYUCxEp91ibF+YzO5jWLV1Ir0G8+eXkZ4crlVgMhZhw7RpGjqVxwJsbpQRnXVaVyA87EFXXJYuqDi5GkKVZAYsekMdZMrHnokisy9pBL2SpVoQGfXQ2Woztb9BcVnl4BMlrp4J06gbjA+32XW4zeJ5HREDfd1lbsaDZgoU08HVFbKndQy/4I3zMfSQSjwJI+M13vypQWUZ3KiCUm/jt3yEBqMsLpYpz9pMfSJINNYkHtdoF5MYsyVeWC5y0Wzymf/kKzz7+WeJqx5KC3WCao7QQIiAMMhtefAgCGtVdk0YZLcsZl5bRdmTZsvvp9q26AkFuLS0Rp/mYWj87bq+hlOg2lmn1/vza/9J+zoovQ/VfisW8N2m4HTHNUiXmr2JX0tu9/rurif8blBVFdV75yiOlPLRvOR7Rn4cEnfeDff8z9iJLN1f3me1TjcC/74QYgtASvkf7eSKhBBfBf4x3czYG8zRDbYX6DpIt4GvSymzdzuGlPKP2S4IPXr06EO940O7+3/ux+wdSWJui01bts1GpcZANHzHg29bNq7b/ef1T2ZurhdCENxW5WlaHV566QJJr5fxgbfrLFeurVPJVRjZN8iIV6dVq1LKB7h24izZy6vsOjzC4FQfuqmTbTbx9vjwBj3seWoSj8/DhTPnCPlzJOPHmHmrweXXZph6fB9qQKO4cIp4NYf3apNAJkxdBFhTCvhTNorfT6HsoNQCBIwaIqZh0WEt58fXaOPx2WgRgdGv8+rzXvbtbyIGOmRtnUURoalJzHCJg58pcOp8GL9iE5+2yec1ju7PogiXs6/72NwyGZyyKGQ9lOoKzpZFIuXS8KqsKGGs1Qa1gSBqsUZIb2JEBXnXjy8BxoKJktbYOFVFHZnFTY1hhk2sep5OyGD3QQ8e/3eJq0dZPuWhYjTJeCKM9tdJ7rd5+c9OEp4KESzrNJ00ZWOGVtqDu77B9VoDNxIgPGGil9vUPG+/1JcKJXTLxdRT3OqtJe15UJII5b2WbBi8z8Gh942LS8up4lV7HroE3LnVDfoioduGfi3bYS5XYDTe84E1uP5A8DFyAXm/7KQn+WtAFrh8n/13ZlexjRDiHwB/BHxZSnnqllV/CEwAI8AyXcWEbwshalLKH7ybc3wYCEbfbvE7rqTZsZGSO7z4btQ6AsxuFdBUheFYVwR7Y3mLpWyRqelBPBEfSuf2nYsbRXxhH6qqEvR7efzpgzSqDSoX1gj1RSltlhndP0yz2kJu1AgH/MyeW+TqG7P8yj/5HNeulxkYGeSt66exNxZRdC/TTxzix998mTevCzIeg/KWgWfvJNa5i+xNmqwFRwi3m7RqLSpLFsF4gJG+LTZKJsWSTjvn0mO2efkHAbYuquAzWXcUhg62IaaQzSlYMZ0rV8MEohYi6aHkE1x+Tac0q3JiPYgdkKTjFj1tm7nLXowejUCkg2U59E108EZdzl82aNsKMUNSBGwNEjGHhuqneWUJ3XXJpCK02xEq7TKyukkz38YbTBLweeg/9DhL5WVSdpvAoSXceT/J0TH6g2EunG9i9fmJmQY1bZ2zL53n8U8fZtezWX78/17E8SvsG5lEKDYhw6Qc0qm22uguNMsNrI7EEQrRniZC/HxGJ4T2cEdTdoIqNBKeyb+Tc43Eonfo5KqKwKvrKI96mA/kQyQK8AtlJ0HyvwV+F1gC/pmUcv3GCiFEhK7Uz38jpbzrkOg7EUL8NvAvgF+RUr7TuPkI8AdSysXtv18VQrxEV7X9AxEkCxtFFFUhknhv7gvSLYOzidBvf5F4DZ1dqTjFbJlwPHjPRIdMJHRbA1D3mQifht80OHZ0klxtlrK1Qng789Xj95AcfNuZwrEdXvyrE7hNiz2fO4Av5MUb8GC1O0wcHuGVb73A1LFBnv3qMYQQfPVrz7GaK3G5uoWv2SAYsKgXr4CqYIW9BPv76ekpow946E+H2T9exV9KsXpli/EvTqJf3cJyZhgcMJhZzlC2LExZZKkSxFuQOMsO+qjKBj6WXndRR70cGVll+RWF2XiE2ppBfyDHyeUAzbwk3G8h6w7NZZNrkRBKpQ11SXywjS1c3LTL6rJGou3S15siX26iBRwCmxrtps5axY86qqN2DJqtKjPn63iVFtFEnj1Hxpi57GPv7l3Mfv8sr+tzjD8xSSS9hRVv8FzvLxGNDFBqt3AuzDHaa3B4/zil6iqXXryG3ZKEQ0EOPjdMZX2Nhfl5WukSR/c/Q6PTIWAaZJdyGLUSI/umkW4DaZ3BUicxtRhCG3lP36kPGhVrHeGuETCnH9gAaHVsDFW9p8HyDZq1JqbPvO25CHnvFBxQFYWh2Ltqsz/iI4oQ4qm7xJhb1/+GlPIvbvx5r+12kt36L4UQfw78c+DKdhnHv9jWbH1XQ5xCiP8a+J+Bz0sp37jLJq8AvymEeF5Kubqt6vMJui7SHwhsy0Z5P8M4woB7zBk5tsPqtXU8PuOellq+d7ScY7EQsVg3EWe1UkMSIX2L4e7E4dHbz+G4TD0+TnZ5i1qpTjQV5k/+j+8RaEn8qsZjn+tFOnkUbYDiZgnDo7N+bR1vWyMzcoR2s8jffOsyVHQ+OWTS23cWdzxKqxHhmseHFRkmv7CAYzmohklk0EvZClNteLEvNTHGAwQCZWoXbcR+P4QtlKUmWqsNLqjY5LwOVakgvCpKzWJktI3Vsbi84seIGXj9LYqbAmvZwVOTSA8sL5pggxPVabYsGoUOZs8mIqRQ6EQQVpN4Jkpy0INevYIDRJ6MM/MD2FrKoylBDn/xV3CTlyjPL3MgrWF6TZy5PNVOgOaySX3CIS9WWK9kGXJD5NeXqU37MSIlBoYtbEvQIoQ/WSXZO4WqTrBa6kqwXV7P0mMLRkZCKOkaUloIxYelTpBvvELK/zSq+u7rbz+I6IoXpIaUDXC2bvZwpXRBlm4znL68kaUvEiIZvP886vXTCwzu7iMcf+96r494Bx/9OcmXhBDPA78ppazfZf0f0dUgB5i+10F2NIEhpdySUv4O8Bngy3SD5Vff5QVDV/c1BPxUCFG78bll/X9Hdz7ypBCiCvw53YD8Zzs9QVfb4OGRHEw8MNHmfgjhRah3T2ZQNZW9T0090HPyXozEo4zF01S3mljtzs3lTavD5fUsjuvSaVnU8vNU8luUcxWKjSZa1WL3/hGe+tXHSA7vQ4oxGtUmZ169gqKpHDg8zuoLM9iKoNrWsdQQQ3sG8CXjFGUPm6sGf/tvT9FZKGI1iujFZaanSgQLHQb2ZnDiUWqaF8enYSseorYPN+xDkR0OPVkjcQwGR1scGGlglOsENZdQWjI+Vieqtjn3lp9LuQgiLShugmlCYJ/JwDEHNe6idroNDNdxcOJe7JhOy9bw+ho8eXQL/3IWPWEiYybXT85RzlvEEx7qCwa9/T0MTiV57Av9dOoKpZzGhg0rGw2uvPoK0Yhk6c0sP/vfX2Rl8To9/jCjiV7spM26dZZzJ2bxaP0M7XkG02fgyA44YVYummzmrlJv1dioVNnbm8Qpt3FsD+hHbtYYmlqclO8oygPk3W7wsL/fPw+8WgSveQCBCbf6H8gG2HPcWk69J50isYNykt3HJ24LkFJKpHRZn9ukXmn8XK//Y4N4H58PB22gF3hFCHG3pJKb/xIp5T1Fld+tdusbwHEhxH9Kt3xjiXfRm5Ty/qPg2yK0/2T7865p1ppcP73A7uMTaDvwbvxFYrU7GKaOYzvvWlzgXtwQsc6tFlBU5aZwuqYqBD0mihD4w37GjiZoD60xFs3QdHWSIymEK9FNnbWtIh6/wdmT16hp4NoOAkFmIkMsE0XtC9HfSFNeylMt2swU4uweHaZnt4lVt9lcsZk+sItL8wuMfLqXlTdmmPuLNTrSwTNoIOazONECiceC9FFj7jsKbS1ClTbe3QoD+9ssrYQQczVmz6jIko1mKLRaGilvm+hTguVFLy2/QXC9TrusYjhg+sG1QCmVUcoSFMHGoskJXaXT46GpqyRrC9gDgvWtAK3VEPUChJw6YwdTRPuyZDeu4m1KJg4d5We1n8GCzo//+gxTQ2FS6T4Mbx+ltTzrxSVMGUV3UuiBBAE9Sba0RHYxz+74Xk7OX0PLWaSTFkZHsHmhQd8z0+w6OgaA67p02hbGtvuLqr2LDNDOGaQ6iFB/sRJ39baFqih47vOcCSUAysTtfxtHb9tmp8k1dzzP7hq4ZRwnCh+ChsMHkY/BtG2HbmLoN4A3hBBfkVKevGX9jr447ykVbtuochddObrngdx7Oc7PG9NnMri77+8kQLabbTYXdyREdAdWy+Lya1eplupceOUKzdp7r78s5yosz6zetmzi8ChqwMTeLg3RVZX+W7JmNyyLwlaApXNF/DZEhcba7Abf+aMf8uprlzjzyhU2Lq7y5MEJVF3Dtmx2jWcoLeR5fPcohguKKti1d5qwESCUDrMhK2wsLbJn2mVyzwEmJo4yuqsPT6zI1GN97H1yF55GC38YPNNpwrUIm+sm5UwMbTxKZ1+MTK9Lb6eBZ72JXRWIIQ96UBBLtXErGtW8n5i/zcizkuiwQyHiRx4N4SQV2hNh/E+ZHHyighnuQNvBEg5bax7i8RZpbR1ptfDXTfwhjaLTIZk0CY2oXL+6xF/+WYdvfXuWq6fnaK5XOTJ+gD3PHsHjEQzvUsns6ePFH55h4/QqSTVM+cwWgWqG3n6HSmeNQNTP2KERqu0Cg3GX4cEUNAL0JfsZ3zNw8964To384s+4fvr6bfesVqpT2Cg++IZro6C8t/nwnyerpQrZ6i/QVlZJgDpE/0T6DueRR+yAG9qt7/XzIUFK2ZZS/kPg39Adwfzauz3GTkpAfgD8V1LKmVuWfQo4IaX8H97tCR8miqL8nc1Z2JZN4z0O8xgeg8nHxrYdO3SUewg6341yrkJ+rcjo/m5x9er1DUrZ8m2lIQDn51dJeLyMj6TvOMZgcDdDhzTsjoPruGQm0ziD0C+SZFJ9FDfKPPPlx5i9tEx5s0y11mDX0XE2Fzb55r/6Dv5YAN1yGZhS+I3f/iyax+DkKxeZ+LJCrK+fv/rmq9irVcYOj1BrlBCeOpXgGOgajz8XYdMXYbOcY2iwAws6a6ZBj1ll64pL70AbRuIErQY5y0O4z8GqOigRhU5RsnpBEB1r0O/vcHleQ+QtXEPiWa/Tqrks5wz8GYmeMtCNDlvzLrW6h2bRxal6CAR0JvYFuHixQGCwgAimMRQNs23w7OP7aBW2aBs2uWIFq1omOZRE0R1a2TKZ6T6Ez0+mb4Kf/MkpAkNRnPMdkokRIv4YrY7NtY11DvTvoSbLXDj5Mpn+AYKRtx+z2WyDtpIkuacrmXdD+9RqWTRrrTvu1TsRH4AACTCZij94o4eIEEZ3fv9dIKWkbnU+Uhq6j9gZUsrfF0JcBr4hhJiSUv4eOxw43snb+TPAzSdzW1/1h3R7kh9b/GE/I/veuwqI1++5+VPcJZM1W61xbSXLpdev0rHenl/0+E0iybcbAv2TafKOxUqx609Z3Cpz9oWLjAZD+Oxs1+j3FqTbQHGXUZTucGyuWGVlaQt/LIjWGySeiTF2cJjF5S1OnZvDmwzyysU5bHuVcPBFPIaGPxWkJhzeePkSW7ZFeXEWXdVo2X4or5PZH0Dr7+rJqvEnKbQHUUWZ0CGdQg0uvFZFVkLIwG5UTSdybYn2tRaleTj5cozmvEllRTJZW0HxuKw0Axh2E38Slus9XPipB7No40ubBGMSQwU1ptKo6xSvetmY8RDOtFBGg9iPpannNdTeQXp2pWlYAtks05tocOqcTXlToJd0vvCJg5i25NAxP+Vrc4jVVfp8bTprba6+1cQbCvDJz+xhffYSl64tcuSz+/nK1z/Jrn0Z3rqwgOO6NPJVBgwvVqNFRUiOHv8croBC+SyW3aSSyyO3ZmmtS8qNFrc+oz29UfrG09Q7W+RaV9/z9+oR96bWtri0PTf/CB76nKQQ4gtCiBkhxHUhxD+7y3pTCPHvttefEEIMby+PCSFu5K3863fs87PtY57Z/tzdVuYuSCn/Pd1E0N/Zrv//+ftJ3sIHejS7UqgSjAY+0GocUkryqwXarc5tpss38GgaMuhFHdRuGz5uN96ey3JdF1/Iy7Gn9yDNPE0bOs0Oc+cWmX5iEk2pUG5UWC7X6Ne9mF4Dw7QpbZWYs5bY15dG8RtEpnqpVxqsLG4S2+fvWmdtVvnULx0lu1rgiT0jXL5QZfLoMT71Gwl0r4ezr17m3GszfP/bP2UkfglfLYVDghNNm2ePZVg95uHq0iwBFXY/nuEHL87RUy9T7S2T1EymJyosNPoZmOzgjCu8eTqIOVyGjoLXqNOeVNHTKilvjWY+ANkOZkwSGlXwHlIptzQqKxIrlSATq6GqNn7ZIed6UZIalXKL5rUK0Qkd1y8x6mUs3Yft2MysaQynTZSOzdrZJSYODtPTE+Diq5eJ9e0nHBdUi1UG9+5GC29R26px8EuTRHothkfCXPzuWSafmqRVb3P9tTyFUo2FkR6sYpVz353HCJokPjGJbmgM+3qo2xPMr+ZhJcfYcBEznuL0G5v0f6p9s7F0A1MNoSn39xp9xNtItwH2DOj7EOL+r7Ogx+TQQPrvxID6Q8FDfD1ud6b+APgssEJ3TvB5KeWlWzb7R0BRSjm+PQz6vwG/DrTolh3u5e6SpL8ppXxzJ5fxzgVSyje3qyb+mtukPO7NBzu75T1gd2wWLiwzcXjkPWeJPggpJWvlKqlg4J7edw/i6mYOr09jaPruSj4h77Zhb5jbkntqpTqqphKI+Fm+soqiKgzs6qPe6aApBj3pAIc+vQ9FURDaKD6PQ4Y21ZUibY9OfrXA4pUi+784hEfXyERCBEyd88t5juwaoicdRdM1GtUmc9fXaOTrONkq507PMrvSh8Mao4EAsWiAf/Tf/z3+zf/6l5zfTHNweoJUX4LF6wucfOl7xNL7KcwWOfPCJZ58cg+f3j9OnQAn3ywxHG4h2xWCJclaxY8MppBumY5hMOCTdEyH5qbO1ozAM+pHNnWcjs3KRBrZcXjcWiI67DA/4+I6TVKRErW2l2zCg1ZpEwq64POTH0yjY9OTqpLMqFgVHzXDg1bv0K4lCZoVCILmM3n+j/8Dh5+s8NaLTWZKDmOZGOG+CK/Or6Cakn/7L7/Nc39/ktHkIUaOlHjrzCzhsB/Vb9C/b4Jr19bwKy2MAJiqyiAmxbUqnmCEaDSG7RQYO74fRUaIKBHEuMHC1SWuVFY50j9FojfKRrOJz9BJ+ptIV71paNzu2Giq8ujlvo2UEpxlUHtBmKD2sUNrQHT1kQrP2zzUucXHgetSyjkAIcQ36RpW3BokvwL83vbv/wH410IIsV2u8bIQYvx9XsMX77Zwu7zwGWBHFRo7feru9r/5gZy91XSNvU+/9zKKneC4kmKjif0+hm36omFS4SCebVm65ZnVuybwWO1ON7mn3p2vyoz1khrqeu6lR1OkhrujDX49ga740HSNgcnMzaBqaCqxgA9VV1mf20SoCo99/iAhj8nGQlftz2l0yOcq5D2SM2sbWLbN6dPXWLi+wdpbc7i2w2NPTxOXgpF9fWQODDK6f4jZs4s0dYtD+wYgqHHp7GnGxm1CI1PU1R5sj0YoFSE4noCqJJ3Zz+7D4xz9eoae5BhOOEzeaVEzWihNB7+ikosE6KwYeOuCWs7HxqyBUqnhjAcJV6p4ZsosntZ48yWT5lQPiqKQzfkIGhLnkqQpTcrLDrlVh4y+hbRbFPM6izUfuesSQxoUAgHOqAr+ARNfRuEqZay+XmbmVVaW1hDFOvmZDd54+QztYh4dwcjYBFOPfYqDz+3hk3//CUZ7oixfWScS8LO/P81njx3HkAreBCQOaDQ7BQbGUvjDPhzXRQISlxYRhBKhdyRJ71AMUaliNVq88TenMQG/oYNbptuY7nI1m2Oz8gtMkvkgIhsgbYRQEWryAz1q9IHl4Q639tFVTbvByvayu24jpbSBMrCTtO1vbA+1/q64z42XUr58n3VNKeX/vYNz7bgn+X0hxDstC358l2VIKXc8RvyweD+2PDtBUxX2ZlIP3vAuOLYDgjuSB4QQOLZLcbN0m9myYepEEiE0/c4W8I1h11spZruWWnufmrptues4BCI+Jg53yxAqherNF0s4GuTgs91a2kqrTatjUxIuh3cN4PlEDByd4YHdvPjCD9DdLRKhPmqlOptzmwyEopTzFb7wJS8vuRl+dH6OpBlD81rkpMORzx9gZT5LKhFms1am1rYpzqa4sh5EtWukAm1yS02ScZW4GWJuuYQxrNEZ68HzRgdZ2KTV4yOl6pTnW3g8LtWRfpxLBfrCRfQ+FUsqRPUqagimjii4VYdGU8dnNzAslTYqlVUFPa1Dro0sN/FEdDbLLkYmRCcZJNUfpPyCwxNfPERnq8bVC8sMHOyjJ9JH9UqbqGLQ3qjyp3/8FwwfHyU93ce5C/N4Wi2k63L50iJGaJhh3WboUIJrJ5bRMhr1apP1fJnJsT5q9ibZ1kXGgp/E8BgYnhjPPf4sQlWwahaZeHT7bt1uqbYrlUC7z3e6YXXQVeVj00sSQoA+9eANH/EwiQshbh3y/ONtLe0b3C14vbNjtZNt3slvbvcEg8Bf0bVW/L8eeLXvg50Eyf/lYV7AB4FGtUkpWyYz1vvQz7V0ZRXd0OifvL02rn8yQ61UZ30+S7CnO5+qaiqu69JqWHTaXdPZB+ENmKi6iuM4qLe8NPsnMnQsG9txqdSb9Nxiclsr1si+tURmLMXesV4WL69weCBDbqXAUCRFu9FhVckxUzVJ1SXLi+eo5iv8ym8doLm1j6XmKmeLOTa3bHb1Rjn/0zN0MgNMKTFaMke506TXo1E7dw6vL8nmpk7xwgaWksefivJYUqOVbFPMreJtQijjoyMb+NJR9n2+w5U5C013MTotvLRYEr3YcT8ercNmU6U20yQ9oaBLh+olhXzbJBozqIyMIwxwKzmCdZeeYVgQHsy1PBFF0LRMRLZKr9dPI7tFKajyxvIVfvlzuwg9dpzZ19eJmiZmws/g3jR9/Ql+UtjiW/9+heOfO0x/NIxuufz1H3yfXc9OMfzYCGrZwqOG2f9UBKtlkV0vsLCcZSATw+MJkvBM3cxoBYgkvWDPEj7+dmBsN9vYHQd/qDvc+qBawvlcgYjPS1/kkRrNI3aIAPH+SjlyUsqj91m/Agzc8nc/sHaPbVZEd0I5TFfm9J5IKVe3f1aFEP8P3WHdX2yQlFJ+5IOkdF1c5+8m461/Mn3PoaFAxM/08UkWLy0jFIXBqT4URblZhL4TVE0lGPHfdg4pJfPnF6lXmvgHezh1dpavfukJpJQoioKUksRAjMRAd6TDH/JipiwGdk+iqz6spoWjCUbH+hlTvFy2qmRP1dhYXCfUE2b1zRyVjQajY320y4sIPYjf0Jg6FMQODtOj5TCcJuFCnPOnNrBLRVRTobqpowqFkc8r/KQ5yma2iF5botcK0cxXmZsrUG9a+JpNViZH6NgdEkj2BRepmVBfEQR6A7h+waLWS6NQohVOolotLLWDvZSnPZnG2wDPSJhqHbyXNolNgtnbj79cx1TypA8dYxWHzvU1gk6Zn/zZm8TGB0gYcWZOXMM/HKNQqTN1uMWurwzzXHAAodjkZiuMPjlO/+Ewu/ccpLRV4er1JeqVJv0TaebOLaIbKlOpBMW1Ev0TaQz1nTV9Koggt86pFTfLNKtNRvYNIaUNsn7f0o+p3sRHVtBbOmuAjlATv+hL+ejxcL8ybwAnXfemAAAgAElEQVQTQogRYBX4GvAP37HN88B/DLxG10jjJ/I+klLbgTQipcwJIXTgS8CPHsbF38pHLnHnveAP+3+uBclNq4OqKHftAdyrN2h3uiPXmq6RGe99z3MsCxeWifZGbhtybjctyvkqYweGCUYDJHp8zM5epFmwmT46zYbdpnc4jqpp2I5LvC9GsV3D1E0MxWQ9P4Ou+/jcvkk2FrJMOg6JgSHWT+VoDs/QY88zNP0V5jbyrGwKdn/pOcZ2KeSbPq5d3GLpjet0PBYHnxwkFumn3dshFNTYeGODwvplrqz10+fX+MyXvWzuGcBXmufKKyahcBSrbZL0qyhlm+p0jJyloy3USO8S+LUO7XCN9JiX2ZoPf0zFqwsKZ11aJRtP0MberGG1WuQ3oRP1Eh5W6XvKIibWObkwSMzoYWMhT67ZIJKQhBMlzPHnaJpetkpN+g4OcehTe/nRn/yYhVqHSrHOwK+Oofd2aFwtsCAuMJQe4vzVZTKRIJHBGKojWd8o4M9EqJXrjIwkbquBvPEeEEJ0MzK1AXK1Ovlag129CXqHb5mxcMvdJBXj4D3v+Uc7oUeFh2y59fFEvt+e5P2PLqUthPinwPfptgD/TynlRSHE7wNvSimfB/4U+DMhxHW6Pcibhf5CiAW6EqaGEOJXgc8Bi3Sn/vTtY/6IrgfxQ+VRkHyfdByHfK1Bbzh4c9lCvkjQY9Iffbv137E6qJp6z/nStdlNpOsyND1wM5AuXl4h0R9DmBqGpu7oZXirR+UNihslgtHAzeHVmUKeUEASDgkst07Y68HUNFZKZRpWh6neBFHz7RpQgxA6BpfXs2w2KiTrDslMjMlDowRC+yiszvHm1TKdRIuRRoDcZomV15aZfuIQuxQve77+Sc5VC1hNyeiBDqdfOY93cpTBoyWOx/J8e3kad0OgB9sM7/FSnosTnMgh1yV2VKFUNegXJsr6HKWcwlrdIHvdIKRDo9AkLFySiTaGEUEJRok+0WbxQhFRbhH3tqj6DIw+E1/ApMdMUV5P0GhbeHp8yIiPVkEydWSaVKjCajlMY7FGdH8YXbMJ9fpZCdv0/kaYtDrM2tUVfLsSuIUgAa1JrxzEWwpzdXYRbRSqAZWO4+A3VHShUJE2jWqLreUcgYgf3dCZP7+EN+ghPfL2vLbfMBCBOxtGQo0hlY+G8Pl7Qajvbe7/Eb94pJTfA773jmX/0y2/t4B/cI99h+9x2CM/r+vbKY+C5PukbTts1eokg4Gbdj+Tqfgdw19zZxeJ9kZIDtxdqaRv/M75UE1XUVSFK5s50uEgqdCDHefNoBfLtrk1pSeajtDyKlSbbQIeg9FYErUTJxzpHs+7HcvT4SD5jeId85l9A8MANDZzFK5sYGgmQ3sH8Ad9QJjUaC++0nkOhgdITPq5+OoVljt+GrUWomGzN5RhMN3Da997i9dOnSK7nufYlz7F2fMuwd1fY2J2k/kLNX54ziU4GSTiNviVL7V5y97DyuIKPmFSrW9R/JnC/k8ZTB8PcX6lQeFkC6XPT8WrM1S1YGOTTsdlSQ/jRL047Q4VXSW2J0rJstEDGu7gEJ35Ilm3jXc6g1lbgLrKyIEBzl1foVRtYc6tsXfXAPGpBCEZZG5llSvuCrnNGIPBEKLc5ls/eYsR3UOkrbJ27irDh0cwoj46r82S3Sjyq7/zGVqNPPMrCkuXVoj2Rnjr1SuMT/ZRrzbo33X7nLTX0PEaOnbHZvnKKv27MjcbS48yNx/xUHj0tdoRj4Lk+yRgGuzruz3A3ejxdRwHXVXJrxeJ9kaIZaJ3O0R3n7sMzfaNdyXl9pjJ+2Y33kqh3uD1+SWeHB0iuR1Us4s5Vkol8u02iWCAhGFy7ewiU8fGqeZr9KSjKIqCIiG/mCcc9uMNeKm3LepbFYobZaJ9UZaWNrG2qqSeHMDVVS5dW2FyJM36co4BJUC8Tyc/1yIUCzP6aZtrdpvRnji616C4mafZWuXQl57j+uoixrDO8Z59BMImRvo6PU/XOfvyRZSVNfK+GNktHy0XvJ4MUduiqoaIHm/QVCssLVZorBr0xWrkmhp54lxvdxg7BI2ii7m6hllSqXpN+jIKzZk8jifAZn+A9uImyoUs40/3U5jfYBMv1QurhHwXUdM+3OvLKHWHyycuUTXLfOHpT1Jdb+LKXqK1Bk6nSmtygFGPj2qzTUTotFwoLWTxF30MTKZp11oUijP0BKsER0Y5/dpVxo+NsaE6NJotSptlhOjeq6jPe1sQFIpA9xgPzNB2bAfXdXeUzPWIR9yNR22vnfEoSD4kXFdyZnmdyVT8phiA+h5T9N9Nar/HcslUJfnrmyQPd4Nk30QvffRSKtdp11oYoQDTT0wiJWytFAhFbVQjTHapzNSxcVRVxXUlP5mZI+HxsmcsxY+eP8n88gaTQ2mGpvoo1pucOHEFxdSouhajyTBnfvQq4UiGiUPDNPU4pdUtShtZvvu9K2xWHcYTSQqFFpmhHk5tzHLyxxscibc4fuwAK7bg+NePc/rEC1jZBpV2ANEsYCdiFIpVRhIKpu1hab6JxxwjHNXYWpG4UZvE+gq1gk7V20O80eQrv7bEi3/px1f0oG0mUDIDPDO6zpVKFW3IT3tNQV0rYSktQlqEeCLCylaR+FKRRKaHakSjvGXj0ZKMH5lg/vkC+8IJ1qfCxDsCbyrME5mDvHL2GltrBfom0/y7P/ge6dEU//h3fx1XSLKVVVRlkvlCiWSmB49pcGxyCMdxaFdanPrJBcR4jH2Daby3BDpVVemfuFNv951sLGRpN6ybGr6PeMS74obA+SMeyKMg+ZBQFMHudBK/oSMG3rvM2DuHPh+E1bHJpHroSb/da72xv+pIatkKW/Nb7H16ClVV2X1sAmmdxrYV6pUG9UqTar5KfCjBaDxC0ONB+Aw+8YVDPF5t0ay1EIqgtlzg6Wf2MJiOIwRUNudwahfQR+qceaVMZEihkS1QvJDH6PHz+BPT9Kgm8XQPUgVXtVlfOE1tLYtV+SGZ3WF8vk/RXB0kM1hhY1UwHU2zXFyj4PgoLUHEq1Pu6TC8J0x5TbCwIsj0DdEUqzz5TJKePTE28wF+dsVH3VvHFjqBQ6OMagZydQ37Wg53w0N8dASXGvGSxbX1Kv0DKYajfjyWZOjZQVZfnaGDn75YmO//4Q/Y/fQEwUiWLemSn1/nhavz7N67j0je4sXnv094PMnYU7t48gsH+NFPz+AYCiE3QHNulePPTXPqrau8eOISu1IJ7I5DrVgjHAsyNtgNhq7rUivW8Ud8d9xr6ZYAHaHcnljWO5JEuo9ecvfDdttoivngDT+GCN53CcjHho9yWtwvnIBpvK/5pGatyYWXr9wmcP4gVp02RjqEL+hFSsnFV2eolbqm3JFEmIkjY0wcHsUFio2uwo8wDqF7EowfHEHTVKx2h9lzi9SqTTbLNdodm2iqK8A9sn+ItWoeLegwkOjB1DUMTSMcH2T/M19gU/NwsVakZoUZi47x3GefRhch9sRSrC5mKVxZJxkN0+OLcGTfKNHeBC+e9FO87qWTvcjhpxyefvZpDg6OY6sq7WsNhpo+OppOxePhmV9O8enPDuEqGhWh0FA6xIY8VHo9dPwu1fwWa6c7yIhA39ODd+0SnbUTXF7wMnkkRbtUYfn1y4weHgElhaapFM8uUynUEWMxdCXH3r0KhgOpgThlTfLCuetcWw1SP7HEyPAcB59sIXoMfBMJPvlPn2Xg8SGe+/IYjneJ7FoeveUQUDR0j8bM61fRFIX6TJZTZ2dp+BTGD42QHkmiGzqzZxbIrRa4ePIapy4v3im+7eZAVu64z6qq7tgSrmKt47jWjr9DHwVaTpls6wpSShbyReZzd9qQFevNR2Lnj3ggj3qSH2A8fg9jB4bf1bzTdG/y5vCsEIK+iV68gbd7skIIfEEvhXqDc1eXmYpG6R1OIu1ZQMUXHGZ4eoA3/vY0bk0nvW+AWMB3c3/LdlgrFxhNGXi83VZ6s9YE4eDvKbEr2M/E5zNQd+ibTNNutFm7tMqpH75FreOyWbIoewR7poc4MgibIXj9+2OsLdVxZZDWsuCt0ipapYUdNqi3HZyNIrFYCJ+r4fUNc36uyHplg+EDw0RqFjJiY5YbXPzGAsKx2XN8nEbUZe/wAIt/lef0hSqJ0BZS1FCnepHLBnOnLhD1R1k7t0ZHCzKQjBJWNJYuSzrLUK03eOPKIpkvTrGUL7OarTLgehgJPUNPaoCZU+sM7Ruk0GiydyTGqZfeIBYa4HOfOkRxs0LWyFHflCQ8QWTMRzDoo38iTSIU5NKrZ+kbLhGKfZH+XRlyqwX8IS9SCKr5KqbPxPRpONJG1969fKW7Xfer6RpSSjpuA5cwKg+2iLJaFvPnlxg9MPShnu80lRAJzy6EECQC/jtkXFxXMp8vMJ6IdTWSP4Y8mpPcGY+C5AcYIQSByP3rN8vNFgv5IlOxHoQQmO+Qqosk7l6E3uP3cXgwg2M7SLeO6whcIuha97yxTA+O7TDYE7ltP6+hc2zodkmw2bOLFLMlJp4aRfHCaseieX4FzaOx2mqSmk6SPXeC537tS5w+ucDCjy9zeGKQWLyHKycWOfrMY4zEImxtlrm2uE4o4DLc6+dPv/kT0k+O4lzMYhoGHl1n/m+ucXlzndB+L08fHcGoO6ytFViq6Zj+OOGjk+wKa3z/G69R+uVBWpP7sZrzJAIKVq8P9TzE+02SI3D1ep3hr00zOXoUe6lELruJHvPR2TOAWmywtbyO9+pJCuUIyZEBQkmdN9/Ic/qN1zmwZ4Txp0ap5+vUsgLLSnH+5WWm9u3m1MkraL02E73DTB8a59qpecpNi+unF5CWzchkCd0osHhphcx4V1xi6rFxdF1j8dIKqt9Ej7dRtQYJT9eRznLqCCHQFR8PIruUo1qoMXF4tHsvPe9CjEJXifZG7ppI9mFCCIEuusHPfxf/SEGVQ30qQv14Bkh4NNy6Ux4FyQ84ju1w+cQ1xg4M3VW03Wfo9EfCbMxnUTX1Drm7+xGKdesmpZMjt7pBraowdqAbFMcODANdB3pVCDRVIeb3kVsrUFgvMjTdf3O4b/exCWbXt1irWByMDxDItGmoXmbenKXSbuNLBsk8/gQdadB7ZJgjx6cIRQMsXlllavowSxdW0HtjZDI9hHsCvH5xjni6wu7hPFc6XkI+lV1HRlFNi5cubWJZfnR/mHDHodW+iOFNYRci7P/qINnFVex0m4HHxqHfpEcRpN7SMW0vbiPA1NEwsfEkeq3GarmArphsnlzkN/7zTzK/us7575yj4LYYmUxTDzVZLK/ja7jEhUrRlLR7fUTTEUoeyXdefQW13mLq2c/SWFpjcM8Aq1c3GdnVT2IoTsg0sZoWw3sHuHzyKo7lsLAvSUxNsDv6GFrQh2HqpHf1UG2sE9X6Gd4zwEqxTLWuMJZ8O4Gn4eSRriDquXeQXC9XKTdbTPTH6OmN3HO7+6Gq6j3LlD4qrJYqSCdPX/jD3RB43zzqSe6IR0HyA46qqfRNpO8QCLiBrnZdPqJTntvmP11pd4fr3uFNWMlXUbUyvlAfQggs20HKCPGhY8TukgjScRxajosQgpCmszGfJbucIxQL0mnbuI5LfDxFSGjUN4so46Jr8zXswes3EXqF03N1rHAAf9BL3Ahy6bWrjB4YpubYXDyzyMJPrpBdz3P8q8eJBzX8MT+eSIb9h4/yhCfFgr5K7xOjLJw+QUBbZdwbIe338PIP3qDkxoi5GkeeHMBtQaivl7MvXOXpXz/Oa8//FMXVGRrrEDAUtt6qoyXqbJgF1C0P0aqkcP46+XqBf/V7C/QMDCHHe9kfDFD12ow3+/DZHpqaSfHSBvGpXhJSRxwcYsus0xNNsXZtkRf/9i0i+zIcPzzFuVMvMza5h+p6mY6hsXRtg61Wg0NPTpEZTjK3tMlgYg/egJ/lmVWqhRqxYT9LM8s4CS+aoeEU60zsvt1CTXGSzGzmODzo3lNUIurz4jf0bib1h7wn+DAJmgaO7EVoD88p6H50nzmJucM55YfC+9du/djwKEh+CIgm763beQMhXOhcROqTCOGlbudpOUUSnu7QaKVQpbhZRlUdfL5r+EIxwMt6uUo+V6bf5yeaCuO67m01esOxbpbsVrXORqPBvqd3Y7U7aLqKdCXlRpPL61kOD2ZI3JJRuza7gdcPkfAGid4UPsXD/JtzTB4dZe/TU9StDo2wQVwaOEdGuLqUpXPiAkf3LuKKIQx3iPF9n0Ztb/Ctf/5jrpXa/PrXPkFIyxD5pTirWxVKuTq1hcss5f0ojT4m9w2T/e4l1LyLkWuza49JLHGA+eIMjdZ1gu4AXi1K9vU1NufX6envEA3ohAcdGok45UCNHr2H0pUNito64YkUz37FYPmsTWlGUndcIkEf5dkcU2xBTWOkP4HYaNI+u0EunSQcTHH95DLSERgeneHdfcSwCQT8XH1rlnA8iKw0eev16/hCPiRd+7M9ex9H01UKa4WblmnNWpNGtUUsHSVgmkz1Ju6ruuTRNTy/yBfvh4T7zUE6tsPq9Q36xnsfWkNjrVyhbTvsSn20e+wfFR49UR8ZVFBTsJ2cEdCS+LW3rdl0Q8Mb8JAciCNlBpwlFmZUPEE/mYAft+Myf36JUCx4Uzv0hpSedCWb85t4wj7o6dp3ATiug2jaHBxIo4gOp5cXGE8OEfJ66GgldC2Ire1lPKnz+plrpP9/9t4zRrJ0ve/7vSdVztVVXVWdc8/0xJ3NuzeSvJeZEimblAxKACEBCoAB2R/8xbJh2B9sfzBgWBAgwZYoAhItCZREG6TJS3H37k27926YPNM5p8o5nDrBH2qmZnq6p6cn7uxu/YDana7z1jlvnao6z3me93n+z0gYl9dFqVJnqVDgTCpOug4TkqDx7TOsvn+bD38gMTsZZL9QwXIpTMYmSfzW6ywu7XDtp4t8dGuV//z8MB7bxHB4kAoytmXhzlfZ+WCB+PkUr6QucPn96xAxaW4v4pFMSoU+NLcPG8HwcAB/JExEbJPfV/EMnCIWVdnJ7eOX86gTQSaCDoZnRln8Xp6ByRihM3BtaZ+qV2VgMIZX9OML+BieTjJ/bY1gIsSfb24y19fHmbdHWbm+wfL1DbSol/5oAFWROf/NOW58tMAn719BaduEMw4q+Qr9Q1FWV/ZQh0KMerz4Ql5s26bV0KkWqkQSISRJ4HP2yhmeN7ZtY5kWVnsDSYoiJN+jX/SYDIWC2C9BO95etPVk9IzkC8C2bbDrh2rdHvWaplnCKQdOVEYihOh0ar/vb3Hfx+vyurprmrZtU82XCcZH0BxOrudyTMejhBMhlj9bRdEUoskwK1c3CMX8WJbNwnu3OP32NAxDrVxna36H5GQ/W4u7nO7zg1Viv7jNgM/E5xghmPBhWi2W1y+T8J0maMkkokEa1Qaf/OgWjX6Zc323GJr9GpKkoTd1Wq+NsvJ+le1yk2+cjVJtZ6lVK+jYvPa101wYGuTjzBa5UpHPPryN0NyMvjLBb//6efLbBdK3mrz1tRD/4t/e5OrmZS4145w7P0Y626RP1PF6PSjCREm4OTOY5Gf/wYF/SGPDsLhEhGRYYnH1J+xt+IjHU5RViXx5h/3tFsMRPyW5jNfQ0S9XCP/cHLGwn7/4wWcMJKPMnh7Gk/dxbnAAp6rw6eVldlsNXLkir39tjkatyfLyDqtX1pHOxHDaMs6qQWI0jsvvwqkoeCUZRVNIjFhg3CLYd+qhiVc9ng+KqjByehDbWOd59ZXvyFd+viZKPGeB8y8TXxojebeLxovCsiyK6RKhePDRRswugbGIrb5yoJfgcZi2TlFfp885gyKerQdhtAXr806mLrlxuBycccRxqgpCCIZmUzjcDmy7zch0BdmVBFvlO3/rG91OKQ6XRiQVplFpUi3XyefLbNTbfPPUuyjWGpZlENBS2LZNpamQLmaZuzSBYVlYNrz57mlajQKZjTViEx3BhM/+8hq2LDEXi2JaHWm/hewqZitM261S3yhwdbvKr369n5inTuRCAeKv8t5faHy0aXPWlAkG9pBoM+mTKQ0N0zc1ScUr49m3WP10gzO/NsNi9RaRvTFuXF2g0N7HZft5/c2LrLx3i8XddSJTEr/8y9NsVnz4NSfDX+/nn//+VRaCEb71i2dIBfysOqrcXNrGGDLxhRqYjXX2c2GGE2Y33Pn6t84yMDdE2JK49dEC129vwmiQqdfGqeVrvPmd8we+N8GwF6/DyeInK6QmwxgtN7FhGyHEgZKOB7Ftm2pLP9LLrBZryKqMy/PVzeB8UoTy5Vcy6hnJk/GlERN40YkKerPN7kr6RMZZSEFQz3UNZLNtsF08XCB+P4rkIOE+91wUQzSHypl3Z3HcqXN0aWr3gu0JeO5cjGU0VxRZ1lBUBZfPpN38EZaxiaJ2PM1QPMhVvcJPPl2g39nEocgsF0OsZlusXF1jfz1DYrSftWub5HcLfPLZEvObe7g8TrJbTRauxrBMQTFdxga8Xid6qYGUb9I2TPRmArNoM664OP/qJJn5dT76g3U+/bN9hmZ/EdMOcLY/jnwzy5VPM2TlBEHPeZz1Jv6WC7e7xIj2n5CcTebemeXV1+e4MObGGdJxqQ76gwGKO2VM2yLdqNHwB5Dbp/ngny/z7qlRmvkfQ7HJ28NzRKsSXtXDn/z+j2moFnWHgZry8faFt2iHx9itQ6McvtfyTJLIlitk01kUn8E737nAL79xlpHxBH6fG8u0yGylSa8vAB2d3kDEx+wbk7j9QSpFu9tSK7uVY/nK+oHP0DAtLMumrrf5ycoGuWodgJK+RaG1BsDND+dZubz2zL8/PXp8lfjSeJLPulNCtdlio1Bitr/vyH073Q5OvzV94v0Jca9WyzBNqs3WY89p9do6kWS4W7rxJJQbTYqN5qH6x0p7F92qE3GM35mvBMq9DMvFm8v4onn6w/eSDVRN4Te+eZ7s0h4BOQMkGY0EufnjefpSEULxAJpT49Xvnie3WyDh9dLX12n7NHF+lPGzQTCukS5FcQ6GmZ0dYubVKIgQkiwzFYtiiyp7hSx7S/u8+1cGWck72LtR4NMfbjH4+gSnf3WY8r/6AJ+7D4fXzU//LEt0cJJvnHWD2yCg+VlfaJEc6+sY5K1JHC2dd94ZZHu7xHe+ESfnsDn15iD5Kws0NrZJTCdoeiv09UeoFRos1xu4Bn002zV2pBbW0jYukUXKhJH8ASaScXYX9sgVLDL+LNWaxPRgHL3Y4Mb8MqX6BufOf5ud3Txvvj7D3NszLH22iqGXaVZWcfUFsRUTv5ZA1VRUTWXs3CACQaPaIJIKE+jzH/i8FtNZvA6NwXCQ8Wi4u8blViLcDRPOvDqJJH9p7oNfOA29zc3dNGdS/Uf2hv2i0xMTOBlfGiP5rNEU+VCHhmeF1+lguv/xO637Ij401+HC6LbeppzrJHg8is5a5WFcchiH5D9iSwe3GiPonULSDq6rWuo6Y+eGcSmdLFpNgelXxnG4NCzT4sr7N/AEXKgOQXTUg6reF+IRPlBG2avusprJc3Vpma+d0Snv9BMc7GPJWqSvEYNgEfOncLXsJTAZ5q1vDfLJ1hX6Sj6ciRjf/a23qBarVIt1Ws0gSxu7mPV5bqyXadacRJomaqtO9vufklX6UYvrlD9YJb8Oi5bE13/nXQJWi++OSXheS1LWh7myvE4tD0rRxGGrVK5kWDXcOPCQrjbw9CfAGaLWaOENeXCG3HhG3TQrn2E1R1krlWC9iCw5Ub3jbG+kafo0vNHODU5qOsFSxkG7BpYpsIVFrVxHcWkYVpuSOY+rNcDG1X3m3p7pev13GYuGu5mu47H7ErSke2UNT3Mz1QMcisJoNPSlNJAAUi/ceiJ6RvIhaIpCIvB0F5mbP5knNZkgEH248bmftRubBGP+hyZrRJOHm+/WSjWWr6wjOSwCcfdDw7P75SqZao25ZPzI9StFcmBZKnqr3c1evZ/B6dSR+404JroX5r1ShbDHRb5dY2HtChdTp/GGPLj9LvpTGxStKpbVhyZ3DK0QCjZBvnkpxFttg/WNfSRbYBo5anWDoD+J5vbQdJzlu7/Xz+52lu3NfXRL4d1TF7CNztfXMk2u//A2IHjtNy5xrbTLxs8ylJDQ8DB7aYb0ThqzLTF9NkPDB4UFm2CkTTA+REuvsJWDmcl38Y1G8DT3cTLLfG2HwnKR7OZ1CMVpLmxw8Y0ZcraJcCtkFvfYLKxw4dcuYQUchD2QWR/l3PAQmsfBrc0SAZ+g1ihjtn2c6Y9Qb+ksFgqcH0jg8zjB7UQTXurFJrsb2zjHo2wv7DA+FCWYiuB9M4CsyKzf3MQf9ROKBdhd2adZbzE6N4RtpkHyIcTnU/P3MmMaJvVKA1/o0X1Yj0KSBGHPoxWOHnp802R7cY/EWOzEEn/Zao3tYplzA4/uBPM0iF6d5InpGcmnwLZtsq1FAmqqe+G/n4GpJJ7AyX9k3pDnoaIBR6EbJrlWk/7RGHJfkYZZwCcdbt4MEHI7cT2ihi63UyC3k2fmtckTz+Hu++7I4xVxaypuTWV9OUNE32V8LIkn4MG2/QRxHvLMr+/sE/N5EcD4aAJZkgiGfWytpUn6U2REjYTHj8vjwhVTCTlKnBo6R63SJrORZSNX5Ed/8AMyS3t866+/i6YonJ0S9GVduCKXWF9J40m1eW18hNUPM8gtidyCl61qk3qrxbuhKOffCjAwqvLBv10m3MyyXNhgJHEKs2Ew8vY0rcsSyWScqVCIxc/WqPhkxFQfslOw0q6x+t7HvHFpGofUZPa1USzhYyNf5NJ3LiBLgmsfL7DdbOAN+/C5ISUpSJLESDRMw+miWWsR7POT2cqScLsIjCVxuB3sraXxBj2omoo35MXp7kQRwokg+b0iq9c3GJmug1CgZyQPUS3W2JzfYe7tmUcPfh7YYD+mgHrA5USRXozn2jOSJ6NnJOFA4K8AACAASURBVJ8CIQQuOYgsjr5LfNxw14Oe4ur1DSKJ0EP3o5smZcNgcCAGRI4NDWtKp1vHcUSSoUNrX3dp1JroDf2hXnGl2SIV9N0p1Hbyu7/ySxT2S2zO7zB8ehBFVVC1w/MbiYRotdv86c0lfnluirDHjT/s41TYx8rWPj++tsRvf+0i85t7DMYjxP1vsbWQZnczw8+uLvPaL16kbziKW1Nwhr3YNkylLuJ6JcWPtnOc/dZpVMvA2ZQIn3IjOUcZeDODz7bY/MEilmnzZ/MmHl3F4bPIXd3kws+HaKJwyVPhex8W8LUk9OUcyb85R1bXqS9uYmdyOAZTGMNB1N06lYU0681+4uMGbn+TD/+fj1n1uQnFwxTqdW7upjk9kKCeWye7niX+ThyAZq1FOVchGAsQ7AtgCh0rmMHlGKecq9z7bO4LpTtcDoKxAPVyA6EOHTqnW4u7RFNhnI9xw/VlJBD1f64hZ1mRGT41+FivUWWZoPvLGd79otIzkk9Ju+Bgd2uLyYtjz3zfvpAH1fnwMI3XoTGXjD+TY+2XqzQbTaIu95Hh1lqpTrVQe6iRHAgdDBFLkkQkESLcH2T58hrekKcrUnA/PqcDn9PBb54/hfsBIeqgo82bSRftUpGNhX1SfSFsW2N7aY+R04Pgd1IoVhkY7CNnC37ykxvomuDUWIq+RD/nXS4ikoYmSwSiflqZHKah8x//5H0mEqN8/ZvnaBom169tMDPuYdvM4Gk68ZhOXHabfL2BYShUDIP+V0f56NZtYqEw42Nh5H6J5Z+s83f/9s9RWc2TGI9x+6fLFNyCETXON75+lvVsgbSuM5py4VKiFLby5DUHydHzrN3eQtNUhICh2QGEEJiGyc5Chv5TPgQSoXgQ0zDRW21kRTrQa9Llcd6ptzuM2TYey4NpmybVlk7I/eXzRp9HTsGXhd6pORlfCSN5ey/DQNCP9ykUS0zDxGgbhxIoPAH3c/uyRVORRw96RqiyRC5fwzJqjJ4ZPiRPF02Gj1wThU6N6q0PF5m4MILs1Kg0W932WkIIxs4NI4RgYT+LS1VIBnyUMmW8UR9Xt/cY9fkJh1zYxho2bgQVhDKOUSuTDEE4vMm3vjbF/kaBbLPN5MUxgjE/br+Lm5dXmXl9DOnSBL7v38CHjGGaLPxsmdG5IXZX0zSqTebeiTIaWGe/OsVv/M53GEoNgN/Blb+8hsOwGInEuLJ3G1ciwo01B5cueFlTE/wXf+MMjdU8E3MhPv30fQrNIO54nFgywrXQZ8SCfobfjSNEm4nzQeq6h8ZmgbpbxZUIMujz4GQJqdkmbcAP/vIyv/ArrzF/dY2LU4PddlaNapPYUBTbstHUzs1CYb9IvdLA0E1CMT+xoXvJXqZh8un3rpGc7Gf4AZ3Xx/Veqk2dtXyBkNtFtloj4HJ22631+LJi9xJ3TshXwkj6nY6n/tFntnLd9kP3ozlUtOegilLX2zgU+VitzkfRqDVxuLQDxu5hhD1uwrOdAup6pcHSZ6ucenPqRI19FVXpihCUGi12SmUiXjeWZZOp1ujzehBCkAz6USSJVl1nby3DWMANu1V++P9e5+d/900cWgOhhLEti9xOHtWdRJZl3l9YY2JAEE+GMA0Lt6/j8fjDPi6+NdN9f+e/fprLm7tUbn2GP1DBFz6FrEjozTYlI4OwXPzsxzfxItMfbrG4n6ZWqKEu5Pl0r8nf+of/GduVIvniElrtBn7dwO+aQXJo3PzRDiqTxB0qy1dWGQgF+Bu/+CalTIXvf/8azVKWppXF5xil79IIM/0RLAAhiHpfwTlRxV9pcPrv/wputxPbrTAymMCpqeyvZ9ic3z5QuwoQigfJbOYYOzdMfq9Iq9HqbpcVmdGzh0OtT0LI4yLk6TTp3iqU0WQZ1dUzkl9mBL01yZPylTCSyeDJskuPIzYUpW/g6T27ht4mU60dqlN8kPn9DKmgn5jvyTLzAJY/WyU1lTyRQPr9uLxORuYGT2Qg7xKI+qk2W9R0nTOpTvKQYZnslioEXU4ckoL3bjhVVTj1xlSnI0mjjT/qpZRrkduCuXf86IaLrcUFZl4dRwjB3nKRkb44ezYMBHwHMnBVh8rSZ6skxuN4/G5OJ2Ms7xbA48U0TDSXhux20K4rrFxZY9QfgKibj66uYFau8Nrrl0jEBtBcMoMDfVSvVegLhNm+CbEBQW5jEbNvCkmYlIs1VMnGMRFj5epVbEvH5RlA0gRBd4RazY2o6JT2ipSCPoIeN1uFEk5FId1osPz+DcYujSON9pGIBFEVGdu2Wd9IMzI72DWA28UypZ0iatNgZG4Qj99NbjuPdadLS7Peot1qozlVJFnCaBvYtv3QDErDalEzMvjV1LHhRyEE5wefb1Zlj5cH6SXQj/0i8MKNpBDifwL+OhABmsAHwD+0bXvjzvbfBf47IAFcA/6ebdufPO1xS9kyWwu7jyUAcD+SJD0TfSLTttEN85Hj5pJxlMfwIg3TQhLiwDrVzOuTj2Xo7iKEwB9+eMJDraUjSxKNQo1aqc7AZOfCureRwfSocGd9UlOUYy+6/oiP0+/OsrCbIRQP4bvTYFpzqCiKzM5KmgYWP//NC1hqgY38NhvXJUJOJ3OvT3fnmrXalFZ3ODWewuV1ER1KcDufZ/Ont3G1LBp9LjSPg8Hxfmi02S9UyKgWupbCHRoh3NonEPVg2zaLS7uoQoKSRq1kUy3UiF0q8MP3rvLar11i58YWDcNgzyPj0C3sG+ukJmKU4jW2d9aI2IPom5uMjrioynFOJWJsF7fY3y2S3S+yd3uFNyIupuJRyrkKmt+JMhzCF/ejmzVkSaPabLFtNLgwnOh+DveHULPbOW7+eIFTb01RK9a4sV2gf7SP8XOjR57n/Y0Muco6Z+aSfN6aoT16fNH4PDzJPwD+F9u2S0IIN/A/An8IvCWEeAf4J8BfAb4P/JfAnwghJm3bPl7H7RF4gx4Gp0/ekPh54XVoTMQe7ZE+bnh4OZPDqaoMR+55qE9iIE/CdrGMU1WIOFRMz73wYD5fwaV2vPbcboFA1PfIOUhCwu9xoSoyBWGxn8kx3hdh6tI4W/PbzN9YJ5AIEvc6CPQP8L2ry4yOJtnbzbFVr3F2OMXc3Ag7C7u0GnonvNkfYkIV7LtrLP/5dZQVwcXffJ2wx40mS8SH+5gTY2TWMghLZfzcGSzL4kcfXOPimzOk4mHausHS5RX2ltMkfB5+5zdPkxxPURxJorfafPjRJ4T0DJXTYcxBmUBcYX8twuJOkfBAlN1Gm7iio+ttNj5dRGOHX/29t2k7+gl73NQbLVavbzBxYZSLQ53v5UrxNvmKxOn4FMPhIM6HeIb+iI/h0wOkJhK0W21C8SBbi7sPrXGNxvsIhsMn1g2+S7Pe6nirTxHy7/GSInqJOyflhRtJ27Zv3/enACzgrnv3t4E/sm37zwGEEP8r8A/oGM3ff5rjyor8hVcgMU2T9RtbDEwl0JwHM0FHIqGHZjs+ayZj98pNPAEPpmXRaBucvjCObppYlkVmM4vTraEEjv+KKbLUDT37nQ5caucirzlUxs6OMHqmk/RjG0sokpdf+aXXWc0WWLy9RTIVRZUlNEVm6swwpWyZpU9XmXtnmut/eoXUVJLv/s67tHUDt8eFaVjImspKOsP68h5fe+MUrYbO9dsbpMsVyhjI1SoD/RE0h8rMq5PMr+3TurHKyGgGTbEoZxO899F1nJYgGp7Eo9XYvtrANdpHIJLgzakoll8lv5vHHZD53j//FI/fzfAbl1gqm0xFbLL5Mv/mB58yPZFkXLt3M5TyzOCTdW7tpRkKObn64Qa+VB+z453EHNOyWErniEoq/ogPIQSaUyM21Ic35D1gIC3LwrZs9KaOy+vC8QSJq0ufrZKa6CcUP35poMcXD0FPceekfC5rkkKIv07HY/QDBvAP72w6B/yLu+Ns27aFEJ/def4rjxACh1tDHGEMX2SX8wfXtfK1BlvFEhcGk9yVVHgcQYK7eO4rASnnK+yupBk/N0y93MAfmehui/u99L8+i/sBTysQ9TPzugvanzJ5IYQnHMHQTQIRP9tLu/z0gxuc+fop4okQGYdGoVrHrrVxtC30fB0jW2F4qpO8VCvXMdsmQxMJokEvn9xepb89zcCIk1ca42ys7qNFg0yEg4yPtllZ32coGaJwO8MHC6s4XC0GXEk8oRCn3pzCEfXxw49vsvfBFi6nymzAx0gs0glb15osFookAj76fJ5OQbm1yMfrKzj999bTBQKnquIL+NBiBw3X3WSmuyx8vIwkS9iWzfSrEzwObb3Nxq1txs8P43T3Ooh8Wekl7pyMzyWOYtv2v7JtO0Bn3fG/p7P2COADSg8ML9IxpocQQvwdIcTHQoiPM5nM85ruS4MkSaQmEt0EDdtYxjb3n+kx9svVxxZf7/N5OJs6qPSzt5YmvZl96GtabYPWnY4Z6c0stVLt4PaGji/kplqssbW4e2+/pQpt0zpgIFezBbYKna/NZqbAbrWfzLZBMV3i5ocL5HYLlIwWVY+M4nPgc7sIDob4/ntX+MHVBdw+F9/+1nkmUjGckoxtt6hmPqSQydA/U2PXKDI1msLv9pKp1snpOpqqUFvPs7Wwh9vnIhj1c/vTDzn9Rpzf+1vfoS+c5Opf6Hz249t8urRN2OPmojvI8HSKRq2Fz+ng5rV1yuUqCz9bJunzYFda6E0dTZER6hSv/+ov4HBpFNIlNrezWLbNcCR4rJaoaZq09TaDMylGzwwxcfHodcrjkCQJl9eJ5tR6dYY9vvJ8rtmttm3vCSH+GbAihBgCKsCDqZhBYPkhr/+nwD8FuHTp0pfytsg298AqINTZwxtFEJ5Rr0nbtrFtqOk62hOUyzxYquL0OI7tQLFVLCEQjPWF0ZttHC4Nw7So6ToeRWF/LU3/SIxgXwCH28HG7W2GZlIYloX5QKF82ONCFoJauc7a5XXGzg7jDvnBrbF5e5t6pcEtpUV8rI+BSIjFdBaXpjE8N0DU4SLg96JqKqffnr5jFGRiI+dACpNv5Nhv7jE7GUeWJDx6jXg9Q9p0UlBs1FqDSCrE/7eyghaScQSzCD3CsOQicqYfu21hbxa5+eE8p96YppQpYTRq7LeaFCWTnN5i5o1J2gJWbu2gqTLFTJlwf5BcpcbWfgGPJPPZ6jZuv5Pyeh6X13mkMANAej1LrVRn4sLjG8fuZ6nIJMePljfs8WWhVyd5Ul6GEhAF8ABJ4Apw8e4G0blinQf+6POZ2kuAFARxdMhLyM9ObGCzUKKht4/sTtI2TfK1BnH/yctRJK+DjUKJOTrrwFsLO2gujdhgp9XWaCSMEB3P5252bL5WZy1XZMLrw7BsfPeVrtx1aB5U9mnobTyahiJLLC+sobZM+iMBWlE/S+kcv/b3v0O2XMe5u8tw1Eer2sDrcBBw2gx6M3f6fHbCvNuLe0jsMzgzTKXkpJzbIzEa45zaIF0qI0kCr99J3Sfx2qtnufy9q1y/vcbo8j6Omzle+folrn50DW8oxIVvn6F/NMapd2Z5/w9/xP5WjgnDwB9uMPemRN92EvwOSlsFdor7WFE3/skYLWeeraVdvMEL2A6F0VMDmBWdym4Rq6qzv55h5rVO+FRv6mwv7TE0m0K3yzhkH7HhKJb5eHqhD6Pa6twwfVm7YHzV6YVbT8YLDbcKISQhxD8QQsTu/D0A/GNgDbgN/DPgrwohvi06V67/CnAC//5FzvNFsZEvPrL5shDOTtPm50y/3/vQ2s1W22C/XO3W6Z0Ep6rS570n+u6P+A6IvUuSoFlrcv2Ht2nrbaAjaHBhsFP24JmOsVPqaJe6PM5DXUgsyyK9keHK5g5XNncAGJ0bYuLCKIoqE3A5uTiUxOF04PY66R90ks9v06g2SQR8uDQfKOMH+nwOTidJTg6AUJEVGVXr3EPu1Wr8p/kVru/sUbNdDA2fYeXjVYZmUrz666/iHQpz4Y1p8ptNZs5+m4uXprn90yUuv3cdp8vB6bdmMAMOlvdy5Gpurqb9eBIBfnx5ga3VPfKajWXpXLm+yq3NJlMX53D7XIxGwgyFgjhVhYCqIdnw6nfPU5QsdMMgt1voNnkutbdpWw1kWWZ/PUt2OwdAfq+AeYKSo6NYzxXI1epP9NoeT8aTLHc8CUJ0Enee9PFV4vPwJH8J+EdCCA+d9cb3gZ+zbdsAfiiE+Ht0jOXdOslfetryj5cVv9PJC0pIPZa75RraQ0oOvE4HZweODr9VWzpuVe1m1m7ki/R5Pbg09YDn2ag28UcPZhc7PU7Gz41011h1w2QhnWUqFmE8Gjk2Rd0yLYqZMqMjAapmZ6AkSSRG72nZ3l1PC7ldhNxjEB7Dsk3qRh63EgZxUGZPVmTy+052lvY49eYUbl+nn+jZc+Nou/u0TRtVlthutoiPxYgnw+yvb/Px/DrKeoHIaIy8ZJFUZYZmUlSLNS6/dx1ZlQkKhe0PFnCcG2ZsLEG2Wme4L4QvKBgZVLHa21S9AfzBEK22jM/RyfwFiA9EkRWZ6+u7vNsfom2aWDYYuoHm1DB0g37X3L3PK+hG1RRM02RvLYPT4zyU2HMSZvtjSJLAtm10q4pD/mJnh38RqOk66gtqlN0TEzgZL9RI2rZt0TGSx435l8C/fDEz+nwJvgSZg7Ztk944ulzDtm0ym1kiyTDyQ0Jut/fSjEXD3b57umFi2vd+fIVaA5/TQbPewtM+2DZMCIE3eM/bVCSJkNuFLEldo2sa5pHHVlSFyQshMJaJa6+e6L0upXME3AJT3sEpB5CEfOd9tsGYB2WSSq6C3tQxDZOfvn+d8QujaKZNq2WgqjIbn6yiOyRur2QQr09xKhFDifXRSDaIJEJk9or8q3/9PqfPKMy9dZb5j3cJ9AdQHSp9yTDxkRiSJCH2q/SpTlSviqbFQAty9pzGVmWflcISTvUiHk3Ftm0kSeLbf/UNqo0W7ZbOZCyKbdukJpOsXF2jXm7gcDmwrSoIZ6ebiGFimRan3pg60bk5irufgWE3ybWWiTtPIUuHm34fh23rYJUQ8uM3Gf8qMhY9Wh+5x+dHr0r4c8C2bUzzyUJgzxohBLOvT+IJHO6HaVkdb62tGw99/fmB5IHGtBOxSFd+zrZtVnMFarrO8OzAAYN4FJIkSAX9B5KA5n+2RH6v8JDJh0A5feApo21QSJcwDZP0RgbbtsmVLqO31vE6NIRl4pKDXQOZ3sxSKDew8FNrmqSmU1z89lnyxSrLlRK2KrGxuEnl1nXapkVwpI/Tsx5OvTHJarMKgMfrIpoMI4QgGPXRaLX48b+/jm3L1MtNPvjzy3z003lSUwnWb27RrDVRHSrhZAhJlrj6/Vs06vD+v/kRXt2B3xGnWG+Q2cqx9Nkq0FEvaufrrN/cAmCvXOXG7j4T50fv1TEaS2DlO9vX0mze3jn2fN9PIV2iWb8X5rNtm7UbmzSqDVTJRb/rzAEDWa80TrZjuwHmyefR48UhhP3Ej68SL0PizleOzFaOwn6J6Uvjn/dUjkWWZaZeOX6Oiixh2yZY+yD1d1VdCvtFfGFvV03mSRmZG8LhPtp7EUKAOOid1isN9lbTuH1O9tYztHWDstuHrPjpD/j49PuL9E14ccUNFEmimC6RrQlmBvvZLJRIBCxiPi9Op8bZ6SESQT/mQJBye4uk4iCZ9CGMDfqHTuHXQ7g1leVMrqOx22hjmRbvfusctfwE2a0tfIE9Cvkyia9N0jQtQvEArVqWaCoJisT6XoZiOo98WaJZbyFJCjN9o2wv7bG5nmbqPkH9stNAHewYxJDLgetBJRz1DOKO8e8fjWGfcA251WhR3C+CHej2oOwIFajdDOW7NxXQqaNc/HSFqVfGcHmPD+MKKQBar8z5OOz2Ikg+hPziMopFL7v1xPQ8yc+BcH+QodnUowd+YWiDlQM63rFt2+ytZWjWHi8BoVBr0LyTiGJZFpVijaXPVtGb7QPjGrUmazc2se3DP3J/2Mfs65NUCjVMw6RV15lNjhP0dJoWz74ySyoxwdXtPYqNJlOvjBOuWsgNgzPJ/q6gfMDvYXokQaPWJDGUYrDvFAs/mKdtyHy4GqLStEkv7rG1s8jGrRVs0yK7nWNzfpv2ZhErU2NrqUJsZIZXvnWWqKXgUhWCcZWN/Z+Qzua4sr1HMhbirV98hVA8iNEyWLu+0U1K+uSzJTKVGrXyneQZdQev506izm6J/fk9dMPg+s4+umF0DSR0bnBOIktYLda4/dMlhk4NHFLWSY73H2oNB3TKZd6aPmAgs9s5Nm+v0FlR6fFYyFEQT9+E4XHpJe6cjJ4n+TmgqMpz01U9DttuI8TDmzg/CW29jaI6EOqZ7nNCiG6ZwuOwX6kS8bhxqgrFdIndlTTDpwa63s1dZFlCdRx9/m7uphkKBQj2+XF5nXj8Bz3NliQoVmrM9vdR2ipgDGnEB6MsfbZKcrKfxEgn8ce2WxR2r2ExwMBkkuREgkgqgkNTsPerLGzOU85WmfpmlLFkBK/LQdXj5OaP5/GGfegtnYGJBJIc4vzZBKVchUK+TDDkp2/0O6RCIaKG2RVFsHWTd3/zjU59qSRx4VtnmH5nhlomz+q1NebePsWg7zQ3drK4FJ2+wQilbJn06m2CQQeydPSan26Yx5ZweIMeZl+fPNDQ+SQ8+P11eZ3I3AA7eCghqsfxCCn04o9JT5bupPSM5FcE28yCuQ7aK0+1H8uysG27e1Fd/GSF+EiMSOLgD31rYQfbhqGZk3vMM/fVaIbiQfyRowXSNadGauLo7iJBlxNNkVGUo29EbNvGtCycisJupYFpmITiQWR1C+n+dFrbJDESJLOrsHR5lYnzo12v6vW3TnHrowVuzi8wNJ3qFu4nR+P4/tqbSLIMtn1gnXdpaYdMVudb0SBDkU59q1uT2CqUSJf2qcyvcOmNd3H73OiGwUa+xGg0hCuWJhzrnFun6mQkEsatqpiGQbtlkNvOMhrshLQ38sXumm5ut0Cj1WbbbnF+IHGsbOGDOsBPgifgwe1/40BJTY8eXwZ6RvKrghQ+tH73JOytpmnWWoyd7Wicjp8fQT2i80RsKMoR0dBjKecrWKZFsC+AEOKJvO1H9Q5tpstk1zKkvnGa4VMDtFsGbb3N+W/MHRgnJDdIUwRjOp5gJwRr2zZCCGRFZu7tWaZfnThUuO8Ldcok6tUqlqUDCoufrjI0HicuHzwhi5+u4Onz4aiAK5U4YFQFnTIXSZlGuu9nqrWtTjKNpuD2OYlPvonb6UA3TOp6G9OykaVOHZzLoXI6HOwayK1CiYjHjUtTqRSqeIOeZyo71zOQXyBEz5M8Kb01ya8IQkidC/9TEhuKMjB1z4tzuBxHtlJyuByHwqSPollr0ag2n2p+1n2SdXpTv+PR3rsYqA4Vy7LvlLfkuPr9GweyQE3TZH89092P5tTw+N1UClVu/Oj2gf03Kk2MttEt3L9Lsd7gZ++/x97mFYQQhPuDmDJsFSsH5hIdCBPpCzA4FSI8HKFWbZDdyVOoN6HcYunTVYTQDrS4KmXKVAs1NKdGdFxjM/1HGEYbTZGZ6e/rhlbD/SGCMT+O+4xgo93GsCz0VpuVq+sHsll7fPWQsJ/48VWi50k+Y2xbB2MBlKkv5Z21oirwbJc1u4Tiga6wwJNgWRY3fjTP6JkhvMFOE2WjbXY9QIBoMkw02VkzS4zFiQ5GsE2rW4/ZbOrk9oq4Il6W8nnmkv1oiozb72Lo1MCBG4LMVg7NpVEv1QknQt1tNpC48Arbeh1/q4w35KGYLnFxtBMWrettbu7u4043icQC+FMql/f22XrvOmNDcQbfGMfX58OX6MxzJZPDNmwaK9k7nTkc2LaNR3MyFBlElo/+GafXs9TKdSbOd8LBk7EobdNkPVdk5q0pHOpz+iB7vPT0sltPTs9IPnPkjvB479Q+Fm29zc0fLzB16XBZgWVZrF3fJDnRf6x3KkkSI3ODuP2d1ztcDkZODz50vBACTVPZnN/GNCxGTg+yValSi7uoGm2GwkFUWcK2WwgMzAcM7vi5kUP7tG2b3MIeyZE+RGkRw9hDmBcopstYto0dchH3eYkpDpbTu4yeGcQpw7jiZ9erERyJkroTMm41WlSbOUr1Jm5NJTXRT13ao6kLauudVl/t6BgXPZ357O7l+A8/u86vvXuBVNDf1XE1rI7HqEgOsE0EbWTpxeuxFjMlFFV5ZL1sjx4vE70r+TNGCBmUgc97Gi8UvdVGlqWHqvKcBFVTmXxI3Z0Q4pFdRe6S2cxh2zb+8Mkl1BJj96Tsxvsi5Gt1FFnqiiTYxg56o8H2koQ35Hmot9uoNSlmyhT2S/QNhGnVQ5hWAKPWwp0KUK00qZZbRJ0bxCNjbA0EO0Uz5iYOuch3f+ESgei9NdXVW6ssrnzGmdfeRXJoBEMBTLtzflwD4DeCmErHQDb0NqulMq+ODNDn7cxblmVkWabQWkMImaA2iEKasVDphdbk3aVebqA61J6RfEnoeZIno2ckezw1m7e3cXmdh9orGabFSjbPSCSIpjz6q/YwfVEhxIlbN/kjXhyuk4e5bbuFzAYonaJ9RZaIPdjtRB7B4YW5t+9J5RX2i4TjDQQmQukkMa1d3+CDP/mE6YtjuP1uxs7OUtzJs7u4iTQVRXgUVMkmW1NIRZy8dW7yzhxGiQwKNgtlyhtp2sUGY2eHmTgzQWI4ScU2+XBti0TARzlTp5yr0HBKCLdG2OPm6vYeCb+PiWQfQU07dK6D2vB97yUJdG4Ksts5ZFUhFHuwO93joRsG1ZZ+QHnpKHrtt14eeiUgJ6eXuNPjqRk5PUh85HCdnhCgyvJzbdxbzlW6XUQAoqnIkQXwD0eAUDr/f9gIIQ68B72pk93OY9tekO4ZmIlXxhj/xizevk5/yk9urHD16iqD00lSkgN3psFwOIxO/EDhvxByNznH5XUSige6CT7lbAWHbjPckKhmK9za3QiJywAAIABJREFUTrO1mycgKbjrJks3NsCGlmHQTle5/oPb6E2darHG0uVV9KZ+YP5CSN1aWdu++58Oud0CC58c2br1WKot/ZHdbHq8fPTEBE5Gz0j2eCxsu4Gtf9xJULqDrMhHFqPLksRoNIT6BE2cT8ruappq8cnbOQmhIZTRAxmkj8LldTHz2iTlPKQ32+ws76E3dW7sZjhzYRznYJitQokLE4O8+uYMgUSIYCxAajJBwO3qilhblkXbNFlMZ2mbJkmfF6ll0NYNstt5Pv7J99F8ArfXiUdWkBSZmZEE/X0BkiNxwmEvpb15Uu4WqaCfSq7C4EwKzalhGib7GxmqpYefm76BSFdlZ3dln1a9Rf9ojMxWjlL25EYv7HFzJvV8vcRqs/VYrdp6HI+gl916UnpGssex6K02rcb9pQIOkEdfmszd6UvjDw0XNuutAyUbzxpJlpBkiVZDp5St4KkZRHweRmMRYj4PXp+bhiK4vraD0Taolerd3o7Z7RwLHy9j2za1Qh2BoJStsHZji1qxRjgRZOL8JNFEHx6/u9PKzKHgcztwuRzc/MkCQpI4d3qSgNd3R+Vokr6BjlBBIOrHH/Kyt7JP2zQxH3EeXD4nvrAXf9iHbVmUaw22CqXndu4eB9u2ub2fodR8uvKgHj2ehJ6R7HEs6fUMuyvp7t9CSAg58vnNZyNDIX2yi/fSZ6uUMg/3iBq1Zrdp8fbSLrVS7dj92bZNq23QarS4+ZN53H4XfQMRBmYSeNy38KotzLbB2se3sdsdY5gM+Am2bPI7BTZub3Pth7cBCMYCDM0OYDbbKJkaWBaRRIgL3z7D6JlhZFkm6h9CvhMaTY73IztVHC4HA1NJkuNxXF4nqak5FO1oGTh/1E8kGWY5k2ercLxnWM5VUdSOxx8b6sMfCxypjft5IITg/ECSkPvxe2L2eAhPEWr9qoVbe4k7PY4lOfFyJVsISTq2GfP9TL86fqxqz+btbYQkmDg/2qlxfMSOi/UmS5kcFwcTxEdi3X1f3U4zFh6hfyyBbZWJD+SQVYlqS8fr0Bif6yTO9I/GqJc7LaZkRUZRLTSnxtw7s/fe3/1rn4ZJ2zTxODQK9QYr2TyXhjuZ0w+KkR/F8OydsYZ5UHLvCCRJHHj/AZeTgOvz73d6F+UFNSL+KiGJnhj9Seh983ociyRJRyrqfF70DUQI9p0sG1PV1GOThoZODdCsNmk1dBJj8UNi6A8SdDs5k+pHlmUiiVB33zP9fQQ8KYSQKWUFtjxLtdnm5m6a9n19QxVVwR/plKYU9otc/XCea9t7tNptPl7fonFfAlK50WS/XGU9XwQg5HZxqj9GMdPxopv1JttLu9i2zfzWPj/70c2uV2zbNra5i213emvmNrKPNDIDU0lcnpfHKPZ4vtzNbu15ko/m5bn69ejxgnG6HJx599QhgQLbtklvZLrrh3dZv7mFcUT7L49D63hiXVQ2Pl1jwu3rJi2ZlsViOotudAxZKB5k9tVJYj4vmqIwHo3gvOOZWpbN/H4Wv8uBv2ayfnMTIQT7S3t88r2r1Ct1rv3gNpVCFb2p43WohCM+pDvCB7a5A1YWbB1FlY/smLK7ss/S5dUTn6v8XoFGrbcm+GWil7hzMnrh1h4vPXulCmGP+9iWT88Sy7QopMsE+vwHBBJcXieKdvAnU6g1qOk6Ec2BqindMKgn4Mbl7XhmumEgSxKyJHG31EQIgcfj5G5ZfcjjYnNxh9xWjlPvzjIVixBwOdESIQrVOvN7GVSvRjAWQEgS06+O4wt5ufzedYIxfzeka1sthF3qti7zhcAXeqDuE9hfzxBJ3uvc0qg1aVabDw3jlrIVhCT1vM0eXzl6nmSPlxrLsslUa10P7Hmxt5buJu7Iisz0pfFD9Zbx4b5DXqcQAkkItuZ3yO8Wus+7fS6EEFiWzSdrW2QLFYbDQTRFppyrsH5r68B+yrkKa9c2sCybbLXOdqkCgMvjxO1z07YscKsMnxpAc6q0jRY35z/EEXCQk0x0w8AwLW7vN9GZOvT+jLbB7sp+Nxln+rUJUpP3hOoblQa313bRH/Ces9udcpDRuaGnFh3o8fJwV7u1F259ND1Pssczw7QsdksVEgHfHa/p6ZEk8dxr8KCjovMkdXhBt5Og24l5znPk2q0kCeKWyt7iHhv9FS4OJVEdStfLvIs35OHit89022UlAvdk9YJuJ25JOtD3UZZVXGqQofPjbBRKgGDz9hamKii46jT3ygxOJrr1q6ZhUivXsSwLWZYPeYTBWJAQxp1SkXves2lYyEovwePLSC9x52T0PMkeT4RlWdz8cIFa+V6xumnZlBrNR9bkvYykJhJHhiUfRaHWoKG3sYD1fPHI9z46meTUKxNMx6PIkoTL6yI2GMW2742VJOlgP0khaDVarFxbZ+3mJrc+XDxQrxoI+xkZnUaRZcaiYTRFJhDxMZ6MspUrUSzXsO8z+g6Xg4nzo0eKPnSOL5jp78P1gC5tfLjvRJm0Pb5YCAGysJ/4cbJjiO8KIeaFEEtCiP/miO0OIcT/fWf7R0KIkTvPR4QQ7wkhqkKI/+OB17wihLh25zX/u3iecl536BnJHk+EJEn0jxwMP2qKzOlk/EQ6rbatY7fnse32I8e+jDRqTbYWd0lXa1RarU4NpWEe2WhaCIGqyvjvK6mwzQy0rxx7jMJ+iXq5TjAWYOrVg+Hf9EaW5ctrB8aH+0O4vC4ujQ9y/rXpJ2pa/STorfZDayrL+Qqr19ZPtB/bttla2HlAvKLHFxHR0V38x8AvAqeA3xFCnHpg2O8BBdu2J4D/Dfif7zzfBP5b4L8+Ytf/BPg7wOSdx3ef/ewP0jOSPZ6YcH/oKTp/SCA0vrBfQdvGMi2m49Fuhup0PHpkqYVpmIcFEKQQKJOHx95309A/EmPk0jgL1TKK86CHF04EGZhKdDVanweVZotP1rcfGYZe/GSFwn7xyG2aU8P7GB66aVpH3mj0ePY85+zW14Al27ZX7I6G5R8Cv/7AmF8Hfv/Ov/8d8G0hhLBtu2bb9g/pGMsuQogE4Ldt+yd2567sXwK/8RSn4ET01iR7fC4IoYAy+nlP44lxeV0MzaRONLZZa7K1sMNGq8ZELIrHoXXevzhoPGzbZr9xk5A2jEu5kyWrqcz29x3Sv1U1FVVT0Zt6t/YSYLd+i0xOYcSfxB94upZUbk1lLBp+oLylQylbxh/pyOFNXBhBdRzdPszpdhzbA/R+hBBdAYQezxv7ea9JpoDN+/7eAl5/2Bjbtg0hRAmIANlj9nl/xtvWneeeK1/Q2/gePb44eAIezrwzS9zvw3FMKFoIQZ9zCqccOPCcz3nPyOhN/YD4uObUiKbC3U4oXiVBaV9nb/WelGAxW+aDf/djzPuEDZptg6Z+ONRtWVa3HnL9+iZUD4c+23qb9ZtbNOudbQ6X46USnOjxaJ6BmEBUCPHxfY+/c8QhHuRBF/QkY55m/DOh50n26PGcaOttJElivVDC49DoDxzfCNpoGwhUhPrwXIRaqU5up3CgOXN2O09hr8j0qxP4tCDvXgoeWCPUHDoe7zam0UaWZbYWd/nZ/gLhUImvzX4LIXlpNVpoTo1Spsz20h5zb88Q6g/i9h2ui1Q1lTPvzj5Uzcg0TPbXM8RH+h6aKPTg+Kdp2N3jyZCfzr5kbdu+dMz2LWDwvr8HgJ2HjNkSQihAAMg/Yp/3hxqO2uczp3f716PHc2JrfofdlX2Cbicex6O7pmwv7bG9tHfguUqzxbXtva7RC8WDTFwYxbZtDKvjyUWSIUbPDB143f0GzOWNcPEXfgHN0TF4/rCXt6dGOjqwonOfvPjJCsVMmVA8yMxrE51jxQIP7c15XFKhaVrUK40D2bX3c39ijt7Uuf6j212vtMeXhp8Bk0KIUdFpGfTbwB8/MOaPgb9559+/BfylfYyqvm3bu0BFCPHGnazW3wX+47Of+kF6nmSPHs+JwZkUpq2jixJeNfHI8QOTh8c4VYWYz8vm/A6SLHXHtKwK+dYqEWkGo2UcKB95ECEEiHshXH/Ehx8fMNx9burSeHdd8WmzYjWHysT5o9ebLcvi9k+XGDs7jC/kRXNqTJwfOfG6ZY9ng3jOa5J31hj/AfBndApv/y/btm8IIf4H4GPbtv8Y+D+BPxBCLNHxIH+7Oz8h1gA/oAkhfgP4Bdu2bwJ/F/gXgAv40zuP50rPSPbo8ZxQVAXLbKG363B0XkuXVqPF8uU1Ji6OHQg9qrJM3O+lLmTEfQk0TtlPzDlDYadKMV0iOhChmC1T8ilM9IXxOo82OrZtAhZCHJzQ/UIFzxNJkph9ffLA8Y4z8D2eH89bOce27T8B/uSB5/7Rff9uAn/tIa8decjzHwNzz26Wj6YXbu3R4zmiyR4iznGgo+FabnSSYkzTPJCAozpU4iMxVO3o+1a3z3VIJUeRHPQNRIikwti2jT/kJRX041SPscjmJhjLANQrDZY+W32ufSPXb26yv5458Nz9BnL12jqZrdxzO36Po3kRYgJfFnpGskePF0S+1mCr2DGMzWqTzdvbWHcUeiRJOtB+63EoZcoIIJII0efz0Kw02F3dP3Ls/9/evUe5edd3Hn9/JM395rnbY2diJ7GdG5BNU8g6oS0Ny63L0lPKktKedtlus4fCoaHd3VLKQrYlUEq2hbbQNtzacja9ZZeeHEoLoRBaEgM2Cc0NO7ET3+I447HH47nPSPruH88zjkaWZp7RSHo0o+/rnOfM6Hke6fnqsUdf/e5zc/2QugyAVGOKzt72kq4ZVe9QD519xTss9W7toaNn9TMdubVLkC15qyeeJJ2rks1dHVy9ZQAIqhivvfmqJUMnJhaev9AZpxgzu2hw/45rh5dMHWdmBTvNzE7PcXDfERbCSzQ2NTAw3H/h+MjxUU4ePnXR89aifVMbLW3NmNmSISiLOns6vD3S1TRvk3RuFczSgF3UplcO89lpmhKdQPGkcezsOLPpNLsH+4qe09HdXnAe2ubWJq66cWfR9seW9uaL1tAsl5Fjo0ycneSKf7N+J5DYSBZXAXEr8yTp3GpkjgIGqSvK/tK9TZeveM6WrnaiLlZy+sQZmloal8zIs1wHnVImeI+qd6h72WpXV33JOqs2LVXVq1sl3SnpWUnnJY1IulfScHjs5yU9JGlM0qikf5D0kmrH6FxRyUuDLSaNqRTNEYdoZDNZMpnKfxCmF9Irdv5JNaR8weYaUoYZd+pGHG2SXwCuM7NOYDtwjGDyW4AO4IMEMylsBR4GviqpJYY4nbuIlKpIVetazE7PFewhOnhpf1UWSj647/BFE5xns8bDx55jYjaeSQKy2WzBNlDnVqvqSdLMDpjZ4pIIArLA7vDYJ83s/nAW+Dngw8Bm4Mpqx+ncejE/O8/kuSnMstj8I1h2oiyvu5DJ8PCxk0wXmOM112Uvu5RNeck4kRDbe7tpbYznC8WpZ0c48vjxlU+sW0ZS2ZK3ehJLm6SktxGsC9YJpIFfLXLqLcA0cKjI69xGsLYYw8PDhU5xbsPr7Omgsydo77PkMESseJnPTtOYaC16vCGZZLini+YV1gctVo3a0xa89nw6zcjEFNu6K1+qXdR/SS/ZKlQ1r1eCqEte1b1YhoCY2T1m1gVsAe4AHss/R9Iu4DPAr5lZwa/GZna3md1gZjf09/cXOsW5DeXE2DizC+mix5XsDZbhWkE6O8fo7EEWsrPLntfX3lZwqaxCMulMwTlY5zNZJufmKzppQb6Gxoai8866gJcko4l1nKSZnQI+DXxJUs/i/nAF628Ad5nZn8QVn6ueTDrDycOnvB1pBVPzC6Sz0T6kzOzCslf5UokmBlteQkOifJ1pzjw/xtEnTyzZd/7sBPNjU1y5uZ/Z6bmqJkpXnBTM3VrqVk9qYTKBFNAGDAFIuh54APgdM/vdGONyVZTNZpmZnC26coQL7B7soz3CiiIAE2cnefp7z2BmzKfTTOZ1oklGKHFGMT0xw8F9h+gd6uaK67YvOTY/u8DcTFCKfPp7zzBxdrIs13SuWqqaJCUlJL1L0kD4eBvwSeAIcEDSTcA/Ae83sz+sZmwuXg2NDVz+su1rXoHCvaizt4OrbtyJJE5PTnN8bHzlJ0U0PjPL0yPBAvKNzQ30DnWTTCZ59uw5zk2/WHrtG+phy45BJHHVjTuXjNl08UpiJW/1JI6S5BuAxyVNAd8h6JjzagumMvkQwcKbvydpMmd7ZQxxOrfuNYS9S7du6uTKzeVrt29IJmlrDEq0qYYUfVt7AWhraqSxyALKDWXo6erV8eURjJP06tYoqvq13cyyBEmy2PFXVTEc5+qKJMyySGv/btza2FBweMdgR9uS+WgLmRibJJFM0NYZ9H41M0YmpuhrbyW5wnN/sPcptu0eYlN/9XrKbkz1VyIsVS20STq3LixkMpydmo47jJJNLZxmdO6psr1eNptlfnb+wuPTJ85w6JFnAXjh6GlOHRkp+Lzx0+eXtE2ms1lOnZ9gIcKQjR0vGfZVQ1xVeQOQcxFNzs1zfGz8wvi/9aY51U3DMuMiV+vsqXOMHBulbecA6WyG4YFO2rqC12/paKZYQWXbrqEljxuSSV62bUuka/oCzeWxWN3qVuZJ0rmIultb6G5dvzMkJpUimVz7n/yZ2cO0pnrp3dJNZ28HaUHWjIbGhgvtjouTG7ja5ROcR+NJ0jm3Ki2pTaQSzUgimUowNTqxZD3LRaOTU0xNzcCZGS65cuuKbZWuenyprOg8STpXBWazkD4OqcvL0nEmTq2p3gu/z03Pc/LwC3T2dZBMLu3VmpCCxJhMIEWbtSeK6YkZzOxCxx9XGi9JRuNJ0rmqSIBSBK1BG0drRwvX7NkNBKuRzEzOXlh5pKetNWi/LfOMkedGxslmsp4kXVV4knSuCqRGSO2IO4yKmF1IMzE7R2p6gbEXxiu+PNfQ5Zsr+vr1QFB3c7CWypOkc3Xq/PzzGFm6Greu+rmnjoxgZmzZMcjM/AKjk1NctWWgYNukq0Xmq4BE5EnSuRpw6sgIs1NzbL/mkqpdsylZ+njD1s4Xe/l2t7XQ3VZ6r9/5dJqzUzP0tLVemK3HzDh2dpwtXe00rrBUl1s9yUuSUa3vHgTObRCtHc1Vn3KtKdlBU7K0oRqdPR00NKbKEvPY9Cz7jj7H6cmpC/vMYDadJuMT3ldMgmzJWz3xJOlcDUg1NiC0bpaSeu7ceR781hOMvbD2SdMHO9v5iWt3s3VT54V9iYTYPdhHSxnmey1FJp0hG3FJMrexeT2GK6v5dJq5dIaOZl/wdjVaO1q47KWXxh1GZJtamrn+5qvpaS9PD9OoCztXy9EnT9Dc1rRhOwkJI+njJCPxJOnKamx6ltOTU1w7NBh3KK6C2poaaYu4ruVaTI1PkWxI0dzaxEImQ1KJggl17IVzmBk9m7vLct1tu7aQSG7cijbh4ySj8iTpymqws53BTp+Aup6YzUN2FCWHVj55lU6fOEtzWxObtw9w4NRpettaGcqpll2UyWSDhswyaWyu/BeAuPncrdF4knTOrY3NQ/YclthS1pl1gCW9fXcN9JEqUrrrG+op63WdW+RJ0jm3Jkq0Q+LqSOeePztB+6aV15wspKnBP67KRZhXt0a0cSvdnXM1JZPJcPSJE8xMzMQdigOSspK3euJfzZxzVZFMJrnmpt2+GkgNENTdeMdSeZJ0zlWNJ8haYT7jTkT+P9Y5VxVjL5xjYX4h7jCcWxUvSTrnquKFo6dJNiRp6IlnFh33Ih8nGZ0nSedcVVz58p1leZ3RySlaGxtpjWnKuo3CVwGJxqtbnXPrytmpGabn5+MOo6D0QprHv/UDZiZruwevFLRJlrrVEy9JOueqbmx6hnPTs+zoW/00crsG+yoQUXmkGlJs3TVEU2vtz12c9JJkJF6SdM5VXUMiQVO4duRKzIz5ufXT4ad7oMt78W4g/i/pnKu69uamgnOwFnJuZJyn9h+ucET1ZXGcpK8nuTKvbnXO1bRNA120drbEHcYG4+Mko/Ik6ZyraZJoaqn9Nr71JBgC4m2SUXh1q3POOVeEJ0nnXCQnxsYZmZis+HXMjNnpuYpfp5hMJsMzjx5lbia+GKohISt5qyeeJJ1zkTSmkjQmK99CM3F2kqf2H8bKuIjyakiiua2JRJG1KzeCxaWySt3qibdJOuciGehor8p1Onqa2P3DvWVfwDmqRCLB0OWbY7l2tXibZHSeJJ1ztcUmaUyNAINxR7KshewsKTUirc8SZ71Vm5Zqff7rOuc2LCV6UMNL4g5jRWfmDjGTGYs7DFdhVU+Sku6U9Kyk85JGJN0rabjAeR+VZJJ+rtoxOudqw/jMLJOztdmBpr/5SlqSPXGHUZLF6tZSt3oSR0nyC8B1ZtYJbAeOAX+Ve4KklwOvB56venTOuZoxNj3DuZnZWK5tZjz72NGik5UnlYqt3bQcPElGU/U2STM7kPNQQBbYfWGH1AR8FrgN+MvqRuecqyXbe1c/AXq5BL1cmzdkL1cBifWb36sqlo47kt4G/DHQCaSBX805fAfwdTPbu56/pTnn1r8tl9V256HS1V+JsFSxJEkzuwe4R9Jm4BeBxwAk3QC8BbguyutIuo2gxMnw8EXNms7VlUwmQzIZbWUN51w0sdYjmNkp4NPAlyQNAJ8H3mlmkab1MLO7zewGM7uhv7+/kqE6V/MO7jvMmedrr7fl+TMTPLn3YNxhuBzBKiClb5GuIb1O0kFJhyS9t8DxJkl/HR7/jqTtOcd+I9x/UNJrc/YfkfSYpO9L2r/6d756tTBOMgW0AQPANcD/yalm7Qb+WNLrzexnY4rPuXVhx7WX0NjSGHcYF2nramXbrqG4wyi782cnaOtqXZ+ld0Gygq1ZkpLAJ4F/B5wA9km6z8yezDntF4ExM7tC0q3AR4G3SroauJUgHwwBX5O0y8wy4fNeZWajlYt+qaqWJCUlJL0rLDUiaRvBjTwCPA0ME1S1Lm4ngfcB765mnM6tRy3tLTX5gZ1MJens7Yg7jCXSmbVNrXZueobH/vUZpsanyxRRdQmRXMMWwcuBQ2b2jJnNE4xgeFPeOW8C/jz8/V7gFgUlpDcBf2Vmc2b2LHAofL1YxFHd+gbgcUlTwHeAaeDV4Q05kbsBGYJvGmdiiNM5VwEL8wuxXn92Ic3Dx08yu5Be02tc8tJL6eypreRfRX2S9udst+Ud3wocz3l8ItxX8BwzSwPjQO8KzzXgq5K+V+CaFVHV6lYzyxIkyajnb69cNM65apsan+LQ949w7U1XkkzFU+ptbkhx1eZ+mhtK//jb3LX+k+MaS0ijZnbDMscLFTfzu9MWO2e5595kZifD2sj7JR0ws39eOdzSbbwBQM65mtXa2crO6y+LLUEu6miu70WcBSSlkrcITgCX5DzeRtB8VvAcSSmgCzi73HPNbPHnCPBFqlAN60nSOVc1kmjtaIk7DAckUMlbBPuAnZJ2SGok6IhzX9459wG/EP7+0wTj4y3cf2vY+3UHsBP4rqQ2SR0AktqA1wCPr/lGrKAWerc655yromDu1sp1bzWztKR3AV8BksDnzOwJSb8F7Dez+whmVvuCpEMEJchbw+c+IelvgCcJJpt5p5llJA0CXwxHP6SAe8zsHyv2JkKeJJ1zzpWdmX0Z+HLevg/k/D5LMHlMoefeCdyZt+8Z4GXlj3R5niSdc64ORaw2rXueJJ1zrs6IyB1w6p4nSeecq2Hnz0xU5HUT3m8zEk+Szrm6NnJ8lMxCpmZX/Ag6fJZXMHerlySj8CTpnKtrLe3NZNKZlU+MSVdfZ9wh1DVPks65utbR3X7RPsuchkQXwRC/jUgk5dWtUXiSdM65fNlToAbYoEkyqG71JBmFKlHfHQdJp4GjZXipPqBqy7DEyN/nxlEP7xHq+31eamZlWzRX0j+G1ynVqJm9rlzx1LINkyTLRdL+FSbu3RD8fW4c9fAewd+ni4eXt51zzrkiPEk655xzRXiSvNjdcQdQJf4+N456eI/g79PFwNsknXPOuSK8JOmcc84V4UnSOeecK8KTZAHhith/KulpSROSjkn6mKTmuGNbK0nJ8L2cDt/b/5W0lvFSNUfSRyU9Iem8pJOSPi2pJ+64KkVSQtJDkkzStrjjqQRJr5b0bUmTkkYlfSrumMpJ0mZJfx3+XY5J+rqkqq+d6C7mSbKwFMFg3jcCm4BXAj8OfDTOoMrkvcCbgFcAix+oX4gvnIrIAD8H9BIs0roN+HysEVXWe4DpuIOoFEk/BtwL3EXwb7oN+EycMVXAp4AeYDcwCOwHviT5elZx8447EUl6J3Cbma3rb3eSjgK/ZWafDR9fDhwCdpjZkThjqxRJPwHcY2ZdccdSbpJ2Af8AvBl4BLjEzE7EG1V5SdoLfNPM3ht3LJUi6VHgj8zs7vDxbuAA0G9m9TDLUM3ykmR0twCPxh3EWkjqAoaB7y3uM7PDwHngpXHFVQXr/t+uEEkJ4HPAfwfOxRxORUhqA14OzEp6OKxqfUDSRpuR5mPAmyX1hc06twHf8gQZv7pLkpL+LGy7KbZ9qMBzbgduBn6z+hGX1eKaO+N5+8/lHNtQJL0Z+CXgV+KOpQJ+BThlZv8v7kAqqJvgc+qXgP8EDAFfBb4saVOMcZXbg0ASOA1MAj9F8J5dzOouSQLvAvqX2T6ce7Kk9xC04/24mR2rbqhlt7jEeX614yaC0uSGIuktwKeB/2BmD8cdTzlJugL4NYL/zxvZ4v/Zz5vZo2Y2D3wEaAD2xBdW+YQ1Al8DniL422wF7gT+RVJtrgRdR+ouSZrZpJmNLrNd6AAh6X8SfBD9qJk9Hl/U5WFm54BjwPWL+yRdRlCK3FDVkZLeDvwp8EYz+0bc8VTAzQRf6h6XNAosfgl4VNIvxxdWeZnZOHAEKNR5YqN0qOgBdgB/aGbnzWzezD5D8Pl8Y7yhubpLklFJ+hjwXwgS5MG44ymju4Ffl7RDUidfADFuAAAF1ElEQVRBj92vbKROO5LeTdAT8rVm9mDc8VTI3wCXA9eF2xvC/a8B/iKuoCrkU8DbJV0tKUXQBjsLPBRvWOURtjs+BfyypDZJKUn/GegAHos3OueLLhcg6VLgvwHzwL/m9MI+ambXxBZYefwOQTvPPqAJuJ9guMRG8gkgDXwjtwe9mV28BP06FdZ45NZ6LP4tnzKzyXiiqpi7CBLG14Fmgl68rw9LmRvFTxJ03jlKUJV8CHiLmT0Ta1TOh4A455xzxXh1q3POOVeEJ0nnnHOuCE+SzjnnXBGeJJ1zzrkiPEk655xzRXiSdM4554rwJOnKRtIdRebD/VqR828Pj9+bt3+5+XV/Jue8B4qc0xwevyV8fHPe678j3P/+vP07w/1vq8a9kNQp6eOSjkialvSD8J4o55x+SX8g6buS5iUdiXDti+5rnPfCufXMJxNw5TYOvK7AviUkDQAfIJjQOd9vA3+St+8dwNsI5rjM9Q3gfXn75sKf3yFYW3IP8K2c43sIBuLnz/25+Lhcs/SsdC/+DPgRgvgPAa8Cfg8Q8PvhOVuBtxK8l+8DA8tdcJn7Gve9cG5d8iTpyi1tZt+OcN5HgL8HLsk/EC7fdTh3n6TPAl8zs/wP/7PFrmdmk5Ie4+IE8G8Jpm57qyTZizNq7AGeM7OjEeKPoui9kNRKsPj17YtrCAJfl3QNcCsvJslHzWwwfM5dwE+vcM2C97UG7oVz65JXt7qqk/TDwH8kWF0lyvkvBa4G/rKEyz1IkAgWX2uAYM7TTxBM7H5Vzrl7qN58oCmCv79Cy5ZdqG41s2zUF4xwX2v1XjhXszxJurILJ2jO3XLb2AT8EfC7ZvZcxJe8lWBC678rcOw1YXvetKSvhAk110PAQLi0FARJ4jkzO0Cw8smeMK4ugkRc1urFYvfCzM4TTFL+PyRdJ6lD0r8nSHKfLOE6Ue5rrPfCufXIk6Qrt15gIW+7Jef424HNBJNWR/VW4MthYsn1TYKFh19LsJL7MMEafNtzzlksDe3J+bk3/H1vzv4bCf4eypkYVroXPw8cIJiw+zxwH/DbZvbnJVwryn2N8144ty55m6Qrt3Hg1Xn7DsKFEsqHgXeb2UyUF5P0CuAy4Nfzj5nZB3Me/kvYc/QAcHu4YWZHJD1HkAD+Ivz5xfA53wZ+M/x9sQPL95eJJcHSL5bZFapDi96L0O8DryBIcM8QrBF5h6RRM/vsMq+bH1ek+1rOe+FcvfAk6cotbWb7ixx7H3Ac+KqkTeG+FNAQPp4ws0zec24lWJ3+71e6sJmdkvQgOYtKh/YCeyQ1AD9EsB7h4v7dknoJEsN3zSy9zCU+AOQm5v8F3LHM+UXvRVgt/A7gNWZ2f7j7nyV1AHdJ+vwq2iNXc1/LdS+cqwueJF017QZuAMYKHBsDXknO8ISw5PYW4O+iljxD+eu/PQT8FPCjBCXBRwDM7JCk08BNBCW6P1jhde8GvpTz+OQqYsp3Zfgzv7T2CLCJoKq20PCYQlZzX8t1L5yrC54kXTW9H/h43r6PE1RLfpCLV2H/EYJxgpF6tUoaJPiQ/1zeoQcJEsJ7gIfNbC7n2LeB/0qwqO+yvTnN7CRrS4y5FodWXA98JWf/DwFTwOgqXms197Us98K5euFJ0lWNmT2ev0/SOWDUzB4o8JRbgTPA/fkHwurKjwB/S5BwhoHfALJcnDAeAWaA1/Pi+MNFe4E7CUqfe6me/eH2OUkfAJ4laJO8HfhEznhFJC2OjdwFtOY8/qaZnV7lfa3Fe+FczfIk6WqSpBTwZuDeIm1jZwjGE36EoGpyAngA+EkzO5Z7opktSNpHUDLN//DfG77Ok2ZWqLqyIswsI+mNwIcI2jr7CZL9HcD/zjv9b4s8fhXBe17NdWvuXjhXy5TzhdU555xzOXycpHPOOVeEJ0nnnHOuCE+SzjnnXBGeJJ1zzrkiPEk655xzRXiSdM4554rwJOmcc84V4UnSOeecK8KTpHPOOVfE/weD6TmjDDdenwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_cmd_with_fits.plot(data_fits_file=\"M31-B09-EAST_chunk.st_with_sourceden_cut.fits\", \n", + " beast_fits_file=\"M31-B09-EAST_chunk/M31-B09-EAST_chunk_stats.fits\", \n", + " mag1_filter=\"F475W\",\n", + " mag2_filter=\"F814W\",\n", + " mag3_filter=\"F475W\",\n", + " param=\"Z_Best\", #metallicity\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Completeness Plot\n", + "This next plot shows the completeness (how many AST sources were detected out of the total number of AST that exist for that parameter bin) for each parameter, although it should be noted that the *distance* parameter was purposefully left out because all the sources have the same distance value, and thus the plotting code isn't sure how to handle it." + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "Auto-detected type: hd5\n", + "Completeness from HST_WFC3_F475W\n", + "plotting Av and Av\n", + "plotting Av and Rv\n", + "plotting Av and logA\n", + "plotting Av and f_A\n", + "plotting Av and M_ini\n", + "plotting Av and Z\n", + "plotting Rv and Rv\n", + "plotting Rv and logA\n", + "plotting Rv and f_A\n", + "plotting Rv and M_ini\n", + "plotting Rv and Z\n", + "plotting logA and logA\n", + "plotting logA and f_A\n", + "plotting logA and M_ini\n", + "plotting logA and Z\n", + "plotting f_A and f_A\n", + "plotting f_A and M_ini\n", + "plotting f_A and Z\n", + "plotting M_ini and M_ini\n", + "plotting M_ini and Z\n", + "plotting Z and Z\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_completeness.py:196: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.\n", + " gs.tight_layout(fig)\n" + ] + } + ], + "source": [ + "plot_completeness.plot_completeness(physgrid_list=file_dict[\"modelsedgrid_trim_files\"],\n", + " noise_model_list=file_dict[\"noise_trim_files\"],\n", + " output_plot_filename=\"completeness_plot.pdf\",\n", + " param_list=['Av', 'Rv', 'logA', 'f_A', 'M_ini', 'Z'],\n", + " #, 'distance'],\n", + " compl_filter='F475W',)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Chi Squared Plot\n", + "Make a histogram of the best chi2 values (chi2=1 and the median chi2 are marked). Note that there is no plot of reduced chi2, because it is mathematically difficult to define the number of degrees of freedom. Inputs are the BEAST stats file and optionally the number of bins to use for the histogram." + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "plot_chi2_hist.plot(beast_stats_file=\"M31-B09-EAST_chunk/M31-B09-EAST_chunk_stats.fits\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There's another cool plot for plotting the individual fits of stars, but unfortunately, this code works with a file that only gets generated when using multiple subgrids (remember how we checked that we had a subgrid = 1 back in Step 2?). If it had worked with the code below, it would have made a multi-panel plot that shows the PDFs and best fits of each parameter for any given star, as well as the SED (similar to Figure 14 in Gordon+16)." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "#plot_indiv_fit.plot_beast_ifit(filter=datamodel.filters, waves, stats, pdf1d_hdu, starnum=0):" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Sorry I wasn't able to show you all that last plot. But thanks for reading through this notebook til the end. Hopefully you found it to be somewhat helpful and if you have any suggestions for how to make it better, you can find me at cwlind@jhu.edu.\n", + "\n", + "Thanks,\\\n", + "Christina Lindberg\\\n", + "(she/her)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/M31_Example/.ipynb_checkpoints/M31_workflow-checkpoint.ipynb b/M31_Example/.ipynb_checkpoints/M31_workflow-checkpoint.ipynb new file mode 100644 index 0000000..467e573 --- /dev/null +++ b/M31_Example/.ipynb_checkpoints/M31_workflow-checkpoint.ipynb @@ -0,0 +1,784 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Source Density Mapping Example\n", + "\n", + "We'll be walking through a standard BEAST workflow in this example, using some M31 data as an example.\n", + "\n", + "Before we do anything though, we have to import the following packages. This seems like a lot but they are all here to make our lives easier down the line. And running them all as the first cell means that if our kernel ever crashes halfway through, we can just reimport everything at once rather than stepping through the cells individually." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n" + ] + } + ], + "source": [ + "import h5py\n", + "\n", + "import numpy as np\n", + "from astropy import wcs\n", + "from astropy.io import fits\n", + "from astropy.table import Table\n", + "import tables\n", + "\n", + "import glob\n", + "import os\n", + "import types\n", + "import argparse\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from beast.tools.run import (\n", + " create_physicsmodel,\n", + " make_ast_inputs,\n", + " create_obsmodel,\n", + " run_fitting,\n", + " merge_files,\n", + " create_filenames,\n", + ")\n", + "\n", + "from beast.plotting import (plot_mag_hist, plot_ast_histogram)\n", + "from beast.tools import (\n", + " create_background_density_map,\n", + " split_ast_input_file,\n", + "# subdivide_obscat_by_source_density,\n", + "# cut_catalogs,\n", + "# split_asts_by_source_density,\n", + "# setup_batch_beast_trim,\n", + "# setup_batch_beast_fit,\n", + " )\n", + "\n", + "import importlib" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step -1. Obtain data file and convert to fits file\n", + "\n", + "Sometimes data is given to us in HDF5 file formats. While these are great for storing data in different heirarchies, it's a little hard to work with directly, so we would have to convert our HDF5 file to a FITS file.\n", + "\n", + "Thankfully, our data is already in a FITS format so we don't need to worry about this." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1a. Make magnitude histogram\n", + "\n", + "Step 1a is to make histograms of all the magnitudes of all the stars in all the different filters. This is done so that we know where the peak of the histogram is. This peak will then be used later when we make source density maps. Essentially what happens is that, for the density maps, we only count objects within a certain range, currently set to mag_cut = 15 - (peak_for_filter-0.5). So if the peak was 17.5, then the objects that would be counted would have to be in the range between 15 and 18. \n", + "\n", + "The reason we only count brighter sources is because dimmer sources tend to not be properly observed, especially as the magnitudes near the telescope limit. There will always be far more dim sources than bright sources, but if we know how many bright sources there are, then we can extrapolate as to how many dim sources there should be, and probably get a better understand from that than if we were to try and actually count all the dim sources we detect. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "gst_file = \"./M31-B21-WEST_cutout.st.fits\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see what type of data this fits file holds by making a table." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "Table length=205331\n", + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
F160W_STF160W_GSTF475W_STF475W_GSTF336W_STF336W_GSTF814W_STF814W_GSTF275W_STF275W_GSTF110W_STF110W_GSTXYRADECCHI_GLSNR_GLSHARP_GLROUND_GLCROWD_GLF475W_COUNTF475W_SKYF475W_RATEF475W_RATERRF475W_VEGAF475W_TRANSF475W_ERRF475W_CHIF475W_SNRF475W_SHARPF475W_ROUNDF475W_CROWDF814W_COUNTF814W_SKYF814W_RATEF814W_RATERRF814W_VEGAF814W_TRANSF814W_ERRF814W_CHIF814W_SNRF814W_SHARPF814W_ROUNDF814W_CROWDF275W_COUNTF275W_SKYF275W_RATEF275W_RATERRF275W_VEGAF275W_TRANSF275W_ERRF275W_CHIF275W_SNRF275W_SHARPF275W_ROUNDF275W_CROWDF336W_COUNTF336W_SKYF336W_RATEF336W_RATERRF336W_VEGAF336W_TRANSF336W_ERRF336W_CHIF336W_SNRF336W_SHARPF336W_ROUNDF336W_CROWDF110W_COUNTF110W_SKYF110W_RATEF110W_RATERRF110W_VEGAF110W_TRANSF110W_ERRF110W_CHIF110W_SNRF110W_SHARPF110W_ROUNDF110W_CROWDF160W_COUNTF160W_SKYF160W_RATEF160W_RATERRF160W_VEGAF160W_TRANSF160W_ERRF160W_CHIF160W_SNRF160W_SHARPF160W_ROUNDF160W_CROWDEXTCHIPMAJAX_GLOBJTYPE_GLF475W_FLAGF814W_FLAGF275W_FLAGF336W_FLAGF110W_FLAGF160W_FLAG
boolboolboolboolboolboolboolboolboolboolboolboolfloat64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64int64int64int64int64int64int64int64int64int64int64
FalseFalseTrueTrueFalseFalseTrueTrueFalseFalseFalseFalse1776.9200000250678111.5400000013487411.38694615196245342.1989799610847241.741353.0-0.2540.0270000000000000030.031788000000.0119921.14.6299999999999995e-071.7699999999999999e-0915.83599999999999916.150.0041.25262.2-0.0240.0180000000000000020.0121300000000.0333344.01.57e-065.420000000000001e-0914.50914.5020.0041.85290.1-0.0120.0289999999999999980.0090000000000000010.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001951000000
FalseFalseTrueTrueFalseFalseTrueTrueFalseFalseFalseFalse1922.93000002574041116.99000000151111.40054678770081942.208853190488822.011267.2-0.3120.030.040999999999999995508000000.097384.642.9899999999999996e-071.99e-0916.31216.8130.0069999999999999991.73149.8-0.0340.0180000000000000020.0161460000000.0375732.81.77e-066.53e-0914.38214.3870.0042.04270.50.0050.0170.0180000000000000020.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001801000000
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue234.910000024985952446.620000001614211.43933556535987342.200810702923792.463920.6-0.050.0139999999999999990.073268000000.054944.231.57e-071.4300000000000002e-0917.00817.2110.012.27110.1-0.0750.0330.032354000000.096353.574.2e-071.2800000000000001e-0915.94215.9330.0031.11327.3-0.0110000000000000010.0240.0471290000.0304.814.440000000000001e-084.81e-1018.382nan0.0121.8992.2-0.0409999999999999950.0230.00612000000.02313.221.3800000000000002e-074.2999999999999996e-1017.15nan0.0031.8321.3-0.0240.0150.006999999999999999169000000.048374.125.34e-075.15e-1015.681nan0.0012.221037.7-0.0460.0370000000000000050.14800000000000002156000000.046501.097.76e-074.12e-1015.275nan0.0011.21885.2-0.04-0.0010.146011501202002
FalseFalseTrueTrueFalseFalseFalseFalseFalseFalseFalseFalse2036.7200000260377178.5000000008387811.38508565187309842.202441121370063.211512.9-0.0680.0610.01111000000.028257.256.52e-081.75e-0917.964000000000002nan0.0289999999999999983.2837.2-0.0980.0420.0030.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.0011001000000
FalseFalseTrueTrueFalseFalseTrueTrueFalseFalseFalseFalse1976.700000024361633.150000001450711.39262952080721542.205492821186892.541730.50.0040.0590000000000000040.002118000000.027629.486.94e-087.620000000000001e-1017.89618.0740.0121.3891.1-0.0289999999999999980.0130000000000000010.004146000000.046486.861.7699999999999998e-071.0400000000000001e-0916.88316.8740000000000020.0061.05170.5-0.006999999999999999-0.0390.0020.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.0011001000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1922.78000002478621120.530000001714411.40060202515979542.2088805036592414.74580.70.1360.2130.794-2088263.0906.05-1.2e-098.989999999999999e-10nannan9.9995.17-1.40.00.00.011100000.055734.841.3400000000000001e-084.79e-0919.684nan0.387999999999999967.562.8-0.8950.357000000000000041.81199999999999980.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001901000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1776.810000023902108.2600000013346711.38689773891995642.1989518565664310.46357.0-0.1090.4451.0654230000.0-2949.382.49e-091.58e-0921.5122.0819999999999970.68900000000000016.911.6-0.3110.2171.64916600000.043917.842.0099999999999998e-085.820000000000001e-0919.24419.2570.3159.93.4-0.5830.6691.1990.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001651000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1922.51000002467031113.710000001688511.40050178964176642.2088216158828517.35471.70.5730.3370.86900000000000013470000.0-2525.232.04e-096.78e-1021.726nan0.3613.333.0-1.1210.4981.466-887249.844637.52-1.1e-095.14e-09nannan9.99910.82-0.20.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001751000000
TrueTrueTrueTrueTrueTrueTrueTrueFalseFalseTrueTrue52.000000024349221384.150000001783211.42527548516140942.190061383721542.062897.6-0.0010.0180000000000000020.00211200000.05220.696.55e-091.1499999999999999e-1120.45921.0980000000000030.0021.32567.5-0.0069999999999999990.0080.071600000.024266.998.109999999999999e-089.480000000000001e-1117.72717.7550.0010.97855.6-0.010.010.0-300.943.26-1.1e-111.8800000000000002e-11nannan9.9990.74-0.60.00.00.076677.081.039e-104.2e-1122.615nan0.0511.9421.4-0.0010.0289999999999999980.052900000.024705.161.67e-071.42e-1016.945nan0.0011.321173.4-0.0010.0139999999999999990.00869200000.029082.283.43e-072.23e-1016.16nan0.0011.121537.4-0.0180000000000000020.0050.009000000000000001011301000000
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue237.32000002463772449.090000001340711.43934632215778742.200857951882575.272322.8-0.0559999999999999940.040.2857700000.05785.543.3700000000000004e-088.42e-1118.68200000000000219.0140.0032.68399.8-0.0409999999999999950.0289999999999999980.23800000000000002101000000.042804.671.1900000000000001e-071.2800000000000001e-0917.30817.3020.0121.8893.4-0.0310.0270000000000000030.287132188.391.934.53e-092.12e-1020.859nan0.0512.4121.4-0.080.160.206000000000000022060000.0930.212.36e-084.900000000000001e-1019.069000000000003nan0.0234.6848.2-0.0590000000000000040.089000000000000010.11349100000.026101.821.55e-079.4e-1017.026nan0.0069999999999999997.03164.5-0.0289999999999999980.0020.51746000000.027541.752.2899999999999997e-078.59e-1016.602999999999998nan0.0043.59266.2-0.0320.1060.6809999999999999011301220002
.....................................................................................................................................................................................................................................................................................................................
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2009.35000002479052062.93000000172911.413909768802842.21756927573031.073.90.1350.5160.6822316.82983.761.36e-128.09e-1329.66630.0510.64599999999999991.071.70.23-0.0279999999999999971.0884914.44806.065.54e-121.84e-1228.14228.1390.3611.163.0-0.013000000000000001-0.69400000000000010.843103.236.584.34e-121.2900000000000002e-1128.406999999999996nan3.2390.810.30.4153.55800000000000030.091-498.594.46-5.9e-125.54e-12nannan9.9991.16-1.10.0480.3770.0852135.213186.456.730000000000001e-128.359999999999999e-1227.93nan1.3491.340.8-1.1470.0682.778-1226.116097.25-6.0999999999999995e-121.9100000000000004e-11nannan9.9991.02-0.3-0.905-0.0152.401351200202
FalseFalseFalseFalseFalseFalseTrueTrueFalseFalseFalseFalse2322.54000002598832305.430000001254511.41411736213807342.223067061144091.013.8-0.0520000000000000050.7050.103000000000000011901.62927.851.1100000000000001e-126.97e-1329.88430.4519999999999980.681.01.6-0.2530.7670.1067779.34785.928.75e-121.64e-1227.64527.6580.2040.975.30.0139999999999999990.92299999999999990.084-534.922.68-1.8e-111.24e-11nannan9.9990.91-1.40.104000000000000010.330.001-597.574.52-6.799999999999999e-124.33e-12nannan9.9990.91-1.60.2170.337999999999999970.0165373.519030.721.7e-117.429999999999999e-1226.927nan0.476000000000000031.22.30.22899999999999998-0.462999999999999971.126440.915541.832.1899999999999998e-121.53e-1129.149nan7.5970.990.1-0.317-2.5592.116011751200000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1603.04000002479072178.73000000146311.42015596275282342.2139612073953861.143.7-0.30.4831.5894940.52779.02.8900000000000004e-127.68e-1328.849nan0.2891.03.8-0.1680.2720.738-632.44575.1-7.200000000000001e-131.85e-12nannan9.9991.2-0.4-0.630.1381.4269999999999998-1258.132.47-4.5e-111.8899999999999997e-11nannan9.9991.02-2.30.00.00.0-777.329.55-9.1e-125.51e-12nannan9.9990.99-1.70.00.00.04653.813329.481.4699999999999998e-119.87e-1227.084nan0.7311.911.5-0.1510.2072.2525304.516044.932.63e-111.74e-1126.45nan0.721.021.5-0.530.22.6060000000000003011452000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1966.66000002552661904.880000001644511.41198922453343742.2157962931884751.063.7-0.1460.5420.054771.32912.52.79e-128e-1328.88428.2370.3111.093.5-0.294-0.2670.033643.54638.397.269999999999999e-131.7200000000000001e-1230.34630.2012.5691.140.4-0.1310.92799999999999990.049-165.65.51-5.2000000000000005e-121.2900000000000002e-11nannan9.9990.9-0.41.1242.3160.01293.259.291.19e-124.11e-1229.814nan3.7630.870.3-0.2071.0570.0139999999999999991447.713042.054.56e-124.450000000000001e-1228.351999999999997nan1.0580.951.0-0.011000000000000001-3.9451.06-2705.815990.34-1.2999999999999999e-111.35e-11nannan9.9990.78-1.01.111-0.981.584011651000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2359.90000002616532053.20000000211111.40988542474495142.221420435706091.063.70.1910.4860.0842665.52875.351.56e-127.650000000000001e-1329.5229.7520.5341.12.00.104000000000000010.9020.1263907.74739.954.410000000000001e-121.83e-1228.3928.3810.451.182.40.0279999999999999971.35300000000000020.285-299.811.8-1.1e-111.19e-11nannan9.9990.95-0.90.43700000000000006-2.50699999999999970.017-215.890.1-2.6000000000000002e-124.68e-12nannan9.9990.95-0.50.534-0.9320.0090000000000000010.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001851000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1595.70000002525422274.860000001389411.42169244597452342.214666008134551.073.60.0991.0910.523490.52898.232.0299999999999996e-127.380000000000001e-1329.2329.3710.393999999999999961.022.80.0512.0290.5343787.14732.574.269999999999999e-122.0399999999999998e-1228.42428.4140.521.32.10.44799999999999995-0.226999999999999980.6559999999999999-379.219.31-1.2999999999999999e-111.2999999999999999e-11nannan9.9990.98-1.0-0.792-0.3320.07400000000000001-408.475.66-4.6e-124.48e-12nannan9.9991.0-1.0-0.100999999999999990.218999999999999970.015604.013353.221.9e-125.3e-1229.301nan3.02399999999999961.010.4-3.2820.223.4492734.316155.881.3599999999999999e-111.39e-1127.168000000000003nan1.1120.891.0-0.389-0.166999999999999981.29101101000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2277.6700000262062275.090000001511311.4141542715643242.2223154572359361.113.8-0.238000000000000020.9710.19253.72986.561.49e-137.32e-1332.0732.7575.3481.110.2-0.031-0.4240.3063666.94732.644.12e-121.76e-1228.46228.5210.4651.122.3-0.5479999999999999-0.0409999999999999950.514-566.525.37-2.0000000000000002e-111.19e-11nannan9.9990.76-1.70.2284.0390.078294.874.153.39e-124.469999999999999e-1228.676nan1.4350.910.8-0.2370.69200000000000010.0279999999999999976375.019026.22.01e-115.88e-1226.741nan0.3170.93.4-0.12-0.040.8554936.515663.152.45e-111.53e-1126.526999999999997nan0.680.811.60.0850.5121.201901000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2493.05000002608361857.700000000733311.40545297020719142.221312343545061.143.50.241000000000000020.71.0312782.62969.721.6299999999999997e-121.43e-1229.471999999999998nan0.95700000000000011.281.1-0.5160.57200000000000010.667-329.34815.9-3.9e-133.2499999999999997e-12nannan9.9991.41-0.10.1930.357000000000000040.596-474.46.58-1.6e-111.33e-11nannan9.9990.91-1.20.00.00.01344.070.531.5499999999999998e-114.6e-1227.025nan0.322999999999999950.763.40.291000000000000040.5040.0260000000000000020.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.0011351000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2301.9100000244261932.400000001521711.40869802179464942.219780892091981.053.6-0.0440000000000000041.0021.1922739.92968.811.61e-127.75e-1329.48529.5969999999999980.5241.02.1-0.283000000000000030.0191.0783201.84719.943.6200000000000003e-122.0099999999999997e-1228.60328.5930000000000040.6031.231.8-0.181000000000000021.1241.283000000000000178.94.262.81e-121.1499999999999999e-1128.878nan4.4550.890.2-0.148000000000000020.0610.012-215.386.27-2.3e-124.25e-12nannan9.9990.94-0.50.5682.6350.0870.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001251000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1870.32000002522361975.530000001819211.4141241731325342.215294543599380.983.70.1290.6161.3473019.22948.781.77e-127.979999999999998e-1329.38199999999999829.0819999999999970.491.122.20.3970.6740.608771.54763.368.66e-131.55e-1230.15630.1019999999999971.93699999999999980.870.6-0.2090.21.0590000000000002245.022.529.1e-121.32e-1127.601999999999997nan1.5710.710.7-0.040.6910.006999999999999999-199.358.62-2.2e-124.32e-12nannan9.9990.9-0.50.1840.346000000000000030.008-1360.613188.47-4.3e-126.5700000000000005e-12nannan9.9991.15-0.70.00.00.01238.116034.66.1600000000000004e-121.54e-1128.026nan2.72300000000000030.830.40.43700000000000006-0.1021.735011351200000
" + ], + "text/plain": [ + "\n", + "F160W_ST F160W_GST F475W_ST F475W_GST ... F336W_FLAG F110W_FLAG F160W_FLAG\n", + " bool bool bool bool ... int64 int64 int64 \n", + "-------- --------- -------- --------- ... ---------- ---------- ----------\n", + " False False True True ... 0 0 0\n", + " False False True True ... 0 0 0\n", + " True True True True ... 0 0 2\n", + " False False True True ... 0 0 0\n", + " False False True True ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " True True True True ... 0 0 0\n", + " True True True True ... 0 0 2\n", + " ... ... ... ... ... ... ... ...\n", + " False False False False ... 2 0 2\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0\n", + " False False False False ... 0 0 0" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hdul = fits.open(\"M31-B21-WEST_cutout.st.fits\")\n", + "Table(hdul[1].data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see, there's a lot of columns and even more rows. For plotting the magnitude histograms, we're going to be interested in any column that contains the name VEGA. These are the columns with the magnitudes for each filter." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/christina/anaconda3/lib/python3.7/site-packages/beast/plotting/plot_mag_hist.py:52: RuntimeWarning: invalid value encountered in less\n", + " np.where(data_table[filt + \"_VEGA\"] < 90)\n" + ] + } + ], + "source": [ + "# this if statement just checks if there's already a histogram file\n", + "if not os.path.isfile('./data/'+field_names[0]+'.gst_maghist.pdf'):\n", + " peak_mags = plot_mag_hist.plot_mag_hist(gst_file, stars_per_bin=70, max_bins=75)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can check out the results for the histograms in the file **./*_maghist.pdf**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1b: Make source density maps" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we'll be creating source density maps. These are maps of our data field colored such that they show how many stars/sources there are in each degree field. The standard size is 5 arc seconds squared, but because this is a small area, I'll plot every 1 arc second squared, just so that there is some resolution This decision can easily be changed by modifying the **pixsize** variable below." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# the list of fields (we only have 1 so far)\n", + "field_names = [\"M31-B21-WEST_cutout\"]\n", + "\n", + "# distance moduli and velocities\n", + "# http://adsabs.harvard.edu/abs/2013AJ....146...86T\n", + "# TODO: these values needs to be changed at some point\n", + "dist_mod = [24.36]\n", + "velocity = [-236]\n", + "\n", + "# the path+file for a reference image\n", + "#im_path = [\"14610_M33-B01_1.phot.fits.gz\"]\n", + "\n", + "# Pick the filter with the dimmest peak\n", + "ref_filter =[\"F475W\"]\n", + "\n", + "# choose a filter to use for removing artifacts\n", + "# (remove catalog sources with filter_FLAG > 99)\n", + "flag_filter = [\"F275W\"]\n", + "\n", + "# number of fields\n", + "n_field = len(field_names)\n", + "\n", + "# Need to know what the correspondence is between filter names in the\n", + "# catalog and the BEAST filter names.\n", + "#\n", + "# These will be used to automatically determine the filters present in\n", + "# each GST file and fill in the datamodel.py file. The order doesn't\n", + "# matter, as long as the order in one list matches the order in the other\n", + "# list.\n", + "#\n", + "gst_filter_names = [\"F275W\", \"F475W\", \"F336W\", \"F814W\", \"F110W\", \"F160W\"]\n", + "beast_filter_names = [\n", + " \"HST_WFC3_F275W\",\n", + " \"HST_WFC3_F475W\",\n", + " \"HST_WFC3_F336W\",\n", + " \"HST_WFC3_F814W\",\n", + " \"HST_WFC3_F110W\",\n", + " \"HST_WFC3_F160W\",\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# check to see if the file already exists\n", + "if not os.path.isfile(gst_file.replace(\".fits\", \"_source_den_image.fits\")):\n", + " # if not, run all this other code\n", + " \n", + " # - pixel size of 5 arcsec\n", + " # - use ref_filter[b] between vega mags of 15 and peak_mags[ref_filter[b]]-0.5\n", + " # since we're only working with one field, our index b is set to 0\n", + " sourceden_args = types.SimpleNamespace(\n", + " subcommand=\"sourceden\",\n", + " catfile=gst_file,\n", + " pixsize=1,\n", + " npix=None,\n", + " mag_name=ref_filter[0]+ \"_VEGA\",\n", + " mag_cut=[17, peak_mags[ref_filter[0]] - 0.5],\n", + " flag_name=flag_filter[0]+'_FLAG',\n", + " )\n", + " create_background_density_map.main_make_map(sourceden_args)\n", + "\n", + "# new file name with the source density column\n", + "gst_file_sd = gst_file.replace(\".fits\", \"_with_sourceden.fits\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Try to view the fits images of the source density maps\n", + "\n", + "Now that we have the source density maps outputted, we can plot the image and see that the density looks like." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Filename: ./M31-B21-WEST_cutout.st_source_den_image.fits\n", + "No. Name Ver Type Cards Dimensions Format\n", + " 0 PRIMARY 1 PrimaryHDU 19 (174, 175) float64 \n", + "\n", + "(175, 174)\n" + ] + } + ], + "source": [ + "# open the fits file\n", + "hdu_list = fits.open(\"./M31-B21-WEST_cutout.st_source_den_image.fits\")\n", + "hdu_list.info()\n", + "\n", + "# extract the image data\n", + "image_data = hdu_list[0].data\n", + "\n", + "# take a look at what the image should look like\n", + "# in this case, we can see that the image is 5x6 squares\n", + "print(type(image_data))\n", + "print(image_data.shape)\n", + "\n", + "# close the fits file\n", + "hdu_list.close()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAIzCAYAAADxp0j/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9fZCk13ndd+707Hxhd7GDHXwsAZAgQICEQIIQC/wKQ4amlJCWUpLsshMpZZcqUYp2TDlxyk5s2X/YSUVVzpfkOIqVgkuKpCpZFCVTMsu0jJCmWaBpAhCMAEvAIPFlktglCGKxs9wFZnZmp+fNH+899547/czOAljsznSfX9XWNN7ufr+70fc8554ndV0HY4wxxpi9xtTl3gFjjDHGmNeCf8QYY4wxZk/iHzHGGGOM2ZP4R4wxxhhj9iT+EWOMMcaYPcn05d4BY4wxxrzxfPxPXNG9dHJ4Sbb1b46u3dt13Sfe6O34R4wxxhgzAbx0cogH733zJdnW4MhTS5diOy4nGWOMMWZPYiXGGGOMmQA6AJvYvNy7cVGxEmOMMcaYPYmVGGOMMWYi6DDsrMQYY4wxxlx2rMQYY4wxE0DviRmvps9WYowxxhizJ7ESY4wxxkwInp1kjDHGGLMLsBJjjDHGTAAdOgw7e2KMMcYYY14TKaW5lNKDKaVHU0qPp5T+h7z8N1JK/y6l9Ej+d9dO67ISY4wxxkwIu2R20hqAj3Vd93JKaR+Af5VS+qP83H/Xdd3vX+iK/CPGGGOMMZeMrus6AC/n/9yX/72mX1cuJxljjDHmYrOUUnpI/n1Sn0wpDVJKjwD4PoAvdF33QH7qF1NKR1NKv5xSmt1pI1ZijDHGmAmgAzC8dOWkE13X3b3tvnTdEMBdKaVDAP4gpfROAL8A4HsAZgDcA+CvA/gfz7cRKzHGGGOMuSx0XXcKwJcBfKLruue7njUA/w+A9+30fv+IMcYYYyaETXSX5N/5SCldnRUYpJTmAfwogG+klI7kZQnATwF4bKfjcTnJGGOMMZeSIwB+M6U0QC+mfKbrun+aUvpSSulqAAnAIwD+4k4r8o8YY4wxZgLogF0Rdtd13VEAPxws/9irXZfLScYYY4zZk1iJMcYYYyaE8Wr/aCXGGGOMMXsUKzHGGGPMBNChu5Q5MZcEKzHGGGOM2ZNYiTHGGGMmgQ4YjpcQYyXGGGOMMXsTKzHGGGPMBNDBs5OMMcYYY3YFVmKMMcaYiSBhiHS5d+KiYiXGGGOMMXsS/4gxxhhjzJ7E5SRjjDFmAugAbHqKtTHGGGPM5cdKjDHGGDMh2NhrjDHGGLMLsBJjjDHGTAAdrMQYY4wxxuwKrMQYY4wxE8JmZyXGGGOMMeayYyXGGGOMmQDsiTHGGGOM2SVYiTHGGGMmgA4JwzHTLsbraIwxxhgzMViJMcYYYyYEz04yxhhjjNkFWIkxxhhjJoBxnJ20K37EzKTZbg5XXO7dMMZcQtJUFYK7zc3LuCfGXB7OYPlE13VXX+792Mvsih8xc7gC708/crl3wxhzCZmaXyiPN1dWLuOeGHN5+GL3+9++3Puw19kVP2KMMePN1EL9wYJb3wIASKvrZdH06hoAYOO5Y5d0v4yZLBKG3XhZYcfraIwxxhgzMViJMca84aQbjpTHw/l9AICBKDHGmDeeDsDmmGkX43U0xhhjjJkYrMQYY4wxE4KnWBtjzHkY3HZLeTy8KkcnnHxl5HUpm3kBoJufBQBM33hDWbb50sn62LOXjDEB/hFjjDHGTABdN36zk/wjxhjzuhksHS6Pu2PP1yee7BWU7t23j7xn86oD5TGnW1ORAay+GGN2xj9ijDHGmAlhc8w8MeOlKxljjDFmYrASY4x5VTSlo+uv6f/K81Mnz9THh6/qH8iyJCUjQgPwQA3AH7izPr7/6OvYY2MMwAaQ46VdjNfRGGOMMWZisBJjjNkW7XnE1N1ufqYuC1J31265pjyefeb7I8+f+GD//OFHTtXtrJ4b3bYuy8bgzUefuNBdN8aMMH6zk8braIwxxhgzMViJMcYYYyaAceyd5B8xxpgRmJyrWS7IpSMtIbG0dG5xvizbt7xaHjN1txh8AVz9pedGtsftlITfLdDwq4m+G88du4AjMcaMM+P1k8wYY4wxE4OVGGOMMWZCGHbjFXbnHzHGGABbSjXX9+Wf9UM102Xm1Nq2y7SE1JSbbn0LAGBNyk2Dsxv936ePy9b7cpLmxGj7Aq5n9eZalprLpSq3JzBmcvGPGGOMMWYC6JDGLuzOP2KMmWBUfVGGc6NfDcxtmZFlVGXmJNNFzbnTx3u1ZHhk/8j6BvI4FdPwWl2Yc2kAFFPxwuOizvD5J58Jj8EYM/74R4wxxhgzIWw67M4YY4wx5vJjJcaYCYTtBLRFAA23QDXqzohJd5jLNsOPvkfeM+zXp00fZTs0CM89/3JZlo73rQjSfDX7IpeRutVqEB5eX028LGVFOTLrn3hveTzzz/945HljTI8bQBpjjDHG7BKsxBgzgZx73ztGltGEC1QFZaANHj9wJ4C2qWM33xt7VUHpVupj5PVoou/sSVFgtq5HEoKbKdhXHeqXHZdt5+3ML9T1dVlh8rRrY0bpkMYuJ8ZKjDHGGGP2JFZijDHGmAnBDSCNMbuewdLh8pgG2pU7au7K/LN96Wj9TVeWZWrynfnuD0aeLwSG25TLPVsfs0Q1JWUi3Q7Z9+A3+tdJo8iNt10/8rqh7A/3Uc2+zLcZfPnh0f02xowd/hFjjDHGTABdBwzHLCfGP2KM2eNo6m4x2IoaspGVCvY5UmYe+3Z5vP7Ot5THTM7VnkgRxbCrxl0x/hKdgr0v/92c31efzwoMDb5AazTezH2ScOfbRvZxarVmCFMZQjb4bsWGX2PGC/+IMcYYYyaChE1M2OyklNKvp5S+n1J6bMvyv5xS+mZK6fGU0v8iy38hpfR0fu7jb8ROG2OMMcZciBLzGwB+BcBvcUFK6U8A+EkAd3Zdt5ZSuiYv/yEAPw3gDgBvAvDFlNJtXdcNL/aOGzPpMHVXSzDQx1tYOVJLPgdzqWbjxEtl2b7larilCbhpuJhLVWc+XEs6B77ydP/c9fW9G2L8HZx8pX/+WF3PJjNo8nNANftGpSgAwK19qWv57dXEu5RzZNKqHPPJU/32bq2lsYZHn4iXG2P2JDv+iOm67r6U0k1bFv9XAP5u13Vr+TX85vlJAJ/Oy/9dSulpAO8D8LWLtsfGGGOMedV0sLGX3AbgwymlXwRwFsBf67rujwFcD+B+ed2xvGyElNInAXwSAOYQm/CMMS2NiTerLjS4Ko0akhWLg8dHk3Kn3n17fSzm27n8V6dDUyXZ/+zpsqz0P5JkX0357eaz6TZQRnT6dmQg1hTgqezrXfra+sjr9Pg3rx+dvq1w6vlQFChjzN7ltf6ImQawCOADAN4L4DMppZuB0DHURSvouu4eAPcAwMF0VfgaY4wxxlw83ACy5xiAz3Y9DwLYBLCUl98or7sBwHdf3y4aY4wxxozyWpWYPwTwMQBfTindBmAGwAkAnwPwj1JKv4Te2HsrgAcvxo4aM2nQuKulmJUj+8vj+YeeBdCWUH5we1+iOfTwiyPr0/IMM2GYegsAm5KqywyX5duqaXZhsa8MH3j8xHn3WxN0S26LQEPv1HzNdzmbj2tOX/hUzYmhcThpQ8qchbMZmIY1Y6Y7j9nZmEmiQ8LmLmgAmVKaA3AfgFn0v0N+v+u6v51SeiuATwO4CsDDAP5813WjNWThQqZY/w56Y+7bU0rHUko/B+DXAdycp11/GsDPZlXmcQCfAfBvAfxzAJ/yzCRjjDHGCGsAPtZ13bsB3AXgEymlDwD4nwH8ctd1twJYBvBzO63oQmYn/cw2T/25bV7/iwB+caf1GmOMMebSshs8MV3XdQBezv+5L//r0Fd4/rO8/DcB/B0Av3q+dTmx15hdhM4WYukkyayh+dVgds7xmq3C+T7NjKU8g0hnLK0t7tvyDmBwdqM8ZqbMNQ+cKsvYYuDMHUtlGXNiVKDWNgA8hk5KR3ysbQfYEkGXaYsBlqD0uEqZKJj5pLOq9LhYwprSWUxP9a0X3JLAmIvKUkrpIfnve/KEHgBASmkA4N8AeBuA/wvAMwBOdV3HD+y2s5sV/4gxxhhjJoAOwOaly4k50XXd3dvuS281uSuldAjAHwC4PXrZThvxjxhjdgHMf1HjLtNyT99dByNNRkv+q2m5mvVC2DxxPafwAsDC86O5LMO5+nWw/96v9+8VNYQm4BmZb1hyYrYjJ+gmaUi5enOvCM0/e3L0ddusLzTn5vdMyXvOZQVGc2fUDMxsmn0PfqMsY/NJKzHGXHq6rjuVUvoy+siWQyml6azGXNDs5stfHDPGGGPMJSBheIn+nXcvUro6KzBIKc0D+FEATwD4lwD+TH7ZzwL4JzsdkZUYY4wxxlxKjgD4zeyLmQLwma7r/mlK6d8C+HRK6X8C8P8B+LWdVuQfMcZcYlg6UvPpVC5/aMNFPh+VfgBg+La+zKRZLCXrJZtVAeDsR+4YWfdG0IQRmu+SSyyQdbMUM/NYXXfHMtHJagAGat4Mm0UefOh4WTY426cuqNkXLIlJ6UfzZrifbZbNaCYMWyNoCU7PH02+WiY7e6gvVc3put0o0owhl9gTs/1+dN1RAD8cLH8Wfb/FC+byH40xxhhjzGvASowxbxAlcRdopwFn823Y9FAMrFQNGrVEGOSp1UzfBaoSsfa+d5Rlr1zbf8znn5V1c52ioJx5z9XlMTWJKHF39e6by2Oac6kKAXV6NlDTfVVB4XGd1fThvB5tCsljabZ981UjywYn63FxCraqL2pYjs7pfH6sypAbRZpxZSe/yl7DSowxxhhj9iRWYowxxpgJoOvSrvDEXEz8I8aYiwxLEZrfoqm6NMMyAReoZtk2J+UKbEVLHsxeGc4N5Pm+tKKlqoPRe7OBVktRi189Vh7TVKym2RkmCEtqLstEWp45II/52iZBOL9nPiiTabpulA1DUzBQU4e1BMVzoSbmgTS+5PmN1q1pwdM75d8YY3YF4/WTzBhjjDETg5UYYy4CauKlAtMkxYriERl6qRCoAZZoryJN7I1Mrnzt7HI15JZpxaI0DLMKxBReIO43FC1bfntdtvjNXk0ZiNIESeflVO7QICz7T4VFlZjQxKtKzMF+DLb/2Xo+Z7NpWvdbp4Sfj8YAnJWawW231OeffOaC1mPMbmY4ZuWk8ToaY4wxxkwMVmKMMcaYCaADsDlmU6z9I8aYV4mWjtJCNoBKCYWps2qk1bINk2i1rLT8oT7Fd+F7tQTFnJQDkoOi61w71JtYDz384nn3l8ZXLdXwsa5PDcJE95HlqMO/92hZdo55NJITE6Em5p22Q9T4y3OmZanFoEx2Nje5nHv+5fpe2bepo0/375HE3iiHh+dMs2po2AacH2PMbsE/YowxxpiJINkTY4wxxhizG7ASY8wFwjJSuuFIWcb8k00py2icPpk5VXNSBk/3zRA1R4YZLZsv1VwWtg7Y9+A36oqkfcHawdHadmnSKOWrcDZUnk2kpRYtwUzlWT46W4qlnNIcUtb98s0HEcG2A1NyfjiDiDOXdH80J0ezXDhzSGcQcduawbOQ36+zk7QktJHLSE0JKbdekHaU5TzqPpyRppL77+23vbmyAmP2Cn0DyPHyxFiJMcYYY8yexEqMMedh+sYbymMqB1RSAGAzqylULgBgIT9uUmGl0SLVD5pMAQBUN0RpKUZcWabbufazvcKgig5Vh5U7qlpUmjReVROAhzm3JjLuAkA6T6KtjnyYhUPFpV+2hq3otlNO0FWTLhUYVWe0kSRzb6LMF83gYYqv5unodWACsSpMm4EpmesZnK37ffChet07qnHOjjF7jOGYaRfjdTTGGGOMmRisxBhjjDETQIc0dp4Y/4gxZgtT7769/oeUb1j+aMyn+W9UvtF2AUB9zNLIYKGu53zx/Nq+QMsgaTUo+bAho8Tzcz8Wnq+lI5Zlhtvku7AkpM0VaRaOmic2TSHFnMwcGc2GGeTyjxpuo3VqiYr7EbVvUOPz2sff1W9Xcmlm5RrS8KvG50Fgcua5UgOwmoVXruttwIty3BvP1QaaxphLg3/EGGOMMRPC5pi5SPwjxkw0mr7LqcMrMkV6ICN6jvyj6btzss7I2Dq9ulke0zS6Twy5NAuf+tFby7KdknipsAxnqzx85RO9wqDpvAcf6vexaS6pCcOZ5bdXE+sVh0aVEaIm3Ug5Kim+qOenmS6d399M385qyXCuKj/r0gAyMidTbdknxucDX+nN0mp21m1TgTnxwfr80ud707WqLlR+VkRNU2UIGJ2CbYy59PhHjDHGGDMBdB0wHDNPzHjpSsYYY4yZGKzEmIlE818IyxssXQBb8016g+1A8lRoyGX+iK6nLT9U2HRRM182sqlUS0h8nRp7FRqE1TTLEktjpD25fclDy0FDeRnTe3Xb3B9NzWUJRk3MK1fXsdEi+rJN03wyl87UIE1jtJ57zdap26vLpvP7tSxF46/myWhpief88COjuT16DYlmw6h5mwnM2kBz/RPvBQDM3fd4WeZEX2PeWPwjxhhjjJkQPMXamD1GpLqczn1wmqTZPNW2W6lTkddvvqM8ns+qgyb2cuQ/pVOf2csnMM8CVQ2ITKGRaVZH+5qqS5OqToOm4qHKB9epSoOqCmTpaDW2UoFZFXMt1QdVecq6xbh83R9Jsm0+xkbRCvobcd3N9uQ9Z27qDdiDta4sYyqvKlozeb91KrZOp956fAAwHfSJIrqPqrCkPD1ep2VrfyxjzKXBP2KMMcaYCaAPuxsvK+x4HY0xxhhjJgYrMWYsiUpIL37sxvJ46fNPAmhNny9/+G0AqmEWABYef748riWouk4aSJvyRa6maBmoMcjmBoiQchKbHaqRNCIFeStaLmFpSUs+NMtqc0Um+up7teTDsg4Nvsq85KnwGF+RjJm552tZhkZjLW+xxKTm22ryrfuopuOF762PrIdEZaDt0oAjI3Y5L/cfLcsGH7hzZJ1JEpa5v5otw3ygtSAnx2m+ZrcwxHh5YqzEGGOMMWZPYiXGGGOMmQA6eHaSMbuWwW23lMebx2oZKN3Qz8S54oVaimA5YF3aCjC+n20BAEDnD0Wlno2ggSLX3T1VyyXrUmJALvloOWV2uV8WlUZ0RtK6tANgqUvLRGyNoFk2zHDRMhnLMtHMJqDOtGkyanJGi+a7sAQ1e7rOTtL9LeUU2Uduc23bSH+MbJuzjrREF22PJahme3LOWB5jaRCozR61BHk6l/f0nE1J6RF5f5rGl6X5Zj2PpbGnNMV0dowxFw//iDHGGGMmgvGbneQfMWbPQwVGjanDN1XlgyNjTYPlCFlHzbOnejOsmnkVZoaoaZQjf02xLaNvUVWokDRIjgz3Q9UHPR6iWSQ0rKq5tKxP1rM/aNJYGi5KDooaaaluqNJA1SlSg/avBjk58h410vK86DmhkVjP/aaoF1TTNBOGBulpUYaKGiLnZCDXhuc3Un5UBWMGzXZpyVST9F6IKPshpmD9X4hVGWNeH/4RY4wxxkwIm56dZIwxxhhz+bESY/YUU+++HUBr5kRuA7AukfVaOqKx9YCUGFg6+cHt1di6+NU+y0NzRbScwtKBljk2c+lo34PfqMvufNvIfkeNFJXlnLNy8Nv1I0nj74kfv60sW/paLV+wpNE0V8zH2JTW5kY/5ms3HwRQTa1AW6pJuVSzef1ouWkhaHa5HSw9TYsn+uyR/Xm/h3W/8+OSoQMAt9bsndpsoMLxpF4PjsrUuHvgK0+Xx8PAiH0+VvJ5AlqTb1QeZCaOZu90x+LSpDGXg64DhmM2O2lHJSal9Osppe+nlB4LnvtrKaUupbSU/zullP5+SunplNLRlNJ73oidNsYYY4y5ECXmNwD8CoDf0oUppRsB/IcAviOL/ySAW/O/9wP41fzXmFfNYOnw6MJsGlUz58rdN4+8TBsJFvIUYaCO4hdkinVRAUQN0CnUbEJ44FuSfMtmkDfUhopUHzaO1HXr9GwqMaryHPx2/1inXdP4G6kvQJxeS9VJFRZOGddlBx7/QbMvwJZE36zoREbjc2IGpjqljRJnT9bjplG3UUayqTZqbKkJyqqSMbFX9LeyP2qg3sjraabDy71Cpo5WdYaKjx4rz7OuR1Unqi6zol5RndHrSkNvCszHQG0+6URfc6kYt9lJOx5N13X3ATgZPPXLAP57tErvTwL4ra7nfgCHUkqj7XKNMcYYY14nr+knWUrpJwAc77ru0S1PXQ/gOfnvY3lZtI5PppQeSik9dA5uYW+MMcaYV8erNvamlBYA/C0A/1H0dLAs8uSh67p7ANwDAAfTVeFrzOShJaQzuSGjZnqwBKE3DFNYmwyRwJyrpaGa71IbJb7wp3sD7cHv1DKNGoQXskG2afqXywQbYqRllstMrV415ZZS3hFzcknQ1UaS2SB64oP1vSw7KZrvMr06O/I8DakshwEACxqa+aLHylKN5rusHFnK26jpvCxBNWZWOfdRWjChwVfR5pIHvlUzVHiMeo1Z1lLjMks6ahDuAnNyZL6elnXzeuixnJPSI49Xm4oefqS/4Ct3VPF5/qFnR9aj8LUzLieZS0CH5LYDAG4B8FYAj6aUAOAGAA+nlN6HXnm5UV57A4Dvvt6dNMYYY4zZyqv+EdN13dcBlKFNSulbAO7uuu5ESulzAH4+pfRp9IbeH3Rd5zmG5rxw2jSA0pMGqCP+yMwajb7VPKoj/9Nv6UfBV3+pVjqpIFDFAYCN+Tqdlqj5lArKvuW6jCrPiph4uW1VJ4ZyDHw+UkGqLlS3zRE+ALwsU373P9sftyoEZeQv6gPVlMHZatzl+dPjV0PqcK7fX/2CYG+p/c++jK2ckT5IqtRQRYt6DGn6MFWimSClGKiqzUKglkQMA9VN1zN33+P1xdnYq8Zm8sJH63nk8QPAgXwvLH5Tpu3nfZvXlF9JZT4fw4/WiZyDLz98Qe8x5rUwcWF3KaXfAfA1AG9PKR1LKf3ceV7+zwA8C+BpAP8QwF+6KHtpjDHGGLOFHZWYrut+Zofnb5LHHYBPvf7dMsYYY8zFpAPsiTHm9RBlvwzF4HomyAbRsgxZkfIFy0mag6LlJuasqLkyaprIMo+msWqphpkhWnZIq6PJrSw7zYgbjCUt3R8twbB0pOWitYO9UKolCz1GlkZYQgLaMlJZTzbAaqrw+kfuAAAMNPlY8ktKOrEs4/VQcy1LeGyYqPsF1LweLd8U+VfWzbTk5Q/dMLI9oJaeItNslMLbmK+llMVSz1CMvSzrafNJ3itLR+s6T9xZS128NgcfGk2fiBKZ9bpq9szcU30uUNMI8gN39n/vl40bY0L8I8YYY4yZECYu7M4YY4wxZjdiJcZcEqZv7MsEmt/BTBSN2l+YqzkpLOtoM0NK+td+uUbx83ktIegsnyiKnzN2ogaGGj+vMfea9VLIpYwm5j6js6V0hhHbHxx8aG3ktbqPQC5lSVlh/RPvrc8y1yWYAZOO1/ODxf6cajYKyzNadtMZVsjlD83omcnr1KaQC3/wQP9AZpjprCMydbiW4Fiq0bYCB76Vs3OkhKRlPV4TbeXAMpLOPiqNQaVMNn287k8tLdV7ijO09N4c5pJhc0+t1fewJKjlLS1HEZYj9bpqOXI9v18zejpm2YyszZjXSTd+OTFWYowxxhizJ7ESY94wNP/ldB7ZqwGUhl1tjhc2NZSk2Ws/+ySA1sxJNWFdmj5q/gm3qYbT4VyvJtDAClTVRZUfTaxFHlWrQlCOL2hwqMe6qcoAU35lRH7gK31DwtaY279ucNstZcnaocGWZ1sjKQ2kB7RxY04l1nNbsmPE7Lxy3dXlMRURPRd48pn+r2aw5Gus6pWOjEpjx20Sa+s+jn4VqYGYKliU3qznlmqSKmN6ntn4cXjLaIrviR+/rSxjMvKypCWrwZrZRao68R7QfWyM01v2AQDmc+NQPc98Xj8/m48+MbIeY14tHSYwJ8YYY4wxZjdiJcYYY4yZEMbNE+MfMeaiUyLUpXzBDBYtO7AcoFK6lhUo86vZk+WWqO3A7DYNICn9a54Km0vOiJlzc340dl7Nniw96bqZg6LGTZpHNZ/knJqCg3h7HleUS6Mc+uJT5fGpH721X/bwiyPv0RKKlta2Hpd+nel6uO9NK4d8XTW3h+d2KKU6NamyqaI2SmRZRrdHs/Pq3TeXRWqkLg0ypX3D1ueAevxq2G7aO+TyjZYReT2j9g5Ln3+yLNMSZrkX9P7IpvSoHNncj+97R3nMe1fNyT/4iT4nhtk5gE2+xmyHf8QYY4wxE4ATe40Rphaq4Van0A7ySF1HzRy56ug6GoXqqHnfltcB1cSpy77//n6K8bWfldG1jMQ5UqdyAQCDtQ5AO7rmtlVJUNMx911H/jR2qgE4SrHV/X05MDnTxBpN6d6u0SGVjMYUuprVLVGqOE1YDcBUfjpZnxppqTCoGlTUhJNVseAa9VqrAsVj0OabVEn0ddwPPfdKlILL66Xnh/uoit/g7LA+fyxPg76hTo3mvut6eG3UaK33KZWuqImnXg8ev6pXqgIRnapd1Da595jiq1O+hzRaGzPB2NhrjDHGmD2JlRhjjDFmQnA5yUw8NO4OJGlXG/dd+UQvna9cV0sAs1n5Vlmd5YRn/ss3l2Vv/exyeUyTK3NOgGpS1dLH0tHRLA41yFK+v1LKASw3aJmCj6LSBVCThZk0DMSlHi0TEc0yYY6IbmcjSojN79FckXNiCp3K719+ey1fXPFCvz9RM8PNILNEt6clDZZgBl9+uCwrhm0pHbFMpudBTbV8XpdxP34g9wxLKE0ujcBSjpbJeC9o/s8gP68NNzXf5WxufKnnh/uuJcHoekT7po0tWaLS9Uzl497unuI6NW+GJc7B06PGbi3b7TtWy7lNA0ljJgj/iDHGGGMmgA7j13bAP2LMeaF5V427nDrNacpAOw06WkY1YFVSdTnaV/WFplegKhoz0geI29REWioRh1dHp+QCcX+kqJ8SR/mNKVaTdrNy1CT2PtWrM5u3VnWGKlGkbOh6Tr2nJuQ20435Oo7o5dyrKsU9Y7osIOqXbADp1isAACAASURBVJtqwdR83ccITQM+8K1+nZoaOx2Ys8+dJ8UYEMXrWFU+pvK50mMu6oMoH2r85bnU6eJUdKJlS18bnQaur9V7guc5ul5ToqDofbG22G/nwMn6Hqotut9qMN76OqCqLZGBfFqWUYnS86OmbGMmFf+IMcYYYyYEtx0wxhhjjNkFWIkxBZaONu+sZaKzJYtjGL6HaPYFpXo19gKjDfMokT//kcWy7E33vlAe0/Q4JVkdTP5VSX7pa/22tWwwI6ZjXHVoZH+L+fap+rr1bPrUZN+GLO9ryWv6yB2jx5X/6jlj+QEABtk0SgO07ruex8hc2myH5mYxMTPlVRN7EzNRdkhL1oTYkugrJQ2WBKPE3rPbJPZyO2pI5rWJcnsOHo9zYmjE1VIWS2tzYtiO0NIiy1+t8be/NnrdedxadtL3MN2XZUmgZupoOm/UpFLLUrMn++1oKYslL13G6z4IylMAMH1jb5LeeO5Y+LwxAIBu/GYnWYkxxhhjzJ7ESsyEM1g6XB5z6rCaNOeDtFeOujlVGGhH/kwx1ZE9R9A6Cj1xZ68CLH39bH1vMH03MvuqYTJKXNUePBzF6wiZvPzxd5XH06t9hxpNadWp2twfNQPTFKq9gZbyOVPFgkqU0o7Oe1VBe/Fw3U3/omVJN84j9Ugl0yTZSKmginNWzaxP122XHlWyj1ynGml5zvVYo6nIek9x3apE8TxHU7GBqtrpemZ4D0iC8Hq+7htH6nXTKe+8/7RP0tb9AoBTt/fX68C36tRlTR2O7qUo0Rh5nc3UeXkPj1enfHOZnmdeL70/kqQOb2bjtKZoe9q12co4th2wEmOMMcaYS0ZK6caU0r9MKT2RUno8pfTf5OV/J6V0PKX0SP73Yzuty0qMMcYYMyHsEiVmA8Bf7bru4ZTSAQD/JqX0hfzcL3dd979d6Ir8I2YCoQkQaMtALA1oqYalAU0P3cjlnW6bDI2N+V7g2wyaMKqsfu1jvey+XQIuSwxavmGJYShlHr5HG/RpCYUGSTXFcj+0wSHPRVRC0uW6jGWypjyRywnaXFJNoZphsnV/o7wQPX6FJmAtN82sMkG3lpj0eAp5mZYsmmaHuXyxKfdHMexquSQfo2beaBmR90B0TtUMzHKK3o9TQcKylht5DPvkPuQ+Nq8TWLZbub0+f+XnjvYPJOuHpa50XJuKVoM4730tqXKbamcvJTHNG1Lzcj6XG3Kv8LijjBm9p/QzybJokxb96BMj7zdmN9B13fMAns+Pz6SUngBw/fnfFeNykjHGGDMBMLH3UvwDsJRSekj+fTLap5TSTQB+GMADedHPp5SOppR+PaW0GL1H8Y8YY4wxxlxsTnRdd7f8u2frC1JK+wH8YwB/peu60wB+FcAtAO5Cr9T87zttxOWkCWJw2y0AgGWR/nX2BUtCAykX8LGWOYazozVVLQMtPN8/jmaXKCqNk0Zqz6WFMzfVGRfcX81d2f9sX5546a4q92sUP8tIOmNnLa+T+ST9es7fuJEzcDRWfjaXXTS/ZN9TuaQjpbPptXoMJf8maOyobQ72PfiN/nXSdiBqoaD7zZLQTrOFeE4Pyeu0PMjZVlomY8lo8aujWT8600j3kWUpbR3B3B4t70U090/+G5X39HXruUSlZTKFZauBXK9yfqWpaJlpJCUkPY+DYNZeOec6Wyq32dDsnCj/RSmlvOBaN58j2TeWRZsSbv68D598ZmQ9ZnLpdocnBimlfeh/wPx213WfBYCu616Q5/8hgH+603qsxBhjjDHmkpFSSgB+DcATXdf9kiw/Ii/7UwAe22ldVmLGFJp3dWS2nkeus6eq6VPVAo4aNWMlGimysaOaNXXkzxG7qhwLOQbjjBgqiwFUzJwRh774VHlMpWGhxmrUpn+ff3LkdUA1SC6oynOehoJqUtaGi4O8PFIDNCGYR71dGi5H4gNJsaVJd/lD1XR9AH1y8tlDo5kkADCX/2qODlF1htdY94fKiS7TUT4VGDXfsmFjk1Wy2u+bKhKKvra+JzeXXK3viVQHVeU2X+ofazYK9ZcoLVjVsmZ/ssISJSNH110VlNZo3K9fzx/N5vuk2SUN1prsq1k/dXt121P5XETGZ0WPkecHch7ZdJOKDGBVxuwaPgTgzwP4ekrpkbzsbwL4mZTSXei/Rr8F4C/stCL/iDHGGGMmhN3QALLrun8FhDvyz17tulxOMsYYY8yexErMGKGR4yxZqBzOXA0tEakczuVRa4BrHqhmRcr8Wio48+HaNJJlh+9+/NqybP+zvYQelVV0fzai0pIYGFm+0TIPS0JRqwFF183nNWPlwFd6o+2KHIuamA89PJqTMsOoDtnHzWxYbsoTYiQtbRDk/K3lrBwtwdGIrOdnReL0WSbT8oSWusp6mF8SmHjV7KzlNu7bK2KWns/9EfVaM8NGj1X3gRlAavxmeesHUlpkiVKv65mbamnt0MOjJTWW/6L7ef3Q6LVWovuMRmoAQC71bVcm4/u1xFTOpZQJeTzbZf3w/XpdSdtI8zxtDlDLbJ08r41cy/bY5NUtCSaSzg0gjTHGGGN2B1ZixoEP3AkA2JRFkSH32J/oraBXPVFfqVNjObVTVYOlo9X4uxWddq0jzdVsEF58qo5Si4IiZkWaHnU0q6NzqhIHJJl0NpsZdZoq93te01V1R7NKokZRnRJNOOVblQ1VEDjKH0oaLEfar1xbP0o0xappWo2d+7IJU0fKVElWrqvT3/c/2ytMaqDWfaNKsHJdVQuoxTWpwnk6+r4HqyLBkfvcfY/X14mCwP05/HuPlmWrH7kDQJtyTKbEUNrsrxhoCVWMKNlXp5gvPH4SW1H1gYm1qsBRlZuXc6+mYSbw6jXksa7r8Wej9nZp0ty2xgTwM6f3M49HlZbo/M0GJvn1YB9VGZoKpoRrwvBA1EGS8nRyKzGTy26ZYn2xsBJjjDHGmD2JlRhjjDFmIkhj54nxj5g9xGDpcHmspRyK3Cpjf//9vZQ8e7qafd/62WUAbcnmB01uSy4nibkyyi9Z+F6/7cisCQAbWTqPEnDbclL/fs050fJWWa6yeC4nqemR5YntykUsrWhJh+Uvpv0CVZ5fl1KVHiONm5otw+LHzKlaBiEq/U+v1hIeSzmaRHxlvnYbYiRmTsjaoXo99PywbEMjNVBLEFpqAM+jNDhkuU3TgKPSTyfvmX+od/ZuSgYPzbV6/bUkxGujz299DtjGxNxch5ptRIY3j5pzo6aJuoyfmyjRWLN+WEaKzgkAIK+nSZjONCbcfC603NoYcvP9vO12+J6c+XJOSl4ISlD6vdAFadsbz/UlvKYJ7HO1rGfMXsM/YowxxpgJYdw8Mf4Rswdg4qYa/RQqJzoZ9OB3egVBFYsy6jtV1ZDIAKzvoSmSU2C3Q6dqU4GJeic100bz6HIB1eCqqsyBx08AqAnAQDX7qsrDdav6oqNqKjn6nuc/0jdHvfaPJbE3KwOqtKiiUaf81vPH1+qInKqVJiNH04D1nNKQWbW2qiDo5Fs9zzT07luuV56qk5pZeR5XRbmgobeTBFxdN1Ui3cfhkd5Aq6oIpyWrYqMKE98/JaoUp2Nr/ysqVQMxcc+IaVaXF/J1VcUr6hOlKhBVED0XJVpAtreTMsKp+WrSLVPmA/OxJkiHhl1J+aXhu0kVDpbpNV4NejQNs8Iy9e7by7Kpq/rHa6riyFT/4YmXRg/WmF2Mf8QYY4wxE0AH58QYY4wxxuwKrMTsVnL2CwBQvI/SWIHWSElY5lCpnWUZNYcqUQpp1FyQJsWmQV/QwE9TXMsykbFPf7CX2K/+0nNl2UGpGkRlGR6XmjUppZ94Zz0PS3M1O6RJLebzXz+7/T7KMj230XnjfjTJv9/qMzi2y4lhWasxhdJ8KcfF0oheD33Pobx+LU/wHtHmgTxnWiajuVjf25RQcklITd4b8/2YpylB5jKSlg41/yVKmp3Jxzjz3brsRL4XBpLLovc7Sz3NOWMDRElQns7nMTLPKnoueI9HqbpaotTzw2sYPb8m53Qlf+a0LBclJ58LmoGq8Zk5M/tX4zyecjxyLjgRIKnJO7PvqVpuHUpmDN/jstKY0vWpvePEjkpMSunXU0rfTyk9Jsv+15TSN1JKR1NKf5BSOiTP/UJK6emU0jdTSh9/o3bcGGOMMZPNhZSTfgPAJ7Ys+wKAd3ZddyeAJwH8AgCklH4IwE8DuCO/5x+klAYwxhhjzGVnE+mS/LtU7FhO6rruvpTSTVuW/b/yn/cD+DP58U8C+HTXdWsA/l1K6WkA7wPwtYuyt2MKZx8BVfp+8e11lsXBb/fLdIbGeiC760waytyac0JU+t+ucR+JJPbSAFIke10nyyha5GJ5Q0s7V8z1crmWYjRWn+Ublc25nWVpTMjzc8MXaolA3xPNWNmuNLf1vU2WS96fs0HrBM2B4fFHJSRdv54fzk7Sj/5w7sr8t16jWbnGLAXpsei+FVg6kBlEvM+0tKEc+uJT/TFIs8f9934dQNsugddju9Iij6uLsmXkfj78yEzeL5kFF5SJNl+S2XYLuZWFzCpi6U3j9zXXhp8R/awEZ6y2QZDPj97vvIZNaSjP8tFlg7Oj915U/tNSFbejzTk5C2q78lbZN8lU4nb0GHidksxK01FmKT+7nGT2CBfD2PtfAPij/Ph6AM/Jc8fyshFSSp9MKT2UUnroHEZr1sYYY4wx5+N1GXtTSn8LfWDsb3NR8LLQRtR13T0A7gGAg+mqMbMabc/UQh3Zc0TbiXGTJlU2EQTqqFFHlE2GBA25sp3l2/qR2dLROgqjuVBHeE1uSx6F6WieJk5VJGgo1fwWNb2WRomiIDDt9YU/fVtZtvjk6I9XVRU42uWxAMDB7/TjxsVvVtNsSXvVUbwqMXk/Tr+lrmc4O7oP3LaaWZlLA1QFQU2hZX1yzkoOjKhYqjDQLKxqwEpuYqjXo2S+BAm4+nykDDUKS1YsXnh/HaXPnu5H6Zr2q0rDmbtHm2Fy9K5GYyoea6IMNupEvmf1+Gnu1gaFPBeREViXqwpU3hvsj6bUDjWvKP9VtShKHY5UDDXJl4RcNQ3nba5oBs0//+N+fZ94b31Z/iwArUK1dTvRfab5R6dFJWMWUPjaoBFklJMDAFNHnwbgRN9xpYPD7goppZ8F8B8D+JGuK37nYwBulJfdAOC7W99rjDHGGPN6eU0/YlJKnwDw1wH8B13XaU/3zwH4RymlXwLwJgC3Anjwde+lMcYYY14nE9gAMqX0OwA+CmAppXQMwN9GPxtpFsAXUkoAcH/XdX+x67rHU0qfAfBv0ZeZPtV13WjntgmEZaSzH7mjLFt4vI8aV7Meywlq/otyYM7dMipDT4np8ZoHerm8MbjmMgm3CwAvfqwKZ1e80EvnKmOzQeTawXrjU+7W7IvG2JsNm0MpMdAgquUbSvUqkatJk5L9dc/U95wvNl6lfS0dLX2tLzGsv+vasoztBrS0xiNocmXEXKpm6rIsaFzI41+9u2bVLIjx9cxNfRnukJQvovYPLI2sy3r02vCc6/VcC+4LlhOueaAeS7lecnynfvTW8phlJi2hlPc++sTIspnv1pJF9J4oj0ZLOnyP3kcQQzZLPWHDxdUd8mTuP1oebuT8JTUVl7KWnIt9wTHoZ4kGaz3f/Hw1ZaAc+a/XV0tdKSijsfSmhvTEY5TSkJaQokyhl/NnTl/Hc84yF9BOLCjtI6TU6ewYs5u5kNlJPxMs/rXzvP4XAfzi69kpY4wxxlx8xi3szom9byBqjuNoce2QmEbzKE6NpFGTR44qdeTKBE+gGkgj0yObBAJVOdFR39Lnn6z7mE2Gaji9Mg+6o+Re3e9mf/NIk80BAWDt4+/q/0rTv4XneyVGFYvlWyX59al+P/WcMQ1XWc7T0afFfExVCaij1Ov/8Dtl2UbQ7JEqwLoam4OGixuzoypP04TwbaMT8lbuqFNaeQxNQ8YgYTnlUbcqQ9H0XJ2izqnc0X2kJlUqG7qvTZPPrEqcVTWJio+mSWfT9EDMvGripTq2JvfPvqwYqppI1U3N6arK8LyoOlGnU6+OLGsMwrK/RFU1qnac5q3bVmUjmk6tRvRiLBdFh8qJJlUPdN/ya4di2KZKpJ8u7m+U9gvI9ZTzQwVGlxUFSs5Jl828QJ22vhZFOKzUY91cGf0cGnM58I8YY4wxZkIYt9lJbgBpjDHGmD2JlZiLjJrkNrU0sNpLyJqnwnyPpjFflqTZEA8A1t/1ZgBtOWTtLs1+yM3hJBW2mD6lRMDyjybJrh2s22H2SmQaPvCVKjmz/KOG0qbUlUsnM6eqRM6SV5PpkY91Q0pjNNwCtWSmJSSW1gYnqyS/Md8fj6bmvnLttDzf/1ZfQN0flkHU2MvrMJB8G91fpthGBt/G9JmNq4Onq/yueSB8bXT+tBTDcoGW8vQaE82j2QxM4CwHROveDh6jZpowp0jPSbQ+3Q7LdmouTYevavZrO5pGnCyXyHku5SQxyrLcryUUNfny3tQS3VIQAjFYZelVj6uaczdyGU7PBbc5La9bC8p6up4ul5tO3Fn397rjOZ34WL0/uBeN4V/KgxyN6rGy5DUl6wGzfoISEoBS/tIy9IG8nenD9fPjctLepOusxBhjjDHG7AqsxLwOop5Hy5Jiq2moVFY0iZcKgRK9jiNxnc45LUmyHJ1H06l1G0xfVeVnIeh5NJTRXh2RVfWB79f9aQyOeTqpJqAy3XfxqzX9k+rDcLaODNpR/vzIsuUP9WZpTdLlKL+Zxnt69Nzq/kzlEfaM9NjhNPDtknZ1xE84+tYEZTXxEp1iyynlkXky6vOkqblR3ys1S/Ne0HNW3iPv5Yj93DbXkMe903TgaBSkSsMgCwNqYm6msPNYnnym3y8xw2vqcun1JNPxqRpEPbxUkdCUY04tTrIdVREvlGiqN7Jhee1976jb0/3N6OSQLm9bp79TQWkUkkxkzgbq+dF0XX4/RePuKVFVFKYNq2LMmIVFOWaum9fN7B3GLSfGSowxxhhj9iRWYowxxpgJwTkxpmQsJJFXWVqJGiECtTyk5QCWCZKUNJayjK/NFWlsVaOjlqq4Hc2QYGlFy0ksF2jZSWEZSUsjg7NXjWy7NMwTaVvLLiu5/DUtplmeF5X+aWxu8kkElkb0nHE9egzrwX7vkxLBS9kErUUDrvOMpNRG+7GTAVYl/bIeMewSLb1xm1oSI3oMfI+eZzUi89pGZl+WAJQX3l8fv+13+796z0QlHy21lOaKsk7ee5qAi/nRMlDUzFDvezZInJLXNaWYvM6oYeJmUBLV863r0TLS1v1oDML5Pu3EFLt5ay3/8X7X55Gfb7aX16nnUXOYeAfouSjH+JSsh8cn+63l05KzkxOCAQB5H9WIrvdXOS7ZtyhFXL/TSDExu1Gkucz4R4wxxhgzIXh2kjHGGGPMLsBKzA6wcePLOTYfaDMvyPJtvfy8WFP8t8waGc3WYHlnNYh2j/JkNH5/Jsi20FkhZX0y0yYqI0WzanQ2B2e5aNkkyi8ZSuQ/S11anogycZjlojOJotkX0yq/55kbwyP1nEWzXbTEcPDbayP7E5U3WAbQkoWuh3upJRjCWVNAfPyatzKcu3lkvynPq4zPe+qaB+o11EaSTbT+lvVotg7P46GHR17eROTr3RHNkmI7Cd0uy0gnfvy2suzqLz03uo9SGilNBuU8c/ZWk3MjLRGYa5KiY9ZZeUFpcVkbW+asn7YslTN65D5jltIBOT+RlSDdcGTk+dVtGnaW1wXHEKHNYqP16GyysOyZ912f4We7ndkk+UH58xWVnaJZd5qFxO9KZ8iYS4l/xBhjjDETQIc0duUk/4gJ4IgCQDHrqfpCQ502QFx8sh9JbmcuLc0FxZjJEZKmyw7O9iNEHWVxFDYnHsKo+Zsa9KgW6Ou4bVUAVEGYPTUE0GaM0ISo6gzRcxKN3NXg+r0/eWM+vjpqZkKwbk8NqQvZTKzpoTTDanYKFY/B2WE9Fh2Jf+zGkX2bORUkGueRPxtKAlXFAaq5eUZHrtnYuagprPOj5zlSKjjqBQDQIKtK1Fq/nrPSkHIQqGl6r/BcqqIRnZ/S1C9IuwWqwqKqAlOS9Z7i+/U86XExB6XJJcn31OZLkjuSFY0UnEegqjedml3ze5rjD7JsVJWiyVXvKSpnjcE1K5jaIDNKd1ZDLht2RgncTYPQoCGjmorPZIVT7/GtxwdsY16+SpK882M9p8O5/PkKGmkC9XpqU1Gei+i4lHM5H0eNzcMTL428zpiLiX/EGGOMMRPCmM2wtrHXGGOMMXsTKzGZwdLh8lhzFVgymrvv8friIIOFUivLJgBw7ZfFNJslYjXaMrr8sDRjUwMxYWlouI0ETJrcjaBJIcsJKm2rgZjG38ZcmSX2KA9F0RLMFS/0srtG7Q/W2mNR1ACr2SksrRz41qjZV88FS0fHf+rNZdkSqtT+yvV9Dfjxn/8HZdm7fukvAQDmX6zbW/xmv53Dv/doWXYuiJBXU+hLf/bdAIArXqj7yDKS7iNLZ0CV6vVe4HFpPhDfo+dezxXPr0r7UVmvmIql1MASg5ZdmjLHlmMBUIyiWlFn6wQtrer5icoO3ObmnW8ry2jcXZfzHZlLh/Iefn50vyPjr8J1zjwmLRZyCUXLLpu5fKqfs3nJwin5L3KsNLprs9SmvJNpMnUyapqN8pGmghJcc6Q0XYsRmaWw9UP1nuHkgENfHM2yUbSZKu+/aOKAHn9Y0nI5aXfhBpDGGGOMMbsDKzFERg9q+tvIzQkHMkIk0VTrpaN11MxpmvpaTdmcyirHpphmDz7Uj9LUZPjCR68ZWbeaPctoWY6BZkd9HY22OvrW/aHyoQbG+TwKU/WmNAeUkZkqEcX02IzCrxhZD5UfNZw26k2guvCcakotTcdvuveFkdcBwLmDvdry4U/9hbrsrv7v0mN1v0tTPzGhNmm5WXVQhWD29MGRYyjvlRF3t1JH/vtX+/XoteFZUWWMScNXf6mOvtnAEKjprHodpo/nqcoyYu9uHVXlynOB8RuoU7n1PtzMI3ttfsjzo+dE7y8qR6pksrGhps9yH9Wkq2ZybnMgwhC3o/sTNXNsrgP/6hTrwHzL9+jrmsfcnqgl5ftAPodRmvSGmIV5j6viVc6ZGGlLU0iZ0r2pBmsafmXbZd1y/AtUbOR16pGIEpYj1S5SZcr6dki5NpeZMTPFWIkxxhhjzJ7ESowxxhgzIYybJ2Yif8QMbrulPKb0OVRZWHIlmA2iZYWVIzTCjTbZ09dpzsMwyAEpRlyRl4scLnkYC5KMSxqpOZBvWcrRpFgml7bHV0V93TcSZoyMvCpOFNUykKa4ludzOSVKrgWqyVVLLEw+VhMzz5+aXleuFtP1O3qz48nTi2XZBz/+dQDAd//orWUZ5fKosR5Q02C1zBE1Xyxpr+IF13RaltH02kRGbGavNHkgWgrM65kJzLNRkmxDNoCek+1qKY/3oZYENTmZ0PjaZN7I4wWWInR/8v2qmSfcHy27qUzc5RKUrrs8J6WRqWAfo/KNHhfvGz1+BKWzLti2fnZ53+g9wzKSvjdap+bR8POgzSVTLnFubGPu570bplLLvaffc0TLbTxXuozm3cik3eTk0CAt1yDJd+3wyWdG3m/M62Uif8QYY4wxk0g3Zp6Ysf8Ro6pLSdqV5zlS2gz6BQHV7KgqBQ18oUlVRjBDGeVOB0bJU4Eywmmax/7yD5VlVz3IMWmdCnnwodF+QTpiR96ffbKP3A7VJaBVQWjWYzIrgDpCDpSEWRlxNX2C8jqX76oj5IN5m6ffUtc9e3qz2S7QTgdlmm40hXhK9ofKWGP2nZe+Tp/OCsps/fR+8+/1fWnO/Pt1vH/jb+RrJ0qMqjJUrRo1LRid7pS0OpNHr6o6DL7cNzaiWReo96GmGO97sI7OZ88zTTqagq8m1GFgUtb7pygsogZwerMqCeU5mUqrnzmaT0MjusBkYFVD9D7lfqoKxs9ao5wF0+AbZAoymeMxBgZo/bxOnRxdrtPfB8G6EUxf1jRcTsfW9RRFR95TFJj7j5ZlqnLw86fqHu8vVeWmg6naSY3sNPKvjKYgK5GCFMUwqLI6fWOfDr7x3LGR1xnzWhn7HzHGGGOM6UvL4+aJ8ewkY4wxxuxJxlaJoXSp5b9iuBPZdyWQsRUur2Ze4ECWTc9JMz7mW6i8qqbZyCjJhosqw+7PMv7s8WpCXXixf53m0qjMXfNWJNk2SAWlCVGzOKLGdCrjD28ebfzIc6LSvp4/rnNa0nd5LjQNlzK3HouWGrgeLReUxoUicU9LqYKosfeaB/rrHZU0Fr9a95v3gpqY9RpG8Jzp/cFy0okP1pJGk6PDzBQpXwx4X8j9weNmg0IAwELdzkaQKstrpyUfvk6XDXPpqLmGmqbMMmJQYmlKOvne1cRr5eUgqZpoGYxlEC1jTB8evfeacm2+n5v9ZtPDwPitz0f3lH42ee9F6dVA3GiSaNPMangfbS4J1LJXdG9qKaY0Hw0mJQD18xeV0bRpJq9nk2y8OvrZbYzhTGqW0hiN6HruWXqMUq77AxstrZlLTAfASowxxhhjzOVnrJQYqi8AsPyh/vHiV6uJjP1J5mQEwxRbHV3qKP9lMeERjpBU0eCITVNPlcgcx9GTpstyFH/DvzxbX5dHMzQCAzVJGKhTcRWOlHQfB1H6roxYp4JRHJUINQxypKnLoh4xNOYCVSX6/p97d1nG3lLNqFlIXKcoXjS5zp6qI1f2g5mrHtQm3Zjnfk7WzXM+lPN45ob+N/2BY1V90fsnSoMlC7JtKiNXNNPXq7rDxFqd7kolRhWCaHpuq/SNfnz5HjXp8tzreqK+RI2qkM+9KgRFVZCRPThil+uvCgITqPXzFfV3mqYaoPeRKAR8v6qWkcG4HIvuj5wnmm8HOlU5MrsyVVj3RxRcaow6puU2+Z0C1OugioVOVefzUURBYxrmsQTnBPgDLQAAIABJREFUDojvhRIPoT2qaNhuErjreea50OsFxkPI/pQJEfKZ4Dlr0puDfZ1aWCiPN1dWglcYc+GM1Y8YY4wxxmzPuE2xdjnJGGOMMXuSPavE0EioSadTUjphyqtmMtBQ97Ik4M4GpliWnRQ144Wt6bOsqtkOakJcC8o7lHspuStNk8b8Xi1tRCWGJqchS8CRWbHJNhG5nMs132Xxm6+MvI5lJD33jcEvb2dtsZZLFp7PjQJP12EAz9/mNpke3B8112qmDjnxzr7kceUT4Wra/ByuJ2jIufC94FjkPJ9b7Nej15D7uCL31IHH+3PWND0Uo2RU6uN+RA0QtWwSmXOjfA5dTymXiGk2MrjqcXN5lOmyLsbNYoqVkuBQ1skvGP0spAs0eOpnYOpon6fSGI1zeUfvw30PfqN/IK9rrtf8aJ4TDadnP3JHWcRSb5O3o9kp2XTclODy/uj9zG1r+aYx5OZz3qRuB9lMJDJs63Y2d0jkLYZcMdx2zXfA2sh7tIRZj2E2v3595HW6j3qt+TlsCu75Om0+us2H11x8rMQYY4wxxlx+9qwSY4wxxphXQxq7sLs99SNG48zLsm0i4CmLHgxmBe1fHc1YUXc/Z7sAtSyls4tYboqkduXMh+usAEbiN7OU8rajkpdCqTjK5wCq1K4y/8p1vTx9pcjhlJoHQVQ+UEsIhx85NfIebSswk0tV2kLgirn6/MZ8L/Dtv/frI9u4crXK/NGME4UNIDUnhbOKNNr/2ofONvsKbMm6yeUonTXC2Wtanopmb50LSmaa/0L0nJUSzXaNJPP+aNsG7nlT6svHozNA9BijUkTUXLFI/5Ixw5KFlj+j5oGpyRAZnXnH/W1aKASNRBWuZxg0M2z2O2i4GJVCm9kwLNsF3wVKE5efSyfRDKFm23L+wplqufyjx8DXRcsaoiyX4HPalNjks81ZZJrXxNKathUo7Rvk+HU9KZglxu8XzShimUiv0SAopzX3K1tCNEeUz49nLJnXyJ76EWOMMcaY18GYeWL2xI+YYuKVkS1pjLJNhsJo+mwZmchoZjZI3jz9ljqSKCMcGVFQaaBSANQRvY5qNDukvFfVlDxinV6tys+Zmxaa9QE1G0WX6bGu39wbElUZGpztn3+5MZz2ZlYdmVKRAGquiyYRE1Wn5p/tFYvDj9Rj1SaFxYAsI8AXP3YjgDa5NlKyVFVgFk40ktbRfj1ndZkqH6tB6jAVtsgIqcevpuLGfJm5+kvP5efq/TPI69R7Qd/LEb8ajmtqbD3WwcnR9zbrvMDGhSloOMn3qEKgShXv0xQYV/dJU0iqBprSqtemqECyb/wObRSA42zEKk0o5fZo9p3L8n4MJQeFalqUt6M05zFvs0ngzt8VU3IPbwTqjSoW3J9N2U4K1KvmGIKE3PW8HzNili5mcBqXt+zbQpDvMhUkHkeoKZvHqAnUC8yJCVLA1bhbFGrJj9LsqaLeRIqeqDw0alqRMRfCnvgRY4wxxpjXSecGkMYYY4wxu4Jdq8RoQ7mo2RiCpmQv5ZIFUMsWGvfOHAhdRmiEBYClr1V5lSUjllAAAFlqZQNHoMrY2kJATbpFshVJmpKtRt/TxKolBJZ5VOKlUbh/Uy/PNubboKEl16nrZlkFqHK6nguWsK58YlTO10h6PRc0Kk+vVmGdeTONiTdfwyiHQtHcHq5TywFRdkwXtJaIDJXaJmIur1PLIVEmjBI19owMwlHbiYGUsnh/rEjzQC3vhOQSRBjtrtvLn5GmMWHOsOm0jLFDy4PSXFG2U0ofQSNAoJZ6po+PNhlszK7nMcX2z49m5rCUpfcUy6y6P03LgyCen9e7ydbJpRh9b9PmgKURWU9Uvtkokf0jTwGo5V7NiiqR/kHejJYO16T8RdNs1IohKi3q63Q7PD8HvvJ0XQGvu3zX8r7QLJvSwkXLbnJt2NZBS49l/7VSxVKnmJ1dWrqIjJknxkqMMcYYY/Yku0KJSfNzmHr77QDqSExNj0x+Xb6tLlt8MjcCFNPeUPxiVCKakVswtfOF9/ZqwpH7luubpdHb2sF+mzpKpUFWjb2cdqwjKh0BccRSpisCOHDyyMh6olRdjtf1WHXdxUgXNGGcFqWB5ludsqzngudZ1RmO3DQVlVPD1Zir6ymqlZzH8n6dVpuPldcAAN507wvl8cFvj96e1QArSaGLo43n9PzwXopMkQMZzUZqmW7nhY/267nuj54Lt1P2Jx9jM9qV13H0zfsIQLl2ek5Lw9Jtpv5SCdP38P7R7VFhU8Mlp+PrOYvOn5prV7LSNxckzjbmazFpUukanKz3Ic3UOoKKlCqddjzIilF0XDOBQqb3oyqY/HxG5tJmyveW/QeAKYlmiPaX+3YuUEhUbdT74kBgaOY9p6ZzvkeVsZlV+bzn+0cH2bwmkSqnsQ4aVzD48sP9A1HCI86X/KvqSzNF/9bRpGqeqybFmUndYtjG/UfPuz/m1WBPjDHGGGPMZWfHHzEppV9PKX0/pfSYLLsqpfSFlNJT+e9iXp5SSn8/pfR0SuloSuk9b+TOG2OMMeZV0F2if5eICykn/QaAXwHwW7LsbwD4F13X/d2U0t/I//3XAfxJALfmf+8H8Kv57/nZ7GojvSBrYF+WWqdXa9mBpQ8VhZfu+Vp5vPKn+s0uYDTlVvMOrkUvq2rOySHJTVh8ctQgy9ISDbdALROd/vi7yjI19tKIqnkQlK+1vMNygJavahO5erRqqp3Lf1XGpllRz+NcPo9qOG3yIJ4fLdVQplazK6XtqLEiAKwUc3M1OdOQq1Iyz/n1f/idskzLBSxVqFma+zEMjlVNmAq3+bJcGxqjm7yZnLCsJUE959d+ub8vVIpvDNYZXmvN4FHjM8+zHhe3GZUJI0MlAMzn66SSPdep+9UY4jPMv6HZEtiSSDs/mhMTGeKj7JxOjyGXuiLTebNt+VxEDIOskrWb++u178FqJJ5e7bej53F2uX7N8XpGn6+oKWSTZSTl0S4o3ZbtSVmORu3t0r3LtdXyaD7WNmcol8K3MSlHjTjXggkRvFf0/tDP++on3tu/RyYG8POuny+Wkdoy0Fqzr0B7v6bjo2bg0rhSzcd5f5omlB+4s27HpSUj7KjEdF13H4Ctn8CfBPCb+fFvAvgpWf5bXc/9AA6llM7/7WSMMcYY8xp4rcbea7uuex4Auq57PqXEn9bXA3hOXncsLxuZK5pS+iSATwLAHBYwfPIZAAB/15/60VvLawdrvTalysZGHgGoGjCQkUKZIigjJo4GBzIK40hcR8r6nqL4iPmNo1g1XG7eef5RPPvtaI+dqGcQTZ96rMXgJ0Y/3TYVGO5r//6sWAQpo5p+uh/VsPv8Rxb79R2oKk/EkX/d3zaaZqsjN25bTZF8Xk2Ghx7uR1x6DXWdHL2uHay/tZmCrMd68KHcD0bTSpt+MOv5dfXa8LVM+wWAQ198Km9YEns1GTkfT2PIDab68z2NQVpHu/k+bKax5vc3ptBs3NzUXk6Lo6NY3cdm3zJlSrPsY7lemvYro/jISDrLkbaOrvM6w35AQqTiRL2cdJSuz5dUZtT7uZh0dT07QCVCDan8jEzJ54L7oebaqeY6jJrJqe7o1Plomnw0bVunpQ/Qj/sipW5qte6Dfn/wGuvnvUyTD0zMTTqxLOd10s8PlUe9t7id7fqeEf1cbATT5KlWls8e6veTTllvpo7f2L9n47lj59222YZdMMU6pXQj+urOdehDru/puu7/SCldBeB3AdwE4FsA/pOu65a3Ww9w8Y29ke05PGVd193Tdd3dXdfdvQ+jHzJjjDHGjCUbAP5q13W3A/gAgE+llH4I1apyK4B/kf/7vLzWHzEvsEyU/3I4cgzAjfK6GwB89zVuwxhjjDEXiw5Aly7Nv/PtRtc933Xdw/nxGQBPoK/abGdV2ZbXWk76HICfBfB3899/Ist/PqX0afSG3h+w7HShUFZdFLMi5Uw1srG8E6X4AjXHoC2x9DKl5pIsvNgbTptyksD3aGmkJMCKMXE6S5/bmTmZWNs0V2TOhUjbNMNGyaLK8ttrCYHpxE3eQ9AIbz2bDLUUpWWOs1m9vvqRut/Hfrx//I7/c1Q21nwOlcNZWtMSE/dHyw4v3dWXS3hugFaeZ5np4LfreihzT6/W60GZWqVtPe5hNkHrcVOeXhSZeiU4P9F1b8pWTEFGhfuhZZ6BnCuWybR0QmNnVOZQ9PzwXosag2oeEdF0Xh6/3sOQ5zt+lrS0ynKJmKF5n6phu9lmPj9RQ875wByrxlQte5Yka7nPXvyz7wawpaloNkNrvo02UuR10nPPa7wg5YuOybZBOQRoy56kJO0GpbXmPEsZZPPdfT7WZlAK1XIjTbrR5wOo51fvs9J8U7NacilQ7zMt+cwG+TdRcTm6x7nfTQlOyl+8V4ay32VSg9wLKT9eC8r+QL13pxZqKdiJvruSpZTSQ/Lf93Rdd8/WF6WUbgLwwwAewPZWlW3Z8UdMSul3AHw079AxAH8b/Y+Xz6SUfg7AdwD82fzyfwbgxwA8DWAFwH++0/qNMcYYc2noLp0n5kTXdXef7wUppf0A/jGAv9J13emUXn0Q344/Yrqu+5ltnvqR4LUdgE+96r0wxhhjzMSQUtqH/gfMb3dd99m8+IWU0pGswqhVZVt2RdsBhbLgpkRORxkjRHMqzkk0PuXVletqpD8zUa7941ouKBKnyMNaiiBaYqCMuxKUjqJmhECVX5c/WNUxzlTSSH/mN2gODCVyLS8sfrPKq5x1NGzi8kfzbTjzQCX7qGShs4GAuMy2Fb1elOf1nLGEsDFf180yks480GaPLLvo9aBUrbNdTtzZS9qLT0q5UWR3yup6r0SZMlGjyGhWjc7c4GwrXd/6kVEBfhCUB/V+ZplEm+NF+S66Hd5rTRPLfM6jPKI2dyTPWJJ1N5H1ucSwIeUC7q/OMBsE5zY1JY3RpqPcxyirRcdhei74vC5jmVHPI2c16swwZt4A9V4bSsmjlPc034SNPaN2CPIeLenwntPPF9sJbG6T7zJdmj2O3o9RnoruY5T/0tzXOU9l+NHRzNFmFqBkSZX1SYmJ11NLeZzVFjWcTDJ7Tb9fomyZqOS19fVb11PeI7PSeB+7rHQB7I7ZSQnArwF4ouu6X5KntrOqbMuu+xFjjDHGmLHmQwD+PICvp5Qeycv+Jra3qmzLrv0Ro8bEufyrv0mpDZri6ciEo7x2RJZH8ZIEOZVHOyuS2Dtb/cE1aVNMw6fvug1AayikiTUaFQN1JDq9Vn8Gnw1G7FEzO5reomaWQB2lNGbgPCLTERf3pzGUCm/9bD8dX9OLb/h8TnaVkStVJR09Defqe6ho6D4WhSBIJtXRoyofvIZ6XZmdoabHg3M35/fW6xFlxuj5VtPxVnQf1RTKLBdVIqjaRAZgpRnlUwWR9dB0q8camXTXb76j7k4eQQ9EyeM6GzUp3+9R8u92ybN8Xu+p8jhIS1aVR82efE9kJNV7nffSmhyLNuyksqSZJkUhEJWH6lSTOv3oE+Xh8k9/AECbkh2pADwGTSyOVAe952jeVRWsXGO5HpFpP8p8ie6zyEirx9B8R+QmjtNBY8/mvlZTbZAFVFKCr6pqK/dX7+tyHmV9TRNUfu/Itqm8qQLL7wo1Z+ux8nthn6p/XKeVmJ3ZYebQJdmFrvtX2L4T5YhV5Xy4AaQxxhhj9iS7VokxxhhjzMUl7QJPzMVk1/6IUYPWdJZVB4uj8eJN40aRiCMTcJH8cx4IUMsKmumiRrciwYsUT0Oubntwtj+Vr1w7Lcsk2jvvT5RHE5lHdT3ITSy1iZw21CvlCymh0Ox63R/VLhBR/Li2MmDLA91H7puWS+aDzBeV1SOzXhTJznXqcZ15TzVis8GmrofR52zWCAD77/16vz9iLlb5mUQlSC07RGbf6aDUEDark2vI53Xd3/4z15bHR/71WQDAWj7fQD0uNbuW0tINo1I7UM8Bje+67ab8FxxfnOkh5YlcEojKW1r64DJdT5PnlEsZTZkoMAizfKH3kRo3uZ2opKPlJG5bU1wGt91SHpd4eyl5RNed50LLN9PH673A89yUb3idTmo9evQ7S89pdL24bf28ngsypVble2w+KkPn928GZRctLW6KYTcxK0fOT1iO5L7JsW6ceKl/fS5jAVJCkm3ruhF8vnhfRMcPxM0uyzrzPpjJYdf+iDHGGGPMRaTDrpiddDHZEz9i2OhrRsxmnJbcTGmWUQFHks/9RB0BLz3Wj3Aa82hWAyI1BKijNB2lUrFQ0zBHCld/qSofOv2SqOmTZjYdmXFUqabhaN90RF6aqIkSdc0D55r933oMpJnumUf0uj2OjBtlK59nbSh4Vo15NKIujI6edPQ9nf3Vep6ovui21fS3dmgw8jpOu33h7rmyjNcaEFOxJrfmEWJr6sxKgxi/I+NrNIW4SV0O3nPNw6MNRNWcnIIR+9ZtAK36x/tvU4yrU7k5nprdNldGVUmO/Bk70FMfc98axStP/2/ViVFlZEqUKl7bZsp7/hxvyLRZKodLR0Xlked5n+q6eS81Ruz8uElLFuWIx6MNVvm5aJShrAIMRQHQL8tyLzXqRL5OK6PfU3p/aBIxpypH3y+6j/z8qPrSJEtnBU/Pc/Tdxft+XZWNl0YnDETRFfodQJP8K0FkhBp3VWGaDqbtL799NJWb94yqcgqvd9NckkrdjTX2wg0iJ4M98SPGGGOMMa+Xnfsa7TU8O8kYY4wxe5I9pcQMxbQ1891esmduCADsX63SJss7N/yDR8qysx+pGRuEpRPNU1EJnYZLlVcpq6tUGjV/Uzm0GNNExqWpODLAarItH89IP3CVvg89PGrqK0bAoFSlaIPMsKnmlv0CgNmT/bpf/FhtWL70tSohn/qJOwHE6cXnbhlNIVWpXdOLydx9j9f/yNcwSiu9YbmeezUC8jqdyWmuum+alFqaIqoZUUoVJZ9CZPVI2l65edSIrY95HfQ92jiUzDyW5XnZn2JMRS0tzD1VG+GFCahByYLnR0sWTSZMLuVoU9EoZ4nllNA0jvq50pJhyZaR/JuFI+8CsMUoK+VjliLYDBYAZgOjP9fdlASlfDMbpHHzXOx7SrJsWAoNXg+glAw7NfE+lff91noPl8+X3Nda8gFzfaSkc2C1L59GjRvng2wdoDY51XPG8/vyx99VlvF6N59xMY6HmTnMV5LzHWUUlddLGbBpRJpNw7ps6el+nY1JuSQo1+8rnVhA9DPDUrp+/06jf95lpfFmT/2IMcYYY8zrwMbe3QH7eGjTe/3lzhGZjkKIqhwcaUbTb4E4NZbLVMUY3tT/6lf1Yfnt1cC29PknAbQjDo7oo7RKVXFovlTVSUfI3A8dVZeprUFvF90eVSWgjrQbxSaPTgdixqMCw95HABpT9cL3+vPTTMvOoyudslxMhNeP7iNQR90HTo6eHx0x0sCoo3hNdqVqtajpoXnEporNVDDddTronZOC6ax6TqPE4qgf16ysmybdZtoo91WnS4tpuPR6kpH/eqDAEVXvuG29P6Lp1NGU3hkZace9c+r54XXXe/fA4/12VkUZ5TT5DZkmr8pQZPIs+6uG/qzYrMjnTM30vL/U8F5M54frMl67yJAM1KjRpt9UVjS0L1Ok2qpawOX6RVxMqjKlm8qP3veNKpW/DyIlk+cWqMfYpGSL8TmKB+BnTo+B6lbUo2ygibyHg+nrwXnWa1TOs3wvqJLJz5Ka+4u6KfvN87Nfz7eY4M14sGd/xBhjjDHmVTJmSoyNvcYYY4zZk+xZJYaJvgORkjfVUJZNjAcefwVbiXI3FuR5NW5SLlUTGWXMtYNSljrdZ6xoCUUzY05ns7CWbyjvR2a9lwLT7HbN3yir6/OR0ZJSsebAvHRXLU9wO03ZavEdI+thpoPK/VNBU0lNHV54fK3ZB6BKv1rmUJmb5bFTkuLLNGE9Z5TDNwKTLhBnX1Aa15LgynX985r/o+eRz+9bruvhvmtDySjNVMtxvEe0lFOaHQYmyyjfB6jnUrNjFr96bGS/WaLa2KEMFKUFa6mP901YftASghiWeYw0yOt2tISwnM3gV37uaH2dlJv4mdTPM1OrB7LfNBI310PLQHnfGuNvPsbtSiwRZZ1S3iuNG4Prpec7Mjk3htwgsZef7TM31c9ClFMVGd47uaeYkNt8djXRl001JcW3fNdK8vF6zmaKypZ6zzTlttXRBG6esyjXR++pyPjbkD9rJ378trKI5e6o/DvRWIkxxhhjjLn87FklxhhjjDGvgg5jF3a353/EaHYMRC6nhKiNEumyZ2Q20DrcSdOMLf/VWUeUYkvMNmpZQctOc5pZkCP9dd2M6lfpe/3QVSPrjma2aNmKUfzKQt7HsFwikv1B1HIRZV6V/k/kWHHNgSmy+TZlIMIZWUCbvbJ1PVF+DVAl+NlglpOWaihfq0S+LrOFShlEZriUcoHE7vMab3dcfF7laV5vlnH648n7K6UGvV56vQln0emsM+7vdu/l8Wq7Cc0b2Yqu58xNo60qtITAcsHgyw/XbbOcEJRwpySLRXNZZoLcGpaG9NzyntQsJ50xyGuis8A4y/A7H6/3/9t+t79G25U614NGiqV9QVCCje5rRctEPEYtmXJ2n84g03I1WwwcPF7vwxQ0QCT6PaT34b6ybLSsqd8f3HbUIBeo35cz27RtIOX8yT0eZcw0246W5TLqtMxYYrltKN/dUQlJy8yH8m2qJXxeh2ZmnNy7QzeLHAv2/I8YY4wxxlwYacw8MWP1I0aTIJlBoaM5GiCjJFk146lSMzg5O/I8819mReU4EOR76Hqolsw/VA2F80z9FCViLm9HFZuyDt2eqCULeQQUGVv3BZkUbJgItCMyjtxUveLIJsqb0ZFiM1rLozg12WlDS8KRdGN21mZ1bBQouT40AK7fPDpC1ms9G+S7NIbKkWfr/bO2zfmJcnSoZGhmB5snqsExyiHaDPJE9J4p2xYFhY0SAWDxyWzSlFHz8E3bGy51NMt7pjGUymi4pOq++/a6At7jMvqm4jEQ82iT7hxkE5UsJLlnuqxU6HlqG22ONmrl8bx1WY29/f7odVNlbZDPuabKcj8acymNv7JM4X0a5QM1+52PS5fpdmhej0zFqmwMnu4VBM2BUUPuVKDeFGVNrkdkAF6NFA9NIuZ+68SJIJclavYZXYcZ/a7kfaPHmtW/2RtHU6x1O6p+lkwpbaq62p+Lg/Kd2zR05fHcX5Vps/cYqx8xxhhjjDkPY6bEeHaSMcYYY/YkY6XEMM8AkKaBYqhjrgLNdECV8TVrQxkETf+YP/D0p2pR4trZvrngYC3+mUsDsZYYKO2q4TTKmODzjGsHWglYJfayLMvKeqyUVQfbNevbRjoHWiPk9/50Xya65gExeGo0fpbil05W6ZYmPDVSR3Hmaj6dy3+j1gitGbp/j7YQ0GIcJW+9hix50HAN1HKKXo8mYyIo8fGc6Xq6wMTc7FtgquRxaXYKSwxNGejx0fwTlflplBxKfD/vKS2r1LYLcduBCN0OiUqLCqV/Pa6t+w9Ug7Dmt0R5M2FrBF325DMAgLOfeG9ZthCUFnU7zCDRz9ELP/N2AMCb7n2h7o+UPHj+ouulRJ9nXcbr3jQ4PDQaxc8y0nZloLlsIE6aCZO/+6LvFz2WyGgeGXang7YdWnaaDYy9ChsxDpYOn/d1w4++p9+elKWaUnAuN21KqbMY4rXUWb7PYpNyuQdkf2z23XtYiTHGGGPMnmSslBiFqoz+SqMqMZyt8+Q5EtKpps/9xLXl8ZVPrDavA6q58q2/piOPfsT+/L83V5a8+fOjCkKjWOQRkpo1Vd0gZ27q84S1gWGovsiIq6SiSlNIjhS3S4DlSGtqVczAwYidhlJN1NTGhBxBqyZFBSZqpKn7XRQ01Om2OlKsI0lpMsjRVTDteju4zdNv0enb/WMdcUZN9hTuz4ZM1WaTuXVRA9SwGilwNKSuqEE4m7d16rMqLBxVNiPkLc8BOpW9HivvQ1WFdGRfmkuKMbyaXeu1ZjNQnYIfqSU69ZvXVRUm7m9z3dQMOzdqxaYRuxO1lUZkPd+q+PAYdDvRsR65L79Hp5PLe3j+zoqxd/6hZ0fWXQy3aqAWhWkzUG8iZSQ0auftAXUiQ6PeBCpy+R6S7Ubpvc33VL5MUdL5gUCBVcWuUVafyrnogcoTTRxQmmP4QJ/uvLnN8+VY8mezidTQ5ORA3WJUgKr648a4zU6yEmOMMcaYPcnYKjHGGGOM2YITe/cYT1VD6sJ8L8U3zQGDRm7zL1a9jdK/ypVLR7Ox9z+tbSPf+k966XvwvuW67b9Xtz0MGqZRSr02kP5V4i0NJ2+JTZiU7NWsOMxSqR5rZDxUwynyY82j0XIU4fOzKouL1EwZmwnBQM10UMmex6CJmguo5RKWGzR3hMejycgsBWqGRmmoCAAL/X5uimmP5sEoGVnlbDUV817SPBWeUz1PXLdK+1rKmWGTPTlnLKfMPhOYI8WsGaWn6n2BwABb96Fuj+dR7wktT2xmWf2c3nOrkrGRKanMoaGy7u+6ZO+U3B8p1aiJl+h1j0o+5b1qvs7rbBoGBs8rPAeRqXjtnXHSLo9rXq4Hyyh6jViObLJKgnylOSnxskyrqv8w76N+L2hTUZ6fJm8mlyv1M85lLFEDbSPJYv6W8xyVpfgeLSnrPUC0ZFjKfvIeHqOuu1wPOY/NNc7lWuSyElDLXwNZN83iTWlRzj0/503GEx9kg7jZ/bicZIwxxpg9ydgrMWrQihJZS6KomBo5hRoAVo6MKjE0jL3pvjpW4nqu+Xt15Mp+OEAdqesolX2S1KTLkZKaPiN0iiTXMxNMgdVEURoGdfSko2uOuPbf+/WyjOdP0zM5llkJTI0AsO+p/lgPiYLAEXRjGMyjK1UxdDRclsk5K8mtMpWdCoOqDzqKpUKzb1kMl/l66hR0GmkbxUsGdB5fAAAgAElEQVSmllMR2Qx6PalZWkfLJOorEykRpwNj72qQTgzU0XekujT3R2TwDBQN7XnEqbqRcqgmXb5OVZ5GLQj2m+qWGmAjr2GTJp0VU6awAqgKlaorWQ2IpnTrdvQzMJ3P/YuSME2jsqpyOoqPVLvp46PXuCTIitIUTdXW6e9lH+U9VCX0fOo553qiadCN8pyP4UpVfoJkZIX3QBckBOtxbTBuQLbXwOskik1ZpyjmHFmriV3hFO0UbUf2J5oEEH0ONf2c+zNgnzDUaftjQQeH3RljjDHG7AbGXokxxhhjTGbMlJiJ+hHD0ojK1CyJnHhnLXPc8IVqBJteDdJg8/vV9FkakIk0uW85yFWQ5pNsCnnlE6NN75p29Xl7mnegWS4XSmkspyZKbbyWS1ibmkXCXA2RmVkSa0x7UTaGbJvHNVQjMQ3JYuBTQybLX5Ecrlk/W/cLANZvvkOOazRTh2WkxribaUoIgVlRibIoyLZlKa47KKc0+5Pl90HQUBGo5QItjURlKZpKtYTEa6R5IZr22gUlM5a15h8aTT7W/ZoJ5HvNeSlNGKXsVJJ/JU+lKW/RTC33a8k9Csoceu71885ylB5fyu/RrJuo7NA0SmQmjDxf9ldya7g9LUHq9dqcz+tsrk0+vudqg8PpXM6NyoCA3M+yjKXbpE0hg8aN+rmZChrQRnI9P4d6nvg57YLt9a/tl+t3G0tVSczyvAf0c6/Xc+XD/fdTVAbSz2HJnJL7Omq0qcfPbWrJlOUrp/nuTibqR4wxxhgzyYxb2N1k/ogRE9lgsTf53vi5+su7GSmcRw1opv7m3jnsEQS0fYL4WFWHK4NRz3oeSZx+c700B7/Tj2Kj1Fegmhgb4yFHzaqWlORWMQQG/YCa6Zer/QhIe0tRTVLD27QYf4taEozwdPr2/nv7adCnfqJOleRUbKCOOqOp5ZqwzNGgpqfquSoqkOwPDZfNVNw8ut7cIe1Xzz0VhPlgZKtppTr9uxyLqDPh88GUZh2Jl2mlqhblc6FTejmin3qpXlccHp2yO9WMmtfz3zrSnufUXzk/VO/U5K2mWipCqjBRiRgEKlek6G1HNPLfidBgHRBGL+hnKasuat6PVL1IqdL/h5SkYjn3PJfzmrDM1Ga5/qqmlHTnQEHTY+ZjVSSmApPvYBulphxX/p6Kvl/0u+LMDVXHufFztQ/VyP6I6sSIAo1JmBGFjtEO+lngPTXD6dcAzuX1aCp3iQRA3DNrihMQ9PzkCSED91jalUzmjxhjjDFmEhkzJcazk4wxxhizJ5lIJUazY9jWPWkOiki/lMMXEDRqi1Jzz8anlLK7SrNRngil+IXaB7HIy1EZA6jlFi1PrOWyluagsvywXaYJDZBaBuM2NdWTkvOqNDiENK1jtk5UQpiVYziX83p0ewq3ree5mktrLs1KloW1eWRjTmY5Sc93kOYZJY6qCZOlDs3w4bXR9bDMMTg5miui79dGeWHCbi4hDMVQOqslFhp7pVywFiX25mTTqSBXo8nWkVJEeSwZLCx56fGzHKJFDC1VRE0zo+acUdklMier8bfk/0jZYZg/20MpbyFIpVai5oHn8rojIzWAYt4tOTCQxF7JOpo9mZuhqjFezg/vFb2GM/lzqo0/mRK9KaVwJlHrtrXsnfK5WtGSKcs/9x+tx5rLLkA1XR/7WDXIvvnzfQq5lvem8yFGmUEHPn1/WTar3xFcJue0fH7U2Jyv52bQ7BSQHB1N8c2f3aGUZbmdqyXmZVPM4vy+0ATu4z/1ZgDA9X/4nbLsdC4ZqpEYe7mcZCXGGGOMMebyM5FKjDHGGDNppM6zkyYClY0bCTHDksYgKMWcuLOWi655oErx5wIZm675K14YLU8s31pn8Sx9/SyAtlwURaSrTM9ZPi9+7MayjNvR/dbSAMtNUYlB4/nZJuCVa3U91eHPmVpNdgpnM0gZiPurJZsNKbFotghh2ebMh6vUzO1tbhNTTlTGZskjamDXlO1O1sf87DdNGA8xL2O0JBbNFAGq5N/M6AnyKc5+pM+6aUpeQmlOKsuidhVaPtxKM4PsaC2NaNYJiUpeRGdi6YyV6WA2EI9RZfy1fH8NpNSin72oeWnZHymrDG4YLe9tl4lS9icos/I8avmqaXlwHnSmGfexaYop5SbmEIVZJXoNcilHz1k0K2sjKFW15yJfD2me2MwYfLY/3iP/+mxZVsq6+lnh+uTcs/SoMxWngm3rPnL2p5aq2BamKfMFLTr0s8L7Vb8jy/+rpUys569sT2Y/XvvHo581tmFpZpV5ptKu4XWVk1JK/21K6fGU0mMppd9JKc2llN6aUnogpfRUSul3U0rxN7kxxhhjLi1dujT/LhGvWYlJKV0P4L8G8ENd162mlD4D4KcB/BiAX+667tMppf8bwM8B+NWLsrdvIJpTMHXV7eXxMEiV5UhTR08crSw+qZkMdQR4+q5+NHDw2/X5xd/8Wr9u+VXPUcPc86NZLjrCmz29WR4zm0YNshw1aQoplQHNhqEJF6jmSR2ZUL1YkPdwhHdwG0WnjJCD0ZMm4HL0peqLqgEzVFZkPZs0MK7W4+doTvNt9FwMgwaIZTR81WgDTFUc9FwURKkpCpTs41pgON0no2qO7qMmhTpSjPJ/9HGkutC8HDVejFKXm/wjSTZdz8c4mK/XJko45bLtGi5GCbPRyIkG2cj0u922y/WS1525Y6lfX5DmquvR61WygkRNKupF1KwQkqNzgU0aG2OqHGP5bMu2aQhv1E9mAsl6ouvQmLPZNPN4ve95b+o9LulBRZnch2tGlimRkZjbU/WqJBKjJgerEtWkh2eKmrJNWjaVnIEqUfl66Lnlfv//7b1vlF1Xmd757Lql+mdJrrJkZLXlYGxsxzFtaC8Dpr1gOUAHE3oBmTRrwfTqeDLMeCYr3dM9SaYxnTXT82E+kJlMGjKTkDgNgZ5hoDsOBK+Gxg24PTAsMAgDBrfANmrAkuW/kiyZKlWpbu35cPa797PrvFclqUpV98/zW8urrs6955y99zn3+uz3ffbzegU3m7Y1Y/r0zVN52579KQLFkb/02iuuCWCwRb5DwHqFveMApkMI42i+C0cAvBHAPen9jwN45zrPIYQQQoiNIG7Sf5vEeT/ExBgPA/jnAH6G5uHlBQDfBnA8xmhTxEMALvf2DyHcGULYH0LYfxpn56IphBBCCGGsJ500B+AdAF4G4DiA/wDgrc5H3WeyGOPdAO4GgJ3hkr7SS3P4NBcbozCu52nRvbrtIcJhTE7rZK69uvW55RQi9sSYLHTldMr2g20x2pITNjah7cRx/6Exh2kdH5Tl6fK8uzNFgzk9UxVes5QQpVC6KXTLKZ9cvoCt72mfHGJ3fC5+fl0JpVt/Jo8XcbHno+P5SgSnACZv88TAlU273SsU+s7j54hjARI0k5jRUj1cZDCnaByvFqCkqzgFZUk/Ln9hHj9eWqUqiEdh/m2H2umhbkrvVX47ucRCOQ779QSnRMe25HXCBScXzGr/YNvLBijXZGyB7PlzKrQc20TnXsmLiup6NfdNVaQzvV+Js8mjJaZr61ryU2po4gvfal6QkJbHuZu9d8q9a/4w253yINwer18skLXyGbzN7ude191Sa3wdciqY0jeWWqnS8DPpu83fe+de4fIWXafsieszRe9be9lnKfeB00mp3ctOCQEA6CYBcU4hwfcMKr9t5Th8jaeQ5Ad0f7AXmbiwrGd10psB/FWM8VkACCF8GsAvA5gNIYynaMw+AE+uv5lCCCGEWC9aYl34GYBbQggzABYAvAnAfgB/AeDXAHwKwB0APrveRm42vGRu+33pyZxmjd7TuodXuJBnUiYG5giLzch4BmOzJ3aAZXiWu3qfasaVjs0zuJ37y4zLHFK5eODYQiNg40iLzch4KXI1g07LLr1Cdxd7s8ceS4A9AbWNHy9LN/fRCZrtMt71stnuQlrGDPji1Gr8Uh+qIoI221vDiXktMaNdQ16CbjNpXtpbLX9vHaVEm7iQplew1Oa/3NZxbpcTibDrVEUaUnumaIbLERbbn0XOOXLELrUpmtarQGMWiz5W7rPteGnap0TY3IKLvEzaGXtrW6CI1or1m2bXvJzYomjBWeY8TdcaSbS/xCJ4igLZ+FX9tnawO3NaTsxtYBGrjTNH8owZJ+LH37nILrZJ0OzZA3DB17FXNtGHcZTl1LbkmSPZi1cV24Od+5vtbC1g9ztHGO33pyrwSNfNW1qe32eHbWsr/75QlMgibxzRsXuJ+2+/Q7xtxnG/XmaLB3JEFheW9WhiHkQj4H0IwPfTse4G8D4A/yiE8DiAXQA+sgHtFEIIIcR6GTJh77rM7mKMvw/g91dtPgjgNes5rhBCCCHEWsix9yzhcK+95nSRpYQqV1NKMeTChZR2sWJ+XniUw8IcfjV6CSCNRUdo7KWYAoXaTRTJWMqI0xwWuuU0GLd3yglFex41FuYdc8LdgO/bYqkl7v9SKmBXpRDoOBYi5nSKtZBFzsuOHwSngSzF4vnocMi6CE5LX3ccJb+RJNTlEHlu+3Q7ZcHpEA5949FGPOgVyvMcbjmlY2F1TrVx+N6uuzemPPb5ulIb6iKEaXzZaTb1h1MIuf2VJw7fR03bVhwhaIcdedM9yWPGaZeu48sy9ZWjrX3GUhfMPRaohb+WeuUCl/Y+n8/SsJyqrNIkh9vX3d6vviu2D/XVcyJmgXBOYfNY5KKhdJzq2iT/G/q9s+veSQsRAOS0zQr7+qRjs1jXczzn3xK7n6t7M7WH2+j5u3hp6MonJu1fLTogB2Fv8YOXzrRtvRy4vd+NmMaKU3B9wRCWHVABSCGEEEIMJIrErIEtlatEfWnW5LnU8pP8+GF+qm+e1vf8UZnZ/uzFOQDA85/dk7d10wSRl/3ZeXo5Rtpsmh0+TRzHUZzuVDNLqZYf85LddBybZQIlOsMznOPXNxENTzwKlDHw3Fo5smEzoUkWMNJyYpv3eMtlvaXRfL6qFsvV7X57AkcPz0HWF42Wc89f2swNdj/8c3gs5WW15f7xHGmtbaf2lmvIM+1tSVwJFmmm2WK1DDzNSLsULVmr33Y/e47F3H9jnu89Cl7ZOMdqufAl1TkA5OvOIlMWCBvjdF29aJNFPBad+kVAmbXN9HAqztvSX+4rRx08h+EcoaRIhM38vWgqAEybkJS25UgDiaVNDO19z4DyW8M/6DmiQwsVxtL4VpNxp//8G2C/JdW5LXJE0RK7xvw7VS1vXrBobLu+U3UNUr84ultFnp1onLWtijCl41RL/uk8XiTci4rbtudfVaKpu77b+phbyykvO0cfLbtWJEYIIYQQYutRJEYIIYQYFYYsEqOHmLOEvWMsRNhxQo+e2BcoYeV/sOf+vO03fvpeAMA4ZV323d98jgu9nSk9AxQRJovovFC7tYePUzsML7WO42FOu55gEChF+Nhx09I70Snq1ku4mgvqscNpen+lKtjZnJt9azjgbH1kd1E4njLmmTJBIWk+5vxlTTh87muU/srOv2WfPQ80KYjnXlfuhUvvL6FmTwTuiZht/13fLSk2D26jwYLdruMC7Ql33fQf3R8mhvWuO4vCPeFz5RacricLm60IKN/3nFq0tI1X9NATY/YSeY+dQUxfkc69Qukt0PhUAuvEqZQyYvGopYZ6CXu72fG4tCenxEhUbP2p+v94+77wXGyrArO5L+V76I3p9vu+n7dF83163vGCYpGypcbo/vC+u5UA1kk3GpwG4lSoHbNK9Vo60isgys7Z7CNzJldm2se+K+y6Xi0SSIJuTyAd+dzfO9Bum1g3eogRQgghRgStThJCCCGE6AMUiTkPTGU+5llzUwppcba8nj7YhBf/q+/9vbxt12eatNR7/sfP5W2f/2ATcuUwpIXLX7i+hDA7i+Vx2tI2HBa11IjnJ+OFjwHysiEfBwvPcsqiKpTnYKmFytPD8aewlAeHgDnUnFcVUbrAUiIrlA6yUpicQuDVIOYFY1bpADB22PEGcVIW3NfuVFMcr15xYaul2tb3HH7m9IWlGzgNUq3USVgaiVed2aoYADklMHG4vVqoSheka8cpCyvoOeH46QClgCSvQLOyF5wGWnCKivKYWcie74XxMxQUrPxAKDVi4+ylIrzyHpyKgrP6JFKBS155aFjqwyv/AaCUAaDVLp4VvZUl4HuGj2npuioFlY7NCS8blyrN7Fjxc8pwgQqnGnad+DjVPuk3YMJL29E9Zb81VVFVr12cWkrH8TxfGG9mXaUZUzu8Ypdc8sCuYbUSj/uQ7oHTlLZDes3pWE6petu8gq723ebfkvErmhINVVpbrBtFYoQQQggxkCgSsx6oONypVEiQZ6SdU2V4D/xu4wnz4Vf8X3nbH/9OU53hg3/+1rzt2mvaM3KbZV18oLznzWA4WmIzBRPZAr5gl9/PnjDzbedenpl44jmeFVnUpXLiXWhHXex99leINCu2c/JMu/PAQwDKrAYos1ye4XEEyvq446tFZLjszLTtfByxmOZifTaL9cSK1NcsZu0hWD52XTM72/05mtmnz/Ls2Wbn3cmQtx1/8zX59eyXHmsd23NB9pxkMxSx4OPMPNXMsDmi9fM946ndj5bPOUUzK/F2On6XhJBnEsRXzq0k5vScbT0xdPbJ4WjA0bYA1vOg4eiMebSMk1iTvVN2fHWhOh+/rqIT6dzz9D1jwbt9tvJEOTyd9qEoTxpnjl5VESgTl9LY2z4rjvi28iMiP5qZo5e0jm0RZ76nsli89LT+DbDPOUJ9Hh/73lQu4ulauwU5e2C/fdtAvxXpe8rfqer3Ge17IEcRnUimF3kHfEGzfde8yOGWI02MEEIIIcTWo4cYIYQQQgwkSietA7aRNjEsi9qWKBx89f/d2MV/6P/4z/I2E2z+tYViJW/W1pfe/0TrfOxNwCJDC8VWxfzMn4L8O0ysyWmpnfvbpQwsNQaQZwWFl+08nNIKa3hxmMdEVdTO9qUUUmXjnsLKk0fJTyQJeldIrOeJa5lKDLtqH6+UA1v785hbio6vsR2HQ/9ZGE0haUshAeXaLjuh9qqNaRwvJnsJFi66IWsLaVMbn3vbtQBWC42b0DgXYfQEjCw47Zxqjsn9L8fz7fAXnRILBo+twSLLysMondPzP+KUjpt2ckoQeAUOuYglp1iMKg1kx2dRdbre1fc0naeX95KlZTjNYcdhn5ScZqVx9lK8Y2uUZbD0zdJsea/DRS4dgbmNKWch7H7lvi6m3zP2mEFVbLbt5+MJli39w6lK77vN6b9tTsrLxL68UIGxa1h5CtlfL3VE8oEujdmYk8K00hMr/SbiVQFIIYQQQoj+QJGYDYIdfY0Zem2zPRbSji80i4N5pjCVZg/eEuHFuRLFYImYzcQr4WGa+bGAz5x2q9L0dJxTznJZm9nzrM9mO6dZcEvHsdkVRw14lrsaFt5VBQ5NpEezsPm9zWxnpq0nrcS13lJd2xegona8xDoFNCYdgSLgz2xtdmaCSKDMADnqxJE1u07WBj42C5JXnGXpHN3xZsgWdeDrZRGY7qM/ztvMdXqb40zK+1dL652ikCaE7FZjU+45m+V6Y8dLsW1WzNeN79Oxh9O40HHs2LwPR11Wfw4gETkJe/OM/hKKxCRRqbecHijf5y7NtMe9CFWOjJVvLEcvbJy9woXcRvse10LRM0eg7LPHbi0i+Nkkdq2sFxxxdxXpTb9tbFFg5+vQ78vMkRQ5o3uKx8zGkrd5YmCL/nlFKIFy/82nyDJQRO7R+35wdJcLVqa//BtpeIL/4Cw64GNWztApkreCPkSRGCGEEEKIrUeRGCGEEGJUGLJIjB5iNhgL06/GQpYsDrRQPYfALYx74rUlLDqXUiws0q1CxA8923o/e2iw42wKFbNgrkoNpDQSh6xzeNoR1nliTe7XxELpgwn32A9jbGFHqz2MVxzOwsrcf/M06Tri4+Y8Tfh6+30k1tzVTm944W4OP5+8srm2czQ+XtrBxo/Fzpy2sj7wPuZNM8Xuog4sjrTihC+8vbgXm8Mup1g8kaKl91hQyWk0uy9Y6Gnn9u4pTyDNx+FU6Hjq6zSlMbI7M6UxOpTKMl8Xbq+lXDk10nZPqsfe67cJ2Tmta2PLP5BVaslecCHRNAae4JbvI2/85smV2YSxnL6wdK1XzJLby6Jruw4X3/twaWMax8qXhvqYXXW52KP1ke5N+83y7g/XQRkAUnrVS2d7vlf8e+alliZ+wMU5rRBr+X5YGqzjuPQC5Z6qvu8pBTVGXln2OU8gDqAUn6R9eNGH8AkhfBTArwJ4Jsb4irTtfwbwXwN4Nn3s92KMnz/TcZROEkIIIUaAgGZ10mb8dxZ8DMDtzvY/iDG+Kv13xgcYQJGYDYefwHkmZTNVb5bCsyKbcbzkwTJLtVkKzxh4mfTTtzXHnHu0zEJyXSKaHVgblh1xJFBmbiwqtmWeY+yeacsiybmWxXPWL295Mi/ZXX08ANUyxiwQpG3LaSbNNX2svRzR4ZlkdlOeLsJNE9xV7rzO0mjGxIMrjlCQRcM7Uo2hqn4PHXPZERJmQTP11YvydLg8DwkoDb6/DLselTDTWSLrLa/1RKin59rX2osqAeWasBDdIiMcNTCn3sUeS6yzGy6JxadXvdcLvjftnmUhvkWEqpo/6XvDURyONnlRO4OjCvwdMXhGb2PKUUKb+XO/vN8AjjrYvVItdU9jtUCWCRa1qr4r7Ohr4+uIc3nsJw63+2L3ghdpAsp94dVm85xt+d6zRRAAjT0tgy91tqjmk4mv+ftG4m2LOrF4Pds5OHWiqiX/TsRHnBsxxq+EEK5c73EUiRFCCCFGhbhJ/wG7Qwj76b87z7KFvxlCeDiE8NEQwtxaH9ZDjBBCCCE2mudijDfTf3efxT4fBnA1gFcBOALgf19rB6WTLiAcsu7s3gXAL1a3PF2eJT1nz1wkjTwplm5/dX592Z81HiScBsoiTUoDWZjWC4Ez7BSaQ9v0vgnzZtjjwSl616U0mYXNq6KQjnCXw9jZf4G2WXg+OoXuKnEttddC6FVqJKUvprkQoB2T0kBV0UR7TSkfC9XzdTM/lu5tN5XzOULjqhBeCk9Hao8Vvav8SRxhoqW5uL0snrR+n3hpSTWYdwy3i9Oalt5ayxnarh2nAzpHSdCcrvGZ3FoB5KKhXADSc3IOTmHHFacAJqc+mJOvb9IJ2+8j4WY6ZpWKmXE8X+h962/lSp1eeykkL93KdNkt2CniudZssxrLhBWDrFK4dm/TOPJ9aOkfvudyKstJo3LqyPq40sOJesbS2fS+N45nEpDzMblAZLAxd4qPcuFGryjtBH3fTSDNztFG9V3oNyfes6XPHXtjjE/b6xDCvwPwp2vto0iMEEIIIbacEAKXFv87AH6w1j6KxAghhBCjQp9EYkIInwRwGxrtzCEAvw/gthDCq9C08icA/pu1jqOHmE3CUktdXpmQQufje29w9zGefeMVAIDdnyshcF5dYGF+3ualaiwE3Ktwo73PoW0L93K42vxkelnEW6Daa09FCuO++PpyPrYXz/vwiqUU5q9WB6T+eysc+LO8uiD7hTgrrE738IOw4yzT+FjapVrlg6ub95y0AR+np5+GtdFZkcJEp/BcSOFyr5wElz6wa8fh9QnHq4OvsVfewjxNOA3G2LhwKN4j3z972ytpmOo+SumAatVQCvPzSizuoxUD5VREXoFEK5FsdRKvyouUdrCUCKdL8goqZ3VbcApFAiU92KEip156y+CyJVVh08eSNxFdBy+FZ/1acn6HAGBs+qVpX0oxpdU7vAJv5jMPNu2+9urWOaoVfzQ+di95nkJemrnbo+SD3VOc1rQVc3XKtNW06jvn3ZOe/41do2V5v2woMcb3OJs/cq7H0UOMEEIIMSr0SSRmo9BDzCZTCeGSYHVxtpRPXE4zLXartBk0+5M896oym9v9uUcBAPNUSNGiJTxTtJnZ+GEq8EizPRN2el4uPDMzIdWL7DJKTsR5Rrqw2NrGEYvuVNNvnlGy6M+iJM+/65V5267vJk8Pmrl50SKe2VmkhsfCokDH33xN3mTeMx0nIgGUGTv7U4w7/hxZPOl4TQB+dMKLJo0t2DiSaJoFp46LssHXxkTHld+MRaCcgoH82Spql/rP96YJsRc4EkcRFG+2myNe5M/huTazR8updG+70Rn6nEUGunwNyTNozHFqdkn9ij0iKHYveUUYq4KDtn+Pe8EExJVgOfWnW/kDNeezyBdQC97tHuFIjX0nqyKL6XxVAUOOojnttajE5I8p+plcfAO7e6f7fsb57gGlqKJXYNX77s7v5WK55fvFBWoNu892ooy993vG92OOVpNYfsKiQFQsVfQ3EvYKIYQQYiBRJEYIIYQYEfp5ifX5oIeYTabyjkkhWyvgCPiiTziphrkflXC5eShk63r4BQW98CqnKjw/lW5KE/CxTQi4HSWczakBz4rewuGTTqj5JAl7q1RFwjxNuA8sQrUwde3BU8LPnm/HQkpPcPkGz2uDQ/8mQGbxse3DwuaJZHPOYsQqpJ/Gqgqhp89yuYTT6R7g9NY4izXNW8YRpG4/2O4LY+kL9hbyUjo2tgAwPt32TrF0CacQ+Jh239QC6XTP0T3jjT2XN7B7lsP8brHVlMrhlN+Y45XEREdcupTato3SE3yNc7vIU8k8gzjlZfe2CWGBWnRs8HfFqETnVuCRUj9LNH52h3j3ZkX6zalKI9BvQD6P47fCqUf7fek83r73gnOfACWVzh5P+V5gr5Z0DSvhstMe/t3YnsT/81wYN/knscfMipdSJZRGGjz0ECOEEEKMCorEiI3Cnvq9ZYqMzdK9yAbgu6Z6orXphXZhOZ4B2fJCXopsr6vCc0kcyOJJT8DJAuLV7eI+TNJs31vyzLNGixZ4UQzuF0eGtqUxYBdOOw63p+sUZuRIlQkl+dwrPUTAq9vA0RRe0pqPk49Q0DsAACAASURBVJZts0jNohdVIUBndj1G2kqLMLH40WbafA1tmTQLsj04gmL3H0dnzDKAhaIc6bPohbcknkXuNnuvlvLT+zYT5+/KmQo/9oq+5GXpjriUv1/cH8OzNWBnX08Qb+MbqN11BKVdsDOLhkkgbO3lZd4dul8tIrZIS6fnL2v6OvtQWwDuidwBKiRJ2yx6PH5FiXJ4Amv7fvHYeZG86Dhic+QnF66khQp8vuhEaiwKdvG9D5fj7GoL+lW4cfjQQ4wQQggxCpTijEODVicJIYQQYiBRJKYPqIr67bKQffGOMXFtLwfc7E9BIdnsF8EOn8kvhFMgJ8knxYRw0Sn0xqF7e79KaTni0uC4uFZFGFPYuXKrdUR/J68v++z4RhMuHkcJbXuunywgPvGWX2z2pfDzipOqsv4cv+nSvG2W+phD+iwOTftXYk7H64dTfXC8SlbsBXl/5AkTORavOG7KLKTN/kCUlrNUTeXgmnxkOOV1gr2Hvt5OD9r4dOkaruXEi3TvcprIUgwd+lguTsrCb6dQoIefBqSURo80rGH3JKdRbcyrQoA0VtZv9m46U3vG+d50xozb616vVe8B/jXmY3dOmYcRpSPT/cppHk7KWaqHfwMsDcTpNhP2zlAb7fvM7sQTC+WeyqJ19rdJn2Xx7ZKzACE6RRz59y67iNP34/nrmuvA9/LAFm7cQIZtdZIiMUIIIYQYSBSJ6QNWqCaHCQUrYWZ2B20LFIEiiuMox+SxRsRZieycGeKOn5Rz56XavPQwHZuXl+ZlszTj4plUFpCSKNZmlTxTtGXkE1ynxWmjRYgAINryVJrZ5ppQNNvnCEMWr9LMzd732sPn45mvvc9RMoNrxFjEq5fw1KJWXL/G2rHs1Ith8ahXR2l6/8FWe3mWahMvbg87vxq7n/TrH+Vjp2vIwuSVNKs+7UQpAF8Aateb7QbGUvSOXWgrkXfqjzcj7zxehKLW/0VnbJm1augspgiMV9OK96+X9bcF9nZP9vru2rhVImYHi7ZxdGLMCU55ta7cpdbM0fb4sSO29ZWv+0SKeHjHrpY+k3A81yuj7wr/bhgWcfaWnQMAnMiruVvztl1pmX1XNY9qFIkRQgghhNh6FIkRQgghRoRh08ToIabPsBD7GAnrnr6teT33KKWYSIRo4TQOi3th3jM51wIlVO0Je72ia7wvM+2cZ2W+7buxLQn9zOMBACa+8K38eun2VzfHo30srTXNqSynwOOEk8rikH52FSahXycdh/sPFik6IX9LCXmFAMd6OJdGRwxqKaZj15V0mhW7ZNYsbGlCy6PtfU9TigXm6eF41gBlzFg0bEzvJxF3+luNDfXb0oNVCsG2sefLobZbcIX1xxs73mapKkr5VSL41C8vTVQVkkzfL8/fht/30lv83fOE8ew9ZPdp9Z2z45B78/TBVJiQvWE8MTAXrEzbvFRfh/bltGa+jpSOzClpSvV5aU3rP/sas3De83PKxyHxekwLAlh8zHji7JXvHWj+unuIYWZd6aQQwmwI4Z4Qwg9DCAdCCK8LIVwSQvhiCOGx9HduoxorhBBCiHUQN+m/TWK9kZgPAfhCjPHXQggTAGYA/B6AL8cYPxBCuAvAXQDet87zjBw2swCAl6ARs/KMinkxLZfdQbOwcLgtHuXljgYv2/aWKhvdqSIaXpxrZlcmYAXq2ZVFaFiEaDMyrmljS7CrKM8tN+aXngOqiYqrJZlWx4WXjfaoo9Q63u5d5Ti29NeZ6fE5veW+oYfIOZ+HjmnXi+vcmHCVoy82Y2dxsedUzOS+OkJSjk6Y4DZ6S7q53VQzy2bxXu0b7jNH/Ioovbe7LkCOxdQn17HWmbH3qgOUP1dFQZp7jWvk8D2Qz+fUsuIfS4vaVNfarg210USlVb0kJ0q24tX3cYStvcYn13piIX8aF/4u2P1jvw/AqqXl6dqeJGsGE4GPOdYAlbVC2pe/C2MUgbX9WVRtkZ8lWspu9xnfr55bMgu6xehy3pGYEMJOAG8A8BEAiDEuxRiPA3gHgI+nj30cwDvX20ghhBBCrJPNisJsYiRmPemkqwA8C+DfhxC+E0L4wxDCRQD2xBiPAED6205iAwgh3BlC2B9C2H8abb2FEEIIIcSZWE86aRzATQB+K8b4YAjhQ2hSR2dFjPFuAHcDwM5wyZDppTcWSy3Nv/uWvG3yeAm15rQEpR1yyJVCxeYjwyFnFi56aSQO/RqeDwqH9C0NVB3PUlUckk7n5kKRlSjScfM0KhFv+lv5czzvpHzIQdjGgpMcNi4sMmUHUDtnVaTQEYhaO3oVl7TrVYfim2NWqZHDbVdYHtMzpckYOyb7yWTo2OwFZOkmvn/snqqKgWYRcxlJ9glh12LDE5jnu9nxLAForNjt1Xxi6FLbda0KBjoFNDvTRVRs14b7ZWM2TvdrLZbf0dont4vus/F0j7Pg1BN2e4VPg5MaW7iqtIdTLIspRcnXy3NGzmm5Nc5dpYrTmHMfctvoHsy/Lz1EzPZ9598fr+isjTPfr157uyrgKLC+SMwhAIdijA+mf9+D5qHm6RDCXgBIf9fwJRdCCCHEhSZs4n+bxXk/xMQYnwLwRAjhurTpTQD+EsC9AO5I2+4A8Nl1tVAIIYQQwmG9q5N+C8An0sqkgwD+PpoHoz8JIbwXwM8AvGud5xAJtsNnHwcLtXP43VIanA7Kan/2jXDsxRkL87o+H7SNC9x5Vuu5SCUd2wslM1Z4jkP2+ZyUdhhL6Z8446/esvA+p8562cnz56vzrdp/9TZesTOfQv6c0jhTAUOA/G9oH281lGfF7q344rbayrJOtaqoeX+J7oVqlVgaX05FWCpj2vPpoDQYr7oyjt1aCnZevNBOl1gKL/S6hnZv0z6eFX8uzMjpRE5B2f50/3TSa/7+WPqTU34r01QSIo053ysLZyhcWKUBHY+WifaQVdfQvkt8jfg4XtrOvu91KY/2d9fjudeV34K5H6XCn7T6z4rScl8tTWSr74C6vEXXWYHm/b54KHW0gQyZeGNdDzExxu8CuNl5603rOa4QQgghxFrIsXeAqArmkTjQPCZ4hmMzP/ZasFkTz4BP3FxEs1Y0kiMjZ5oheZEJgIraeZ4d5BthMzdPUAz0iDrYC3Y4TVEedhD2HIZZQOx5ddgxeebK/beZb6RZvs0uOVpi52ZBqVf0z/x2gBK9qApAptn+sbcX75yqYGeaGVfi03QeFidbPIyjEyHtU4u86Xo5RUWnvvIIAODkW34xb9t+sDkfi0O5+KLdSxcfKJEvz9nW8Nx3AeTr1a1ccxsPG/YlMRH0ilNIEyjXdtxx4vXudW5PFY10rrsJbb1ijxw1YaG6OSYHuoZLzvcni4856rbL76Mx5WzL7aL7g6NJdg/s/Gn7+8OO4J5PznM3Nm3c8wB9jgt6pvGrfje8eyC1bUWFGy8Iw1Z2QAUghRBCCDGQKBIjhBBCjApDFonRQ8ygwtbmybKbhXcWimbhXQ67k8DTKx3AaYXsp0JC2FLIrR02B8hvhba9mLxDWIDoHYdTOTl0zsLM1AcWYVr6gn0lKhv8M4kGWexqvjSUDmH/E0s3VUXtUhtjDzGwwWkZS7HMHClpOwvPV+mr1O/Zh54t27hQYkppcFrGUlUd8rcJKdXDaQP0SAWuhq+7WcPv+GpJaVi6hctbMF4KoVjfU5mMlBpZdnxygHI9q9SQ3e+XtMtpVJ5BND6lDMJka9ta9x5b8XviZTumV+yR78f5veXe3XHUSieUfcyK3/OT4fZUY+WUd7C0HRfxzN8RElB7qU4u6On5NHm85MGU8uNxPENKC6DvEpVZEeJc0EOMEEIIMSooEiP6ARa9dR54qHlBxRPz53i2lmasaxXjY0x8uu1Ye3bJUYHTVMDNWzLNER8jixUpqjQ2TVGQNDuPvBTXxLfUr1xEjqIBLFjNIl6K3lgkZ54cUDspWtJryXdxKS3ntpkxt8eiANUyX4rE2OyUC3p618YVwNJM/Nh1zfhd9HRpry3R5qjBDJqZdOXMmv6enqNifDTO7Aybj51m8Twzt754ok+Gl6BbFJGFqRbF8NxjAT+ik0ecRdpJOM7L7V+8qrTXokgsArdopRUSBYBOjm5SEUKKIlp762XQE+l8O1v7cGRo+wK5UltBSo5eOI69Y/nzZdtzry1juueBn7feN8FyVTzx5e17ge9Du47zND68f+7rfPsa2/0aeoiYzYahcpr+xsOt4whxLughRgghhBgFolYnCSGEEEL0BYrEDBGeh8TYwyUU7DlmjjmOvezia94x7vl2sWdHSWmcvHKmOd7OUkHDwt3dR39c9n/l9QDqVBQLCs3zg8PduV2UvrA0Ee/LWOrIK5jIDrlGFdpfo+CipetYVN1Jn6uKR9L4WMifx9nEl1XhwgXz0Wn3CQB2f73tw2PwdbPrzWJo8wdigWpV2DJ53VQiZUdA6xUpdAWpnDLc1U5V5bQMp/wcF+iqQOThhdb5OH1qsGsskriZUyR2XattC+1ju32l1Iml5lj4jJwmnKTPkUtyOmY1zqmP7jhS/1/yIBXdTOnD8YVSptHSf1UBUfuNIJE3f5csBcULAmxblW471W6bfQP4PquKaqb0qvxfthhFYoQQQgghth5FYoYInuFYFGCMZtd5Rk5LV1lwWZZGlxmXzdJ4my0X5hkcz7jMVbaztx1B6d52U3md/lZC2qq+TzNLneCluGmWx862NkNkl15uz0Kq88LYLPXk60u0xKISYwu+8HnJEf56586C5R4Rryz4pdmwRWAqoajN4qkNHMma/zuvBVALTk1AytfGq2WVowVcL4iiJbZ8m2f+Z4oMVJO7x0royKIuK/S2F9GysWUh7fJ0mWNlgex0+56qxidFxKroAkfEkqCVhat2Ho5imBswH6daqpyuFwtcre0sGvYifZUI2lmW7Tlwe/YInoCY97G2VY7YJpan9iw/cSi/tt+LymbBqetl7eXIl1fDbUVLp/sOaWKEEEIIIfoAPcQIIYQQYiBROmlIMQHfqTfckLdZymNsDbEiu8saXKzQPF84vO7hecOwA6x5kXAKgRM52YXUKQrIYXOv0B2LJy11dPzN15R90jG5jStOKN3EzkBJA3DRzO0HTzT7Ou6pDItmg6UQyGcnp/8W2u6pPD4dujYm3mUPEkuz8TZjzZQFOyebUNnxhKlEzE6hSL7G5kTLx7aUGaeVLJW5jVJaL1KhSTs3j2P20WHPoHTuypGXPFEs1cHuzobnf8PH4ZRh9nepxNtNCmr+MnLfTalFvif4e2Ni4udeV+6zS+9/otXX1ecFfPdrvndN3B+dsefjjF+xL782F2Ce3VoayS2M6gipOT0l+hClk4QQQgghth5FYoQQQogRYdiEvXqIGVJspdLUVx4pG69pF+lbq/ibrYaYeLJssjQQr1bgcPjcj5pQs1f0kMPq3goQDn2b9wV7nljwesWx+a+gdJKlozqL5dtrqQj2+RhLqYan3npF3rbzZ2UlkqVqKg8WW/lBoX+vkGblX2LeMr9Q/HEsZTRN49NNq0LcIp5AvjacnrDP8jjaudnnw1Ijp2jlFvukWHu8VU65zAUAXHt1s61XqQanYKelGzppX4DuPSoXYKk67gOzcnnbb8YrqRFoRY/dAZGul63y4fPla0ers8acY3MxR/OjmaU+PPe2awEAl95f7lG+njamu7/e/g5UqV5npZqXRuxwiQ5nFVh+j+57XmHVcVKdVixynFfOmYcRfa4r/xexBeghRgghhBgFIoZOE6OHmCGnKhSZZsU882LxpPmkVA6fKdLAYtYciaBZ6s6flqiLCT9PvLTMBHd/vRFcsjiQBaAGCw7tPN4sv/LDcLw2tn3zh/m1iWZd92GapVsxyD0PlFkxR5gsqtUlh2GbSY857rJeEUWgRDw6TqFEZir1h6MlHce9mP1UsqCZPmeiWRZA2+d4X56dW7Rg2Yl2cATF7oEOvV9FQ9K9FNmxNzk1c9HMLJp2fHuAEnXh6INdd76nLHpRRQHpPHbfPP+qct1NSFuJuNP1XCaxLwuazWmX22geLMduLUJZOzaPo9cHvlc8bxkvusfHtH55AuvKgZocvPM2clBecaJNFslkB+Xuc8+3PifEVqCHGCGEEGJUGLJIjFYnCSGEEGIgUSRmhLA0EhcmrMSTKQ3CIsrTKcTuiSzZV4NTQxbS3vXd461t7Hkyk8LqHBb3PFY8OH1jqS72fGH/DhNfcujf81PJ3iGXtFMNABBTmYBKiGwpGC5cmEL+LOCsCkmmfSpfkuTrw6F9S8FML/h+PJZi4HSb9YdTGnOpvZwusevFgm1ujx2HZzm2f5dTFm7LClk0iyIqN7EvlxCwtArfZ5Xo2vFtyf137hm+H4/fdGl+PfvQswCK+BwgwbYjMOf7o0r/OcUw7ftz8YFy7pzyolQU/+iWa9jN2yyl6vnEcGrIE/Za6hCAm+pbSqnQKpVLKdwsxOYUU7oPlyXcHXgChm91kiIxQgghhBhIFIkZIUzk6zmYAmXWyE+2NoNcccSRL1xfZuSz1dLpthDXZn62bBoos8cxx3GXj8OzWIuqcElHm73zLJWxYocsGs37LpCT7kJbKNohjaUtO33yva/K237hkz9q+sJF9JJwlceMlwNbfzgqNeW0+3SaNfPsmoWd2bGWjm1jakU4eZvnlswi0sqJNy/zLbP04obbjr/wdWUnWYuOVYLThbQ0nMSsJnbmY7NTc7W0PGGuwx1n2TlfQ46MlP6Q2NVxA7ZimAvkeM1L0G0yy8vbF2eb6zn7pcfyNo5u5XbTeUxgXRWsvNycrMv1sHuAt409X66dba3cgLOjcRlTOw/fr+zYa2PeVeHG4UWRGCGEEEKIrUeRGCGEEGJECHG4QjF6iBlB2OOBQ8kGp4lmnmrSF56I0ESSQB2+55C3YSE/TjXYMSvBKaVL7Dicntrx1SbMz6kGS9t4beTPsvDX0hZcKNKSP56PB4DseLz3K8fyJkvHLd3+6rzNRJqVs+0tN5bzpNQA+5eYX4+lvgA/fcMiVUuTeOm4Skjs+OhYasQrcMksO2kwz9+Hr2t1/dN9wS7QS69oxpELKlobezkIm19L5ficXnuFG/lzlU/Kqn0BEtJSesZSeSzO9gopciHJtoNPgVOC7FGz+3OPAgDmb74qb7Nzchvt2lWpxZn2GVkg7Dn22rbK64dShitKI4kBQw8xQgghxCggx14xbPQS+Bk2O+dZnbeklaMXY0m4WDnNOrN4EyHybJYjLJ5A2N7nY5s4tVdUwYSULFK12fniXImG2CzXE15y29lddSJFU1yX1STwBYBAY2YiWI66zODyqn+rz21UIlUTtNJyX+vXaWcsOBJjfexVt8rwojxeTSy+/kskLrUxXaBIg42VJ8TmyIfXjmrsUySHz2394jZy9CI6gmVbyn2anJitXxzRql130/7OUmtuo9efnT8t57b9Oerkwe01Vubbjs/sVG21jMZmZvI2W2LtfU6IQUTCXiGEEEIMJIrECCGEECPCsJnd6SFGZCy1NPsQu6K2UwyWDmF31cpbJfnQeN4nnseIJ9IF/LRVFlSSN4gJOz1hKlBSAtwXS0HseLztwlp5ozgeJJw68txVzaWWxa6gfhnc73K8Imy2IoR87Gp8UnvYo8XEy+yqa2k7z0HYazfgF8vM4+s4LPPY8nmsP1xo0pxkx5x7wRMk9zrOdHJgXna8WNaC+x0ON9epEiynNvLvPaetPLqP/hgAMMNC2ZzKLNeVBd3e94FTYUZOddK+XS9lSPfUuBWxpJSxic1XztgTIQYHPcQIIYQQo8KQRWKkiRFCCCHEQKJIjGhh9vpAKRbJq1QsjcSh7aVZSiekkDanJ/JKHFrN4a1S8bwxqhD6VBNqZ9+RXBxwob1aAyi+JPUqFTt2SY2UIoMlxH96rl00sfbEadpTedlYSqdHv8ZnbYUMpRhS2opX8djqGx57K7sAANvTdk7r5eNRe3isjJV0jbgNvFrKI6+GYQ8eJx3C12veCkByYcd07qqURfrba8wsbccpOruuXL7BxuzES8v9uJvSRHb86j5zxsKO3Wv1lqV8+P3ubTc1x36Syxw0x+Tv1Nh0KYZpq+zYM6dXWrQ5Xul/h75LuWSIU2hUCGbYNDGKxAghhBBiIFEkRrRYId+IXCySZn02K+Yn4M7RtpvpDqdoX1UIMEUIlshXY5qKU8IRvto+7NJqgstIbWSvDvOhWXBcUT0fFM+DBihRB3ak5SiAMeZ8jj/FrqqGOf/yjNz296JgQPGR4TaY8LUSXaex4uPkwoM0c4dTDLRyCL73YQDAsetKtMQ8Tzjyw+eZOVKfDygRsbGHS+THPFq8qBFQri1HULIwmI5t9+vuo23/FoCuCUV87P6pCkDaeSmaEWh7cVOebG3zPF2wr3jndCkCZfchR4HyuVlUn4TGXkFJoIy5iYuF6IkiMUIIIYQQW48iMUIIIcQoEIdPE6OHGHFGrFhkx7FXZxt2TiFYyoh9NywVw6JF8/eoUjaUQsohdgq/W9qF0wqeF0dVuC8JUjlVY+kNFvtaGon39Qpbch/Mg8UrkcDb2MtlfKFx6ahEsead4qS3mEApum2PpUKSSXwNABPNYSqB50q6TiyktbQN/555KTou8mmW9Va0EEBOM3JfvCKO7Gligu/tKALX1ccD/PIGPD5WSHHuRyQATvdHr9/p3G+6z8xHpbOwq5xvuhmL42++Jm+b/dJj+XVMxSK5CKOdm9NSdh04xTT2MJUYSEVFqzSrk5ay70pVnJRSXVzUVYhRQg8xQgghxKigSIwYRVgwaAXleHa9VqFAE59OOM61/Ln5y8qM3qIAHHU5cXMzI925vwiALQrA0Y5q2XGa7VYOwCnC4kUNPIEnUKI2LLi0fY7dWopn7vhJKrxHY7LjkfZyYcaEq54AliNMz73t2vx699ebqEw1O09t4z5Yv3mcx1PUwMYT8Jdqe0UauQ0XPd1ESFiszJE1GxeOYkymc3PBTu98nli4Wga9s5Ha8rLzyanmmCwQrsSwzhJrWxoNOp+9P+ssxQZKhIWjkV2nyKlHIJFvfKxpJ0fTjLrgZBKv073XJSdeIUYVPcQIIYQQI0DA8Gli1r06KYTQCSF8J4Twp+nfLwshPBhCeCyE8MchhLYblhBCCCFGlhDCR0MIz4QQfkDbLgkhfDE9P3wxhDC31nE2IhLz2wAOADB71n8G4A9ijJ8KIfwbAO8F8OENOI/oYzgN4nm5LM41aSQTngKU5iBPl7mvlRC5V3zSHFv5vReub9IkM0+VVAO3x85tTroMi3g9OO1gnikXH2gLli2FxHiOtEBJJ5koGChpqYnK7bVdXHLXd2kAE8++8Yr82vNtWXJcYe2YPCbsCTP7pSZV5aUJJ0+UfpkHz8nXl3RI51RJCVkaiT16LPXEourgOBZzisrzK9rzrfa1y67Ll5851ck+QvkeeIw8apJgN5B3DsOpntVwutDuU3bsZTGwOWKzp5ClvDhNuKzUkdgoYt+EYj4G4P8E8Ee07S4AX44xfiCEcFf69/vOdJB1RWJCCPsAvA3AH6Z/BwBvBHBP+sjHAbxzPecQQgghxHARY/wKgNWl4d+B5rkBOMvnh/VGYj4I4HcB2FRxF4DjMUabBh4C4FpMhhDuBHAnAExhZp3NEJuJOfqyeJJn4tvSLLieAZu7bLnlxq0eziNUq8lZnlqJGdP+XRKpWgTGm9kDRUjKjC00ERSO2HRS5KSaAdOM24u2mDCY+2BiWY5ysKjW4hgcBfLExF6dn0r4mkSuHJ3JtXpoyfOUE4nwHGI5kuXVm7JxGZ8tESSLVNiycWBVVMFxmM0ib26Ds4SfnYitPYxFm7hul/Wa7z23r3S9TGA8QYJbL1rG18uOb1FAwL8/7DhdEu7y+Nh3aJzuUYu6tBftCzFQ7A4h7Kd/3x1jvHuNffbEGI8AQIzxSAihrf5fxXk/xIQQfhXAMzHGb4cQbrPNzkfd2FXqzN0AsDNc0jfxLSGEEGJY2URh73Mxxpsv9EnWE4m5FcDbQwh/G8AUGk3MBwHMhhDGUzRmH4An199MIYQQQgw5T4cQ9qYozF4AvUu6J877ISbG+H4A7weAFIn5JzHGXw8h/AcAvwbgUwDuAPDZ8z2H6G/YJXTHIyUdYH4tO75aCvxNWsFBcrvNaaKjLFYtaRVLsbCXC4tTcztSeL4S0pKw82wnHpxGMjhVYf4nnNKxtASLaz3xLQtts1vwN39Y2rurSVuxC6ulGDil1aECmZZi4TG11Aifz/pViVHTWFXeOYTnUbOSXGqnD5YxsfN56Rk+d3eqbLO2VY7Ftu9sSSGxW7AJcb3rX6XlUr/4Xjh5fTv1yONjfa1SdelWqFKdz5f748W3/GJ1PADAN5oCmXF3cf710nI85tnl9/n2vSfEhhPR72Z396J5bvgAzvL54UIUgHwfgH8UQngcjUbmIxfgHEIIIYQYUEIInwTwdQDXhRAOhRDei+bh5VdCCI8B+JX07zOyIWZ3McYHADyQXh8E8JqNOK4QQgghNo6wsvZnNoMY43t6vPWmczmOHHvFhsA+GNvTa16RYf4nvNLIVux0ybODLestvM8hfYPt8nlljOGtTuH0ha184iIIlr6qCiVS+iK3l1bNjC00+1x6/xN5m61o4b5wCsH25vE5nVJinGKyVAPb6u84euZCnB425mut2GHs/aowob3g9F96n9tQFflM23nMPFt+O8/k8eINw9fL7oFqpVq6P/h6VSujEuzrY5+tShUcaxf2tHZ3Hi99PZ0KYAIlVco+MvO3v7pqK1CnkTwsjWQr/oQQ54YeYoQQQohRob81MeeMHmLEhsAzyfErmqJ/wRGhenC0g51UzbF1jDxUTOTrOc3OPFVm8VWkIUUOTpEb7FT6++JVO/O2xZ2NRMwKK/K+ANBJXiYsALWZfaAIgQlN2bm1EuemqMzYw0X4PJ6EvcfefmPeBe2LkgAAHVhJREFUZsLW7fd9P2+L15RxNHEqR1jcYo+pHTy2NuYcIfIiEewFZF4u7MRskQaOhnjeKotXFi+oqem2R4+duyoKSQ66iykKwhEduz9YpGuvK/EsXYdTqW3m/AwAx65rrudFU20H5RUSiHsRJPb3MfdiUHTG/IpYBC+E2Dj0ECOEEEKMCCoAKYQQQgjRBygSIzYcr1jdtmNNWJ49XyzVwKkIFsNmWEia9ufUSPYTOdr2ZwHqooKGJ2yd+1GTgmBB6elXnDl9Y8fhlIW9ZvExpy8M84YBSlqCC2BmcSlKmoMnUSZONWFqc4B2iYVsq09pO68ooutHQ+UAnntdcxwbJ6DY7rOnC8hbx66tZ8nPaSBrIwthT73hhvza7pXJJMgGisiX74Wc0qF2c79sDNgTyMrk8piY4JZneZ6XC99HVnQyUBuVRhJ9RUQ/FYDcEBSJEUIIIcRAokiM2BRsSfMyCWk9qkKJaVY+RkJJzzU3F0rscRzbx5yEgRJt4QiJF51gMaftw7NvO/f44baTLB+7KlKYnF27t91UjmNFEad50Xd93tWYuNmLRLCQ2vpgAmigLDvmCBJQxtT25/6bEzELcs2xlttoglugjOkYRScs6sRjwq67HiaQnaeomkVVOHrntdsroFkVGk1t5Cjh9EIT/VqhfrF4O0f9KPpn96kXiRSiX5AmRgghhBCiD1AkRgghhBgVhiwSo4cYsSmYKHL7QQrjpxRDFaZ3PFhWXMFp+ZyJNLl44jYnBbNzf/GtKU6y5StgQln2oOG0laUdOC1lKSNOT6w4KaHKdTj56ICErR52Pk5fcZrMRK6cTjn+5mua81FhQkv1sPjW0kjs6XLir5Wx2PNAk74xMS8A7P7cowCAbSjbrK+cLmJxsSegtm1TX3mkbNu3t/W5LNIFslCX006W1hqnlJilICunYUoteSlD64PnzsxCY07bzSy004dKIwmx+SidJIQQQoiBRJEYsSmYo2+Hl6Ra5IQiKF0W9qY6QtVSZHJQzcexSA5FdFikuTjbiGa5ho7NyDkSs/3gCQC12HVptpx7Ku0zeaztkMuMp6hE5T7rOPYyi3NpKfIjpY0WBWEHYY4MWL9ZVGt95P5302uOYtixL3q6RIMu+7NS/8muze6vlzaaaJadfc0B12pIrcaiF3YNAIoIkftwN0VDeGyic60ZGwuup2QC4ImFssSao2kmJv75nnLdLcLEy7LzfUiuwdOHS4RpWUunxQASIGGvEEIIIURfoEiMEEIIMQrEOHRmd3qIEZtK99Ef59ed3bsAAIF8YFiEGVIaidMy+X0Sz1r659it+/K2xZ0hv7Y0CYtYTWjboeOY++zc14pIdXm6BCtNvNpxhLucsjC/Fe4LC03HUvqHUyfjKc3Bx5k8sVL1D6hTR5aq8Zx4OXVkwlXrH1Bcd1noys62HlYMcpE8aExUzG3k8Zm/rC0qzr4+nFazQpqO8zFArsN8f6T3K6fh9LeXsNdGj8XQ5ujMY2b7dKmwKebbrsNCiK1FDzFCCCHEiDBsmhg9xIgtI84nYWYPAadFbbbR8uU64tFgs/TJ48Up9uJ7y/Ldxdf8dQB+XSYW9i5PNtEbjth0J0tEx7bzcSwyUjnypsiI11aA3IspgmBRABbk2vJtjkRxvSGLJvFx7Nhct8mEyFy/yKuNxAI5WwbNkZ/uy5tjcmTDlpubKHo1s196DEDtIOwtg/ZEukx5v7QnHkrL1p0IEouPeSxs+Twfx6u3xBFDIUT/oocYIYQQYlQYskiMVicJIYQQYiBRJEZsGeYdg+8dyNu4KCLS6zHyRjExKLunmvPrNvIdYQ+SnIo4VFxzuze+vDkepWd2JksQ82wB6hSMpZ480ajnJMueLievnMmvF+ea9AanYLJomNxuPS8bfr2U0lt8bkst8bGtPZ4HCzvqstNw1/qQvHoAoJNcdbn/XOTSa2MnpWh4nO08VvQSANpS6Trl82IqHMpuygtvuAFA7ezrpSa9VJf5yQDIaSSlkMQoMGyaGEVihBBCCDGQKBIjhBBCjAIRwMpwhWL0ECP6Ck5fPP+uVwIA5rhQotnTnyorkax4YJfSIVYUEqiLMxqWWmEvEuRUTDtFApCnClnRW1qqOnZqL6dnPJ8UxvNosVTPBKV8uL22DxdfHFv1HreH0zO5cCOdb+zhx8s/rF+UlrOfPk6T5T7SmCCtBgPK6iWv+Gblb5P64Hn5AMBkSm/x2NkqMU4h2Zjx5yo/mqPHm/dfXlYs4RsPQwgxmOghRgghhBgVhisQo4cY0V+skCvqzp8mvxUSipqQdoz9Quh13kZFJcNC4z1iQlCgzPL5cxa9We5RrNGKJk4mkSngC1vzPmnW336/2c4RBDv3EkUiLOrCkaQqcpTgPpj7LHvZeJEfiypxFCfuK+ee39tEPmaO0D4pUvPiW34xb8tFM2nfysvmMw8BAJZvubG0J11P/pwXieJ+22fZYdjrVycJdsdIxB24gGjyJlL0RYjhQA8xQgghxIig1UlCCCGEEH2AIjGibzGR7wqJZy2FwMJdI1BapbK5N7EwecuUVAWlaii14nHR001Kw3xpVrctnzv5qGyjNBf7kljBSxYir6R0Sl3SYLK1byRrfINFqmcqrcCpmHw8GrNI6Rv2YzFOpjSSlTEASpkEFuF2uAnXXp36UDZ2vNICKcU21aMEhZV1mHLEx3wvLKex4DTgCqWWVlTEUYihQg8xQgghxKgQhyufpIcY0bfYrDkXKwRw8vXN7HsGbSEoRxrmLytRkLkk7GRn23wOJxriRSwA4Od7kiCVlhDzcuPVPPPaEjXZ80BZJm0/IVw00hMa54KEFH1hEbO1k113DU/0Gpyl2hzZeeF6cuJ9qvls5V6cojPs2GtjyoUbWXzsLW/3sMgZF27kY+Yl9bTk27tO2eVY7rtCjAR6iBFCCCFGBAl7hRBCCCH6AEViRN/Tfe75/HrmyOWt93NahtIzFx94Ib82F1gWn1qag0Wh9rkO+dJwYcJL738CQO1pYukoTnmNJS+SPUfbni+8PwuEzaNlgXxiLFVTeblwOslxuTW4r+ZEzGkgTtvkfZ4q6aaJHzQOvJUDjyMqNmqH3LI9jw+lsjxfn+wq3ENobO97AmlmhYqJCiFWETF0ZneKxAghhBBiIFEkRgwWyWl1/Ip9eVN3qlmWa26+ALBAy6mPXdNEAxZnyz5zXzsEoJ75T+8/2ByPliyfniuzfathxMt3j990KQBgZqoITk0Ma262QB2JyYJUEqnC6iQdbzvycqSFa0ZZe6zdQHEBZkFtFrtShMmiQRyJqkS1KerC47g42wFQ14HK52htqbEaSkC9RDv3JUV+zHEY8MeCWX7i0BpnFUIwAUAYstVJisQIIYQQYiBRJEYIIYQYFVa2ugEbix5ixEDCqQST8y5eXdxeORUx91jz13xegOJB0nWKPVrxQwDY8dXiEGtCUk5B7fhJ20G4k47JHjReyLMW7LZdbG3/5emyN/fLBLKnyZ3Y0jJLzrZtKONjnjAXkwPuafK/MdgBeCqdzxMpc4qNse0zzjYukGnt5b52TlHhz9QHFnkLIYQeYoQQQogRQZoYIYQQQog+QJEYMfBYeodX15y4uawwmjnSvM+pGPNM6U518jb2h8mfo7RMPv4Z/FIYtsWvVgulNBJvs1VQ3AdL1XAxRl7ls+ORJi3DXja2OolXakWnqOLsl5oc28IbbsjbvNVA7OmS02PPlxRTN6XwxuhzvKLLxYp4UlrK2rvtGJ2PPF/KmiwhxHkjn5hCCOGKEMJfhBAOhBAeCSH8dtp+SQjhiyGEx9LfuY1rrhBCCCFEw3oiMcsA/nGM8aEQwg4A3w4hfBHAfwHgyzHGD4QQ7gJwF4D3rb+pQviY2HPsldfnbRy9ePq2Jlpw2Z89kbd1kpCWXWwtGjD54xIh4IjORNqHoxMs6M3tSREdfq9y+U2vWUBs0SL2hDFRLZ+P+2XbWSDsnc9g8S1HmDy84pLmurvkFMDkNixetTO/7k4GALW3TPGeKW0cSwJjK/ophLgQxKGrYn3ekZgY45EY40Pp9UkABwBcDuAdAD6ePvZxAO9cbyOFEEIIIVazIZqYEMKVAH4JwIMA9sQYjwDNg04IoZ2Qb/a5E8CdADBVLcAUQgghxIVg2KpYr/shJoSwHcB/BPA7McYTIYSz2i/GeDeAuwFgZ7hkyIZVbAUsBO1ce3V+Pfdokx5iIW3+XCosCJQihkuzJc0xvlCcoSwNwgJYSw2xiNfEuexbY2kXxoS5fG72ZfEKJbKw11JQHE5ddtrjCYktdcZlBSp/nNS2Kt2WvFo6VOzROHZru6RD04d22o7LJBhdpZGEEOfBupZYhxC2oXmA+USM8dNp89MhhL3p/b0A2uVyhRBCCCHWyXlHYkITcvkIgAMxxn9Bb90L4A4AH0h/P7uuFgpxPpAb7GRayuu54na5wGOKTkw/fjhv44KEU0deBLBKxJqiLSzitW0cfeF9LCLC0YkMRTksmsLOvxwZ8rB2VFGgx5oIygq7E1sxSyooyRESK4LJkaqTr385gFpcbBGkyePlOF7Ea9s3f1j2UdRFiK1jyIS960kn3QrgNwB8P4Tw3bTt99A8vPxJCOG9AH4G4F3ra6IQQgghRJvzfoiJMf5/aCp7e7zpfI8rhBBCiAtABIIKQArR/3ChwPEr9rXeN4Hs5LEigM0iVxK7crrFnGg7lN4xx1/2k7GUz8ThIgeL5PJr3iuTnGJ6vu03g2vaXi5eyocLUpo7b5XK2pUKUvKBUrptkos5vrz0wTxlupTe2rm/SbOxB42lvDgFx8T5ph3yfxFCXAj0ECOEEEKMCtLECDFYLD+RlvzecmPetv2+7wMAwr693i4FEgh7NYhmkpDWi070Oo5FUPCNH+dtnd27mnPMt8XAvIRwhdqQXXWnizj5ZHLLtagJUEdqMikytHLoSDkeCXItUrX94Im8zaJNtrQbKFGlamySkBhQBEYIcWHRQ4wQQggxKgxXIGZ9PjFCCCGEEFuFIjFiZLAigwCwcmPjebI0W7xjTMRrYl0AlcjXfGK4KKKlatgnxnxSOM1TFXY0cW5KITFhpuxjaTAWJnseNSw05jRSJqWOOiy+TdtM9AsAi3Ps2Nt4wbCjr21jf5tOSpOtkJBaCNG/hCHTxCgSI4QQQoiBRJEYIYQQYlQYskiMHmLEyMArZXJq6Q035G1msW8FHIG6VIEVZOQUy5Rt27s9b5t5pKz4MdjfhVcgZZInDKeqxlM6ilcXdcnLxcoksJdL9pshj5mQ/Gp4BZGdh/1tvBVNE3RsO49KCAgh+gU9xAghhBCjQMQq18vBRw8xYiSxqIyJdQGKWPAHKQoSkhiWIy0m4uXjWDSEPWiWuCBjimSwqBZJsOsVT+TaHizONeFw5/HiQbOQIkvTB9sOwBzlCcmpl4s5MtnxmCI/Fr2S94sQol/QQ4wQQggxAgRErU4SQgghhOgHFIkRI83K9w7k12OvvB5ASSsBq8SwaTtb/1tRSBPZAgCS10v30VJWYNv09fn1KUv5kNg3t4GyQCYqZnExp5a8cgITxxfTPhNlY2ovp5OsTILnbwMA42i8aZa/8XB5v3U2IYTYWvQQI4QQQowKQ5ZO0kOMEIks7OUl0FTMEEmou0IOubYcm6MleRk0iWLD0Z/n1zkCk4TCQFm2ba7BQHEOZpFuteQ7CYgrgXDiFC35tuhMhyIxWaRL+6xYoUwo6iKEuLCEEH4C4CSALoDlGOPN53McPcQIIYQQo0J/RWL+ZozRXyJ5lkjYK4QQQoiBRJEYIRLmjdKhwozskGt0KDWUOVq8Wqx85MkbdudtM/TR8eTRcuymS/O2iw80wuCquKTnEEx+NNmVl4pCmo/MNKWqDD7OTGpDJQ6W/4sQw83mmt3tDiHsp3/fHWO8e1Vr/jyEEAH821XvnTV6iBFCCCHERvPcGjqXW2OMT4YQXgLgiyGEH8YYv3KuJ9FDjBCryG61QCXOteXIlbjWWeZsEY/tB0+4x7d9Zr/0WNmWlkHz0mgTEJswF6gjNVbLqMoJpwgM11OydvOS7mXuoxBiZOgXs7sY45Pp7zMhhM8AeA2Ac36IkSZGCCGEEJtGCOGiEMIOew3gbwH4wfkcS5EYIYQQYlToj0jMHgCfCSEAzXPI/xNj/ML5HEgPMUKcCXKsXb7lRgDAySuLTHfua02qx4o+AkV86xVcBACkwo2VEy+5BBsmEIYj0gVKmoiddu2cYwun8zZrmwo3CiH6gRjjQQCv3Ihj6SFGCCGEGAliv0RiNgw9xAhxlljkYzYtYwZKHaVAAt+lVE9pkpY+swA4pEgMR2dWkktwSHWXgLpuk/HC9Rfn1zNPNVGXqm6THY9qQgkhxLCihxghhBBiFIgYukiMVicJIYQQYiBRJEaIs2Q5FUjsXHv1GT838YOmaOQKpYNOz5XXlv5hL5exJL61VBMAxFR88tQbbsjbJo+XApF2Hi5YKfGuEOKMDFl1V0VihBBCCDGQ6CFGCCGEEAOJ0klCnCPdR3+cX49fsQ9AnTpifxgPW5XUOUob06qk+Rv25k1TRxr/l+mD5YOcgrI0klJIQoizpV/KDmwUisQIIYQQYiBRJEaIdWBi37Hni4tv2NUUgORijuzlsnj1S1rbFm6+CgAw88iRvI0dfTPkIDxk+jwhxGagSIwQQgghxNajSIwQQggxCkQAK8MVidFDjBAbAItrzdellyC3O9WUdlz6hVJCwD7LKSQWEAshhGijhxghhBBiJFABSCHEGkzvPwgAOPn6l+dt3cmQX88+9Gzz4ujxvM2KPapwoxBCnD16iBFCCCFGhSGLxGh1khBCCCEGEkVihNhgus89DwCYOXK5/76JfEnsy/4vQghxwVAk5uwIIdweQvhRCOHxEMJdF+o8QgghhBhNLkgkJoTQAfCvAPwKgEMAvhVCuDfG+JcX4nxC9CPjh4+621eeb7ar5pEQYlMZQp+YCxWJeQ2Ax2OMB2OMSwA+BeAdF+hcQgghhBhBLpQm5nIAT9C/DwF4LX8ghHAngDsBYAozEEIIIcSFJAJxuKquXaiHmOBsq2JYMca7AdwNACGEZ78U7/k5gOcuUHu2gt0Ynv6oL+fDzzblLLo2/ckw9QUYrv70U19eutUNGHQu1EPMIQBX0L/3AXiy14djjJeGEPbHGG++QO3ZdIapP+pL/zJM/VFf+pdh6s8w9UVcuIeYbwG4JoTwMgCHAbwbwH9+gc4lhBBCiLNhyJZYX5CHmBjjcgjhNwHcB6AD4KMxxkcuxLmEEEIIMZpcMLO7GOPnAXz+HHa5+0K1ZYsYpv6oL/3LMPVHfelfhqk/w9SXc2MIl1iHOGShJSGEEEK0uXhiT/zly96zKef6whMf+vZmaI9UdkAIIYQYFYYscKECkEIIIYQYSPriIWaQ6yyFEK4IIfxFCOFACOGREMJvp+2XhBC+GEJ4LP2d2+q2ni0hhE4I4TshhD9N/35ZCOHB1Jc/DiFMbHUbz5YQwmwI4Z4Qwg/TNXrdoF6bEMJ/n+6xH4QQPhlCmBqkaxNC+GgI4ZkQwg9om3stQsO/TL8JD4cQbtq6lrfp0Zf/Ld1nD4cQPhNCmKX33p/68qMQwlu2ptU+Xl/ovX8SQoghhN3p3319XYDe/Qkh/FYa/0dCCP8rbe/ba3NBiHFz/tsktvwhhuosvRXA3wDwnhDC39jaVp0TywD+cYzxegC3APiHqf13AfhyjPEaAF9O/x4UfhvAAfr3PwPwB6kvxwC8d0tadX58CMAXYox/HcAr0fRr4K5NCOFyAP8dgJtjjK9As+rv3Risa/MxALev2tbrWrwVwDXpvzsBfHiT2ni2fAztvnwRwCtijDcCeBTA+wEg/R68G8ANaZ9/nX73+oWPod0XhBCuQFP/jm0b+/26AE5/Qgh/E03pmxtjjDcA+Odpe79fG7EGW/4QgwGvsxRjPBJjfCi9Ponmf5KXo+nDx9PHPg7gnVvTwnMjhLAPwNsA/GH6dwDwRgD3pI8MUl92AngDgI8AQIxxKcZ4HAN6bdBo2KZDCOMAZgAcwQBdmxjjVwCsrorZ61q8A8AfxYZvAJgNIezdnJaujdeXGOOfxxiX0z+/gcbkE2j68qkY42KM8a8API7md68v6HFdAOAPAPwuarf1vr4uQM/+/AMAH4gxLqbPPJO29/W12Xg2KQozSpEY+HWWLt+itqyLEMKVAH4JwIMA9sQYjwDNgw6Al2xdy86JD6L54bICG7sAHKcf50G6PlcBeBbAv0/psT8MIVyEAbw2McbDaGaPP0Pz8PICgG9jcK+N0etaDPrvwn8J4M/S64HrSwjh7QAOxxi/t+qtgetL4loAr0+p1/83hPDqtH1Q+yMS/fAQs2adpUEghLAdwH8E8DsxxhNb3Z7zIYTwqwCeiTF+mzc7Hx2U6zMO4CYAH44x/hKAn2MAUkceSSvyDgAvA/ALAC5CE9pfzaBcm7UY2PsuhPBP0aSZP2GbnI/1bV9CCDMA/imA/8l729nWt30hxgHMoUn5/w8A/iRFmQe1P+dHBLCysjn/bRL98BBzTnWW+pEQwjY0DzCfiDF+Om1+2sKs6e8zvfbvI24F8PYQwk/QpPXeiCYyM5tSGMBgXZ9DAA7FGB9M/74HzUPNIF6bNwP4qxjjszHG0wA+DeCXMbjXxuh1LQbydyGEcAeAXwXw67GYcA1aX65G87D8vfRbsA/AQyGEyzB4fTEOAfh0SoN9E02keTcGtz8i0Q8PMbnOUlpZ8W4A925xm86a9DT/EQAHYoz/gt66F8Ad6fUdAD672W07V2KM748x7osxXonmOtwfY/x1AH8B4NfSxwaiLwAQY3wKwBMhhOvSpjcB+EsM4LVBk0a6JYQwk+4568tAXhui17W4F8DfS6thbgHwgqWd+pUQwu0A3gfg7THGeXrrXgDvDiFMhqae3DUAvrkVbTwbYozfjzG+JMZ4ZfotOATgpvR9GrjrkvhPaCZlCCFcC2ACTSXrgbo2G8KQaWK23OxuCOos3QrgNwB8P4Tw3bTt9wB8AE3I8r1o/gf0ri1q30bwPgCfCiH8LwC+gySUHRB+C8An0gPyQQB/H83D+0BdmxjjgyGEewA8hCZV8R009umfw4BcmxDCJwHcBmB3COEQgN9H7+/J5wH8bTRCy3k0161v6NGX9wOYBPDF5jkT34gx/rcxxkdCCH+C5qFzGcA/jDF2t6blbby+xBh73Ud9fV2AntfmowA+mpZdLwG4I0XK+vraiLVR2QEhhBBiBLh420viL1/ydzflXF945t9sStmBfkgnCSGEEEKcM3qIEUIIIcRAsuWaGCGEEEJsBhFYGS4JiSIxQgghhBhIFIkRQgghRoEIxLh5RnSbgSIxQgghhBhIFIkRQgghRgVpYoQQQgghth5FYoQQQohRYcgMbhWJEUIIIcRAokiMEEIIMQrECKxodZIQQgghxJajSIwQQggxKkgTI4QQQgix9SgSI4QQQowIUZoYIYQQQoitR5EYIYQQYiSI0sQIIYQQQvQDeogRQgghxECidJIQQggxCkSoAKQQQgghRD+gSIwQQggxKkQtsRZCCCGE2HIUiRFCCCFGgAggShMjhBBCCLH1KBIjhBBCjAIxShMjhBBCCNEPKBIjhBBCjAjSxAghhBBCrIMQwu0hhB+FEB4PIdx1vsdRJEYIIYQYFfpAExNC6AD4VwB+BcAhAN8KIdwbY/zLcz2WIjFCCCGE2ExeA+DxGOPBGOMSgE8BeMf5HEiRGCGEEGIEOIlj930p3rN7k043FULYT/++O8Z4d3p9OYAn6L1DAF57PifRQ4wQQggxAsQYb9/qNiSCs+28FMdKJwkhhBBiMzkE4Ar69z4AT57PgfQQI4QQQojN5FsArgkhvCyEMAHg3QDuPZ8DKZ0khBBCiE0jxrgcQvhNAPcB6AD4aIzxkfM5VohxuIxvhBBCCDEaKJ0khBBCiIFEDzFCCCGEGEj0ECOEEEKIgUQPMUIIIYQYSPQQI4QQQoiBRA8xQgghhBhI9BAjhBBCiIHk/wdoor836IY0zgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot the extracted image data\n", + "fig = plt.figure(0, [10,10])\n", + "im = plt.imshow(image_data, origin=\"lower\")\n", + "plt.colorbar(im)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 0. Make datamodel file\n", + "\n", + "Once we have our FITS file ready to go, we can start making actual progress. Zeroth step is to create a data model we'll be applying to our FITS data.\n", + "\n", + "A data model file really only needs to be set up once for every field, so this can either be done manually with the datamodel.py file, or automatically within the beast production wrapper code. We've opened up the datamodel.py file in an editor and changed the following fields manually to match our data: \n", + "\n", + "* project = \"M31-B21-WEST_cutout\"\n", + "* surveyname = \"PHAT-M31\"\n", + "* filters and base filters\n", + "* make sure ast_with_positions is set to True\n", + "* ast_density_table = sourd density map (like './M31-B21-WEST_cutout.st_sourceden_map.hd5')\n", + "* ast_N_bins = 26\n", + "* ast_reference_image = fits image (like \"./M31-B21-WEST_cutout.st.fits\")\n", + "* astfile = \"data/M31-B21_WEST_cutout.gst.fake.fits\"\n", + "\n", + "\n", + "This file is also where you specify the parameters and resolution of your physics model which will become relevant in Step 2.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import datamodel\n", + "\n", + "importlib.reload(datamodel)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2: Create physics model\n", + "\n", + "Our goal is to eventually run a bunch of **ASTs** (Artificial Star Tests) in the field shown, but before we can do that, we need to generate the fake stars to use.\n", + "\n", + "In order to generate a diverse and representative sample of fake stars to use for our ASTs, we need to set up a N-dimensional model of possible stellar parameters, so that we can easily and randomly select stars from the model.\n", + "\n", + "This model is called a **physics model**, and we will be using the parameters set in the datamodel.py file to create this N-dimensional grid.\n", + "\n", + "*As a quick note, the resolution on the stellar parameters (the step size, often specified as the third input e.g. logt = [6.0, 10.13, 1.0], where 1.0 is the step size) is the main factor driving how long this physics grid will take to set up. If things take a very long time to run, consider making the step size larger for testing's sake.*\n", + "\n", + "Sometimes we are able to have access to high-performance computing resources, meaning we can split the physics model into subgrids and run them in parallel, cutting a lot of the computation time. While we're like not running this notebook in parallel here, we've still specified a number of subgrids in the datamodel.py file. \n", + "\n", + "We can check how many subgrids are set up." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "datamodel.n_subgrid" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So we can now see that we've asked for 1 grid in the datamodel.py file.\n", + "\n", + "If we've already generated a physics model, we certainly don't want to run it again, so the following code checks to make sure all the subgrids for the physics model are present." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# see which subgrid files already exist\n", + "gs_str = \"\"\n", + "if datamodel.n_subgrid > 1:\n", + " gs_str = \"sub*\"\n", + "\n", + "# searches to see if files already exist\n", + "sed_files = glob.glob(\n", + " \"./{0}_beast/{0}_beast_seds.grid{1}.hd5\".format(field_names[0], gs_str)\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "Auto-detected type: csv\n", + "Auto-detected type: hd5\n", + "Auto-detected type: hd5\n" + ] + } + ], + "source": [ + "# only make the physics model they don't already exist\n", + "if len(sed_files) < datamodel.n_subgrid:\n", + " # directly create physics model grids\n", + " create_physicsmodel.create_physicsmodel(nprocs=1, nsubs=datamodel.n_subgrid)\n", + " \n", + " # create grids with script/is parallelizable/writes out scripts that you can submit to a cue\n", + " # we won't be parallelizing the code here in this notebook\n", + " #create_physicsmodel.split_create_physicsmodel(nprocs=1, nsubs=datamodel.n_subgrid)\n", + " #print('\\n**** go run physics model code for '+field_names[0]+'! ****')\n", + " # continue\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# list of SED files\n", + "model_grid_files = sorted(\n", + " glob.glob(\n", + " \"./{0}_beast/{0}_beast_seds.grid{1}.hd5\".format(field_names[0], gs_str)\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Hopefully a lot of spectral grids and SED grids should have started generating. In the end you should have a new folder titled your project name, with a bunch of SED and spectral subgrids." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3. Create ASTs!\n", + "\n", + "Now that we have our physics model generated, we can start to generate some ASTs.\n", + "\n", + "First thing's first, we're gonna check that there isn't already a file of ASTs present in the folder we're working in." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# only create an AST input list if the ASTs don't already exist\n", + "ast_input_file = (\n", + " \"./\" + field_names[0] + \"_beast/\" + field_names[0] + \"_beast_inputAST.txt\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can create the ASTs if they don't already exist." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "creating artificial stars\n", + "\n", + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "Auto-detected type: fits\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/christina/anaconda3/lib/python3.7/site-packages/beast/tools/run/make_ast_inputs.py:58: RuntimeWarning: invalid value encountered in less\n", + " (keep,) = np.where(obsdata[sfiltername] < 99.0)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reading existing AST SEDs\n", + "Assigning positions to artifical stars\n", + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "removing 94106 stars from ./M31-B21-WEST_cutout.st.fits\n", + "1 repeats of each model in each map bin\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "3066.00 models per map bin: 0%| | 0/22 [00:00Table length=24528\n", + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
zerosonesXYHST_WFC3_F475WHST_WFC3_F275WHST_WFC3_F336WHST_WFC3_F814WHST_WFC3_F110WHST_WFC3_F160W
int64int64float64float64float64float64float64float64float64float64
0111.4003642.1861930.202235.4751533.6134326.0746224.4300823.05891
0111.4227942.2267230.202235.4751533.6134326.0746224.4300823.05891
0111.3987542.2229930.202235.4751533.6134326.0746224.4300823.05891
0111.3797342.2235430.202235.4751533.6134326.0746224.4300823.05891
0111.4199742.1938530.202235.4751533.6134326.0746224.4300823.05891
0111.3874942.212130.202235.4751533.6134326.0746224.4300823.05891
0111.4348142.1874830.202235.4751533.6134326.0746224.4300823.05891
0111.4423542.1912630.202235.4751533.6134326.0746224.4300823.05891
0111.3936942.2235224.4048527.1274725.5855222.3766621.6178120.91429
0111.4355142.2132624.4048527.1274725.5855222.3766621.6178120.91429
..............................
0111.3864342.1991949.5234150.5926552.472541.6730538.2988936.17306
0111.386442.1992649.5234150.5926552.472541.6730538.2988936.17306
0111.4005142.2092149.4414150.5106552.390541.5910538.2168936.09106
0111.3864742.1990249.4414150.5106552.390541.5910538.2168936.09106
0111.3866242.1986549.4414150.5106552.390541.5910538.2168936.09106
0111.3867342.1992649.4414150.5106552.390541.5910538.2168936.09106
0111.4004542.2091449.4414150.5106552.390541.5910538.2168936.09106
0111.3864442.1992949.4414150.5106552.390541.5910538.2168936.09106
0111.386742.1991149.4414150.5106552.390541.5910538.2168936.09106
0111.3864842.1992749.4414150.5106552.390541.5910538.2168936.09106
" + ], + "text/plain": [ + "\n", + "zeros ones X Y ... HST_WFC3_F814W HST_WFC3_F110W HST_WFC3_F160W\n", + "int64 int64 float64 float64 ... float64 float64 float64 \n", + "----- ----- -------- -------- ... -------------- -------------- --------------\n", + " 0 1 11.40036 42.18619 ... 26.07462 24.43008 23.05891\n", + " 0 1 11.42279 42.22672 ... 26.07462 24.43008 23.05891\n", + " 0 1 11.39875 42.22299 ... 26.07462 24.43008 23.05891\n", + " 0 1 11.37973 42.22354 ... 26.07462 24.43008 23.05891\n", + " 0 1 11.41997 42.19385 ... 26.07462 24.43008 23.05891\n", + " 0 1 11.38749 42.2121 ... 26.07462 24.43008 23.05891\n", + " 0 1 11.43481 42.18748 ... 26.07462 24.43008 23.05891\n", + " 0 1 11.44235 42.19126 ... 26.07462 24.43008 23.05891\n", + " 0 1 11.39369 42.22352 ... 22.37666 21.61781 20.91429\n", + " 0 1 11.43551 42.21326 ... 22.37666 21.61781 20.91429\n", + " ... ... ... ... ... ... ... ...\n", + " 0 1 11.38643 42.19919 ... 41.67305 38.29889 36.17306\n", + " 0 1 11.3864 42.19926 ... 41.67305 38.29889 36.17306\n", + " 0 1 11.40051 42.20921 ... 41.59105 38.21689 36.09106\n", + " 0 1 11.38647 42.19902 ... 41.59105 38.21689 36.09106\n", + " 0 1 11.38662 42.19865 ... 41.59105 38.21689 36.09106\n", + " 0 1 11.38673 42.19926 ... 41.59105 38.21689 36.09106\n", + " 0 1 11.40045 42.20914 ... 41.59105 38.21689 36.09106\n", + " 0 1 11.38644 42.19929 ... 41.59105 38.21689 36.09106\n", + " 0 1 11.3867 42.19911 ... 41.59105 38.21689 36.09106\n", + " 0 1 11.38648 42.19927 ... 41.59105 38.21689 36.09106" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Table.read(\"./M31-B21-WEST_cutout/M31-B21-WEST_cutout_inputAST.txt\", format=\"ascii\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Check to see how the SEDs and the ASTs compare\n", + "\n", + "The histogram that is produced should have both the SED distribution and the AST distribution plotted on it. The thing we want to test for is whether the AST distribution fully samples the SED range." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: hd5\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/christina/anaconda3/lib/python3.7/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='ASTs'\n", + "/home/christina/anaconda3/lib/python3.7/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", + "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", + " label='Model grid'\n" + ] + } + ], + "source": [ + "plot_ast_histogram.plot_ast(ast_file=\"./M31-B21-WEST_cutout/M31-B21-WEST_cutout_inputAST.txt\", sed_grid_file=\"./M31-B21-WEST_cutout/M31-B21-WEST_cutout_seds.grid.hd5\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/M31_Example/M31_workflow.ipynb b/M31_Example/M31_workflow.ipynb index c099b9d..a0253b3 100644 --- a/M31_Example/M31_workflow.ipynb +++ b/M31_Example/M31_workflow.ipynb @@ -8,14 +8,81 @@ "\n", "In this notebook we will be walking through a standard BEAST workflow example using some data from M31.\n", "\n", - "You'll need a couple of datafiles to get started though. Please visit https://www.dropbox.com/sh/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama?dl=0 and download all the files (can omit wrangling_data.ipynb) into the same folder this Jupyter Notebook is in. \n", + "You'll need a couple of datafiles to get started though. These file can be found at https://www.dropbox.com/sh/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama?dl=0" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--2020-06-19 10:45:42-- https://www.dropbox.com/sh/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama?dl=1\n", + "Resolving www.dropbox.com (www.dropbox.com)... 162.125.1.1, 2620:100:6016:1::a27d:101\n", + "Connecting to www.dropbox.com (www.dropbox.com)|162.125.1.1|:443... connected.\n", + "HTTP request sent, awaiting response... 301 Moved Permanently\n", + "Location: /sh/dl/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama [following]\n", + "--2020-06-19 10:45:43-- https://www.dropbox.com/sh/dl/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama\n", + "Reusing existing connection to www.dropbox.com:443.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://ucd953f43dd81ff63114de77483a.dl.dropboxusercontent.com/zip_download_get/AdVP-ZJhGHCSoInHG8cKTir0gqRi2GeRYHY91yWIMpkSMk_RTUjwHAmtKqnqoCFv4GdkSxgGdr7BqbWJNUQ8wvoloCilxyf2RYl-Ip1SIpjMQg?dl=1 [following]\n", + "--2020-06-19 10:45:43-- https://ucd953f43dd81ff63114de77483a.dl.dropboxusercontent.com/zip_download_get/AdVP-ZJhGHCSoInHG8cKTir0gqRi2GeRYHY91yWIMpkSMk_RTUjwHAmtKqnqoCFv4GdkSxgGdr7BqbWJNUQ8wvoloCilxyf2RYl-Ip1SIpjMQg?dl=1\n", + "Resolving ucd953f43dd81ff63114de77483a.dl.dropboxusercontent.com (ucd953f43dd81ff63114de77483a.dl.dropboxusercontent.com)... 162.125.1.15, 2620:100:6016:15::a27d:10f\n", + "Connecting to ucd953f43dd81ff63114de77483a.dl.dropboxusercontent.com (ucd953f43dd81ff63114de77483a.dl.dropboxusercontent.com)|162.125.1.15|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 57812924 (55M) [application/zip]\n", + "Saving to: ‘data.zip’\n", + "\n", + "data.zip 100%[===================>] 55.13M 1.39MB/s in 31s \n", + "\n", + "2020-06-19 10:46:15 (1.76 MB/s) - ‘data.zip’ saved [57812924/57812924]\n", + "\n" + ] + } + ], + "source": [ + "!wget -O data.zip https://www.dropbox.com/sh/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama?dl=1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And now we can extract our files from the zip file." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import zipfile\n", + "import os\n", "\n", + "zip_file = 'data.zip'\n", + "\n", + "with zipfile.ZipFile(zip_file, 'r') as zip_ref:\n", + " zip_ref.extractall(\"./\")\n", + "\n", + "# go ahead and delete the zip file\n", + "if os.path.isfile(zip_file):\n", + " os.remove(zip_file)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "Before we do anything, we have to import the following packages. This seems like a lot but they are all here to make our lives easier down the line. And running them all as the first cell means that if our kernel ever crashes halfway through, we can just reimport everything at once rather than stepping through the cells individually." ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": { "scrolled": true }, @@ -36,7 +103,6 @@ "from astropy import wcs\n", "from astropy.io import fits\n", "from astropy.table import Table\n", - "#import tables\n", "\n", "import glob\n", "import os\n", @@ -113,7 +179,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -132,14 +198,14 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "Table length=50625\n", - "
\n", + "
\n", "\n", "\n", "\n", @@ -193,7 +259,7 @@ " False False False False ... 0 0 0" ] }, - "execution_count": 3, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -216,7 +282,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -233,9 +299,28 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_mag_hist.py:54: RuntimeWarning: invalid value encountered in less\n", + " np.where(data_table[filt + \"_VEGA\"] < 90)\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_mag_hist.py:54: RuntimeWarning: invalid value encountered in less\n", + " np.where(data_table[filt + \"_VEGA\"] < 90)\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_mag_hist.py:54: RuntimeWarning: invalid value encountered in less\n", + " np.where(data_table[filt + \"_VEGA\"] < 90)\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_mag_hist.py:54: RuntimeWarning: invalid value encountered in less\n", + " np.where(data_table[filt + \"_VEGA\"] < 90)\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_mag_hist.py:54: RuntimeWarning: invalid value encountered in less\n", + " np.where(data_table[filt + \"_VEGA\"] < 90)\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_mag_hist.py:54: RuntimeWarning: invalid value encountered in less\n", + " np.where(data_table[filt + \"_VEGA\"] < 90)\n" + ] + } + ], "source": [ "# this 'if' statement just checks if there's already a histogram file\n", "if not os.path.isfile('./'+field_names[0]+'.st_maghist.pdf'):\n", @@ -267,7 +352,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -281,9 +366,28 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "# of x & y pixels = 12 12\n", + "working on converting ra, dec to pix x,y\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/astropy/table/column.py:1020: RuntimeWarning: invalid value encountered in greater_equal\n", + " result = getattr(super(), op)(other)\n", + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/astropy/table/column.py:1020: RuntimeWarning: invalid value encountered in less_equal\n", + " result = getattr(super(), op)(other)\n" + ] + } + ], "source": [ "# check to see if the sourde density file already exists\n", "if not os.path.isfile(gst_file.replace(\".fits\", \"_source_den_image.fits\")):\n", @@ -306,7 +410,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -337,7 +441,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -370,7 +474,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -379,7 +483,7 @@ "Text(0.5, 1.0, 'Density of Sources per 5 arcsec^2')" ] }, - "execution_count": 10, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, @@ -464,7 +568,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": { "scrolled": false }, @@ -480,10 +584,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 11, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -523,7 +627,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -532,7 +636,7 @@ "1" ] }, - "execution_count": 12, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -552,7 +656,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -572,9 +676,146 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Auto-detected type: fits\n", + "Auto-detected type: fits\n", + "Interrogating http://stev.oapd.inaf.it...\n", + "Downloading data...http://stev.oapd.inaf.it/tmp/output541466209179.dat\n", + "Interrogating http://stev.oapd.inaf.it...\n", + "Downloading data...http://stev.oapd.inaf.it/tmp/output919828231985.dat\n", + "Interrogating http://stev.oapd.inaf.it...\n", + "Downloading data...http://stev.oapd.inaf.it/tmp/output971688225007.dat\n", + "Interrogating http://stev.oapd.inaf.it...\n", + "Downloading data...http://stev.oapd.inaf.it/tmp/output591832563587.dat\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "Spectral grid: 0%| | 0/809 [00:00Table length=33418\n", - "
F814W_STF814W_GSTF475W_STF475W_GSTF275W_STF275W_GSTF160W_STF160W_GSTF336W_STF336W_GSTF110W_STF110W_GSTXYRADECCHI_GLSNR_GLSHARP_GLROUND_GLCROWD_GLF475W_COUNTF475W_SKYF475W_RATEF475W_RATERRF475W_VEGAF475W_TRANSF475W_ERRF475W_CHIF475W_SNRF475W_SHARPF475W_ROUNDF475W_CROWDF814W_COUNTF814W_SKYF814W_RATEF814W_RATERRF814W_VEGAF814W_TRANSF814W_ERRF814W_CHIF814W_SNRF814W_SHARPF814W_ROUNDF814W_CROWDF275W_COUNTF275W_SKYF275W_RATEF275W_RATERRF275W_VEGAF275W_TRANSF275W_ERRF275W_CHIF275W_SNRF275W_SHARPF275W_ROUNDF275W_CROWDF336W_COUNTF336W_SKYF336W_RATEF336W_RATERRF336W_VEGAF336W_TRANSF336W_ERRF336W_CHIF336W_SNRF336W_SHARPF336W_ROUNDF336W_CROWDF110W_COUNTF110W_SKYF110W_RATEF110W_RATERRF110W_VEGAF110W_TRANSF110W_ERRF110W_CHIF110W_SNRF110W_SHARPF110W_ROUNDF110W_CROWDF160W_COUNTF160W_SKYF160W_RATEF160W_RATERRF160W_VEGAF160W_TRANSF160W_ERRF160W_CHIF160W_SNRF160W_SHARPF160W_ROUNDF160W_CROWDEXTCHIPMAJAX_GLOBJTYPE_GLF475W_FLAGF814W_FLAGF275W_FLAGF336W_FLAGF110W_FLAGF160W_FLAG
boolboolboolboolboolboolboolboolboolboolboolboolfloat64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64int64int64int64int64int64int64int64int64int64int64
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue869.890000004669244.4099999948323311.13183257065668641.6034194385187354.032917.0-0.030.020.251233000000.087358.199.039999999999999e-081.3800000000000002e-0917.6117.7210.0172.4865.40.0050.0380.175198000000.0102360.61.59e-071.27e-0916.99616.9860.0090000000000000011.77124.80.010.0490.226999999999999985970000.02256.981.25e-071.16e-0917.255nan0.012.92107.7-0.0380.0180000000000000020.08623800000.07534.451.69e-076.92e-1016.932000000000002nan0.0042.63243.9-0.0310.0590000000000000040.08479700000.088039.231.6e-072.58e-1016.992nan0.0022.23619.1-0.0040.10.3556000000.093657.591.8e-072.53e-1016.864nan0.0021.51708.8-0.0180000000000000020.0270000000000000030.396011651220000
\n", + "Table length=33825\n", + "
\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "
zerosonesXYHST_WFC3_F475WHST_WFC3_F275WHST_WFC3_F336WHST_WFC3_F814WHST_WFC3_F110WHST_WFC3_F160W
int64int64float64float64float64float64float64float64float64float64
01408.03456897.5236633.9505538.1835736.9970528.9912927.2261326.11148
01419.17151897.3349433.9505538.1835736.9970528.9912927.2261326.11148
01427.91019897.0346933.9505538.1835736.9970528.9912927.2261326.11148
01414.32003893.1662233.9505538.1835736.9970528.9912927.2261326.11148
01425.36739897.7232533.9505538.1835736.9970528.9912927.2261326.11148
01419.51676899.5385833.9505538.1835736.9970528.9912927.2261326.11148
01423.49592895.0248133.9505538.1835736.9970528.9912927.2261326.11148
01419.74966899.334333.9505538.1835736.9970528.9912927.2261326.11148
01416.9429896.4933133.9505538.1835736.9970528.9912927.2261326.11148
01417.38656895.2986533.9505538.1835736.9970528.9912927.2261326.11148
01422.19437894.4623226.3957131.1200330.9765721.6522819.8625718.31785
01417.57042892.8075826.3957131.1200330.9765721.6522819.8625718.31785
01418.7245896.1976326.3957131.1200330.9765721.6522819.8625718.31785
01422.33296895.9955626.3957131.1200330.9765721.6522819.8625718.31785
01409.34888892.520626.3957131.1200330.9765721.6522819.8625718.31785
01427.68404896.7625226.3957131.1200330.9765721.6522819.8625718.31785
01409.52606890.4834926.3957131.1200330.9765721.6522819.8625718.31785
01412.00146897.8364526.3957131.1200330.9765721.6522819.8625718.31785
01409.69032895.5370926.3957131.1200330.9765721.6522819.8625718.31785
01428.91532898.9548626.3957131.1200330.9765721.6522819.8625718.31785
..............................
01855.520531.2582949.5866650.4711752.3401341.5801238.1806536.0759
01887.7347386.3207149.5866650.4711752.3401341.5801238.1806536.0759
01877.4064394.6643849.5866650.4711752.3401341.5801238.1806536.0759
01858.7756638.2763349.5866650.4711752.3401341.5801238.1806536.0759
01868.7369741.4238749.5866650.4711752.3401341.5801238.1806536.0759
01862.3463541.5893349.5866650.4711752.3401341.5801238.1806536.0759
01878.780547.2002249.5866650.4711752.3401341.5801238.1806536.0759
01858.7905582.3600349.5866650.4711752.3401341.5801238.1806536.0759
01857.7440541.3158149.5866650.4711752.3401341.5801238.1806536.0759
01852.4100960.9922349.5866650.4711752.3401341.5801238.1806536.0759
01873.51251102.0521649.4869650.7053352.3932141.8189238.3772436.20236
01842.2297382.0818549.4869650.7053352.3932141.8189238.3772436.20236
01857.0259889.5295149.4869650.7053352.3932141.8189238.3772436.20236
01875.0866491.692949.4869650.7053352.3932141.8189238.3772436.20236
01863.1341372.5125549.4869650.7053352.3932141.8189238.3772436.20236
01873.0635360.6496749.4869650.7053352.3932141.8189238.3772436.20236
01868.1823744.812649.4869650.7053352.3932141.8189238.3772436.20236
01845.5524753.9611549.4869650.7053352.3932141.8189238.3772436.20236
01861.3672260.4491949.4869650.7053352.3932141.8189238.3772436.20236
01885.3613660.2135149.4869650.7053352.3932141.8189238.3772436.20236
" ], "text/plain": [ - "\n", + "
\n", "zeros ones X Y ... HST_WFC3_F814W HST_WFC3_F110W HST_WFC3_F160W\n", "int64 int64 float64 float64 ... float64 float64 float64 \n", "----- ----- --------- --------- ... -------------- -------------- --------------\n", - " 0 1 408.03456 897.52366 ... 28.99129 27.22613 26.11148\n", - " 0 1 419.17151 897.33494 ... 28.99129 27.22613 26.11148\n", - " 0 1 427.91019 897.03469 ... 28.99129 27.22613 26.11148\n", - " 0 1 414.32003 893.16622 ... 28.99129 27.22613 26.11148\n", - " 0 1 425.36739 897.72325 ... 28.99129 27.22613 26.11148\n", - " 0 1 419.51676 899.53858 ... 28.99129 27.22613 26.11148\n", - " 0 1 423.49592 895.02481 ... 28.99129 27.22613 26.11148\n", - " 0 1 419.74966 899.3343 ... 28.99129 27.22613 26.11148\n", - " 0 1 416.9429 896.49331 ... 28.99129 27.22613 26.11148\n", - " 0 1 417.38656 895.29865 ... 28.99129 27.22613 26.11148\n", + " 0 1 422.19437 894.46232 ... 21.65228 19.86257 18.31785\n", + " 0 1 417.57042 892.80758 ... 21.65228 19.86257 18.31785\n", + " 0 1 418.7245 896.19763 ... 21.65228 19.86257 18.31785\n", + " 0 1 422.33296 895.99556 ... 21.65228 19.86257 18.31785\n", + " 0 1 409.34888 892.5206 ... 21.65228 19.86257 18.31785\n", + " 0 1 427.68404 896.76252 ... 21.65228 19.86257 18.31785\n", + " 0 1 409.52606 890.48349 ... 21.65228 19.86257 18.31785\n", + " 0 1 412.00146 897.83645 ... 21.65228 19.86257 18.31785\n", + " 0 1 409.69032 895.53709 ... 21.65228 19.86257 18.31785\n", + " 0 1 428.91532 898.95486 ... 21.65228 19.86257 18.31785\n", " ... ... ... ... ... ... ... ...\n", - " 0 1 855.5205 31.25829 ... 41.58012 38.18065 36.0759\n", - " 0 1 887.73473 86.32071 ... 41.58012 38.18065 36.0759\n", - " 0 1 877.40643 94.66438 ... 41.58012 38.18065 36.0759\n", - " 0 1 858.77566 38.27633 ... 41.58012 38.18065 36.0759\n", - " 0 1 868.73697 41.42387 ... 41.58012 38.18065 36.0759\n", - " 0 1 862.34635 41.58933 ... 41.58012 38.18065 36.0759\n", - " 0 1 878.7805 47.20022 ... 41.58012 38.18065 36.0759\n", - " 0 1 858.79055 82.36003 ... 41.58012 38.18065 36.0759\n", - " 0 1 857.74405 41.31581 ... 41.58012 38.18065 36.0759\n", - " 0 1 852.41009 60.99223 ... 41.58012 38.18065 36.0759" + " 0 1 873.51251 102.05216 ... 41.81892 38.37724 36.20236\n", + " 0 1 842.22973 82.08185 ... 41.81892 38.37724 36.20236\n", + " 0 1 857.02598 89.52951 ... 41.81892 38.37724 36.20236\n", + " 0 1 875.08664 91.6929 ... 41.81892 38.37724 36.20236\n", + " 0 1 863.13413 72.51255 ... 41.81892 38.37724 36.20236\n", + " 0 1 873.06353 60.64967 ... 41.81892 38.37724 36.20236\n", + " 0 1 868.18237 44.8126 ... 41.81892 38.37724 36.20236\n", + " 0 1 845.55247 53.96115 ... 41.81892 38.37724 36.20236\n", + " 0 1 861.36722 60.44919 ... 41.81892 38.37724 36.20236\n", + " 0 1 885.36136 60.21351 ... 41.81892 38.37724 36.20236" ] }, - "execution_count": 18, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -735,26 +1028,6 @@ "ast" ] }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5569.666666666667" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "33418/6" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -766,7 +1039,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -775,48 +1048,6 @@ "text": [ "Auto-detected type: hd5\n" ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", - "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", - " label='ASTs'\n", - "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", - "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", - " label='Model grid'\n", - "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", - "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", - " label='ASTs'\n", - "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", - "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", - " label='Model grid'\n", - "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", - "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", - " label='ASTs'\n", - "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", - "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", - " label='Model grid'\n", - "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", - "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", - " label='ASTs'\n", - "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", - "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", - " label='Model grid'\n", - "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", - "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", - " label='ASTs'\n", - "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", - "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", - " label='Model grid'\n", - "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", - "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", - " label='ASTs'\n", - "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", - "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", - " label='Model grid'\n" - ] } ], "source": [ @@ -839,7 +1070,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -862,47 +1093,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Step 4.5 Update Datamodel\n", - "**After making these cuts, we should now update the obs_file name in datamodel.py (~line 62) with this new trimmed filename: './M31-B09-EAST_chunk.st_with_sourceden_cut.fits'**" + "# Step 5. Edit/Split the ASTs" ] }, { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: fits\n", - "Auto-detected type: fits\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "importlib.reload(datamodel)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 5. Edit/Split the ASTs" - ] - }, - { - "cell_type": "markdown", + "cell_type": "markdown", "metadata": {}, "source": [ "Now for this step, we're doing things a little unconventionally since actually placing all the input ASTs we generated in Step 3 back into our image and rerunning the analysis would take several days of computational time. \n", @@ -914,20 +1109,9 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'./M31-B09-EAST_chunk.gst.fake.fits'" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "ast_file = \"./\" + field_names[0] + \".gst.fake.fits\"\n", "ast_file " @@ -935,79 +1119,7 @@ }, { "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "Table length=51549\n", - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
F110W_INF110W_RATEF110W_RATERRF110W_VEGAF110W_STDF110W_ERRF110W_CHIF110W_SNRF110W_SHARPF110W_ROUNDF110W_CROWDF110W_FLAGF160W_INF160W_RATEF160W_RATERRF160W_VEGAF160W_STDF160W_ERRF160W_CHIF160W_SNRF160W_SHARPF160W_ROUNDF160W_CROWDF160W_FLAGF275W_INF275W_RATEF275W_RATERRF275W_VEGAF275W_STDF275W_ERRF275W_CHIF275W_SNRF275W_SHARPF275W_ROUNDF275W_CROWDF275W_FLAGF336W_INF336W_RATEF336W_RATERRF336W_VEGAF336W_STDF336W_ERRF336W_CHIF336W_SNRF336W_SHARPF336W_ROUNDF336W_CROWDF336W_FLAGF475W_INF475W_RATEF475W_RATERRF475W_VEGAF475W_STDF475W_ERRF475W_CHIF475W_SNRF475W_SHARPF475W_ROUNDF475W_CROWDF475W_FLAGF814W_INF814W_RATEF814W_RATERRF814W_VEGAF814W_STDF814W_ERRF814W_CHIF814W_SNRF814W_SHARPF814W_ROUNDF814W_CROWDF814W_FLAGYINXINYXRA_J2000DEC_J2000
float32float32float32float32float32float32float32float32float32float32float32int16float32float32float32float32float32float32float32float32float32float32float32int16float32float32float32float32float32float32float32float32float32float32float32int16float32float32float32float32float32float32float32float32float32float32float32int16float32float32float32float32float32float32float32float32float32float32float32int16float32float32float32float32float32float32float32float32float32float32float32int16float64float64float64float64float64float64
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999997.3894843659727123.66996734304714027.3894843659727123.669967343047140211.14561473248584641.59773092319124
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999999.1886759032358864.6025429651330089.1886759032358864.60254296513300811.14895638513227141.599026017115044
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999997.485941299726475.802996432562127.485941299726475.8029964325621211.1457940446630141.60069345799913
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999992.1148949038763985.9022861171424432.1148949038763985.90228611714244311.13581829682567241.60083124801925
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999997.8305971919707964.9832604762775827.8305971919707964.98326047627758211.14643410345409341.59955491360546
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999991.85123880471971212.41622580929392371.85123880471971212.416225809293923711.13532911131690641.595989469915736
17.8547.27e-084.94e-1117.84599.9990.0010.071471.8-0.0020.0010.015017.0011.59e-079.64e-1116.99399.9990.0010.091655.0-0.004-0.0010.02023.0285.85e-102.5e-1123.08299.9990.0460.9123.4-0.0070.0550.004022.2081.29e-091.85e-1122.22499.9990.0160.7369.60.008-0.0020.006021.7491.99e-094.18e-1221.75122.3830.0020.43477.0-0.003-0.0070.004219.0852.33e-081.78e-1119.0819.1060.0010.151313.8-0.004-0.0010.00824.007235908804846.1955287337720674.007235908804846.19552873377206711.13933296345877941.6012386673917
17.8548.22e-085.21e-1117.71399.9990.0010.931577.6-0.0280.0020.003017.0011.86e-071.05e-1016.82599.9990.0010.961773.9-0.0260.0060.003023.0285.88e-102.81e-1123.07699.9990.0521.1520.90.054-0.0410.0022.2081.26e-091.77e-1122.24699.9990.0150.7871.40.005-0.0120.0021.7492.02e-093.23e-1221.73822.3750.0020.5623.8-0.011-0.0040.0019.0852.46e-081.59e-1119.02419.0510.0010.651540.6-0.0270.0060.009.2224281328151327.8083166416266859.2224281328151327.80831664162668511.1490195491168641.60347847678029
17.8547.24e-084.94e-1117.85199.9990.0010.071467.0-0.0030.0030.012017.0011.59e-079.7e-1116.99699.9990.0010.081640.3-0.0030.0010.01023.0285.72e-102.56e-1123.10699.9990.0490.9922.30.0010.1210.019022.2081.27e-091.74e-1122.2499.9990.0150.8672.80.014-0.0010.001021.7491.99e-094.14e-1221.75522.3870.0020.38479.90.0020.0010.009019.0852.33e-082.06e-1119.08219.1080.0010.151128.4-0.001-0.0010.00626.3195186226238470.83997497204197346.3195186226238470.839974972041973411.1436274657259941.59380042157581
17.8547.28e-084.92e-1117.84599.9990.0010.111478.1-0.0060.0020.007017.0011.6e-079.53e-1116.99299.9990.0010.11674.3-0.0060.0020.007023.0285.58e-102.48e-1123.13399.9990.0480.9422.50.010.0580.0022.2081.29e-091.78e-1122.22199.9990.0150.8272.60.015-0.0230.0021.7492.02e-093.61e-1221.73822.3690.0020.41559.4-0.0050.0050.002019.0852.34e-081.71e-1119.07819.1030.0010.191365.0-0.0040.0040.00201.2702921361582154.9152565920301581.2702921361582154.91525659203015811.1342497655112841.59946027756628
..........................................................................................................................................................................................................................................
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999991.4388127402699396.6819513114515481.4388127402699396.68195131145154811.13456246886052441.60191404109182
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999994.40228935849986952.5431062385315614.40228935849986952.54310623853156111.14006686930167741.59616587367655
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999995.8497054762367963.5991224988445585.8497054762367963.59912249884455811.14275500566084241.597632579100775
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999990.75009700140443015.52709235109574150.75009700140443015.527092351095741511.13328350068768241.600309979631795
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999999.7053139618865095.2881318461907859.7053139618865095.28813184619078511.14991603608954141.599978162934065
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.9999910.366443771989065.51668326637318410.366443771989065.51668326637318411.15114399438531841.60029550582017
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999995.1810237391715173.23168543070047765.1810237391715173.231685430700477611.14151311546117841.59712225014788
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999991.58431455983389267.3296274708306251.58431455983389267.32962747083062511.13483261555270741.60281360865252
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.9999910.499521610538653.143998637619927410.499521610538653.143998637619927411.15139068640609641.59700009092635
33.2670.09999.099.99999.99999.99999.99999.99999.99999.99999.9999931.9350.09999.099.99999.99999.99999.99999.99999.99999.99999.9999944.6110.09999.099.99999.99999.99999.99999.99999.99999.99999.9999945.4720.09999.099.99999.99999.99999.99999.99999.99999.99999.9999941.0820.09999.099.99999.99999.99999.99999.99999.99999.99999.9999935.4650.09999.099.99999.99999.99999.99999.99999.99999.99999.999990.28819301490882948.049008523580210.28819301490882948.0490085235802111.13242507836869241.60381257215712
" - ], - "text/plain": [ - "\n", - "F110W_IN F110W_RATE F110W_RATERR ... RA_J2000 DEC_J2000 \n", - "float32 float32 float32 ... float64 float64 \n", - "-------- ---------- ------------ ... ------------------ ------------------\n", - " 33.267 0.0 9999.0 ... 11.145614732485846 41.59773092319124\n", - " 33.267 0.0 9999.0 ... 11.148956385132271 41.599026017115044\n", - " 33.267 0.0 9999.0 ... 11.14579404466301 41.60069345799913\n", - " 33.267 0.0 9999.0 ... 11.135818296825672 41.60083124801925\n", - " 33.267 0.0 9999.0 ... 11.146434103454093 41.59955491360546\n", - " 33.267 0.0 9999.0 ... 11.135329111316906 41.595989469915736\n", - " 17.854 7.27e-08 4.94e-11 ... 11.139332963458779 41.6012386673917\n", - " 17.854 8.22e-08 5.21e-11 ... 11.14901954911686 41.60347847678029\n", - " 17.854 7.24e-08 4.94e-11 ... 11.14362746572599 41.59380042157581\n", - " 17.854 7.28e-08 4.92e-11 ... 11.13424976551128 41.59946027756628\n", - " ... ... ... ... ... ...\n", - " 33.267 0.0 9999.0 ... 11.134562468860524 41.60191404109182\n", - " 33.267 0.0 9999.0 ... 11.140066869301677 41.59616587367655\n", - " 33.267 0.0 9999.0 ... 11.142755005660842 41.597632579100775\n", - " 33.267 0.0 9999.0 ... 11.133283500687682 41.600309979631795\n", - " 33.267 0.0 9999.0 ... 11.149916036089541 41.599978162934065\n", - " 33.267 0.0 9999.0 ... 11.151143994385318 41.60029550582017\n", - " 33.267 0.0 9999.0 ... 11.141513115461178 41.59712225014788\n", - " 33.267 0.0 9999.0 ... 11.134832615552707 41.60281360865252\n", - " 33.267 0.0 9999.0 ... 11.151390686406096 41.59700009092635\n", - " 33.267 0.0 9999.0 ... 11.132425078368692 41.60381257215712" - ] - }, - "execution_count": 62, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Table.read(ast_file)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": { "scrolled": true }, @@ -1039,7 +1151,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1055,35 +1167,65 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Step 5.5 Update Datamodel Again\n", + "# Step 5.5 Update Datamodel\n", "\n", - "**Same with these cuts, we now have to update the astfile variable in datamodel.py (~line 144) with this new trimmed filename: './M31-B09-EAST_chunk.gst.fake_cut.fits'**" + "**With these cuts to the astfile and and gstfile, we now have to update the corresponding variables in datamodel.py with these new trimmed files. We can do this by rewriting the datamodel.py file with the following function.**" ] }, { "cell_type": "code", - "execution_count": 71, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: fits\n", - "Auto-detected type: fits\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], + "source": [ + "def update_datamodel(file_key, update_value):\n", + " \"\"\"\n", + " Update a single parameter in the datamodel.py file\n", + " Parameters\n", + " ----------\n", + " file_key : string\n", + " the key to update\n", + " update_value: string\n", + " the updated value\n", + " Returns\n", + " -------\n", + " nothing\n", + " \"\"\"\n", + " \n", + " # read in the template datamodel file\n", + " orig_file = open(\"datamodel.py\", \"r\")\n", + " datamodel_lines = np.array(orig_file.readlines())\n", + " orig_file.close()\n", + "\n", + " # write out an edited datamodel\n", + " new_file = open(\"datamodel.py\", \"w\")\n", + "\n", + " for i in range(len(datamodel_lines)):\n", + "\n", + " # replace project name with the field ID\n", + " if datamodel_lines[i][0:len(file_key)] == file_key:\n", + " new_file.write(file_key + ' = \"'+ update_value + '\"\\n')\n", + " else:\n", + " new_file.write(datamodel_lines[i])\n", + "\n", + " new_file.close()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "update_datamodel(\"obsfile\", gst_file_cut)\n", + "update_datamodel(\"astfile\", ast_file_cut)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "importlib.reload(datamodel)" ] @@ -1108,7 +1250,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1147,18 +1289,9 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: fits\n", - "Auto-detected type: fits\n" - ] - } - ], + "outputs": [], "source": [ "# generate file name lists\n", "file_dict = create_filenames.create_filenames(\n", @@ -1175,58 +1308,19 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[['2', '0'],\n", - " ['3', '0'],\n", - " ['3', '1'],\n", - " ['3', '2'],\n", - " ['4', '0'],\n", - " ['4', '1'],\n", - " ['4', '2'],\n", - " ['4', '3'],\n", - " ['4', '4'],\n", - " ['4', '5'],\n", - " ['5', '0'],\n", - " ['6', '0'],\n", - " ['9', '0']]" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "sd_sub_info = file_dict[\"sd_sub_info\"]\n", "sd_sub_info" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Hint: If sd_sub_info is empty, make sure you've updated the obsfile and astfile variables in datamodel (Step 4.5 and 5.5), reloaded the datamodel, and try to run create_filenames again.**" - ] - }, { "cell_type": "code", - "execution_count": 75, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "** total SD bins: 6\n", - "** total SD subfiles: 13\n" - ] - } - ], + "outputs": [], "source": [ "# - number of SD bins\n", "temp = set([i[0] for i in sd_sub_info])\n", @@ -1266,7 +1360,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1276,25 +1370,9 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['M31-B09-EAST_chunk.gst.fake_cut_bin2.fits',\n", - " 'M31-B09-EAST_chunk.gst.fake_cut_bin3.fits',\n", - " 'M31-B09-EAST_chunk.gst.fake_cut_bin4.fits',\n", - " 'M31-B09-EAST_chunk.gst.fake_cut_bin5.fits',\n", - " 'M31-B09-EAST_chunk.gst.fake_cut_bin6.fits',\n", - " 'M31-B09-EAST_chunk.gst.fake_cut_bin9.fits']" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# gather up the split AST files\n", "ast_file_list = sorted(glob.glob(datamodel.astfile.replace(\".fits\", \"*_bin*\")))\n", @@ -1303,163 +1381,11 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": null, "metadata": { "scrolled": false }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: fits\n", - "Auto-detected type: fits\n", - "sd list: ['2', '3', '4', '5', '6', '9']\n", - "\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin2.grid.hd5 already exists\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin2.grid.hd5\n", - "\n", - "creating M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin3.grid.hd5\n", - "Auto-detected type: hd5\n", - "Auto-detected type: fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Fitting model: 100%|██████████| 6/6 [00:00<00:00, 122.37it/s]\n", - "Evaluating model: 100%|██████████| 6/6 [00:00<00:00, 30.40it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Writing to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin3.grid.hd5\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin3.grid.hd5\n", - "\n", - "creating M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin4.grid.hd5\n", - "Auto-detected type: hd5\n", - "Auto-detected type: fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Fitting model: 100%|██████████| 6/6 [00:00<00:00, 63.10it/s]\n", - "Evaluating model: 100%|██████████| 6/6 [00:00<00:00, 29.23it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Writing to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin4.grid.hd5\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin4.grid.hd5\n", - "\n", - "creating M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin5.grid.hd5\n", - "Auto-detected type: hd5\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Fitting model: 100%|██████████| 6/6 [00:00<00:00, 249.56it/s]\n", - "Evaluating model: 0%| | 0/6 [00:00" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# set up the figure frame work\n", "# have it scale with the number of filters we're plotting\n", @@ -1707,323 +1583,11 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": null, "metadata": { "scrolled": false }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: hd5\n", - "Auto-detected type: fits\n", - "working on filter # = 0\n", - "working on filter # = 1\n", - "working on filter # = 2\n", - "working on filter # = 3\n", - "working on filter # = 4\n", - "working on filter # = 5\n", - "number of original models = 510048\n", - "number of ast trimmed models = 509563\n", - "number of trimmed models = 479060\n", - "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin2_sub0_seds_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Warning: Table does not exists. New table will be created\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin2_sub0_seds_trim.grid.hd5 (File) ''\n", - "Last modif.: 'Tue May 5 16:08:41 2020'\n", - "Object Tree: \n", - "/ (RootGroup) ''\n", - "/grid (Table(479060,)) 'grid'\n", - "/lamb (EArray(6,)) 'lamb'\n", - "/seds (EArray(479060, 6)) 'seds'\n", - "\n", - "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin2_sub0_noisemodel_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Auto-detected type: fits\n", - "working on filter # = 0\n", - "working on filter # = 1\n", - "working on filter # = 2\n", - "working on filter # = 3\n", - "working on filter # = 4\n", - "working on filter # = 5\n", - "number of original models = 510048\n", - "number of ast trimmed models = 510048\n", - "number of trimmed models = 479552\n", - "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub0_seds_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Warning: Table does not exists. New table will be created\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub0_seds_trim.grid.hd5 (File) ''\n", - "Last modif.: 'Tue May 5 16:09:08 2020'\n", - "Object Tree: \n", - "/ (RootGroup) ''\n", - "/grid (Table(479552,)) 'grid'\n", - "/lamb (EArray(6,)) 'lamb'\n", - "/seds (EArray(479552, 6)) 'seds'\n", - "\n", - "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub0_noisemodel_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Auto-detected type: fits\n", - "working on filter # = 0\n", - "working on filter # = 1\n", - "working on filter # = 2\n", - "working on filter # = 3\n", - "working on filter # = 4\n", - "working on filter # = 5\n", - "number of original models = 510048\n", - "number of ast trimmed models = 510048\n", - "number of trimmed models = 479552\n", - "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub1_seds_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Warning: Table does not exists. New table will be created\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub1_seds_trim.grid.hd5 (File) ''\n", - "Last modif.: 'Tue May 5 16:09:33 2020'\n", - "Object Tree: \n", - "/ (RootGroup) ''\n", - "/grid (Table(479552,)) 'grid'\n", - "/lamb (EArray(6,)) 'lamb'\n", - "/seds (EArray(479552, 6)) 'seds'\n", - "\n", - "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub1_noisemodel_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Auto-detected type: fits\n", - "working on filter # = 0\n", - "working on filter # = 1\n", - "working on filter # = 2\n", - "working on filter # = 3\n", - "working on filter # = 4\n", - "working on filter # = 5\n", - "number of original models = 510048\n", - "number of ast trimmed models = 510048\n", - "number of trimmed models = 479552\n", - "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub2_seds_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Warning: Table does not exists. New table will be created\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub2_seds_trim.grid.hd5 (File) ''\n", - "Last modif.: 'Tue May 5 16:09:59 2020'\n", - "Object Tree: \n", - "/ (RootGroup) ''\n", - "/grid (Table(479552,)) 'grid'\n", - "/lamb (EArray(6,)) 'lamb'\n", - "/seds (EArray(479552, 6)) 'seds'\n", - "\n", - "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub2_noisemodel_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Auto-detected type: fits\n", - "working on filter # = 0\n", - "working on filter # = 1\n", - "working on filter # = 2\n", - "working on filter # = 3\n", - "working on filter # = 4\n", - "working on filter # = 5\n", - "number of original models = 510048\n", - "number of ast trimmed models = 510040\n", - "number of trimmed models = 479552\n", - "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub0_seds_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Warning: Table does not exists. New table will be created\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub0_seds_trim.grid.hd5 (File) ''\n", - "Last modif.: 'Tue May 5 16:10:23 2020'\n", - "Object Tree: \n", - "/ (RootGroup) ''\n", - "/grid (Table(479552,)) 'grid'\n", - "/lamb (EArray(6,)) 'lamb'\n", - "/seds (EArray(479552, 6)) 'seds'\n", - "\n", - "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub0_noisemodel_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Auto-detected type: fits\n", - "working on filter # = 0\n", - "working on filter # = 1\n", - "working on filter # = 2\n", - "working on filter # = 3\n", - "working on filter # = 4\n", - "working on filter # = 5\n", - "number of original models = 510048\n", - "number of ast trimmed models = 510040\n", - "number of trimmed models = 479552\n", - "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub1_seds_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Warning: Table does not exists. New table will be created\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub1_seds_trim.grid.hd5 (File) ''\n", - "Last modif.: 'Tue May 5 16:10:46 2020'\n", - "Object Tree: \n", - "/ (RootGroup) ''\n", - "/grid (Table(479552,)) 'grid'\n", - "/lamb (EArray(6,)) 'lamb'\n", - "/seds (EArray(479552, 6)) 'seds'\n", - "\n", - "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub1_noisemodel_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Auto-detected type: fits\n", - "working on filter # = 0\n", - "working on filter # = 1\n", - "working on filter # = 2\n", - "working on filter # = 3\n", - "working on filter # = 4\n", - "working on filter # = 5\n", - "number of original models = 510048\n", - "number of ast trimmed models = 510040\n", - "number of trimmed models = 479552\n", - "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub2_seds_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Warning: Table does not exists. New table will be created\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub2_seds_trim.grid.hd5 (File) ''\n", - "Last modif.: 'Tue May 5 16:11:10 2020'\n", - "Object Tree: \n", - "/ (RootGroup) ''\n", - "/grid (Table(479552,)) 'grid'\n", - "/lamb (EArray(6,)) 'lamb'\n", - "/seds (EArray(479552, 6)) 'seds'\n", - "\n", - "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub2_noisemodel_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Auto-detected type: fits\n", - "working on filter # = 0\n", - "working on filter # = 1\n", - "working on filter # = 2\n", - "working on filter # = 3\n", - "working on filter # = 4\n", - "working on filter # = 5\n", - "number of original models = 510048\n", - "number of ast trimmed models = 510040\n", - "number of trimmed models = 479552\n", - "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub3_seds_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Warning: Table does not exists. New table will be created\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub3_seds_trim.grid.hd5 (File) ''\n", - "Last modif.: 'Tue May 5 16:11:34 2020'\n", - "Object Tree: \n", - "/ (RootGroup) ''\n", - "/grid (Table(479552,)) 'grid'\n", - "/lamb (EArray(6,)) 'lamb'\n", - "/seds (EArray(479552, 6)) 'seds'\n", - "\n", - "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub3_noisemodel_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Auto-detected type: fits\n", - "working on filter # = 0\n", - "working on filter # = 1\n", - "working on filter # = 2\n", - "working on filter # = 3\n", - "working on filter # = 4\n", - "working on filter # = 5\n", - "number of original models = 510048\n", - "number of ast trimmed models = 510040\n", - "number of trimmed models = 479552\n", - "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub4_seds_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Warning: Table does not exists. New table will be created\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub4_seds_trim.grid.hd5 (File) ''\n", - "Last modif.: 'Tue May 5 16:11:58 2020'\n", - "Object Tree: \n", - "/ (RootGroup) ''\n", - "/grid (Table(479552,)) 'grid'\n", - "/lamb (EArray(6,)) 'lamb'\n", - "/seds (EArray(479552, 6)) 'seds'\n", - "\n", - "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub4_noisemodel_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Auto-detected type: fits\n", - "working on filter # = 0\n", - "working on filter # = 1\n", - "working on filter # = 2\n", - "working on filter # = 3\n", - "working on filter # = 4\n", - "working on filter # = 5\n", - "number of original models = 510048\n", - "number of ast trimmed models = 510040\n", - "number of trimmed models = 479552\n", - "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub5_seds_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Warning: Table does not exists. New table will be created\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub5_seds_trim.grid.hd5 (File) ''\n", - "Last modif.: 'Tue May 5 16:12:23 2020'\n", - "Object Tree: \n", - "/ (RootGroup) ''\n", - "/grid (Table(479552,)) 'grid'\n", - "/lamb (EArray(6,)) 'lamb'\n", - "/seds (EArray(479552, 6)) 'seds'\n", - "\n", - "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub5_noisemodel_trim.grid.hd5\n", - "Auto-detected type: hd5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: fits\n", - "working on filter # = 0\n", - "working on filter # = 1\n", - "working on filter # = 2\n", - "working on filter # = 3\n", - "working on filter # = 4\n", - "working on filter # = 5\n", - "number of original models = 510048\n", - "number of ast trimmed models = 510025\n", - "number of trimmed models = 479530\n", - "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin5_sub0_seds_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Warning: Table does not exists. New table will be created\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin5_sub0_seds_trim.grid.hd5 (File) ''\n", - "Last modif.: 'Tue May 5 16:12:48 2020'\n", - "Object Tree: \n", - "/ (RootGroup) ''\n", - "/grid (Table(479530,)) 'grid'\n", - "/lamb (EArray(6,)) 'lamb'\n", - "/seds (EArray(479530, 6)) 'seds'\n", - "\n", - "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin5_sub0_noisemodel_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Auto-detected type: fits\n", - "working on filter # = 0\n", - "working on filter # = 1\n", - "working on filter # = 2\n", - "working on filter # = 3\n", - "working on filter # = 4\n", - "working on filter # = 5\n", - "number of original models = 510048\n", - "number of ast trimmed models = 323563\n", - "number of trimmed models = 293022\n", - "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin6_sub0_seds_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Warning: Table does not exists. New table will be created\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin6_sub0_seds_trim.grid.hd5 (File) ''\n", - "Last modif.: 'Tue May 5 16:13:10 2020'\n", - "Object Tree: \n", - "/ (RootGroup) ''\n", - "/grid (Table(293022,)) 'grid'\n", - "/lamb (EArray(6,)) 'lamb'\n", - "/seds (EArray(293022, 6)) 'seds'\n", - "\n", - "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin6_sub0_noisemodel_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Auto-detected type: fits\n", - "working on filter # = 0\n", - "working on filter # = 1\n", - "working on filter # = 2\n", - "working on filter # = 3\n", - "working on filter # = 4\n", - "working on filter # = 5\n", - "number of original models = 510048\n", - "number of ast trimmed models = 381265\n", - "number of trimmed models = 350814\n", - "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin9_sub0_seds_trim.grid.hd5\n", - "Auto-detected type: hd5\n", - "Warning: Table does not exists. New table will be created\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin9_sub0_seds_trim.grid.hd5 (File) ''\n", - "Last modif.: 'Tue May 5 16:13:30 2020'\n", - "Object Tree: \n", - "/ (RootGroup) ''\n", - "/grid (Table(350814,)) 'grid'\n", - "/lamb (EArray(6,)) 'lamb'\n", - "/seds (EArray(350814, 6)) 'seds'\n", - "\n", - "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin9_sub0_noisemodel_trim.grid.hd5\n" - ] - } - ], + "outputs": [], "source": [ "# check to see if any sub files exist yet\n", "if len(glob.glob(file_dict[\"noise_trim_files\"][0].replace('bin2_sub0','bin*_sub*'))) == 0:\n", @@ -2061,255 +1625,9 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: fits\n", - "Auto-detected type: fits\n", - "Auto-detected type: fits\n", - "Auto-detected type: fits\n", - "Auto-detected type: fits\n", - "Auto-detected type: hd5\n", - "not using full covariance matrix\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Calculating Lnp/Stats: 100%|██████████| 25/25 [00:05<00:00, 4.35it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin2_sub0_seds_trim.grid.hd5\n", - "None\n", - "Auto-detected type: fits\n", - "Auto-detected type: hd5\n", - "not using full covariance matrix\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [34:16<00:00, 3.04it/s] \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub0_seds_trim.grid.hd5\n", - "None\n", - "Auto-detected type: fits\n", - "Auto-detected type: hd5\n", - "not using full covariance matrix\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [27:55<00:00, 3.73it/s] \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub1_seds_trim.grid.hd5\n", - "None\n", - "Auto-detected type: fits\n", - "Auto-detected type: hd5\n", - "not using full covariance matrix\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Calculating Lnp/Stats: 100%|██████████| 985/985 [03:05<00:00, 5.32it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin3_sub2_seds_trim.grid.hd5\n", - "None\n", - "Auto-detected type: fits\n", - "Auto-detected type: hd5\n", - "not using full covariance matrix\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [26:55<00:00, 3.87it/s] \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub0_seds_trim.grid.hd5\n", - "None\n", - "Auto-detected type: fits\n", - "Auto-detected type: hd5\n", - "not using full covariance matrix\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [27:01<00:00, 3.85it/s] \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub1_seds_trim.grid.hd5\n", - "None\n", - "Auto-detected type: fits\n", - "Auto-detected type: hd5\n", - "not using full covariance matrix\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [23:10<00:00, 4.49it/s] \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub2_seds_trim.grid.hd5\n", - "None\n", - "Auto-detected type: fits\n", - "Auto-detected type: hd5\n", - "not using full covariance matrix\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [21:23<00:00, 4.87it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub3_seds_trim.grid.hd5\n", - "None\n", - "Auto-detected type: fits\n", - "Auto-detected type: hd5\n", - "not using full covariance matrix\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [20:40<00:00, 5.04it/s] \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub4_seds_trim.grid.hd5\n", - "None\n", - "Auto-detected type: fits\n", - "Auto-detected type: hd5\n", - "not using full covariance matrix\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Calculating Lnp/Stats: 100%|██████████| 2587/2587 [10:27<00:00, 4.12it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin4_sub5_seds_trim.grid.hd5\n", - "None\n", - "Auto-detected type: fits\n", - "Auto-detected type: hd5\n", - "not using full covariance matrix\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Calculating Lnp/Stats: 100%|██████████| 2769/2769 [13:05<00:00, 3.52it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin5_sub0_seds_trim.grid.hd5\n", - "None\n", - "Auto-detected type: fits\n", - "Auto-detected type: hd5\n", - "not using full covariance matrix\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Calculating Lnp/Stats: 100%|██████████| 324/324 [00:46<00:00, 6.92it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin6_sub0_seds_trim.grid.hd5\n", - "None\n", - "Auto-detected type: fits\n", - "Auto-detected type: hd5\n", - "not using full covariance matrix\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Calculating Lnp/Stats: 100%|██████████| 8/8 [00:01<00:00, 6.56it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin9_sub0_seds_trim.grid.hd5\n", - "None\n", - "time to fit: 212.80141111666666 min\n" - ] - } - ], + "outputs": [], "source": [ "#if len(glob.glob(file_dict[\"modelsedgrid_trim_files\"][0].replace('bin2_sub0','bin*_sub*'))) == 0:\n", "run_fitting.run_fitting(\n", @@ -2343,20 +1661,9 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: fits\n", - "Auto-detected type: fits\n", - "Auto-detected type: fits\n", - "Auto-detected type: fits\n" - ] - } - ], + "outputs": [], "source": [ "merge_files.merge_files(use_sd=True, nsubs=datamodel.n_subgrid)" ] @@ -2370,72 +1677,9 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "Table length=50448\n", - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
NameRADECHST_WFC3_F475WHST_WFC3_F275WHST_WFC3_F336WHST_WFC3_F814WHST_WFC3_F110WHST_WFC3_F160WAv_BestAv_ExpAv_p16Av_p50Av_p84M_act_BestM_act_ExpM_act_p16M_act_p50M_act_p84M_ini_BestM_ini_ExpM_ini_p16M_ini_p50M_ini_p84Rv_BestRv_ExpRv_p16Rv_p50Rv_p84Rv_A_BestRv_A_ExpRv_A_p16Rv_A_p50Rv_A_p84Z_BestZ_ExpZ_p16Z_p50Z_p84distance_Bestdistance_Expdistance_p16distance_p50distance_p84f_A_Bestf_A_Expf_A_p16f_A_p50f_A_p84logA_BestlogA_ExplogA_p16logA_p50logA_p84logHST_WFC3_F110W_nd_BestlogHST_WFC3_F110W_nd_ExplogHST_WFC3_F110W_nd_p16logHST_WFC3_F110W_nd_p50logHST_WFC3_F110W_nd_p84logHST_WFC3_F110W_wd_BestlogHST_WFC3_F110W_wd_ExplogHST_WFC3_F110W_wd_p16logHST_WFC3_F110W_wd_p50logHST_WFC3_F110W_wd_p84logHST_WFC3_F160W_nd_BestlogHST_WFC3_F160W_nd_ExplogHST_WFC3_F160W_nd_p16logHST_WFC3_F160W_nd_p50logHST_WFC3_F160W_nd_p84logHST_WFC3_F160W_wd_BestlogHST_WFC3_F160W_wd_ExplogHST_WFC3_F160W_wd_p16logHST_WFC3_F160W_wd_p50logHST_WFC3_F160W_wd_p84logHST_WFC3_F275W_nd_BestlogHST_WFC3_F275W_nd_ExplogHST_WFC3_F275W_nd_p16logHST_WFC3_F275W_nd_p50logHST_WFC3_F275W_nd_p84logHST_WFC3_F275W_wd_BestlogHST_WFC3_F275W_wd_ExplogHST_WFC3_F275W_wd_p16logHST_WFC3_F275W_wd_p50logHST_WFC3_F275W_wd_p84logHST_WFC3_F336W_nd_BestlogHST_WFC3_F336W_nd_ExplogHST_WFC3_F336W_nd_p16logHST_WFC3_F336W_nd_p50logHST_WFC3_F336W_nd_p84logHST_WFC3_F336W_wd_BestlogHST_WFC3_F336W_wd_ExplogHST_WFC3_F336W_wd_p16logHST_WFC3_F336W_wd_p50logHST_WFC3_F336W_wd_p84logHST_WFC3_F475W_nd_BestlogHST_WFC3_F475W_nd_ExplogHST_WFC3_F475W_nd_p16logHST_WFC3_F475W_nd_p50logHST_WFC3_F475W_nd_p84logHST_WFC3_F475W_wd_BestlogHST_WFC3_F475W_wd_ExplogHST_WFC3_F475W_wd_p16logHST_WFC3_F475W_wd_p50logHST_WFC3_F475W_wd_p84logHST_WFC3_F814W_nd_BestlogHST_WFC3_F814W_nd_ExplogHST_WFC3_F814W_nd_p16logHST_WFC3_F814W_nd_p50logHST_WFC3_F814W_nd_p84logHST_WFC3_F814W_wd_BestlogHST_WFC3_F814W_wd_ExplogHST_WFC3_F814W_wd_p16logHST_WFC3_F814W_wd_p50logHST_WFC3_F814W_wd_p84logL_BestlogL_ExplogL_p16logL_p50logL_p84logT_BestlogT_ExplogT_p16logT_p50logT_p84logg_Bestlogg_Explogg_p16logg_p50logg_p84mbolmag_Bestmbolmag_Expmbolmag_p16mbolmag_p50mbolmag_p84radius_Bestradius_Expradius_p16radius_p50radius_p84symlogHST_WFC3_F475W_wd_bias_BestsymlogHST_WFC3_F475W_wd_bias_ExpsymlogHST_WFC3_F475W_wd_bias_p16symlogHST_WFC3_F475W_wd_bias_p50symlogHST_WFC3_F475W_wd_bias_p84symlogHST_WFC3_F275W_wd_bias_BestsymlogHST_WFC3_F275W_wd_bias_ExpsymlogHST_WFC3_F275W_wd_bias_p16symlogHST_WFC3_F275W_wd_bias_p50symlogHST_WFC3_F275W_wd_bias_p84symlogHST_WFC3_F336W_wd_bias_BestsymlogHST_WFC3_F336W_wd_bias_ExpsymlogHST_WFC3_F336W_wd_bias_p16symlogHST_WFC3_F336W_wd_bias_p50symlogHST_WFC3_F336W_wd_bias_p84symlogHST_WFC3_F814W_wd_bias_BestsymlogHST_WFC3_F814W_wd_bias_ExpsymlogHST_WFC3_F814W_wd_bias_p16symlogHST_WFC3_F814W_wd_bias_p50symlogHST_WFC3_F814W_wd_bias_p84symlogHST_WFC3_F110W_wd_bias_BestsymlogHST_WFC3_F110W_wd_bias_ExpsymlogHST_WFC3_F110W_wd_bias_p16symlogHST_WFC3_F110W_wd_bias_p50symlogHST_WFC3_F110W_wd_bias_p84symlogHST_WFC3_F160W_wd_bias_BestsymlogHST_WFC3_F160W_wd_bias_ExpsymlogHST_WFC3_F160W_wd_bias_p16symlogHST_WFC3_F160W_wd_bias_p50symlogHST_WFC3_F160W_wd_bias_p84chi2minchi2min_indxPmaxPmax_indxspecgrid_indxtotal_log_normreorder_tag
str29float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64int64float64int64int64float64str9
PHAT-M31 J004435.01+413540.9611.14587991456673441.594710659711372.6938229780643986e-219.227016583504053e-212.7366301117024876e-201.1307473476472241e-202.834051501297643e-209.345915577912443e-210.010.53456166142496430.010.43826086644179671.48046141450494660.8571.02832898251109370.79063154445482730.95067027692975491.27844891553961220.85805004841.02913538904224340.78197955570888980.9440315625055621.27811178639027646.03.74585256500229222.42159372648859073.57122178222140455.2065285670678646.04.0002894325957852.7894911428983643.90732578844482435.21096444696570.0040.0144282675103485270.0042187709121964490.0128541413385111020.026976716233826286907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818611.00.81077596687245460.498237965815047530.8614501690977431.010.09.7305510123295949.05185865929169.74335598421418710.0-20.67636129725098-20.6236537008216-21.0509735696428-20.64286101773007-20.256706515414454-20.678330849908075-20.711449908394854-21.113535322392185-20.709933659111115-20.34368071109016-20.980377715492033-20.91301124176117-21.316712892428228-20.937429738193238-20.562456775522598-20.98152257240765-20.96456690920686-21.34084568168185-20.97544015553115-20.6265449026026-20.493497753001503-20.78341194302714-21.54356800434706-20.809517111341446-20.12574372918582-20.499578985655024-21.205510187506228-21.969076273909813-21.26948971788478-20.420943309950818-20.209204563145295-20.356128902590655-20.97047753956093-20.353387689550278-19.846291582669707-20.214935104383855-20.719670141133243-21.346614909313963-20.740925996643867-20.102449153616963-20.0325403458445-20.046368231410447-20.578511367373867-20.064563927672037-19.586323818826365-20.037341419776936-20.316226964559053-20.836999121500778-20.332117355514576-19.800693067142216-20.36622352609169-20.32894352025428-20.77521370573467-20.33923764287305-19.942563121414988-20.369186946063625-20.47051295376766-20.89623779326875-20.45771989176555-20.077751630499440.2080.2293109126043186-0.268991343988197240.20817988318467140.65854931952862963.78813.77011934792464583.7147646831764443.76356011343640343.8179390041881094.2674.2379825225066524.00630215982120854.28759714157550854.5092073814579274.2494.1967476320132513.1228055905350224.2487065792953325.4416107000616321.12318982588888461.38882743966782730.8399501414894871.1989246679859021.7648568606536434-1.080334102553474e-212.8021647353763844e-22-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.022376224076914e-20-3.9921181535628153e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-3.0124820022351794e-21-4.477328062729628e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-188.253190878307196e-218.802754736035475e-213.979466120141786e-213.979466120141786e-211.917672252650435e-18-6.434665075977322e-21-5.741406475711803e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-7.337125257302916e-21-6.7303603403994876e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-193.5809198565301386205808250.1830088275045383884967256.90977146717074bin2_sub0
PHAT-M31 J004435.89+413607.1711.14955149842946541.601990303679221.9437781488778407e-205.790233078717116e-201.708360057840435e-201.4971932473477133e-20-3.838628834610639e-211.6586115608949553e-200.010.44358326044262850.010.36557407569475211.30292117915303150.8791.11929758334137990.82240954654086111.01576271834313481.50201089020364460.88030308491.12009120967160470.82205397699751151.01088189825426731.50464471520414136.03.7714571257976062.4385653924859713.5957919155217175.244211753675976.04.0242868841862882.81385918828352733.93274296577762965.25029984969630.0040.0141629682464226580.00416480561807692360.0126342810129921440.02634107881703608907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818611.00.81281025899146580.50269875147033050.86301025537572161.010.09.6249134725860928.84423766351779.6417035162688310.0-20.546854269070664-20.487852684627494-20.9041488621885-20.515810315705508-20.07899851208535-20.548823931018628-20.56220332584558-20.982091690402456-20.549231389189035-20.193287348717483-20.85136340514813-20.791283926485065-21.18808843928717-20.818533810061083-20.423381433969215-20.852508302210154-20.834743218171145-21.220211343961044-20.840357035633193-20.48874518862766-20.365542322728764-20.534108826772467-21.214816217723897-20.61970226989557-19.74702572662469-20.371623753395053-20.880234775386377-21.700237905736103-20.803209451294013-20.202052098245918-20.083403775624284-20.154369202454887-20.66424659880864-20.207707723987753-19.568647987347614-20.089134386109787-20.452550532880974-21.116845326365326-20.359975499506724-19.91770687582649-19.90091733537411-19.86435678647197-20.352465336888926-19.923550445942983-19.34144333929512-19.905718892291688-20.08823598865183-20.666174232301152-20.02543835480517-19.619513907271177-20.236599575328043-20.182432689327637-20.604825346358588-20.20853608165042-19.752619640014053-20.23956303248801-20.30121513554386-20.75442093037348-20.267786274280496-19.9064106691540950.3380.3935131748754666-0.0725008092863490.343973757328031260.88999813628272313.78843.78593861451637673.7239522312419233.7744230068502383.85349852294562964.1494.1699204138838113.93791421028716564.2295680699722734.4459208056431353.9253.7862253865113342.54419516406767173.9092287088458014.950394224319491.30272623972765441.5646036342750980.93408127455713761.34726686082623682.04463639899402734.7854891099829624e-215.0649868171672125e-21-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-3.524371708473542e-20-3.908735901386585e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-2.0258036566326566e-21-2.9050656618681958e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-189.739594208664853e-211.1272173344694338e-203.979466120141786e-213.979466120141786e-211.917672252650435e-18-5.705981122524013e-21-4.555428693135808e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-6.976186318710649e-21-6.134393109266214e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-194.719323879876735205810248.38407597222442383924971255.11927456073013bin2_sub0
PHAT-M31 J004435.03+413540.8011.14594280472428941.594667037176872.017726230628628e-201.4382191840684453e-211.3308938355366436e-208.43872557595984e-211.6171244877721415e-20-2.7403147527829693e-210.010.5385991530762970.010.4389583430604071.44946909363598840.8730.98235473795047720.75136746882513740.91768873001115151.21431054763112640.87309485670.98299760948233210.74827460048385470.91568171192480211.20018151478947796.03.77297694784644032.4384926470478193.5977584509210285.247330238767736.04.0247595813029032.81198588575629543.9341826653322865.2532134963005240.030.0145183960197587840.0042366360766105770.0129106027284750030.027272630808727057907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.00.81367394551281950.50419783378755920.86370006957763411.010.09.7606960137901979.0821574203381729.77195348534931810.0-21.06739988403348-20.733102199512107-21.139267308235308-20.745535175441695-20.342571197463965-21.06934353764487-20.82151251056995-21.182876302644786-20.851202958644553-20.413429006614884-21.30298325840933-21.016880690904607-21.394996250522908-21.03680019466336-20.649249899778624-21.304123820145684-21.06899046168689-21.41653967766587-21.090558214907574-20.70930614854087-21.908785297932866-20.959146818620418-21.718174193279353-20.9594574455786-20.240459881871722-21.91481390085925-21.36114215916725-22.02938247280449-21.448519702937613-20.540643219215358-21.189751135030548-20.5052141665963-21.119332550587714-20.474038374683513-19.947482161444537-21.19547382296284-20.86528331275672-21.3989308391202-20.926617454425173-20.177006942509173-20.68257532340904-20.180096415872608-20.702377562229582-20.17988507742792-19.700435215014288-20.687336700640163-20.450665993730293-20.900679092237755-20.49927480366198-19.87928859591284-20.818035727405633-20.443895276392755-20.87502281844871-20.447599979117644-20.02968925485091-20.82098770761431-20.58641342075565-20.962169775942286-20.626929007263257-20.135530105057303-0.3140.1065890440690902-0.37588959663140460.091290806657241850.54387447566750963.71143.7624528050317113.7113582715391383.75655283064188963.80868500188661234.494.3099016494091284.0877510478671114.346665710244954.5550890665738935.5544.5035529327611133.4094869451519964.5409234044552935.7088509669073970.87670434886576121.22587589584497980.77422251855404781.0903650636411661.6281819403590587-3.8296291743766466e-213.4278283808379603e-23-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.446228833693227e-20-3.9020895003348785e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-6.442405652434222e-21-5.023969623494162e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-185.4895250010597344e-218.004684230665902e-213.979466120141786e-213.979466120141786e-211.917672252650435e-18-7.679581017358345e-21-6.283639451187888e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-7.884138394729947e-21-7.118788717000403e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-191.0819167650310035162090253.0082879753725355761655259.8672967594927bin2_sub0
PHAT-M31 J004435.01+413540.6111.14589208784346641.594612970700052.471978732812037e-20-8.965522186400696e-201.0608102454399653e-213.1409648545756225e-202.1561659836961886e-201.773993234696343e-200.011.87707277339962750.011.05458841472432273.86444761079553921.0481.01024881958196060.40333371111562040.95724555425211091.59274873640433331.04996979241.01287783111736780.407875342689057060.96761658330967071.59890733047838922.03.71014667221131232.40390259818294363.53986076102508165.1354041031645312.03.96745916326208552.7641784118626053.87463678647427835.1365011935487110.0190.015775423101511870.00517717142282178750.014328985324034440.02848567548759949907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818611.00.8079433117284340.491622930925207760.85900096268617051.010.09.7166487559395889.038150554231219.73127444197098310.0-19.69186133545107-20.65149666600831-22.230588911621233-20.409817295500865-19.58119333040519-19.692907957053865-20.93438836933909-22.808177991334453-20.47022861932239-19.775850352743614-19.87966316593967-20.91218931036272-22.421188752526017-20.71145310328239-19.84464067597841-19.88026936038928-21.0852826504506-22.822137943344305-20.756346250998046-19.953367874662973-20.82862875462559-21.555327411129728-25.042996656486142-20.895511654603876-19.688717991249202-20.839841515270532-22.473675485602403-26.20195136382335-21.54906776425066-20.540238685735748-20.04430388063852-20.84101628255837-23.567247084262423-20.24766152920076-19.381924234138413-20.053102565307096-22.01422552273299-25.740254217307598-20.79556575835828-20.079963263797058-19.43136336181124-20.316462099027845-22.602139515719497-19.850663326950723-18.9825978953347-19.43687443099269-21.239362378845954-24.222581729697247-20.1225924410769-19.59088772406159-19.481815454059248-20.411065467035208-22.140813876670173-20.10972396633266-19.295384095288973-19.483877692076387-20.880917166443126-23.02899961070236-20.21303091862863-19.6260856919922061.0290.10318657991126835-1.72037967803758550.446446599551939941.30297189532710523.67453.705592970477113.5375596903267793.7110938156194543.8357752786442343.0794.0301251563146443.13981867198892764.1712021052438874.8342377479851952.1974.5120868865012341.51178149182854333.65305174595601929.070008696264394.8770045510986022.4689693676820680.399329909976897931.49997167836321624.6737651626983293.2227413500106193e-207.769004393919891e-21-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.811894990802553e-20-3.9702361915183306e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-1.6864111718050575e-21-7.147382352380974e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-184.1880530427349703e-201.5762563405233377e-203.979466120141786e-213.979466120141786e-211.917672252650435e-181.1749118479815233e-20-1.0130103318978867e-22-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-194.957030890163424e-21-1.7879113503345323e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-190.855922513657313275468248.6974369932743822962832256.70337816560055bin2_sub0
PHAT-M31 J004435.02+413540.8211.14590738154246541.594672446616963.005461322585575e-201.3336214252271036e-20-1.399228237850261e-202.1149163354142527e-201.621208135468536e-201.572075305543914e-200.014.7070922547444341.04657047283222784.63433137933689658.3853190465100860.20.41262099541833260.1777421811357630.31765778057265680.66103472947758560.2000000030.412937784901017350.178653715424074350.320494502399433170.66869472463889312.03.64042093268937262.36154322147988443.475413750291985.0092417681220642.03.9014099387458352.69881759434369253.80818558297530845.00920533944133250.030.015791626911289420.0052728904069241880.014338398506640980.028567239014896065907820.5301781861907820.5301781864907820.5301781861907820.5301781861907820.53017818611.00.80315931590041080.47862234162660690.8552856513885121.010.09.9088829644981819.2298799373068059.91276853055064710.0-22.695360677390212-22.199603697612975-22.811718576100517-22.39920091532786-21.50135509962169-22.696397784629713-22.883161436966297-23.71311468863416-23.02848591236596-22.11829232011442-22.911719242848285-22.411381347555764-23.033156155876565-22.597907042983355-21.674856799204417-22.91232352827978-22.838075580736167-23.548883356952583-23.015314233251143-22.118705130512573-25.545443154181353-24.622196379883814-25.665127670763294-25.22387151822748-23.20659145292515-25.552653282544842-26.205539142549316-27.454348330188434-26.521873180237368-25.267845573612043-24.06236610673095-23.312123527471442-24.226595565373756-23.748539151788645-22.087931320534725-24.070991690906162-26.107658298647795-28.189925672021356-26.50070061290776-24.051602005008895-23.13774595506965-22.434421864867762-23.229353855894455-22.77327582663816-21.41873249313129-23.143200745490617-24.718021530028373-26.715822830326104-24.81523166871432-22.948256007765263-22.620593928818764-22.07766837781717-22.745928187102134-22.32231075682519-21.31636298588381-22.62257373712634-23.226738438156637-24.361918139538307-23.336369680330474-22.239648999921112-2.5-1.7123255705960905-2.5302212624290665-1.9387097107417088-0.82654280340755483.45113.5472866421474913.46785444328775273.51865381233236543.64965678322336734.9964.8232615786786764.6137145693235374.9007524075137425.07214777011159511.0219.0509647288394626.8354613675069719.61582282098200611.0945720147867860.234667615744427070.53338762497533380.205510337639140120.33598147163246230.66316197677249024.503384990234952e-214.464722707323373e-21-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.019927688975977e-20-4.01361206903956e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-1.7505726047035988e-20-1.6936203817357627e-20-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-184.0032486933770836e-214.4062796238849116e-213.979466120141786e-213.979466120141786e-211.917672252650435e-18-8.511887768400036e-21-8.1775848553636e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-8.368352112107116e-21-8.045339810521697e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-192.175457188358515117877252.7601362520254312671632260.46615762377166bin2_sub0
PHAT-M31 J004435.90+413607.1111.14959236188068641.601975894490973.464995830608325e-20-3.1005764227969083e-201.5847073298443655e-204.0413747795539675e-202.6788728888346585e-204.802762171982783e-210.010.62115924693053610.010.54468326610142161.60115935084484381.551.4712414031291150.94442183250707081.45115655311010251.99178735805222781.54999995231.47280110245431860.95933695413417711.45649349271138661.98323877662220842.03.70622847508011732.40221604787093853.5365533539864765.1267207324993812.03.96333021741562772.76139909737016963.8702548342702045.1273571854303980.030.0171519047069621270.0057022110722043820.0157513209655383220.029920131244354695907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.00.80790818226168270.49172830875482010.85891745737615341.09.09.3429201301973038.446142796062349.36254337176485810.0-20.19510484622564-19.96059913193318-20.30612719127283-19.92227595422891-19.58394559834193-20.196195834837035-20.06143924611632-20.340723428413664-20.02654316850486-19.73312632623973-20.549282622139735-20.28319375238829-20.676661433172686-20.259902517752703-19.88440357659361-20.549891370715184-20.34189939581413-20.679241942853633-20.33349707161132-19.961822588804534-19.918223800439392-19.978977277928806-20.94146338276442-19.81541307340982-19.144613368124144-19.930053013958617-20.48382307493895-21.26606113524431-20.3191186289773-19.787171815611124-19.640476628223155-19.617509060694342-20.205920611427903-19.577259990846933-19.041146821542466-19.649362019861933-20.047873216876017-20.503217312633186-19.948111613181048-19.569079167161647-19.417678215819908-19.279385374492307-19.68593591460069-19.27803636157667-18.784148266557178-19.423390323912272-19.59671245334538-19.89395310021796-19.503237428759924-19.221685192010714-19.849550735247973-19.644225634097314-19.98582838147841-19.60686378676127-19.268392245358214-19.851650950682117-19.80710859774914-20.031180851316755-19.757100323492725-19.510868607837990.7550.97586253163703230.5989601001717220.99805682520150951.40550591557230663.83443.8109452025350073.6886801117744293.83325397147859233.89975352657903864.1633.7995261120702163.20354078933680463.96141314129293364.2547214817512372.8822.3303617075775751.25548266721783652.274053864770253.2717756484013771.7035432376013742.84991570122393251.4928124993285682.33077900790102444.2910510060271023.3538108105199917e-202.790170551454629e-20-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-3.3208138787456643e-20-3.603450135284845e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-186.552446940602217e-211.713440093120825e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-181.8502395937227747e-202.512096699275581e-203.979466120141786e-213.979466120141786e-211.917672252650435e-18-2.1669221975520064e-213.3285238745933494e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-5.561501178294643e-21-1.0862427147200517e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-190.2501448669933298200923250.442899158432710661430256.79127421677686bin2_sub0
PHAT-M31 J004435.01+413540.6011.14586077975399441.594610786429143.850582256880288e-20-1.0459775884134147e-19-2.1801928357201742e-211.9788078583826416e-208.657333116355908e-212.5528195328557133e-210.013.0136090906532220.063504504874776171.7896268574771547.1187462948612380.6730.67244337226924230.220185700154080760.63689775732672851.05865165108854380.67317253350.6728019037004520.221674851053888870.64045117963759061.05867272778376292.03.70189404086764062.3962496550189533.531806100323625.1269164143772852.03.9591211933245312.75133878337756783.86673276850725725.1279825866388960.0040.0151709382898116730.004892907234007010.0137256719698518970.027793604531471727907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818611.00.80778641247905330.49056741830362060.85900657526964971.010.09.8232036002336959.1448958293046629.83186616865643610.0-21.32532823678483-21.561201156293187-22.675314728468596-21.506674319843583-20.456380978037405-21.326388318461664-22.004221255587847-23.467998961850796-22.10515259867406-20.524114837909472-21.56018219077681-21.805610555402996-22.908283458214903-21.691498505975265-20.754666079587345-21.560789157550055-22.08060200379629-23.36398035805215-22.10516802680434-20.807431403302992-21.866310605783195-23.06227737503184-25.51840747567177-23.144387898613424-20.584662489807283-21.877896387219796-24.180270700464554-27.135552256640604-25.24560943742982-20.897755294096076-21.323177883931834-22.112762198843278-24.064200667690276-22.046930143244964-20.168518149097817-21.331998345442113-23.920195531588956-27.749296330308812-24.00991882791097-20.422410906483904-20.92025161445917-21.462812932506772-23.07550897353269-21.388545933371446-19.87314200409724-20.925824864182193-22.929247377529368-26.07490389855313-22.92086501678753-20.036406349787327-21.07478492779242-21.36845633774829-22.617969724175556-21.312433686823407-20.149027389813938-21.07685681288068-22.109820758984018-24.007066888139896-22.224633854155364-20.2528644501472-0.561-0.9227047314213337-2.352160173735842-0.82432714407341570.40983897203607593.71223.63907785431926723.48514887995046643.65114995323906483.7798965783338374.6284.5920921294306374.1783399632415074.646015576188785.0168157670987836.1737.0768622182342213.7445689775667416.82992233036601110.6494282291717970.65728415181642550.85892095886664480.24321052425861930.62766919910340471.4467718037624725.327709550452713e-224.442259047864839e-21-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.381249859209011e-20-4.0323202112963177e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-6.947173173377488e-21-1.1902129254548252e-20-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-184.8172075660811435e-216.617473466628315e-213.979466120141786e-213.979466120141786e-211.917672252650435e-18-8.060365433770735e-21-7.045874554657362e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-8.105666301500592e-21-7.517455556648203e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-191.62903177897805863228251.7670491549987740824946259.28608520147225bin2_sub0
PHAT-M31 J004435.08+413540.6611.14616255190440541.5946263905207453.9034023152737074e-20-8.218395337533972e-20-4.555626820907827e-208.334026747473985e-204.0754804010015076e-201.6730342701201285e-200.010.86967909378817950.010.78035020712374771.85170018486991151.0491.31720636870910580.88163514851550871.05595328461476922.0483390328134081.05043613911.33547727200541870.94944381835307621.11335439950956272.04176843965530042.03.6957137388634262.38836449580927823.5255662018924655.1251320234197232.03.9523053295698952.73715146822452443.86093301809171675.1262410050095260.0190.0169537999924167270.0061173449240694150.0155443267949407220.029247888709606238907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818611.00.80807567280702870.49035705607328970.85942206711307231.010.09.7217800191567219.0432540633033269.73474816507275310.0-19.636761027317537-19.330287969064397-19.693043786168587-19.29491604799616-18.985259426562795-19.637807004897336-19.46527713343218-19.743925376539547-19.44105587693523-19.19404044542893-19.822163256303618-19.54806941230371-19.923907924316005-19.491791758937683-19.177259951185135-19.822769409155896-19.628317251802397-19.953159762101276-19.593043016826034-19.32056892691437-20.79561517572881-20.35762070206784-21.013171677236866-20.45885596567463-19.702310080493465-20.806814695824713-21.039737100383526-21.497931925551217-20.980071434903074-20.598749268536555-20.00349488662563-19.592294064160246-20.04502377439001-19.61210172925069-19.140466244157988-20.01229220209362-20.200975372727378-20.50066658297991-20.13169720510673-19.843082255158915-19.38293833565753-18.993511238626912-19.39442786940602-18.958335000159245-18.650236710661645-19.38844707038205-19.431703664533575-19.678388908030115-19.404185953182424-19.16149326321764-19.428712602992977-19.099342881635334-19.459325378369844-19.064293240105854-18.788001320611507-19.430774338487-19.322750956821828-19.56765171755133-19.317899410715693-19.090402764195521.0821.43352022030053441.0533046414870351.44929698170983021.74161244918960633.67253.70253103031941063.65388855981617233.6840858437298453.7218055333525313.0192.85176632776318242.40336667950009762.83023795066009453.20802599888742672.0661.18626582912781520.41805964699013071.14731407308176262.1359370967060545.2318244227015117.4055249567066414.32232963923084957.51474054038609610.6471779272614493.7104689885949184e-203.694274883236897e-20-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.759432340308314e-20-3.9474200863746714e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-1.2664174592635125e-21-2.0292245585900058e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-184.516522322655732e-205.608161879961565e-203.979466120141786e-213.979466120141786e-211.917672252650435e-181.4492641195016916e-203.962689271485453e-20-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-198.704619108543779e-212.6552869530011744e-20-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-198.601933066333634123729244.6447136913055522972833250.7234999018597bin2_sub0
PHAT-M31 J004435.02+413540.7411.14591182055179541.5946511057497054.0777085079719925e-20-1.6063227250634582e-19-1.0087459389153045e-202.743109306329377e-201.9887364281440227e-204.211431093750669e-210.010.55835481539989810.010.45219010413700541.56467664998863271.0181.18478131713477120.84053183278825851.03773261174111321.68906746004337281.01913547521.18574562770670220.84271663680694841.03832480939095121.69187895938229782.03.7115496878422782.40380673919382033.5441290496655535.13218938652767952.03.9686382334706742.76047104160392733.8812857512976165.13309807056310950.0190.014373849389922820.0051641639124399460.013270059431613340.02520569854846135907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818611.00.80920943923879560.495697714293169560.85990227425422591.010.09.6256134618417638.8465096394776459.64168477103303810.0-20.480533719055046-20.32933468200931-20.787715722811484-20.371583122549154-19.78497432363912-20.481603752158396-20.42097044802942-20.89813073974005-20.413088428010102-19.945876919816406-20.753211712084653-20.630391561274436-21.081903578263017-20.677249945322338-20.103917827418076-20.753819270828597-20.683903553728044-21.138284791242423-20.711718183331527-20.199574654409755-20.6792294197491-20.442762235289717-21.070714885314246-20.62536695154307-19.461824643778957-20.690850297362044-20.888010734721448-21.70891452110661-20.777655833109982-20.362237741922577-20.245347379184587-20.03967889811257-20.527580208329613-20.144394368652957-19.319462276576612-20.254187859991273-20.421387598133364-21.081805082204713-20.302498211243826-19.943755756679458-19.949471085429686-19.716738223127283-20.224848494317712-19.778631303065605-19.068402945626804-19.955091518292736-20.000598074984772-20.61895239915505-19.909491596823056-19.520164209182987-20.197352605926724-20.02738616539259-20.498867408269504-20.07432995098596-19.48055155417639-20.19943389918109-20.174857760361004-20.692734485746943-20.13514009577575-19.7192703847825080.3360.55012591608307350.0246042638030567470.48797949017004541.15053354965730373.75073.78343305013253733.7082946110601033.76900927733376623.8651338259316944.0654.0236441752993463.58895050204540134.1198951274172334.3906795901202033.933.39470870405954451.89286970577993973.5492216037674074.7076364148807861.54615546869643381.9798418486793621.03328387633534221.58800198599089673.06745188706140142.5816449654128326e-219.205148270655048e-21-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-4.5401576307847165e-20-4.208952680926733e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-18-3.2662672759648592e-21-2.969355550690471e-21-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-181.0297205411386088e-201.49699452756898e-203.979466120141786e-213.979466120141786e-211.917672252650435e-18-5.232900740379237e-21-2.381048440062279e-21-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-6.617879719421357e-21-4.7321162753703474e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-195.9493083334479073228247.9536783216106822742810254.37167819782496bin2_sub0
PHAT-M31 J004435.92+413606.3611.14968548929668341.601767908721875.387645956128798e-20-4.109197668766986e-203.250765138633514e-202.4394827037203998e-202.7115420704058136e-208.422862187501338e-210.010.31974630511467040.010.28668890670416370.99266517763831521.5881.51204837461815941.0190180551608691.52517517810527761.90210138538586041.58787930011.5124231882041551.02599351008762831.52356311749992451.8683935329539776.03.77094903927372862.4340852810606793.5961416726701995.2488418304704466.04.0213874908278972.8028412192366993.9319954973731375.2548566953620910.0190.01580365570193340.0049669954219049570.0143494286922110220.028505310165605008907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818611.00.81464319586860860.50562392251011250.86454882103931341.09.09.1276473678846618.312006866209839.1401235286101529.869648723067895-20.131881864808044-20.15205315530207-20.43280678917141-20.139207558906943-19.778562603287966-20.13387408685939-20.206278605071436-20.45636884477554-20.154211207389526-19.893015200803365-20.504340424173797-20.51440457176326-20.787961305938474-20.520926534087636-20.16263422473638-20.505488741618382-20.545827921677187-20.812548094102205-20.52677243629086-20.24786629076301-19.618094840617818-19.809780493337293-20.513842162374026-19.64139860949332-19.224386068701985-19.62419277111549-20.06039953076785-20.679581161001114-19.78412075998505-19.45497981397492-19.480705333340275-19.593672076603596-20.05833070222295-19.495414281903468-19.14347234388858-19.486441870780407-19.808553401814724-20.211042194502692-19.63605139254731-19.341397389148735-19.283002633295126-19.34079458205498-19.728521143399686-19.266023561539495-18.902541839117646-19.28782540420385-19.50299245394515-19.82762025073626-19.36483037597527-19.109877809902073-19.773470905945572-19.803819315094913-20.073817541756526-19.77241494248958-19.425836917612173-19.776445476910673-19.889836999529447-20.13442195389409-19.806152594701686-19.5603313980408870.880.85389804481462640.51139541696232920.90335200076050671.26585837178335183.86083.8530591421931253.7633488769987643.8587230877352893.92137166176813164.1544.1091617286294813.90008840628188754.1724011612850494.360292860337382.5712.63526785406932571.604563438120252.5108111730460763.49068296193107041.74202009651667061.93051675641407041.24004595279361671.68772004750809962.51701225795268664.9012085769120567e-204.2285460639113553e-20-1.1709965863863626e-20-1.1709965863863626e-206.780091509980849e-18-3.2211382264691606e-20-3.3819655145915936e-20-4.8305214307145006e-20-4.8305214307145006e-206.6734851687964656e-181.6206365579906808e-201.0020312579246566e-20-1.750657523296632e-20-1.750657523296632e-206.6508393825675464e-182.1882655042858444e-202.2318723584545698e-203.979466120141786e-213.979466120141786e-211.917672252650435e-18-1.1847380400480102e-21-1.3740205958177756e-22-8.53161820341285e-21-8.53161820341285e-219.239171396671834e-19-5.258025802125815e-21-4.2888463053513415e-21-8.379867813948075e-21-8.379867813948075e-214.344661899846129e-190.5077199666840535156702249.85188165479644363262577255.87952918447064bin2_sub0
................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
PHAT-M31 J004431.63+413612.2011.1318041403340241.603388910561612.56177283208085e-163.418105333565266e-163.807202414615826e-169.663701869244331e-174.0509785148231426e-171.629766142444608e-172.012.01000000000000021.332.012.6899999999999995317.832317.83200000000005301.63198675963474329.0980000000001329.0980000000001350.0012512207350.00125122070006321.4337178617237350.0043334960999350.00433349609994.04.03.324.04.684.04.00241802685430153.6605360587874154.0016695899708274.3416695899708260.0040.0040000000000000010.0040.0040.008419999999999999907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818611.00.99916520501458660.82916520501458660.99916520501458651.06.06.06.06.06.68-16.04855298687023-16.048552986870234-16.126134170674092-16.051514547246086-15.976894923818076-16.408512920563563-16.40850126573938-16.42888234961896-16.36512203112092-16.301361712622878-16.559251364392242-16.559251364392246-16.691791950642575-16.613644033210218-16.535496115777857-16.763311568502957-16.76330945168995-16.844218587787445-16.780411054684542-16.716603521581636-13.798928736327-13.798928736327001-13.9157629585656-13.782931022529482-13.650099086493364-15.347541769008426-15.347553937983365-15.432380483561117-15.315293858169044-15.315293858169044-14.123229395669263-14.123229395669265-14.270929146840995-14.162762693418738-14.054596239996481-15.440722154144488-15.440769969107004-15.633380025180546-15.506551801402765-15.379723577624983-14.624686701421611-14.624686701421613-14.737491483498443-14.648267509950706-14.559043536402969-15.649194724213332-15.649197850696982-15.768781021417647-15.652805490776855-15.536829960136062-15.520816931442322-15.520816931442322-15.597967918033047-15.521893383379-15.445818848724953-16.0776912311465-16.077684314058004-16.13616320638509-16.066300928701224-15.996438651017366.9676.96700000000000056.8176514285714296.9145306122448987.0114097959183684.62664.6266000000000014.6086937959183674.6275714285714294.646449061224493.4313.43100000000000053.37511591836734763.4420612244897973.5090065306122455-12.648-12.648000000000001-12.75901469387755-12.516795918367347-12.27457714285714256.6178222803888656.61782228038886452.35185778150284457.52129713740336663.477982616175162.250144208168341e-162.2501280641632804e-162.2265144186520133e-162.294357383591425e-162.3622003485308364e-164.500961080790764e-164.500835735783369e-164.482820652879354e-164.5500940152441e-164.617591661297239e-163.6322789747063527e-163.631885347058532e-163.554953668073007e-163.6215186510989556e-163.688305556136619e-168.364214375117416e-178.364347758765443e-178.242688347623166e-178.433851543805578e-178.625014739987989e-173.936140986221385e-173.936247259801078e-173.869716072171873e-173.962613543553066e-174.05551101493426e-171.7361986840877267e-171.736207150274602e-171.7136734284841638e-171.757942581460321e-171.8022117344364784e-171045.408901035386288316-319.813164413560588316642-319.8098196461156bin6_sub0
PHAT-M31 J004431.64+413612.3111.13183257065668641.6034194385187354.77493327876513e-164.669542805417029e-165.499292376667305e-161.66471137292508e-166.533836314230875e-172.596087660531234e-172.012.011.332.012.6899999999999995311.812311.812301.63198675963474329.0980000000001329.0980000000001350.001739502350.001739502321.4337178617237350.0043334960999350.00433349609993.03.02.323.03.67999999999999973.03.02.663.03.340.0040.0040.0040.0040.008419999999999999907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.01.00.831.01.06.06.06.06.06.68-15.877738480497358-15.877738480497358-15.906664690003478-15.832045066575468-15.757425443147458-16.192538376354626-16.192538376354626-16.241352001095308-16.177591682597267-16.177591682597267-16.385130957586718-16.385130957586718-16.461945134665047-16.38379721723269-16.305649299800333-16.562074135157925-16.562074135157925-16.6565493727789-16.592741839675995-16.528934306573092-13.66534375239501-13.66534375239501-13.720421876159543-13.587589940123426-13.454758004087306-15.51936363692911-15.51936363692911-15.604566697372988-15.487480071980915-15.370393446588842-13.982662948862325-13.982662948862325-14.111860832984735-14.003694379562479-13.895527926140222-15.460088916823162-15.460088916823162-15.633380025180546-15.506551801402765-15.379723577624983-14.469605229445543-14.469605229445543-14.606279757692947-14.51705578414521-14.427831810597473-15.539122528266887-15.539122528266887-15.598228770475306-15.482253239834513-15.36627770919372-15.354474939824438-15.354474939824438-15.48609360236533-15.410019067711282-15.333944533057233-15.86707433458782-15.86707433458782-15.930685919079604-15.86082364139574-15.860823641395746.9796.9796.8176514285714296.9145306122448987.0114097959183684.57214.57214.5531713469387754.5720489795918374.5909266122448983.1933.1933.07976897959183753.14671428571428623.2136595918367354-12.678-12.678-12.75901469387755-12.516795918367347-12.27457714285714273.7824650641192173.7824650641192169.5111617244709776.3749818508277584.284082792093872.89773208327004e-162.89773208327004e-162.825128815176235e-162.892971780115646e-162.960814745055058e-163.031594766513852e-163.031594766513852e-162.999179774042614e-163.0664531364073603e-163.133726498772107e-163.4737635884319637e-163.4737635884319637e-163.359501177491006e-163.426066160516955e-163.4926311435429034e-161.357847029338674e-161.357847029338674e-161.330289059951053e-161.349405379569294e-161.3685216991875351e-166.469214203997883e-176.469214203997883e-176.328766785203473e-176.421664256584668e-176.514561727965862e-172.7592423848346842e-172.7592423848346842e-172.69019886178175e-172.7344680147579072e-172.778737167734064e-1712569.3981431109180955-6083.89903562070580955646-6083.899035620705bin6_sub0
PHAT-M31 J004434.52+413626.2511.14385107101472441.60729097374946-1.3733215182289095e-20-1.7931044372801392e-20-2.3754339851876524e-20-1.361084770316103e-203.02189929533178e-203.490295632491992e-210.011.84689348825827060.190281704522907821.65428765739827993.5304950703763910.550.84542923581803380.63561971211017880.79826249497657451.0256681419554640.55000001190.84644903354160990.64266661068332680.80115626564146611.02675931872260586.03.6401643303933212.3689490153505463.47476070367602264.9960148986249056.03.9039135263275372.71730942623642863.80657336407973724.9969975894514230.0040.0162957877586969170.0053662835780303840.014829433782263980.029173675045171956907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818611.00.80056973524092990.473676993155652370.85284720770942871.010.09.8706622278820089.192181887546819.87688577755075810.0-21.723086913713882-21.032525090472745-21.53824609902833-21.146864054508477-20.576975388612425-21.725006202866158-21.31770717459445-21.653725348144697-21.40455813040668-20.997284688644015-21.88412652262523-21.264126694900977-21.706113835690168-21.37935205719452-20.860555359041797-21.88526191973585-21.435259717618237-21.766751503367026-21.535100344106016-21.12765640719761-23.489771091192253-21.9169339418805-23.279375714983665-21.762827423422067-20.781452447114116-23.49568525932897-23.33301847001913-24.13124427716369-23.39395722695622-22.59027772460191-22.406911565682726-21.178862675627087-22.178136397536335-21.157859452188937-20.313201317990696-22.412614837302737-22.464642797469967-23.109453919366565-22.48425257694475-21.845001522870778-21.650066021424532-20.671874472137326-21.403105182029254-20.728263651543603-20.00047110714066-21.654806364584523-21.59824289061159-22.059589090069398-21.63182996550562-21.15754784893315-21.54688861098329-20.78957350213449-21.354053345474743-20.87420474546141-20.273930999758235-21.549821576935987-21.26229680005745-21.59556584178674-21.329314640692466-20.93655386967302-1.04-0.2647747280462432-0.8444252973677335-0.363604160404527030.276919636213719733.63383.70983297174861633.64733815523050533.70906384414738933.76985735453506584.7064.40686047641150854.2146412907174444.52413587874411954.65432417470911557.3715.4319438158701124.07799076039344755.6793748702751126.8814837263290920.54331683343081551.17741887340244820.63085446229966190.7978543696070521.3080229100196505-1.3595986242125455e-20-1.3087312813401e-20-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-3.25321559565299e-20-3.353322374483019e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-18-1.3422079795006679e-20-1.1798436182506173e-20-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-18-1.039399874189321e-20-9.832379042153697e-21-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-183.1967497999623258e-213.912934533432138e-213.1715540226750354e-213.1715540226750354e-219.381164283310888e-19-2.20592449371011e-21-1.493547389803298e-21-2.2281849087323182e-21-2.2281849087323182e-214.411190713751039e-193.8870709962286973307925259.2053028361969364994941265.35543663894674bin9_sub0
PHAT-M31 J004434.54+413626.4811.14393716433676241.607356729264711.83285602625166e-20-1.7557480948368033e-20-3.0913181999017394e-215.1930618928983626e-204.246993604250068e-202.0768701284249874e-201.011.50456403014702330.491526754068299651.53528202340268832.50485828817056651.081.29963266853960960.85813914775672381.04963873216501422.01400789513337351.08264899251.32421127141441540.931493552334461.09885927188647712.03360822622025732.03.4601858472319872.3067786310485563.3297579161173184.6650242236716922.03.7435205973076612.63843117859069183.65415891233066374.73988767747093750.030.0154580540036057360.0049749388037782590.0139704156593947450.028339128788758296907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.00.78091949101637470.43660599209184860.8347820515005481.010.09.7391829127398519.0610023438205429.7516137104137810.0-19.28246725057895-19.15261130374897-19.350677828217272-19.12514556316142-18.974892031713825-19.386030779184075-19.378070852256215-19.474724760201237-19.369680177768945-19.27662804482838-19.444169886388828-19.35609947748035-19.540950548750487-19.32621904052648-19.17015312454773-19.505329987315896-19.49097550395703-19.609193285652537-19.473617464447738-19.362123344080377-21.253806156273704-20.328042347958267-21.02394060693458-20.325514873951445-19.695313148748312-22.188337807643734-21.523069048766462-22.018120836955603-21.514205451793-21.0161011251915-20.01529019042115-19.49949054762853-19.894203054920283-19.506997623286072-19.12983595308304-20.89657144877886-20.573792834180928-20.939362109335004-20.581828522573606-20.170730701971515-19.155643651663393-18.86349942840975-19.156260780079837-18.856649496005485-18.614080736838098-19.699756883979322-19.622415298525553-19.814939740967947-19.62673307245874-19.40184817827353-19.10414010494045-18.933403518998425-19.158266051043352-18.913117902370313-18.744292810326268-19.30976109956992-19.312220799762112-19.397352551711194-19.311642235047334-19.2076793938830231.4091.58941697180256151.3559613848438231.58271886808841681.78863843103859053.64843.68826343394193673.64719781739999063.6784034094696213.71321511864690332.6082.63007925605042822.3728536948765432.5991421879139062.85960087215592741.2480.79647142175413630.2985176644315940.81334056057251641.38026068497981278.5183045062717918.8888889907754847.15557820326608959.03380024558774210.7251465354970462.539668143122612e-202.96370969079529e-20-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-4.068791333324955e-20-4.3789862989267145e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-183.0136238784355522e-211.2270364013744571e-21-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-184.591506887419393e-204.5942835936122e-20-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-184.4120445907470315e-204.541056823182231e-203.1715540226750354e-213.1715540226750354e-219.381164283310888e-192.890088739328018e-203.079592075749793e-20-2.2281849087323182e-21-2.2281849087323182e-214.411190713751039e-190.746774857500789679724254.41401042317747382661708259.94374329900137bin9_sub0
PHAT-M31 J004434.48+413626.0211.14367870295883941.6072277208254065.968666598456414e-20-2.3534495739301832e-209.794597664951826e-223.423651691487428e-20-4.0836476963942965e-222.148983674550855e-211.010.74661672173355760.0222462347572670340.72954034715219451.60830920234676762.0331.72168838321401220.98926022903689611.8946029128800072.30711545774548332.03266119961.72258380911891781.00725005191070821.88048761108840062.26943559252916632.03.3881547242995932.2421409813872563.25160292727129364.5977547795980462.03.66701127887238652.50525864718137873.58364604553822154.6905890278149570.0190.0165969821273205980.0053549200984697370.0151535478754495980.029460849452124103907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.00.7819702500920530.4313632702596550.83760565378694221.09.09.2752592157035838.4163097891444129.2851591763066259.986929091944432-19.581842325947736-19.616777500420458-19.757822074717367-19.609849456558344-19.469458011173636-19.691647892978985-19.730184832730007-19.838848387856387-19.718961043254247-19.613211130681336-19.962735260430463-19.951705360338742-20.09267456147304-19.940274814988836-19.795968483517427-20.024222228151757-20.01709478894593-20.166798954477056-20.00974270164858-19.863608712618944-19.10151603148278-19.55931995341687-20.535088163507066-19.340339494415556-18.977289019778457-20.299261734114605-20.231098957725287-20.624779435723468-20.15869427843202-19.85870527043984-18.964323843913192-19.23752815566815-19.844491952910428-19.055598887120553-18.826029854107045-19.859789899497176-19.787336651558313-19.999309715912563-19.766729505185303-19.563489173343438-18.713055742779154-18.896804582531843-19.347371856683484-18.797933287042795-18.605791730886224-19.28585542235525-19.288863267662144-19.451730194753132-19.27451379539409-19.11466270588921-19.221882851935934-19.292561941451712-19.47910177087278-19.28303930114179-19.11866148840054-19.432355208955084-19.480356365447047-19.60078500015695-19.471584878271727-19.3536366147798381.4331.3365174834602241.06236303801334581.3584167365442591.55954981060921673.86363.8215290480606753.69457716515861943.84593669142947723.90285119231357853.723.54886494592011833.10222236738063063.64717866674824933.85514916602175051.1891.42886202461867830.87126590336854591.37412201969054732.1142907550321043.25052238255000653.6459097315179392.72358291455467773.5541900124108854.7344969046746544.9445947506078046e-205.139463506139579e-20-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-3.5137570208305006e-20-3.522342394922159e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-187.641700325131997e-211.2111613779631108e-20-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-182.920822362404232e-202.509992609436065e-20-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-182.3348441836196606e-202.2103799828806414e-203.1715540226750354e-213.1715540226750354e-219.381164283310888e-197.121368361736452e-217.773483768941656e-21-2.2281849087323182e-21-2.2281849087323182e-214.411190713751039e-195.17889960367138739872253.58432046379187390042608258.7604390619035bin9_sub0
PHAT-M31 J004434.53+413626.2211.14388391738543841.6072836291592341.6743958510714009e-19-1.3448283279601044e-19-1.7897105367852176e-201.8531692641996174e-198.984024932067452e-208.30748051369995e-200.010.0105118987586994130.010.0105118987586993920.69051189875869931.0811.05721989655389170.94615801905227671.062485198790391.22248647481222681.08479928971.07339977504365610.99284402471229671.11220221199418611.26398909388781846.03.6711717934169962.3791040082732753.50414725242264475.0675349465389666.03.9302023692845692.72531340571210563.83787396652564945.0675830467152710.030.0272653606606711630.0237236234922094950.028895013983458030.03907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818611.00.80563117209465880.48527046627764390.85719321383859031.010.09.9995500477608389.3195500477608389.99955004776083810.0-18.831774137085002-18.87800427022069-18.985943471013574-18.86913358863811-18.76585162796398-18.833676141298426-18.879625677109647-18.990973312765842-18.88491784244975-18.78855103469769-18.960472972488578-19.01834875715259-19.137152815361013-19.011038682238578-18.901900854308224-18.961606146490023-19.01931545777823-19.1362495679498-19.029814043680684-18.933158647417134-21.43494573230589-21.256697504386434-21.59649660061805-21.361160846143264-20.908379746655974-21.440097739519164-21.263994347316824-21.4647383709646-21.271535055868-20.882868867266268-19.894423069961142-19.828365807325863-19.998278309684576-19.826704699721525-19.64012098793635-19.90011649839133-19.83568821937638-19.940711279437558-19.782883250217544-19.65476216163529-18.833834284045675-18.83418363159709-18.958945688289482-18.828655114672408-18.685173538355997-18.838550246645486-18.83944090243339-18.952197659223383-18.83331763890152-18.71504568501638-18.686988027295918-18.72162950073329-18.81046876954554-18.715426838101756-18.601721443017563-18.689918264186115-18.724330908279487-18.844185971156858-18.73631375734867-18.6300221448791671.8421.80226038479680281.67139916097699911.79261378522218221.91983315657939073.6233.6319175168082483.6031626525018733.6273115832564593.6488340675054882.0732.13902631756224932.03056374708685052.1497846788078892.2583327630548110.1640.2640060451280654-0.0294844330557211260.28857881586052480.591629497468850915.76351850308370214.52986521151597512.40675847360320614.4312721110124516.8392841436820541.3287371913370048e-191.3380357541223436e-19-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-4.127926023231756e-20-4.288268509190453e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-186.1399700301966e-219.019463352110728e-21-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-182.121417518247452e-191.978393084949051e-19-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-181.494013288689578e-191.3605133823428362e-193.1715540226750354e-213.1715540226750354e-219.381164283310888e-191.1332658702939834e-199.935861843649883e-20-2.2281849087323182e-21-2.2281849087323182e-214.411190713751039e-1921.0375461254757933945240.94273592054884339451721244.64134368096688bin9_sub0
PHAT-M31 J004434.47+413626.0411.14362352933326341.607232049268331.679677856910743e-19-2.988507395466899e-20-1.5293890041619133e-203.790097591187918e-193.438431360363998e-192.596087660531234e-191.010.97490062327084290.29490062327084290.97490062327084281.67835962970439720.9111.33105221102499050.84716480842853771.00787285125392122.40032101130504350.92229610681.35353970076440570.87737556340672671.03691115002015842.17885909857916763.03.3940999721830352.30228384239230353.25882737623672244.4973709150172714.1938775510204093.71362846326537672.68413644518796043.60969504270755874.6198206506352350.0040.0122747943465264480.0040.0086243103807933410.028436042596331907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818610.250.74536936232102340.375925873119204670.80230545681668091.010.09.7052188460451939.0252188460451929.70521884604519210.0-18.34454778305779-18.34514596886508-18.47032074650687-18.356710826497146-18.26477096806103-18.486806646231962-18.489358941599694-18.55313821915494-18.47522757410825-18.390647319124174-18.480617431505813-18.48518801755628-18.607108399649633-18.506145934048114-18.411930409159574-18.567428489690474-18.571977062224263-18.677393948583408-18.582340069008488-18.506132578777606-20.20215333719786-20.43799219177489-20.831602281508236-20.273868994374954-19.99630502722957-21.007731368666512-21.150853691580856-21.430287554050125-21.09905947060173-20.872797258617627-19.11779568785308-19.211404565671934-19.389035588466196-19.192796112690193-19.002278618506736-19.867997409264152-19.907537882717726-20.05712131837717-19.899444800284677-19.732477366787837-18.251516461991955-18.272926217068974-18.39250864596669-18.275479603872366-18.157058868139597-18.761342341038404-18.76195208729984-18.92807103139964-18.78825300471971-18.67413263223474-18.18089915325129-18.184470128238708-18.25002390737981-18.152880889946285-18.046347942085415-18.42788019540662-18.428997222030844-18.50967033216678-18.425991992065608-18.342382032488562.3442.3396135678008652.20179168651227772.32101331486189542.44426194362968063.63513.6342534003214143.62018136177101953.6396481243379983.6623442341181671.5461.6671171719817091.48962637320510871.60018254556749941.9562066941498235-1.091-1.0793292842646105-1.3406174944357623-1.032481564567934-0.734413604874183626.5737693308611126.58131787762169724.42492908647462427.18226510595717530.8872794879908061.5987150456699575e-191.6021149084756076e-19-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-4.6582440434433046e-20-4.4800256978089625e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-187.324654710313677e-216.214956356216739e-21-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-183.7845516862609264e-193.779605579395363e-19-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-183.3464574653628153e-193.3298664209840716e-193.1715540226750354e-213.1715540226750354e-219.381164283310888e-192.6810812132671347e-192.660989218064506e-19-2.2281849087323182e-21-2.1906618178017277e-214.411565944660345e-193.10900671870808559885249.33713801569425453465026251.7238312227992bin9_sub0
PHAT-M31 J004434.54+413626.0511.1439128562587141.607236016682842.677976960546373e-19-8.965522186400696e-203.0490159508504524e-203.0257961432411827e-193.8917162546637646e-191.903797617722905e-190.010.0115487404103568670.010.0115487404103567970.69154874041035690.9791.00375822049008720.86202109860051080.99375392514298651.11341858674504171.05919814111.04826431040394970.9833292266356521.10291279282394041.25995624657737062.03.67157441990442.3786725643854723.50425790955401475.0701856050192132.03.9303140897536672.7242446925940543.83783323486382385.0703302311107420.0190.0176365431208439330.0115793167285491330.0161657173001300770.021491060263940626907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.00.80582238169529090.48564228306334050.85736859141718781.010.09.9976661977985399.3176661977985419.9976661977985410.0-18.587778822732048-18.580140586129584-18.636553805702306-18.54772298941494-18.44406017019738-18.588807730849904-18.581957139010814-18.663391410662086-18.582566841361384-18.49960517323177-18.713488269004678-18.70375586642771-18.763716980796225-18.673353604678955-18.56798818687838-18.71409339784631-18.7048398761363-18.796438522001697-18.694877502056258-18.60770712010707-20.804071668041523-20.872904150732715-21.06351422366998-20.871035060515855-20.668641379625427-20.813941451292067-20.88114854550803-21.01426143232847-20.84758776444845-20.67691054863898-19.4718135286374-19.517722872409745-19.645391709070704-19.513166746234113-19.376468487700613-19.48054192139061-19.525638646384188-19.68645744665447-19.529973784757335-19.36576524205168-18.539411913349575-18.550650999065663-18.709319396004737-18.592086101487613-18.479196458314185-18.544842477384368-18.55639910162421-18.623552976188066-18.509460125325823-18.388224560783023-18.435459770936887-18.43177028778741-18.502671477399083-18.40879272551435-18.314637628697724-18.437506787381007-18.434774268662768-18.509494725031587-18.426420615506334-18.343123264629662.0972.1008244200353292.0219361497351092.14124582741345962.26756474400975663.62783.62455524813091223.60014262156694283.62199618732927683.64107262402706771.7951.78848377039197651.69742478240704921.77867830728877261.8517595452042426-0.472-0.48193980492929467-0.8988539109032374-0.5830419037884739-0.2847538105155142420.68012506490255521.1211760749861818.86906233591678421.6556887217734524.1652166099551842.7436827091574524e-192.671198252217394e-19-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-4.7413039960478154e-20-4.7115834955912954e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-182.7598613360107134e-202.466098831698802e-20-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-183.7040727422292555e-193.729779298005612e-19-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-182.641548518285481e-192.688352915261054e-193.1715540226750354e-213.1715540226750354e-219.381164283310888e-191.9590306126647444e-192.0042246156737256e-19-2.2281849087323182e-21-2.2281849087323182e-214.411190713751039e-1919.642648983296022322241.3094695709981723282944244.80122395959603bin9_sub0
PHAT-M31 J004434.52+413626.0811.14383203869067441.6072453021890144.801343307961841e-19-3.3994271623435975e-202.4828166173947658e-207.402207173949884e-195.145396097456814e-194.2402765122010153e-190.010.0101432620952933290.010.0101432620952933620.69014326209529330.9640.97256375162008620.84013381420221060.93941517326739781.0565593413333050.97584813830.9851289802282110.85439455005935370.95622541356854251.07642187653162256.03.6778398271955822.383114950442483.51023797980398645.0798762089352276.03.93635968729698772.73142356708850283.8438705889151175.0800313215337160.0080.0081671474745699160.0060957711612397590.0105512512448395720.015004297419543821907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818611.00.80616572028799730.48670218641811290.85761106658873781.010.09.9925789732673379.312578973267349.9925789732673410.0-18.24766015288705-18.253631572796408-18.351280555133243-18.262574606520687-18.17386865790813-18.249556533911672-18.25519553285275-18.314491088038316-18.236585752500915-18.158149457093273-18.365636791580226-18.372389227778694-18.473497009724003-18.383264361764866-18.293044638000893-18.366769173285665-18.373325607542213-18.470547598033818-18.39458261212486-18.318677719740908-21.010829245948003-21.007756167891717-21.174328581951286-21.017188709062236-20.859940125135267-21.015642225606793-21.013746582418-21.103548544303752-20.97093214914452-20.83822400855049-19.491235783634767-19.488116787865312-19.637497394529266-19.502950727084436-19.370983474557946-19.49692273743676-19.49512884972419-19.588502575915278-19.460509280176527-19.332434262959296-18.304868768951078-18.30731129152037-18.380169205452-18.26743824895783-18.154629303987154-18.30957516878668-18.312353113104418-18.44491186786532-18.330819017003073-18.216726166140827-18.117856783264372-18.122967455547503-18.22664183641542-18.132895047986064-18.03914825955671-18.120783931404485-18.125575561048137-18.17221767176472-18.089151841306723-17.9890196567112042.4192.4133887784138712.3577783876057742.4769203540927132.61190494486069643.61263.61320848143941033.59839619001111453.61744585788195843.63650597384499941.4051.41533768761714221.38612690938945171.45685885751202431.5276429669611957-1.278-1.263971040270585-1.7597445272198744-1.4222673251611988-1.124398529404416832.1331396052145431.84490416732107629.00593765388168432.2027550586269236.3158526213494644.840644668117536e-194.809849522243468e-19-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-4.643061227283805e-20-4.646726358286693e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-182.638317567654483e-202.653774583942033e-20-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-187.602131839931891e-197.522202680021029e-19-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-185.634671509584809e-195.567768738607468e-193.1715540226750354e-213.1715540226750354e-219.381164283310888e-194.315518985265441e-194.2518209772367427e-192.064058180483671e-196.497530743322034e-191.0931003306160396e-182.116664130037098535753249.13977763829718357533961251.4799237559774bin9_sub0
PHAT-M31 J004434.51+413626.1511.14379429649718741.6072652244003154.980931506499466e-194.557473778087021e-202.3949581001344e-204.8999051731379715e-194.2469936042500693e-192.307633476027764e-190.010.010904257663356580.010.0103015101020589380.69050653697145892.3932.2807144071806622.23770171791817642.52820679185900852.86683285905253672.39334988592.2854376709172511.93801200492643382.19140364746740432.48622954330482676.03.68564771407195042.38859054093154553.51740482717091445.0927263700073716.03.94446454080876132.74097392371955943.85192954817909835.0929406548744560.030.0282033466586782240.0246493560535228220.029446045269954060.03907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818611.00.80617067975297560.48678840343919470.85761089035120531.09.09.0748865678951428.345690341739839.0749091469518719.755114173821271-18.436508594647943-18.435508839370893-18.482953688816497-18.394233706496035-18.30466796558686-18.438420944333842-18.437232541867914-18.542824881823293-18.464885176072407-18.386979840535-18.597193240451-18.595286891227442-18.735632447075684-18.63927205093343-18.549025125011337-18.59832847069289-18.596309982581225-18.693805793665536-18.617858860281753-18.5419539678978-20.53555991393377-20.531617830274374-20.721610974715418-20.55985965547256-20.38972582477465-20.54128868033189-20.53970211499126-20.721482707079083-20.584974534609177-20.44139203764663-19.25276888034134-19.25381054867478-19.442883641609125-19.30720594149043-19.175217811109594-19.258474149220994-19.261315013718903-19.39845934751976-19.26686598183644-19.13885598347095-18.328487704086555-18.328759347690266-18.380538244880587-18.267789453806664-18.154706241506602-18.333211342993504-18.334204707397372-18.44491186786532-18.330819017003073-18.216726166140827-18.263474974302596-18.263025679647516-18.364478030659907-18.270716411037533-18.176954791415156-18.266412477637896-18.26586486939244-18.38698072594279-18.30386944341261-18.2208036129546152.252.2510053740913222.20625594360715032.3254167589264752.44571352220654743.64463.6441552983163263.62642719231095523.64547987393091953.66453255555088432.0972.0623266871239071.99120743566275652.0671951817326752.1432281981610957-0.855-0.8574738330496734-1.3442466099807455-1.0434906877121488-0.745574767678593822.82722717257507522.90260122987412221.77584538013381324.1239079618467626.881265157090054.575075387587903e-194.564700126947421e-19-1.3814457507944085e-20-1.3814457507944085e-206.782959312883066e-18-4.170730720878932e-20-4.172054306826738e-20-4.8707856937125215e-20-4.8707856937125215e-206.676817374745334e-184.9516679335322976e-204.931429616628205e-20-1.7721160464187262e-20-1.7721160464187262e-206.643767541092869e-185.44326850481521e-195.450331588668004e-19-1.0533539616411952e-20-1.0533539616411952e-201.9061512411135495e-183.7248556321291615e-193.7347253065607364e-193.1715540226750354e-213.1715540226750354e-219.381164283310888e-192.5080549991810754e-192.5193854876322776e-19-2.2281849087323182e-21-2.2281849087323182e-214.411190713751039e-1924.58100797594983148245235.976712604482338141577238.2342555608859bin9_sub0
" - ], - "text/plain": [ - "\n", - " Name RA ... reorder_tag\n", - " str29 float64 ... str9 \n", - "----------------------------- ------------------ ... -----------\n", - "PHAT-M31 J004435.01+413540.96 11.145879914566734 ... bin2_sub0\n", - "PHAT-M31 J004435.89+413607.17 11.149551498429465 ... bin2_sub0\n", - "PHAT-M31 J004435.03+413540.80 11.145942804724289 ... bin2_sub0\n", - "PHAT-M31 J004435.01+413540.61 11.145892087843466 ... bin2_sub0\n", - "PHAT-M31 J004435.02+413540.82 11.145907381542465 ... bin2_sub0\n", - "PHAT-M31 J004435.90+413607.11 11.149592361880686 ... bin2_sub0\n", - "PHAT-M31 J004435.01+413540.60 11.145860779753994 ... bin2_sub0\n", - "PHAT-M31 J004435.08+413540.66 11.146162551904405 ... bin2_sub0\n", - "PHAT-M31 J004435.02+413540.74 11.145911820551795 ... bin2_sub0\n", - "PHAT-M31 J004435.92+413606.36 11.149685489296683 ... bin2_sub0\n", - " ... ... ... ...\n", - "PHAT-M31 J004431.63+413612.20 11.13180414033402 ... bin6_sub0\n", - "PHAT-M31 J004431.64+413612.31 11.131832570656686 ... bin6_sub0\n", - "PHAT-M31 J004434.52+413626.25 11.143851071014724 ... bin9_sub0\n", - "PHAT-M31 J004434.54+413626.48 11.143937164336762 ... bin9_sub0\n", - "PHAT-M31 J004434.48+413626.02 11.143678702958839 ... bin9_sub0\n", - "PHAT-M31 J004434.53+413626.22 11.143883917385438 ... bin9_sub0\n", - "PHAT-M31 J004434.47+413626.04 11.143623529333263 ... bin9_sub0\n", - "PHAT-M31 J004434.54+413626.05 11.14391285625871 ... bin9_sub0\n", - "PHAT-M31 J004434.52+413626.08 11.143832038690674 ... bin9_sub0\n", - "PHAT-M31 J004434.51+413626.15 11.143794296497187 ... bin9_sub0" - ] - }, - "execution_count": 63, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "hdul = fits.open(sed_files[0].replace('seds.grid.hd5', 'stats.fits'))\n", "Table(hdul[1].data)" @@ -2457,7 +1701,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2481,7 +1725,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": null, "metadata": { "scrolled": false }, @@ -2503,41 +1747,9 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_cmd_with_fits.py:97: RuntimeWarning: invalid value encountered in greater\n", - " col[col > 99] = np.nan\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAF/CAYAAAAirDIZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeWycaX7g9+/zXnXfLN6XSN1Hq9Wt7p7umfGMZzxjG9nxxPCZtbPGJrCzcAwjSP6IYyC7wcII4kUSYIFdbHYc23C8MbzOOs56x/Z6bPecPT19674p3lexDtZd9V5P/ii2JEokRbElsVv1fICCWPW+9dZTFMlfPcfv9wgpJYqiKIqiPEjb7wYoiqIoyseVCpKKoiiKsg0VJBVFURRlGypIKoqiKMo2VJBUFEVRlG2oIKkoiqIo21BBUlEURXnshBA/JoS4LoS4JYT4jS2OB4QQ/3bj+FtCiPGNx18WQpzbuJ0XQvzkbq/5RN6HypNUFEVRHichhA7cAL4ELADvAP+ZlPLKPef8KvCclPIfCSF+HvhJKeXPCSHCgC2ldIUQA8B5YBCQD7vmk6B6koqiKMrj9jJwS0p5W0ppA38MfPW+c74K/MHG1/8O+KIQQkgpG1JKd+PxIJ3guNtrPnYqSCqKoiiP2xAwf8/9hY3HtjxnIyiWgQyAEOIVIcRl4CLwjzaO7+aaj53xpF/gaenp6ZHj4+P73YxPDM/3kYChqc9JivJx99577+WllNnHdb0e0S9t7D0/v0rpMtC656GvSSm/ds99scXT7p/b2/YcKeVbwAkhxDHgD4QQf7XLaz52z0yQHB8f5913393vZiiKojx2QojZx3k9G5tXtC/t+fl/6/9JS0p5dodTFoCRe+4PA0vbnLMghDCABFC89wQp5VUhRB04uctrPnaqG6Fsy7Edauv1/W6GoiifPO8Ah4QQB4QQFvDzwJ/fd86fA7+08fVPA69LKeXGcwwAIcQYcASY2eU1H7tnpiepPH6VQo38QoEjLx3c76YoivKYCW2r0ctd8nc+vLEy9deAvwZ04PeklJeFEP8UeFdK+efA7wJ/KIS4RacH+fMbT/8M8BtCCGfjlX5VSpkH2Oqae38Tu6OCpLKtzECKdH9yv5uhKMrjJgSIJzuQKKX8S+Av73vsH9/zdQv4mS2e94fAH+72mk+aCpLKjoT4CJ82FUX5WBJ8xJ5kF1FzkoqiKIqyDdWTVBRF6UZPeLj1WaGCpKIoSrcRgBpu3RUVJJUtSdkC2UBo6f1uiqIoj53oLN5RHkoFSWVrfhX8NVBBUlGeSUJV29oVFSS7jPQbIHSECOx4ntCzoD+2KliKoiifSOqjRLfxFsBb3fSQlDbSW9unBimKsi+E2Puti6ieZLcxDj2Y+ygb4K+onqOidAshQA237ooKkl1mq+IAQkuCpirrKEpX6bIe4V6pIKkoitKNVArIrqj+tqIoiqJsQ/UkFUVRuo0AoSru7IoKkoqiKF1HqOHWXVJBUlEUpRuphTu7ovrbiqIoirIN1ZNUFEXpRqonuSsqSCqKonQbgSomsEsqSCqKonSd7isvt1cqSCo7klLitB2soLXfTVEU5XFSQXJXVH9b2dF6rsyN927vdzMURVH2hepJKjtK9iaIJML73QxFUR431ZPcFRUklR0JIdRQq6I8awSqmMAuqSCpKIrSjVRPcldUkFQURek6AlTt1l1R3yVFURRF2YbqSSqKonQbNSe5aypIKndI6YOfA61XbaOjKM86NSe5KypIKvdwwFsFLQ2oFa2K8kxTQXJXVHdBYaVc5fpqHiECCOs0QqgAqSiKAipIKkAiFKQvFr1zv5QrM3V+Zv8apCjKE7ZRu3Wvty6ihlsVQpZJyDLv3A/HgiCT+9giRVGeKLVwZ9dUkFQeEAgFCIQC+90MRVGepC7rEe7VUx1uFUL8thDishCiIoRYEkL8jhAifc/xfyCE+L4QoiSEyAsh/koIcepptlFRPoqZy/OUcuX9boaiPJQUYs+3bvK05yQ94BeBDHAaGAZ+/57jMeCfbDw+BLwPfEMIEXrK7VSUPYlnogQjqheuKM+KpzrcKqX8zXvurgkh/gXwR/cc/5f3ni+E+J+B3wSOAh88lUYqykeQ7k/tdxMUZXfUss1d2e85yS8CFx5yvAHcejrNURRF6QICNSe5S/sWJIUQPwX8MvC5bY4fBv5P4L+TUla3OedXgF8BGB0dfUItVRRFedZ0XyrHXu1Lh1sI8TPA7wA/IaV8f4vjx4FvAv+rlPL/2O46UsqvSSnPSinPZrPZJ9dgRVGUZ43Kk9yVpx4khRD/EPjXwFeklN/c4vgLwLeA/0VK+c+ecvMURVEU5Y6nOtwqhPh1OqtXf1RK+c4Wxz8NfB3476WUX3uabVMURekm3ZbKsVdPuyf5z4E48E0hRO3D2z3HfwtIAP/7vceFEJ99yu1UFABajsviemW/m6Eoj5eg89d/r7cu8rRTQHb86CKl/OGn1ZZutVats1yu8txw/3435WPL9Xxu5vJM9KRxPY9aq73fTVKUx0/1JHdlv1NAlKcsEQpiGfp+N+NjTROCaMBC1zQCpsGRfrUoTFG6lQqSXcYy9DtBslqqEUmE0bQuGz95CE0TjKRVgXflGad6krui/jp2KSklM5fmqZcb+90URVGeMsne67Z224If1ZPsQqVGk5lCidOfPqJ6kYrSjT5cuKM8lPo2daFowGI8nULTNG5fmKVeru93kxRFedpUMYFdUUGyC5m6TirS2VglkghjWGpAQVEUZSvqr2OX6xtTKzcVpRt129ziXqmeZBeR0kZ6azueY7dsbp2bxnO9p9QqRVH2hfgIty6iepLdRNbBz4G+fe9R0zUi8TBC67LfBEXpNqonuSsqSHYRoaVA62wK7NgOQghcx6NZa5HqTQBgmAYDE3372cyPLSmb4K0hDLUtm/IJJ0CqccRdUd+mLjV7ZYEffP09qoUq66vrDxwv5ysUV/Ncf3cKz1NDrwBID7D3uxWKojxFKkh2qdFjwxw4OUp6MMWBU2ObjvnSJb94C7tynlRfQuVSbhBaFGEc3PGcWttmrapSapRPgCecAiKE+DEhxHUhxC0hxG9scTwghPi3G8ffEkKMbzz+JSHEe0KIixv/fuGe53xr45rnNm69j+m7sS013NpFpJSdL7wpTGuIoUMDrK+Vcdou2eHMnfOqzgrJwzFS1jhCSyH2MHfh+m00YaCJ7qoT23IcKq0W2Vhkv5uiKDvaebuJj0YIoQP/EvgSsAC8I4T4cynllXtO+y+BkpTyoBDi54HfBn4OyNPZb3hJCHES+Gtg6J7n/YKU8t0n1/rNVBehS0jZBOddpLQB/Z7HQfr+pnNj5gDJwDjCmwL54FDsbpTsaepu/qM0+ZH4vo9/3/vYDz3RCJPZzMNPVJR99RF6kbv70PwycEtKeVt2/uj8MfDV+875KvAHG1//O+CLQgghpfxASrm08fhlICiECDyGN70nqifZNYJgTKJpAdAO4DouTrtJskeC6Nl0piZ0EDrSfA6w9vRq6cBBtF1+BpNSgl8ALY0Qe/vcNn+98zs1dmx4T89XFOWR9Agh7u3NfU1K+bV77g8B8/fcXwBeue8ad86RUrpCiDKQodOT/NBPAR9IKe/dr+73hRAe8KfAb8k7Q2RPhgqSXUIIASINQL1cJ79YZOb6NY6+3KJ38EtAcIvndD68Ld9eJZaOEk3ufghRF4/yo+WANwtaBAg9wvPuGjiwu6kJKeWeho8V5Zny0fMd81LKsw95hfvdH8x2PEcIcYLOEOyX7zn+C1LKRSFEjE6Q/M+B/2t3Td4bNdzahcr5KoZl0PuCQdVII0QnQLabba6fu4rtPt0VnEJYCOtFhNhbgASwghZWcOder912uPjdq7QaahNlRXnCu4AsACP33B8GlrY7RwhhAAmguHF/GPgz4B9IKafutFnKxY1/q8Af0RnWfaJUT7ILDU724zouKUJ4Lbj+7hQHz4yj6RotI4/t96C7afSNfSeflbxJK2AyfmKEQGhvQ8iK8kx5sl2kd4BDQogDwCLw88Dfv++cPwd+CXgT+GngdSmlFEIkgb8A/gcp5RsfnrwRSJNSyrwQwgT+HvC3T/RdoHqSXWvq3Ay1FZdQMHonzcO0TJ478Rn8apArb97gSQ31SymRzlWkX3si199JPBNTw61K15M82Z6klNIFfo3OytSrwJ9IKS8LIf6pEOInNk77XSAjhLgF/LfAh2kivwYcBP7H+1I9AsBfCyEuAOfoBN/feXzfla2pnmSXOnBqFN3U0XWd3pG7C3eEEERTESafH39iwUQIgRQxEB+vHp1050FLIrTYfjdFUT7xpJR/CfzlfY/943u+bgE/s8Xzfgv4rW0u++LjbONuqJ5kF/J9n0a1ydUf3MRuO5uOFUurLK1dJxzbPD8onYtIv7TjdV1/93N9whhGPIEgWcqVqa13kvmrpRp2a/P8qpSS/FJxm3QRf+OmKM+4j1LcvMsGYlSQ7AK5ao1c9e7QZjmfZ/riHJom0I27PwLra2Wuff829YL74EW0QRDbr251/Ca51hU8/9EW/RTrDZbL1Ud6zoekO0u7PrfpsUalQaveAmB1do1KYfO1XcclN5fHue/DAYAwxhBaYk9tUZRPGin2fusmKkh2iQ+nF6VskkxMc+SlEQLhALc+mKbV7PQAg5EgR188ypHjpzY91/cl00WB7W7/42JqIbLBY+ja0xtC9WWImYvnqJXuBsqhgwP0DHWS+Q8+f+DO1+1mm1KujGmZHP/UYQKhnXOTpV9FSlWzVnmGPeGydM8KFSS7QG8sSl88CtBJs7BOE44lGT4yyA/+w3us3F4FIBgOkO7v7BJyfwUbiaTu5ml55W1fx9QezLV8mHQkzEBib3OAutnL+MnnCMfDAHiex6XvXaVefrB2aqPSpLi03FkwJH2k9DaqD23DvQFy+/eqKJ90qie5O2rhThfyXANwCQQtfuJXf5R45sEgNXNpDtescPDocTTNYDKboeos4+9z78r1WmiyiND7EELHCkrwi6D3oOs6I0eHCMUezLdM9SVJ9obBWwUEeIsgq2AevzOXamj39C7NM3uu/rOVD1cKq5W1ivLJooJkFyksF7Gbzp3FOpom6BnO3MmH/FA5XyE7lqYmGvjSQ9uonhMzB556m+9XaN8gRolQKA3ooI/y4WIb6S0Sz2TuBDcpJU7zNmYwi9DinYVCRie/WeqDQCfgV51lhNBIWnf3iXzUAOn5PpoQ2wbBsjOPlD6pwPgjXVdRnhj1eW1X1HBrF5m7usTy9CqDk330T6ZpezXs5oMrUhdvrSBdwUD8+Obe1cdAT+gYodBn71QJEkKnk1cM+DWQdxfkrK9VmL4wx1Z/DTrP68yfJq0xEubIA+c8ipu5Agul7YdnI0YvUbP/I72Gojw2AtDE3m9dRPUku8iZL5y883XdLWNlbW5fmmX8lQzJ4CBCCCrNFt5IHCspabolQkZq2+tVSzUWbiyRzCaeWlUe/cOAuAVhHtl0P5mNE469BsKi6qwSMTJ3esWbnrdN78/26njSIWQkH9qu8UwKbYeh1L3M1yrKk9Rtc4t7pXqSXWL2yjyNavPO/YjRw2j2FP0He1iamaNlVym2pwkYBq2FdSqVEqViYcftp8yASTgWxrG3SBn5GBBCEAgFkHi0vBKedHH8Fo7f2tXzHb9Bzc1Rthceem7QNLAMHcfz+GB+iYb9YIrJTqQ7h/T3lgqjKMqTo4JklzADJmKLYZLSYo3pb+dYvPI6N96+hXRcRvszRI0s+Ws2rfr2BQKC4QBjx4cZPTq07TmPm+M3WWtd27SAqObkdszPbLhFEtYophak7uaoOaubj9sOpUbzgedFzCwJcwj5wOYF2zM0jaFknJo3S91Z2/XzNgqFPcL5ivIRqWICu6KGW7vE4OTW82GHX5igVa1TLxdY+KCB0bqGoev0jZ3i1GePfexWY+rCJKSnEdxdnNPy1rG0CPo2e1+6soUhO3Or9849VuwlJJJWK0Gl1SIVfnBVrKVHsPTdbxEmhKA3FqXl9aI/QkUhYYzt+lxFeRzUcOvuqCDZxaSUOLZL/8QAty86lPM5KmtVCsslesd6SGQTROJhmhsVbEKR/Z9X04RB1Ly7d6QQgp7g4R2fs3nVqsDxW9SdNUJ6ipnCOgHd4VBvzw5X2FqnhrO25UrYoB5/5OspylPThUUB9koFyS7iSxdX2lhaJ/m+Wqoxc2meUCxIvVTn0AsH+PR/+jJLU6tUS3UKzRYnjo+TXygAMHLkwWFV6dwEfQChRZ/qe/kofN9HSp+AHmUosXVvb2m9Qk80gnVPeoyUHsjm3ffq3uyU6jNGt7yGonxcdXYB2e9WfDKoINlFmt46dWeN3tAxAKLJKKNnxnFsh8DaOulIuJOQf3gQ2/W4spzD9rwtgyN0KtxIz3wgz3I/tL0qphZGE1u3xfXbCKGjC4PLS+uMpbMQgGjgwSAppaTSWCIeSGMZnV6r9OtIbw38JUTgtc6JxiT3T9BIvwG4CE31JBXlWaCCZJcorpQwA0F6kp2hSd+XLKyXWS1XSNqClpBMPDdGYbmE03boH+/l+ZGdiwcs385hNwUTzz04l/e0ldozhI0sISO5Kd2i5ZWpu3mQEkMLkbCGONSbIWxtTiWR0r6TNymEIGy0KdaKREMbQdK5AO5tMO/Wtd1yFxNZAr8BKkgqH3eqJ7krT3V1qxDit4UQl4UQFSHEkhDid4QQ6R3OlUKIX3yabXxWtept7JaDQOPSG9dYWM6zVC5SeWuWylyB2ECCiu9gWgZm4MFcRM/1WJnJbUoJGTjQy8jRQey2Q3Fl5220dqPUnqHm5Pb03L7QSTzZfmDlqi4CBLU4MXOQiJ7B8Tzytcamc6RfBufcnYLmUjbJRur0xIc37rtgHITgVxDm5uLv9xP6EMI8tKf3oChPk6rdujtPOwXEA34RyACngWHg9+8/SQjxMvDjwPJTbd0z7MPVrbO3l1lPGEQCBpYzzeipXhzXx1isUrq2zLW3b23aPgs621nZtkNuLs/S1ArFegPfl+iGjmmZtGot8ovFh7ZBeisbi122FjJSBPRHn9uUsoUQgqQ1ummRDnSS+CNmlqq7TN3L07RdbuXyeP496RYiDuYpxMZQrRAhgqGThAMbbZE1hDeH0GK7Wu1bqjdZ2WL7r6a7zlrr+iO/P0V57ARqF5BdeqpBUkr5m1LKD6SUjpRyDfgXwOfvPUcIEQB+F/ivgEfbnFDZkWHqhIMBDo/1o/ka3lwCQ4Y4cGIUYehUogIj7uNL704eou26TOdLeLrGxHNjOK7P7XyRlns32MUzMQ6/OLnja0vpdYqLy+0T+YN6AnNjUdFuSb+GtN9DSgexTe3UcrPF4lqIuDlE0NQ51NeDqd/90e88b/OQ8b1zikJLgnkc6T+YS/mhG6t55ovrAPhS4snNOY+VYhUNE8tPkZt7lPxJRVH2037PSX4RuHDfY/8T8LqU8s2HfWoXQvwK8CsAo6NqheHDJHrumSeLwUs/chbHb1Aor3PktVGuFz5g4EAGoVco21UoJ1meWuHFVzfKvQUsoskIB/bw2kLoYJ3e8ljNyRHQY5ja7uc2pWyBexOpHwRkJ/huU7IuZJoMJBIIIbAMg/HM9qX27l5fAu7durDeMleXVhnInMYvtyivVRg/OQISdENnMBnH0DqBNxMNs7ZQ4PbcLCMns+TqN8lf0kgcdbG0CAuLC6SGXsPU9z+lRule3TZsulf7FiSFED8F/DLwuXseOwv8DPD8bq4hpfwa8DWAs2fPqnIlj8DxHEqNOvOrs3zn669z9MgkfYleevqOMXd9nsHJPqx0EN3qY6V5iZ7AoU3Fzj3pom9RB/VepXqTSqvNWGbn2qe2X8fQApg8ygIgA7RMp9C5+QJihx6oZehkYw8WBJBSgjeL1LIIfIR2z5Zh/mqn5/thYNcPkA2nSYSCuJqO03aYuTSPEIKJ58bwqi2sWKizulWEiGeitGotps8tYcQDpPti9GWSrDavcPCFA+ja9jVoFeWpUEFyV/YlSAohfgb418BPSCnf33jMojM/+V9LKWv70a5ukquvcGFxlp7AKIfPfp5PPz+J7hvouk4gEMLQLXRDJ5ZIYHjepsLinnRYbV4mGzy84/CorgksQ0dKueUwqGM7GKZBOvDofVMhDNAHN+6Ekf46kiiaZlB31vCkS9x6+NZe0lsBJPglsF64e0DLgpbE98rgr9ComSxfbpJ+LUogFMBpu1ghi76xLM7GfG1mKEUqdROMIwRCCfoO9NKsNlmq1fFMwY035xg6foBU9NELF2yn2mpzYzXPmZFBtC7bnUH5aKQqSrorTz1ICiH+IfC/AV+RUr5xz6FB4ATwf9/zBzUF/CshxI9LKX/h6bb02dae9RlYj9P0phgfjSEcCCeDCKExfOhucOmkQ2Tu3G+6JaanrzKQOYQZDiOlT9VZIWL24nliU/J9PBSEhsPlN65x8jPHHmjDzfdu0zfeS2bg4cOfO6k7eSqNb7Luw4HYj6JrATT54I+275XALyD03rtzjsJEaBnQN5eFE0KnXm5x8bvv0ztkM37qFMc+NYJhdq77Yb3a9bUy89eWOPXZzvuT8vk7qSFWwMT3fNJCEokE8aMRIolHm3N9mLBlMpFNqwCpPJourMG6V081SAohfh34J8CPSinfue/wPHD/xOKbwD8D/ugpNK+rCE0QCARoR0s0yz43Fr/HwIk0Vji9qczbQqmM6/uMZ1LUKw2WpguEo1ksPYzddnAcG8doUG7UubVW5cXRQZCS8lqFdH+KSDLM2Imt92ocOzVKzfvoO4g4fhPfOEhaBNExMfXNw7a+OwvODXAugHUG9N7OrhvSRki3EyiF1hl+dS+CfgBXhjHDAYLRLJd+sIgZlowcudubLq6UCMXDWCGLgy/c7Qnfnzs5fXGW1dk8pz9/glRvgoZbwPCCd+rBuq6H76xiBvsfeaNnAF3Ttqw5qyjK4/G0e5L/HHCBb947/CaljMpOktqmPYmEEB5QklIWnmoru0D/eC+Xvn+RsJUnnTzJfK2GFIOEjc4fed+XrNtzhIMJ9I25QsPUiSXi9I93EuxvvD9Ffb3BmS+cQkrJiYEQuqbRqDZZmc6RyMbRdZ1Yauu0DmEZLK2WyEQjGPrWAaIzx6fd2WR5KxEzg65ZrDYu4uPQqx8DBMvrdYQQDEQkeEUI/SzCGEQIHQkIBBIdIR0QIYQQSK2P6Uur/N03LzMw0ceLJw6Q6Iljtxw8z0PX9U7O6HSOUDSEa7scenHivjaXQCQRQqDpOgOHkyw3ckTtMIvzcwyMjNwJkrnZZeqFCxx86QuAWsijPD1q4c7uPO0UECGlNDeC4p3bDuePSyn/zdNs4yeFlD5Sbr+N1cMYpk48laI+f5DF61VOPncEUYSg1llkM5UvMLOaxxcF4sFO4JSGTmYwRWG5Uzgg1Zekd6wzvyaEILJR4i0cC3H81SPo+s7l6sKWyZmRwW0DJAD+Eng7p8uaWpio0UvCGkcTOqvFW5y7+hegVYlYFsIYRgTPAnXwljrt1eIILUa7aVNafBO58RpC78MKhclmE/gNm8JyiYGJPlJ9Ca69dQvf99F0j2Mvp0n2xckvF3njP36HuVxnkbaUNri3QDZZt+cZfj7B6NEowVADz/XQailC+t3h5b7xAcaf/9KOHwIU5YlQeZK7st8pIMpe+Wud4GHtaiHwHfVKg8tvXCMYDXL0pQMMjq1y4XsrrOf6aVRaSF9iyzrZQJDSJYGTbCMDfqdSz9IKoarL9MwKX/6xs2SHMg99Pc/1EJpA0/b4eUzfOf/yQ0IIUoERPOnQbLhEW9foC2uY5kbwMSbBrwI60ssh/RrCGMNxBqnVJSntbuAaPjRI70gPS7dXWV65zfT6Mj2JEYyAxvy1RUaPJpDuLRKpQYYO97O2vEw6OownHXRhIc2znQ2ftTaaMAkEexgLDFBtevgD0U0fHnRdf+iHiftJ6ePI1p1C9YryqFSB891T65s+qbQsmMcf+WmtehvDNFi8ucz3/uxd3vrrVSprS1x98zLRZARH1LlV+B4L16dJppJEGKDUnkNKn15b48J/PIfn+YCgWuosQp69unCnd3m/uasLLE2tbnnsYT5cFXv/yljpreLbFzfOaSOdC0hpU24vcqn0/0K0xuEz/wmGMbCR7wi+/Q7S2xi1F0Hw13CaU0RTEXqHTC5+5wLNWvPO+yg0p3D8GkNjY0SCSdbsK2QOmiRHQ51eqHmCeqVOpF8wdNYmZNa4Vfk7KvYyUnZK9+laAMdvbKwGvgRam1ggsPm9ODeQ7hyuV+7kfu5CyytTbE3t6XuqKHeoTZd3RfUkP6E6izx2v6nvhzIDKdL9Scr5CuVClfxinETmDO1Gm3hPjJqzSHnKJ22GKCwUaDea1J0Co6MhEtkY+liK1147Dq7Hhe9c4bkfOk48EyMYvtsWKSWu42JaJkOHd5+acG9e5fLtVVr1FgdObV51KqXsVNnxmrTcArpsUbTXSWs+UauPYCveyd+U7U7Qca4g9UFw10DeRJrPI/QkwjrD1Nu3yA6XSPcF6TsUp+00WJ7NEcsGiEV7yB6Pb+SGjlNzhqg6K9iUicsMQotTXI2xMrfKkRcGEAGLTGCS1cZlyuYCI5GX8KVD3c0TMbJkg0c66TL3jaq6pKk4eVz3ItngEYR58KHfp075vthDz1MU5aNTQbILCSFIZhNEUxHKuTLpgRTX3rrJ2997l/FTMcL0M/n8OAMTfYSiQVr1NjNX5rCCJiePjBKLhrGCFtnhDK7jkepNbLp+cWWd1Zkcx189grVFsfTt6Jq4Uy4uM5jCc71Nx6X0KNf/PaZxilW7jOmeZ8DKYBljGJqFEBrH4l+G5p8i3Z5O3qO0ofV1CP40yAJtO4EuFjFCCSZPH6TVaLM8YxMcNkE08A6d5/LiDUKrx0meXCFljRMwYphahKq9gifbJK0RwkaaseMjxNJRwvEImmERIUjNyNMX7KSDmCKEJ21c2aJiLxExswT1zveqUW2ycGOJwOEiEofB0OcQG4t56s4aCEHE2D6fUntIIQdF2VEXFirfK/Wb1kWkXwYRA9rg13HaUQpL60w+PzdeY7oAACAASURBVI5vacwuX6b5eobhyZM0qy2mL8xx9JWDaIZOvjpHb9Tg+ODd9JAP67XmFwtYQYt4ptO7SfUliCYffb4sHgp2cisBK2h1CqI7swjzKACucx0NgYWP8G4Ql1Ec7QWazgxR2Ych2+DOdQIjoU7Kh4iA6IHGvwG9j4XrhxDem/QeeRvhfZX3/2aW3iMRpOvjyDrr7QWGYy9hBtqsNC4SNfqw7Qbr9hyaZiCkRlBL0naWqDW/QTL5CmtejZR7tLODifSx/SaedAlqPv1aHYFN0EiiE8DzbXTNwgwYpPqSpCLD6BspKB/qfL23v2Ce77NWrdMbi6rcSWVn6sdjV9ScZJfo5ADeQPplVmZmqZRmef/dG1gRCyRoHmizCVYl2L0OX/+dv2EuX8IMWORm81z9xjxO/sF8PM/3abUdps7PUCl2dr7QNI1AKICU9ra7fjh2J6Wi0zYXab+D9DcXWpIihq/d7U2ttmZoksSwhhmIfJ6yu866M0dv8NjGZssmwsgggq+CdQi8PDhXQQyAFgEMBsdtCvke5isGpVonTWXwaC8hPYrrtxiLvUoyPEQgrtFsRbiRm2Wx/h7pwAQT0R+iJ3iEkjODoaWQfoTr1dep2Mv4SGy/Rm/oCBIfiUfNKbNYLrNSLqN5QVqt75JrXgLAdTxqpRpX37hNq2Fjtx0ufvcqrUabsJEhbNzdQU5KSanevDO/uhPX88lV67j3bGmmKFtRW2XtjupJdgkhBNJ8Edfx+NZb56gurdMq1Hn5h09ye62I73vU1tuc+tQwLNsc/8xR2uHOj4cm4IUfeZHhiZFOAYG2Q369hl9uIgZi3FhYwbm1xsTp8c0v6t7G8yyazd4HciXnri4SigYZnOxHCANpTILY3PusuWVsv06P3oP0S4TNYxh6mLpXZ61dIGoNkLKGKbanKbZvMxQ5Q8wcBH0Q6VUh8AL4Psg1RPi/AL+Ap02hHzfI27MMD75K39ABLOHh2re53V5kLPoqmeBBcs1rVL0ZbFGmbdfxqg49wYNUnRWWKkX8xvMkY4eIRtKEjTT51jV0LYDtN0laIzTaN1mpf5tKM0u+tMDhTIhaqUrYd5FHOh8cDMtg9NgQetBHCBg9NkQg1JnbtdsOru0SjoVoOW1url7n9MgJAubOw9cB0+C54f6P8JOiKMq9VJDsItVinVypwvjZAwxjkZ8rMHlmnNe/eZ7KlRXS/UksP0rPaJ30gEErN0K71eLCd68yfnKUaqlGvdygmK9QimhMJmOENJNo1SXzwgTRRJjiSolGpcnw4UEwJpi5PE9x+QYv//gLm9oyemwIjVWkcwVhHkdom/felu4MIa/N+lwIb6KJJm8hRBwdH91dpO1OoWkpevQkEfs8UrfQ/XWkH0B6ebAvgD4K+OAuIM0KQkTAb6PbYWrLAxQyZYLyNj1mL2t2g5ZXZKH2Lpbm03TmiAcDJM1+mrJIUE/SdNdBaPSEemhbSxyIv8i6Y6ILjZa7TMw83Xk9oO6skrYOEouWCQUtemJx0sFPYfmdFbahSJDeg3EEGiV7BkuLkurpFJzypUtxuUR1vUr2uEVMT3J2WEMYT37gx27Z5OYLDB3s39XemconmPrv3RUVJLuI5/kEPHjlUOePsWnoVNcbBFJhyqUqYwcHWJ3O0XcwQ3He5Y3/59scPjvJwGQfPYMp1nNlRo4MEYoFGfQ76RmVtQrxZBQraKIbOgWnzVKhSP2dBkdeOkg4HiA9MPFAW0zLRMosyLuLfqQ7B/gIYxy0XoTu4DnlzopW4iSsA53cUPMoKU8joGcQQiMcPE2o/nVwVpDihwG9My/p3AYtjLReolLwSWajxIJjHBhxcRLL+JpLrnmZIC6apnEq+bMs2xdZqr1DQASJGn00ZY6xyGdJB8fwpEPZnsc2muiaSa71Ad+fvsRXDn+VGEV82SRpjVNs3yYZGMGgApFXSDk+FxfOM9Y3Qig8gRAGl9+5jJW1CQaCiFiLpNVZxdtwi1ScJfrHT9LjJ6k4C6CF0PTncP02hni0nMpH5fsS13a3LUqvPDu6bdh0r1SQ7CKp3gQ33p1i7toi8UyUWqnB0OEBRLNCu1onlonSM5hh7VaT6cvzVJw2iWwMDY2e4TSm1RnqazdsPNejvt7gg9cvYgYMXvxyZ0spWxM4cYtgtDO82j+Uo9nyaNYChKL3bWwsAiACnQ2ZcUFL00lzBqGFMSw4cDLRmdf0LCQSQR2p9aLpWSpegZgzjdB6O/tJ+kVk408QwU8hIj+LlA74LZzyXzB3rorzwjCp1Bcx9BoJw2U0dAI39Dz59g1i5hEa7hrV9iIhPUXVt+kzBL3Rr6KbnQVJs4USEauHUnUJXa4xXYkRFy9T9yqE9S+StHq5vrJGMgaJcB+SGIIgjfYUxzM3aRtpXBnAd3yWxN8Snhkmrh9n4swRAhsrW33fv7PjiidtZtZaDMaaJKOSYnuagdAphNAo1BokQsGdqxU9hPSL4K8jjLsfYoLhAOPb1NpVniFdmO+4VypIdpkDp0axWzatehvTMrj+znVWK1cJRkzmC+ssTuf44s9+GtvzGJ7MMDIxzMqNZXzPx2476LqG3bQJxUJERl1e+OIw8ewYiZ44vu8zoFskB/uo2w6F5RKFhSDBmIZpVR4Iknf4OaS3itCHEXpnoY70GwitswUWIoir9eNLm4B5HKQko7tUfR1hXwDzLAgPX3+B1eabJDxJu/k+Qc2kbi/Qoy8y8ZLOuj9F23sFRzZIhz9FG4nvt1hvz1JuzzMQPkbW0HC1MHW/jNv+Aa3QBGH9GMgKHlO4jBKyUswVW1xZWWA808ti0SYThkxUJxYMETNSyPZFhJzH1XqZLQ+RjL7MmDWJY7vcunCLgfQA0Ug/kVgvkehG6oebZ611hbDRR75WRzPXqLmL5Gtp+uJ99AaPUm2vY+oh5krrHDQyxPTA1t/TXbEemAdWuodUIwW7ooJkF1mdXePS964ihOALf/+z3Hhvive+cYnsSIa/98uf5cr1Ba6cP49ru4wc6sduOlx/8zqjR4dpVFsUloqYAZNGpUmyN0Ek5hFLZHn37+axAgZHXznE8u0ch89OYKZMHNshEBojmuwEASmbID1wp0AfROhZADyviCCG8OaRWppS+ypRmcPWD9Fs/oC4FcfWT7LavErIyJDRj3B79hxecoHDloOpZ8EYR/MrpKxRTM3Ely1M2oSs0xSas0gZJqZXsVt/R4AYldb7nG/XiFuTuJ6DS5uo0Yuv9aCLJLV2gTU5wCm3SVhcpGIHEW6GUChKoXaFwcRB1urguTqzaz6kHQ5mJQOJGO/NLjISnsPxqiy1XCayHro5QNtxmL48RdWfZ0i+hhYwCEY6Qa7u5qm3KwT1BAsFh1ozx0sHejjWG6LVCgItdPcSV3JtspEhzox0dh7JLxZw2i4DE307/t9/+L0X2t0FVJ2vty2drCgKKkh2lVa9xcBkH9Fk5w+jFTI5+ZkxNE2nUW4yMZxFvniIS9+7Rn6pwOBkP4demCAUDXD7/CwTp8fwJbh2jup6jUiiFyEEk6ejSCAQCnDitSNAJ21BN/Q7ARJAujmQLYRxoFMabsOavUbcmiRinQHAFEEEJnW3QMGpEQkcJmoOdBIrpI3nutj2ABPhA5jetztzj6IG0iUoYpRyNzHCKyxqMdKRQWzjENXmB6QCR6i0btDwAujGBGFxFcdbBJElYQ1TaN8mpcPV4nvkq6MMpkNUynnCyc9xbqlEwDRo2HW+dWuVYEBnoifDaqXKrbUS/YkYhVqdm7kil3MXaaTinOpZIdJ0qayH6Mmc4dziMvlijTOnj7O+ukxfduTOqt+Kvcil1VscSp1hKJ4l2OOBcAhpKc6vzoPMMJya5MWhBLrQ8HwfXdMIhAPoxi7mKb01kG3QDj2mnyblE091JHdFBckukJtbI5LoVMnxpcRu2SzcXOLa27cIhVzqtSYzl+dID2Z4/ounCIUtzn3zIuVijevvTDF0cID+A724jkdhsUi90uD8ty/z5V/6PNFEhHR/Csd2kFLie53Vncu3V7n+7hQHTo1QXqtw5gvPITQDfA9kDfx1fG0Yz/XIhl+9Mw8npSTiT4ExRq+VpdcMgT7MUv0HhM0BkuYYde8mBw9lCMsS+CZoYSAF3hV8+lldWCTYcxkROAjWB+h+kBh1llqL9AVfYq72XYKeSYsIQRHD9ho4XgvPtyn4LTQ/ygvpUVbtKDfXe/nmze8jRQbflxzIptGMfhq2y59+cJlTQ/0c68uSCocoN23y9Qa2HeA7Uw2kfoKTvcepNDwKc+ukEiHsWIRYOE30MISNzo4rdssmGzzKSwNDmIZGxIxRbKzy11cv89kDLzGUraDrKYSWwQTaTptzC8s8NzS07TZk9xPG/Vu1Kt1MFTjfPRUku4Dddgm6PnbLJtWXJBCy8D2fYy8forC8jlgrEQyF8HtCXFxaYSIcxQyYDB3sYeXWDVzXw2m76KZBOV+hul7nx3/5RwgGHHyvhJAF3v2rFXrHh/E9HytoEghb9AylcdsO9XIT1/XQRAahpwAXhEd+oUApV+HQi2P40kUX1saejjEQmc4KVS2F685Ra1/B1MJcmPkb6pUrPHd0Ep8S680GEeNNAuYx8OvUW1cJDS6wap9FL9xkuX6JSOYV+oKnGLVO4Ng5LMIENDDNMA27QMNvQmuFtDXKcrvMXLXAzNJpSs0Mx7Iea9UmplGh3M5Ta7eJhoIMRqPU2zYT2TSVRovpfIkfOjROb9xgrRZgMJ4gZvTRcA3KjRKi4mDGMqSG0sQjYdq2AE/Dkx5X37pJ31iWtlMnODBPyPOJB36IydRxImaA20WTZOLur6olVjjaUyVk7b7kn6I8QAXJXVFBsgsMHxoAOikgsWSESrGGFTAYOz5Cokdy4+2rrCwkaOaKNCI6AbOOrgkmT4/QN9jAMCXruXVEXqPVsGnX2wQCJtXCLJEoCNNg5Pgwmh5g5fYaB188gNNyGDo0gK5rmEGLK9+/TmYwxdDBTlvyS0VC8RDJ3gRVZxXXb5IJbhT3Np8H+43ObhrmCTRhMRz9HK32OUKBLOHEGW4s5emPlllt6EzEemiV38SLhnFJse41Kcnr2EvXSfeGcBKLzNWPINrvs9D4AboWoi9wlogRZ9H+Dqv2GuFAhIVynVbzU1TWqhzPVnl/XuLaeXytl/nCOi+M9aGLCC+ODtKTaDKYDVOqLzC33iYV7OEbV24SsKocH4oSMQYI6AaVZptb5RVOj4+QDcc5v7hMcXWdt9/5Bo0lg8//9KcZO5Ol0sihewkygUnKre9wa2WBVDhM0DI5PXAMkyWkWwItSctNE48O7Or/3rEdbrx7m8nnxwmG7y7y8aWr6r92M7W6dddUWboucf3dW0ydm6FZazF/fZHZq4tI6ROL5+gdG6NZaSINwZGRPqIxH+m1ufrmLNnhMMK7iRXyacsc/QeyvPCl0zRrLW5+0ODtv62QW4zSe2AYvSfGyc8eY3kqR7vl0jOYJtyjY1sF0v1J+saynRJ0UnLu9QssX/sOptUmqgmSZoaKvUS1fQPhXgT9EOCBO4Pwlgj5U6R0ODQ0xshgiPPX5li+ukqyHMPwGjTWmxihH6Egw6yZETQ8/EiY7GAQz1tgqvZd5mpvYbsthO8z07jMrerfEtBfIpfrp10dwiZMT9IjX7O4tAKeDwOpk9hOgNm1GvhRPnVghOVKjeqKjluMIPwIq+U2qXCQ6XyJd6frtFoxUvECq82rpKIeLw4fJxNOE7JMxjMpSqslhhJJXv3CKO3AKjLQwo9USI4GEFoAI/DDDCUS1JoLOO2LCFml2LRAS7GWP8f5+Ska9u7+3w3TYGCiFyu4ude52rzSKY6gKMqOVJDsEpnBNM997jjRZISRYwMEhxq0vCpT61O4YZOJ58ep31xBq5YxxetEei4yN3OV6Rmdhell+ici1JwPSA14GPEg3794k/X8Kp5TYPHmChffvsnlyzPU1+sEB2Isyjae5yF9QUCfxY++jTAA5zL4q3zmJ2JMPD8GIoTwFhHebQzZxPCXkfoR8HM0XBe3PUelrXVqsLY/gOrvETCDfOGETn+vze1LkmJ+hP7Jk1Tat8gvVtBbTVxrjdHDcRwtzKLjEg40sLQAIT2GBfRZGRLaAdYbEUwR4FuzFWZzAd64WWSuUOLiaosj/T1YpoVhWJwe6cPUdH7/jfc4P7tMueHw/kyOpZKgVPd4e2aRtWqNU0P9PD88wFLJp21HKTVcAqZJvnkdxy3jLZT54O8ukeqbpH/iGKuFFMI1GY+9RsRIoHnTRM0kg6kEzw1YGEKj3brMarVG0w3z/fNhou0EkcDutkkTQpDuTz2w6XVP8CBBPf74f9CUTwxVu3V31HhLl+gZTNNwC1RaRbx6jFqpidG3QsBPUKtptP15Xv5ii+OfWuTid2ym8gHK2jrVwk0M7QimNcBg/Et8608u0/f8m7Tn4/SnoySyBumhETRNw3NqWCGL8vklBkZTLFy7BVoE4UYxRAXhV5HGMI1WgPXGCradJiWnSJjjCE0nJFLACEJY1L1+qvYbOLbOYjnDK4N94BeQwke6C4xmHEgbrMxdoLIapeC9SHZgjWMDi9SEzbKfZdFuo0sdzWtQ9aZoYxPiBE2WKFZ6McQBTvcPsrp+mpl6gaVGmGurZXqjaQyzSUCs4No54sHnmas3SQVMWo6L0Op8a3kWK2ZRb7X5dE8votTimtMkFQryZx98wERPglcmxik7MywuLyFnq7jReUKRGAdOjdI3PshsIYcvHULaMlL2IUQAaZ69U+lGGCMgDBrFGkszK+QrM5wYazExsf0WWjvxXA9N1xBCdPa2VLpblwW7vVI9yS5SnGvQWjOxeiQ9o2kMc5zRgc/hOR4L03PI5EEWa4cIxg/QT4gzk0GOHq8xPimxAibpoX6qpQa5q1WOHBpj/LnniCQP0qy2SGbDZLKLhKM+B18cI5CZon/oLcIRl+zIIP2jryH8HPg2mhGgxUHy5TYBHKSsslLJUS2XEcLCky4Vt4QV/jKm5RNZf49GYwVEgao2QKX6xzS9FWp+P0veEOVmH7m5AuXFHKVim5Y+gOaV0HDxZJO2FiBrDqGjU20ssrY0yGoNlmpXOLcwRyQ4xe18jeVyGYCeaATpx1muG3x72uVmLs/cWpHf+5sfUKjU+MrxPnzPplRrElyqs/wfLvHCsXH0UpuZS/N8eug247HrhI0YfaEjBAouertEI/gBtvE3GEaO8tJ3sRf+jMlsikDoZZBNfN+/EyBvnZtmebrG9MUcFy7MUVxbZzwQwyvqaFsUEJi7tkh+qbjj//+tczOszecf/w+W8omkepK7o3qSXaC2vk4kPIsVTlMVK6StIzTXW8wVZxmZGOPQsRMcOtJHizYr+RC3r47ROxnFjyzy1jszZLMf0JftZ/7aRYSTJ5U4S3Z0FN+ZI5YM0qpMI50+0I8iZJNgKIVjj6NbR1i7WuD2xRaHXwoR6UnQan6PaOAYEz29xMx/j/BfBX2SavEy5cYC8WSSqrOCj0syMAHmLxKdvEowooHxFaIk8WWFQnsB5Lc4eyZLOnKW+fnbVOtxrMHj2HaDWrnJULyHnGhgE6bst4hwmJiZYpkogegtNCNHrpTkB+fD2DLIsViJ98uS+WIFTdOJWRaWFSAeNJnsGWNmNsdzA32s5CN8990ZBkez/PpXvsT70uTd/+9djo0lSWrLhP1F1haSDGdvoNHPcH+D+PFDvH+hRi43xeHjccLRCLWqRUgP4joO7dYHLNxYZvTQWfTwCLFsDF8IVksVPv3p4+iGTiBowUQ/KzO5Tq9Q0yhUaiSycYJhi3Bsc0Uj6TcAB6F16uOOnxjGMJ/sr3y9bTNbXOdoX1btZ6k8E1SQfMa1m22mzi1w9KU0Pb0DxPwo6/M2b33jHP1nV0nkh1i6bhMISUaOj1C/egXfHSAe0QhFh/H0LOvLt7H1i6Al+cn/5ue4+tYi1UKNWqmM066RyPZSvlgkO5YmHi8AQSr1IBUMjr96lKtv3aC0WsaKJSi6DmFxDU1PkNBMKtVb6NUrOMWjBAcFq7NrxPqKtP0Sq/8/e28eI1ly3/l94p358r6Puu8+qu+e7jk4wxHFQxIlimtJ9Mq7a60WsgUYu7ABA/7DBmQsjP1jF/A/C6+xWO16bcuWYFiiRVESKVEiKc59d08f1UcdXXdWZVbex8uX7wj/UT3NnoNiS+QMNWR9gETli4iMfIV4+b4vIn5H5fdQ5ZChPySimeBpoGTRxJC0CtVgFE+NcLP7x+TyBfq9MgfeKN3AZtvWaemreG1oGB7JSB6XbWzvBnWOY/Rs9ivHGQ7CtPoe3b7D606Eoe0RlgPyuQSWYbG9G8GKDLh1uwKmRseE9coac9JGbPfoNrrMnpuhulWjeXsd4/Qe5e0nGDajOD3o1L6K2+tgRROIUBVXW6C+O6Cnt7nzmiSQBxiWQTMY4dbSPqUpg516i/39GjnVYGQyR/h+OL/2sIylJYilIgSB5LWvv8Xyxh6zZ6ZYPDH5PpFEtiDown2RNK0fJITdo6GrKgkrdCSQHweOhuiROBLJjwEyaIFfQeh/82gppmVy6ukTKCoge4QUk2xxi5HFJPXVdba7B1x/boMTn11kr/Mdur0yRniIohiUxj3aPYERjxLNKcw+dp7Keo29vQPu3niRz/7SHLZ9ktGFArWdJr6n4gVhVP9l4mocX19ESknp+CgvfucFrEiMSPEcbnAXRB9nuMvW8g5augS6i0EU194hpIQJgDo+fe8amueDH2XouzS8gBQefeoEMk3L7VEPYrSVDLVOmbx3QCjkMVqYpDpsUatvosRCdJQG7bKKHzfoDV0avThhuYjt98lYfcJaFlVRcIyAXq1Lq+2QmBlh2Oiz/+oOwlJJLxSROy2a6/e4FE2xe7PL9b+8weM/f5HcRJb4MM6wWcRrZbn50nUm57ukcnEGZhp/uIVb3sX3t+lnz1Mz01z6fIp0YRQpJVf+47cpZjx6vS1e+bMGvqmSefIkO29tUHo2iu8HHNQqjI5GiSQOA66ffOoYo/MlZCCJJt69x9jzDtBEDFN/NFeRHxaGpjKaPDII+jvPT+Cy6d+WI5H8WKCDEvn+zb4HqqYigwbSXaHfzRO2Vlk8c5LKyA5Bt0sqe5fR8ShK+BILz7xIrd0mVSqihnOMz/0OO46NDAo0BuOsV+8QzDnMz4+AOku71sVol9FiIbbfVijNFMiMfJIYz7Pvfh3b/zSxWIrzz5ynEFNZq0NXnCQVG6CEn6CUa3J3N0XpmEGuUMJNLdML4PrtG0znIWSoDI04jSBJY/g8aRV6pPBlE49pVp0rpBWfiDnFWHGBmv0cviiQ0gIawy6h2T7SU6ivBdQ2DHKPqUStGnV7kpXlPeLRPNFGDz8lWKk1KYQ9SnqI5noDseMwNfRxMlFS+SQ/dXmSnaVbpM5kkTWNrcE9PHeSr/7bP2XmzAipQp7A85k+M0mnUUEGAyo1hXptyOSIhqnMcu7xLF5QZGv1DtnjFnZvl+p2CysWwswe50pdY35eJxqNs1euMXG8hBEy2Fkus3W1i3muy+j8oUiWpgoM+0MUVSGeib1rzB2/gxQeXVshFjIxHiV03RE/WRyJ5CNxJJIfA4QSBn4wa0ShpOjbU6xefZ2TT3+esNFC80rI/IBP/GefJ9CmqDuvIVSdWOkyUrTo2is0PY+iPM5re3Wed/9vfvrYBU6Yx8FfJa73acguYTZo7fZoeccppX18z0BRT5IWAwbDVVRjjmzcQsgqM9kxhNCpHGzh2bP0ezsUjoUxYxrbvTfpOhtoXg43ZtGx0kTUDGubXycpV9EzCoaSQYgNAq+NoVxh2vDxiNF1buIaF2m40+SMU0SVJRx6SE/S7loMhYYy6rJVTbK6OY4iDNpCsFatMKVHybnwTHGEprOMrNSZGKjUhWDv2hbTI0kirT1eXq7iDhy6lXVmfv4C5ZpLfrdBc38He84jns3TbfXptRssv/EGN19Q+NXfepbJfIxh9QBJAj0ygSXfYGLuOAFRPLeNa28yeXKOkdkxNu06I9NNouFxsrtJcuMZAPSQjqKqbG7fITsTxVQPRTFetIgnUg/G2bEdBj2HKjVSeplKZxE1VURXTYRQH+TETBoTR8EEftI5EslH4si69ScIKx7n5NOzNPZbuP17eJ1NVE/HV0x058uMhM4zHvsMaT1HoMTpOZvUO2Gq7TgZZYKz+VniCsSNY2wN9qi7+4wVj6EoBrFSieSxEl23iu3ts1yts9OJI2WTnlum51aQ7irYf4b07qAHYcTggPHjCoHucrARUO2vovgbuM19Bu0+w36Vt958FcuzYThJVCh43MVza1SGIbygQkx2CYZ9VH+PZu/b7DfarFc7rNYkOln67TRRGSWa9Wm6ESoHJY7nThKTFrYToArJgeLwRqtOq7EFWy4xPY/h2ww3qiRjYULWgPREmuiJEfZWqwyGfbx6n/G5SarbdYonpgjPJgn8JtX1FTaXKuzvhghEBrs9SdpqUBzrMH4sx0t/tMT2xgRv/MUuzapOIrdAOHWB0vw4V2vrBKJMPH4BoaYoTObwGbJbXyKSDPHEL1zk+OPzKPcTL/e7fW7cfoG+892gAN1mn+r2AZVuD08ucmpshoRZOcy8AoBAETpHd8gjjng0jh4lf4IQ9FBlg3ZtQDh2nLHT87y5dYV8J0cuMokR7FNz9+mLMIXIE2zaJsmIizAdZkKL7Pa7KNooIthFFWFUEULxlrnVu0beOsN0zqTtplH8q5TCYTRrlkjocw++P/AEDK+BtEnmopCewpUeduc17izVOPeJTyP1Mj0joDRq47b7CC3KzPRprmwuYdkzmOEIQ7mN1PpUBho3diwO/IDJMQ1bKEyk+gTaDTq+ypA2ltmlOwjTtS0U6dB1fN6qbaF7XQwlSdwVuLZHdKtDdfUAE4Xir8zRsxxClaUqUgAAIABJREFUQYXBwCNwfa58bY3c6E0yeWgywc3n73DhiWPcW6sy6Y7yxu/uksl1iCRUMqU0lz4zwv6Ww9rVdYKBx8zJEJlSl6kzc2TGMqRKAbH72Vhcx0NIiBsZpBdif7CGlD6l8BkECndf3EX3O1z6ufMkrRGEEHQaXZqVFpcf+xym8d1VhkwpRaaUYiIooov7hjzqCO8ks1aFRtI4Sqp8xNGe5KNyJJI/IUgpEUqafbfN+NwSeuQ4BBX8vRZ7nRWyj8fpD2/Q8zX6lSka0a+QTGXJxhbxlBFWml+m7VZQBoK1fpeMVaRh1zFTc8wmvkSYHpriEY2co7UX8MKdu0wu3ONkLkNt6zbR3ONY0RnQZgjcZVr9v6DSTZIxhlwYu0g+9Rq67tF0AsJWiMbuGG/fqJNbEHzzTYWEEsW0yty5WcNXY7gZl1x4wHS4RcpTqIkoNh61rT6GYRAvStyBh3At7IFLo2dR6WQZ1AR6v0d+zKHe9yl3JdGejzISIzGWxeoErF5b57jYoK5HEf2ARkUjO5knP7JJYTzB+nKKbsNh5swU7WqH7HiGZCHJ9e/cYnt5yKf/8wJTJxbYWXZQzRKdVpNKdZJULk5mrsNb336FXkNijCR49qnzlI4n6XtVTo9OUh0s0xruMxF9Aj8YoikGT33uWQAq3lUUT2ckco5us0e73mX82CiO7bzLctVzPQh0hHk/KIF4tOg8R/yEcSSSj8SRSP4YIqUL/i6o4wih4Lh1Xvurlzh1ZgzCWfbbFmbwTcKBoHnnOtPHbuL18gyss7iKiZaawlNus9/9Bjpt0olfZzxyAaP7Te6t38UVOcKcpRfcxVb/Penoz6KEzmASpT/Y4aB1k3MTc+QSAwLndfrtOqHkY8igB8LCdna5s9cip2/Q01J0u/Nc3YFi9EXCoR7xepRuv8Tuyy+jtht88+Asnzw3j6zeZTS5QVtCpWvRdy1GkwOEK4lIj44AdcJH68KwXaAdGBidCIrdprFXpN9N0ev0kTt1pvpdGiNJ9EBD0QTRjks6ZDGlGdxQB0gtTatWp17ts/j4Mayoy+mn+7z89ST5MZ+ZM8dJ5RM89jPniCZ8mjXJhc+d4cRjYTTNZuNmhcXHqhBaQDrXePFrO3hqAkPX0cMhJh83eeFrV8nIENFciMJ9Y5ysOUfGnMEN+uzY10iZM8TMPIH0cQZdkuZhsmUrGqJZabGzUuZgp86pp48DsH37BgiF7bt9zv30IpH4UVLlI96P5J21hSO+H0ci+WOJBGkDAaCgBneZOmEQCW/j2lOs39zlzKU9rNAMP/Wf/gaD7i6RRIF67yvEzZM0lQMUt0JJG6Pl65SXXiMTmeKACLnxAtnoHGsrdxlLl+iILL5j0G0GBJll2k6Let8mPRiwb/tEc9/ByCywv/Yy5tw1sL6Ao8wz9Gv0winyOtj9v2SrcwvcS6yuv439yiqLP1enMDHgxnaYGl262xUGmXUark4QBEjFQIRsWihUlABLCnJKQHtggDFk7W6LXtygWlZor2YJzdoYlQ5KLcDbcTFiNspSF7Xl4gSSMTcgMt3g5dcdOmEFMxKFaARLN/HzYTavbKCnThOLOyTzFu6gTjyzSK+xiddb4bP/8B8yaK8TiuWQsk3icg436OD64LTPM+x9DSXfYe9uHFXROPfkp8n84gT796qYWpioXqA93MWTA9LmDIYSxVLT2F4de09BDyls9suoiRIhrYYbq3H66ROYEYMgGOAP3sIPxtHVMunxk8igjeM8z+17Y8wW5kmE+kgZIEQIoRwJ5088H0EWECHEzwL/GlCB/yCl/JfvqTeB3wEuAjXg70sp14UQnwX+JWAAQ+C/k1J+6/5nLgL/B2ABXwP+Gynlh6r3RyL5Y4gQBlIdA1xAQzUuYGXu4WhxUpEUxx+P4PcvosQFA6fMwFwiLQaMxn6Bcu85qncatMwLWKU/o1F2UTph3Po21bpHbHyIn4my2XeRfhlHzeNaGZzK20SDCDv3qiTyYbRMiEK4S693mXpHxQr1OPB0nMEeWesYschx1iqvYGSOU4ylyblblOsqJxdSvGnv8NzGPlNZ+NQnWjR/O+DOdZedpSRRfC4/VSeRqFO7aWCeCJjJ20gkt4M4ng1BCNKlLhE7Ss2N0GCWwWs9ErdrWGaS6GyM9Q2b2m4FVYJMW2jTaQZqF3/oEqm7FB8f5c5alYipMV/sYP3KcfbWfUaOa9y7uYll7dDYS3HpZ89T33GprPw5sdw0qOMcdL+OLhtYkS8w8PYYhG1OfurTpPMTdBffxHZGUFWVVCFFr2kzMltECEFYy+BLl+Zwk6hWQFctpBzg+AGBhNHIabKhSUxFQdV1QpkYw8GQ1/70OrGMQ2FcMnN6DDOco7jg0x76JDyNjXqDM/kyoNLzk3SHkuJ9X8vOwCGs61S7PfKx6IcSBEBKG6SDUJI/9L6P+LuJEEIF/lfgs8A28LoQ4qtSyqWHmv0G0JBSzgkhfhX4V8DfBw6AL0gpd4UQp4A/B0bvf+bfAr8JvMKhSP4s8PUP8385EskfV/wyUkqkbCGM8ySNcYTQUBUD00+zvrlMKmMgndcInDJtfQxLzdJZHiVfmqLZshnYCwg9imsdsKtsM7NwionIZdZWh/SWbdQnmhzTXN5cXqJWvcIXF/4p4yfP0GzuEzZDSCvPXv07DIIOc3MzqMopGh2TfnuLyegUWSXC7o2reKln8bw815oVTvtVommd3p9UqRkBrqmi1HtU9y28go4ceLQ8jfa+ie5LKnWfQOrsNEyqhRBuPcJ4tokZ8thfaeH3U5SyBuVaj+KUgRpVaK+HKL8xRE+CjkK049F+ax9HaJjdBu0a3Hp1mUQ+ysh0Hk10KY1Xef4PDhid0CmMNNnbzqGrOzR3bmGoIULhAZo2C7JKRM0wEKNYWhoz2GYnWKcZN7DcBLs7NkL2iWY6RFMWsQWbndVdpO8wNudSGzroSgg06DhbDIZXieYuYxoTTCpTmOqhMY7G4R7kwU6d7GyJquhTnA0Ip04ivX1MMSQf/STJkIftegijhADcnk1v2AfA8wNu71WJmgb77S6psIWpfAi3hKAFQROORPLvFh/uTPIysCKlXAMQQvw/wBeBh0Xyi8A/v//+D4B/I4QQUsorD7W5CYTuzzrTQFxK+fL9Pn8H+HscieQRfyu02cMb0/AuUkrUYAtECJRJ3HAFY/4GnjvGrtNltWUzLldRK3ep9MeJ+hGuLl/n1LiB4hapl6vECk9z0OjQyXyLvPEpxlIWudwMm3dv02g2OD3y8wjD5M7mNo8dX6C8do+16v/HzIVRRjJZ7H6TeHySres32bl1l8WnDCaOP8VecA/Hb9LwdGbVKFvVFLHqn7OOTmVP5fb/2aeph8imuwy6Fn5E5d6mykgJ9BkPM6uw24LoVEDH1nBjPlIX1LeitOyAollle2+NxBtQGU1zsDvErB6QLVnsWAauomB4Dp7wUCYy5Fo21R3wqwHDfo9kJsKVb3dpVB2gh6rtc/rxBJ75LOmUTibxHIp+HIen0aOXwLuN6V9D0xYInLfAvUXBTKLKMYTu409m8JUatuUjvCyWmkYvKfi+R2u4ze32i5xOfQlNMbG0LC03RxgVLxgAPPCPfAfDMrjwzAl8U3CjvEnHcdh6s8n4iVHi6QCXFoauACEAUhGLVOS+0KoKFyZGqPds8rEo5t8irqv0K6DEESL0/jrpgRwg1CKoxb9x30d8uPyA1q1ZIcQbDx3/tpTytx86HgW2HjreBh5/Tx8P2kgpPSFEC8hwOJN8h18GrkgpHSHE6P1+Hu5zlA+ZI5H8McTze1QG18lZZ9GtXwAgkBnwyyAlCWOM4SDO3uA6CfUxjkVctsq3iAUR0qUeaW2UaSOAlolrmohEhFanQTLh09mNcfpTKdTgp7l9Y5OwdZ7FiSRqNMwLz73Gt9bKZDSLZm2bYmaBkHC5vrtLTNlnRouROVEmUcwQK22x3/wTZh+bYa+qkVzb5fipZ9hfr/DnL8VpKFHaqo/XP8BIC1qqS38nxInP1DE8n4ZtoNsaMCRkejhNBV94BH2NSs/k7doI3SBMeADFYgvzXJr9FRdd9Rk54RLbadPq5AhJhf6+g9CGRIYH7JDkxJMdhnaCZ35xEqlkWX27hvRqzF/KYbtFhgSU5t4i1D/A1AsMCbh3vcb8hVfRjZv0ZALHE2SDFfpijpA+jeG3iOsjzKTjOEEHTXFxfRtV1XH1FgO1iSITnEh+geF+mJrZIFtaIKxnaQ93SBjjNPs2vDt3Mql8gkFvQCwc4cnpY6iKgnZ6gnq5QXO/RXbBpO+3EELBkDZ9d41w6HEUoVLpdHFcj/H0DzDDC2ogtMMHsPfVHUBQAeXM377/Iz48fjCRPJBSPvY37P29e4d/bRshxCKHS7Cfe5T2HxYfaTABIcS/EkLcFEK0hRC7Qoh/L4RIv6fNrBDiD4UQrfuvV4QQ+vfq84j3o9IhpYKKIBh8k8DbQSgxkF3wN9EVi2L8ZwmbF6lX9rFqDgEhynctgrVpXnr1JrHxIqWzeRYuJMjPrxAfjWGFfdyDPquvbJEqhRkZ6fPqwSYvL6/w+otvMdh8nXMyTj2okDqhsLPbY79hkhGTzI//Em9WrrDvaExPZklY5ymvPMWVlQoddY2z58vs1L/OxvU3WQw5PH1myNi5JkZUQRwM6awolEbr9G3J5h0D3VNoLxmsf0Pn9ksJFEPBb6h07Dh1dHqehXRUpuQeqzc0tsOCYcYiHxki9DDbTonA9og5ewjHJ55WiXdtnGt9NBFh9tQ4u/civPRHt0kXspx4fIp8qcQzX7jE7EIUpdXlxssdfG8FQ6xw/OzLdNUy/UBFenfIaXWGSoJ64GJLHyklbmCjaAMyVgFFUQnrabpehdZwi7R2nKg2R0wromgSVTv8aZpqnJTSoDeo8K3nrrG1usfu6h4AUga0ax02lg4frtX7iZWjyQjZySxkwphKkmo7YODaSMViIDWk9Ol3bBRfEtJ17K6N53oMPR8/CB5cRw+//14I/QRCSX9wnVoEbfEHupaP+NiyDTzskDsG7H6vNkIIDUgA9fvHY8AfAr8mpVx9qP3Y9+nzh85HPZP0gX8E3ACSHFo2/e8crk0jhMgBzwO/Dfw60AXO3//cEe9BSh9k6303KaEWCSl5wEUqaVCS+P4BilSRUkf2v4yvLcJwHSupsrbXYrfqMJlNEtLaXJzMceOF5/FGLfLHY+y+sUZjz6G/kiJUTJNI9rEbW1T39ghtw8BdxlTGOfe5Zynf9nnu68t88deeRLHWub09RN/tEgmvkLFKZBNzfPnN28xNScrGFrZmE1IGBF2TF79RZ25slMXLA3x9m+2/imL7Ho2my9iUTfoi9O6auNWA57+aZP58Db9jkTvj0rJ0LNMhMWjjDX0uT61w62aCtzZyWHnYvBdFdQfY4zEKe210R0PLx5kMrWNvh1C7BZqNGm5fUttPMhwe0K3dJJrWEdYemtVjQIZMPsDSNzFT/4TFBKjWq6CNokmFsDqLpZcQg2+DSCC186hyHT9wCWtpKoPbIAPaYodi+AwgcTUbTYS4W19C+Hmm05skcjnC5vihbysCwziNIWJ88rJH2+5w726X4nSend4Sew6cfez4u8a/79XwlBD7zj76YI/AzxFS06iKRjp0iWq3R3ulSjwTpTCZ484bq6QKCeq6JGzoTKSTVDs9tpstzo+P/EDXqBBHMWP/rvIhBxN4HZgXQkwDO8CvAv/gPW2+Cvxj4GXgV4BvSSmlECIJ/Cnw30spX3xwvlKWhRAdIcQTwKvArwH/y4f6X/ARi6SU8n946LAqhPg3wO89VPbfAptSyn/+UNnD695HPIzsg3cPqScR4t2LAofHJsI4D0DNWSUUtIgoMdDPs9ZZ5u0VBXVd0NArRHwTVwi60SQvfeUvaJYPOJ64yM7yFksbU5zMQu6TVdpah5YxQqcjUdRjfOqiy07fx2zlaCC5ev3bFI1zvPqNP+byk0/DMMvmwW2u3bpHMnUC3WgwZhRIaxbRgoIMn0V4VcrDcfqRP4VoluU7e2y8WmBq3sab7POJ81Ve+0aErS8ryL5k6pJDeSPNxksm45/2kYpKqDogXPAZNkxu38yQnu9jRhV6hNiuJdBcl0TcIVK1qCVG0GNNJtoBO/0TdNw9aDsoAw3SHvXaLoFrclD2EPEI80/2ySVPYIzG2FneJZUfIzd6nXjyAohLoKQIghZCBuDdQSphAgxawzuYSp6qc4eonsOXLpaaIGlMsNl9BUMJkzInCSkJ5jIJhsEASzuBriaQckh/8DK7Tp+J2NOYioYZDVFpt5g/O42iKGRD02gJF/09wcu7boWEMcaliQUC6TMaMdmoNQlpKuVWB4RgbD7PQa9PAZg7P4WiKAQ7NSKRw8ADqbCF9dfsUXYHDhHTeJAk+oiPGR+yC8j9PcZ/xqFlqgr8RynlTSHE/wS8IaX8KvC/Af+XEGKFwxnkr97/+D8D5oDfEkL81v2yz0kpK8B/xXddQL7Oh2y0Az/6PclPA9ceOv4UsCyE+CPgGQ6n1/9KSvm7P4qT+7uOUGJgXPzAOhl077c59IlLh04inC4IC6GNovnw7LFZzOkmQytPr1aiXxngd9Z4/FyfP15Pk1XG2dhZI7WYQ25IFMWm0WgTKZYRrmDtzWWWbZtnv3Se84+f4eWrZUaSjxOeS5NNjmArglZrG+eUSjH+STa3ffapszA2TT41RWu/wdCZZ8cecPf1FzleOMXynmQ+/1Po57cJp5sYtxQCrUuy4JOfFdx+y6LWE8QWPYy2znB3yK4bJmZ6JFJ9BB7ZkTbVVor2rkJye5/0aI2Gk8CSPcxKD29/n+F0nP2hx4nsKJZusr5SRgx9QlYILVAxLJ1Ln1EgaBJxFHr9MnvOMqfOV1G0zOFenPcmUkQIrAt4g9+j5fWxjTP46iz50AJ5GaAqBkljDE869L0DQloKU41SsE6iChPbq9Nyt8mYczh+nZbbIm3OkNBHCemTJKWNIlVaw2126gqmmqDS6TCWimOIEIWYRbvZRIkOiekFAPLWiQfXwTtBzPv2Eh1ZoBDPU0rGcFyPtYM65WaHUjLG3b0D1td2uHxiCmKHRj3b1Tb1Xp+nZiffdW35QcCtvSrHClni1gfsRR7x8eBDfr6RUn6NQzeNh8v+x4feD4AvfcDn/gXwL75Hn28Ap364Z/rX8yMTSSHELwP/JfDsQ8VZ4BKHvjK/zKFo/rEQYkNK+cIH9PGbHPrMMDEx8aGf88eK4L6B2H2RVOQAR51ifW+FaH8NNZkG6dJUy8SUPOXqCiGpsXjBZGXtPLnRO+hC4nkaIUfFyEeo3ouhDnfJzyu88pbOyIkUopBn/Y5EDP+EWzdbSJliv7HDcJiivLKBtpchfCxKWbtHfS1G7bkWL2Y3+aXPSYxuEU/tMLUwymY6SaKlsjPRZPHMFGxW0bQpZh9P8vrLNfY6gtiei6kE9K0EObVGZVtFuagycq6NY8OrWyly8SG6EmBsOjSMEsGUJB30iAY9fKnhKQMiYyZ6v093Y8iN8j3OnM0gWz3siM+5T4W4uxwiqA9J5vroGrz8px5f/I1NCiMlwloPQw+B/hT4Lh3nOq56l5CIMQyaeISIivChu40AN+hTdZYpWItY2ncNZMLa4RK5qUbQ1TCWmiCq5xj4ncOHfKEykDGqzjUiRhEvcFiu9DheKDFwPSqdLtdevsOJqRLVyh6j5yNsViEbjeD6h7sTY6nEg+/Lx4sc9Azy8cOUa6auYbse1W6PUjJGx3GYPTFGItVC+l2EOkrMNAGJPXQJ6dqDWaOqKJwfH0FTj/IjfJw5it36aPxIRFII8SXg3wG/KKV866GqDvCylPIP7h//hRDiz4BfBN4nkvdNjn8b4LHHHjuKsvQQQpt6d4G/Dl4CS58mkgiRzKfYa/U5aLYZeN8hHDxDKpZCN66TyfgYM332xTqlkslaQ6M8MHDMIacuTxITJhF3mVb8gGjrOCsdk90lBSfw6MccEpqFveMzNZ4n0CxuvLjLwuIsIR9SI20WZ1qUO0ucyxyjW9coxqOcXRjl7Ve2mRgp0ZVxBnaJ139vifmwgruXwZM2ra0AViXhZoPNjk5oxKF2XcOZNklGXey9MJvtgJwYoKIy1mlyZyuBp0OvY+Em43SdPhEfrHqfaMgiSCikCvvgFsCMIqMbTMzWiZ16lnzpbTw3xJkFhdGZPcob0JAjpHIDZOQc9uCPCPnrRGmz6lv4YpoFcxxFidL36jh+F4FAQeUdI7xmf0AsZDwwsgGIaIfpsFzfR5EWhnb4swxpcaZizxDWUoS1FF88C51hlRt7O4T1U5y9OE8uFWN0voSqqljaAOu++D2M5wes1g1OFnP4QUDbdkhFLD45P8XAbwFwcfLQkl4GKqBQtzcJhwPy0TFeX99mcaxI4qFZ45FAHvGTwkd+pQsh/gmHAvkFKeW331N9lQ826T0SwL8BQ8+n5wzfXagt0vHS9KRJqpjDCwTbzQbzKRfNO49uGbz9rausXvfw7GnioWMURvKM5s6RtgawtQyVa2y96uLYY8Smwxg7Js07daIx+MQnJziWiHBayWA6Ot+8vo7byTN+8jyxiVnu3W5x79omn/lPPsHJJy4ymtxitfVnXAluU7U3mJo+y4lLKrHuDfq9NtnYKE1lSGyhyUgxzcK0SaIIStijb5ukngCRCUHBJON1EJU+x3IVLNFh67qBp/Tp1CCdtqlXBcbQJnZnj7DdIxEdgBEQTYXRogZ3NjXWrg4ob1W4fsVB92H0p8e40xuh2/Cp7w1oiYtk58aJJPPs75/BUwJ6IoujLaJoI0xEn2Ys9gSq6CHo4QZ9JAGaYmCqUVrDHdygz3KlSqVbOYxjC6zXGqxWawDsNNvcqzXxg4ArW7vYQ0lYS71rGHUZ5kxhhnrfxoqGUDUV5b7gJqwQhqaRsEIkrBBte8BLqxsIAdOZFKqi0BkM2aw3qff6LO1t03DW8aX7oH+hJBk6JuuvVDG8BAfbNVIt710Cudfq4LxHiI/4GCJ+gNdPEB+1C8h/DfzPwM88bLX0EP8OeEII8feEEIoQ4lMc+sh85aM8z48z0r1BpbXJvYMqDbvFZr2JlJJASup9m/G0SWu4g66qzKa6hEIFtPEo8UyZ/OSQt5d0djs6c/ECllej02zyzPwlLl46hX6gkRBFtne2iTNgMv9JLlwYYaQtee2FJQZKBds9YGquxxd/fgzCFe7U38Tv1Zi7UGDiC0WW9iuoO9PEO89iv53hWKmIN4yx2+pwECgoIYXa/j3CUZ2f+y+K2KUwbsGlOVQIDQMyF1xIq/SqOsnMgOmn6ughSSgt6CkqtY0Qd74T5+ZfjdLpa+gbA8LVLhouWlIhL4bEohEmUikiow69xpB0SEHR25gyRiQoMuASd+69wfDmOolklSd+Zo+0+iqWgKi1wdjYChExxA2q7AUGTX+IInTK/bfpBFE6vqTrVgmkR0hNEtFyKEJBAqfHkqDeQ7o3kDKgEItSSsQBGE8lmM2mqXR69AYu2ntCxPm+z8rrm9TXbXRVQRUC3/O5/vxNuq0GALbXZK9/nb5XQxEK/aGL4/nU+zaNbp9MNEw2FmGj3iQRilMKn0UVh/Fw3aGL5weYlsnUCUGltkJuPMP82al3nUejb+N4HyySD4fRPOj2GHqPZpgugy7S23zEq/yIHwpHIvlIfNTLrf8a8IBvP2wVJ6WM3v/7ihDiH3DoQPq7wD3gH78ThuiIR0AdZTQdITqs0rLLBJ6K72ygGGcwNRURlEHRkTJgt7lL1c5yeWaCLbuJsRCnubXDqLMKTghHOHRra7x+ZQNFwsGW5NKXLJbe3qEUO6AfvE0tbPPcV/pMzE0yefkc6ekQw9Rd0vkWX/nyFulBQM6Ios9EKHWGaP0NblRW+OnP/hJNv0bjlkowc4CpdjlRXCSbnkH343z72lUs3aO6lydQriHTMWrVBIYbIOoOelygRHwYCjo1lU7XYGRqSMtLIU8mGLR8uvE8RneAodcQdRXNHtCL+BwcdNA2fYrNMHOlMLPzIdxKm0/+skmjOU2+UKd1UMZdNLj4mRCZtI1PDBmU8YJVDBEDr8xE5Cx9MUPb3cRUBihCpedWCOsZHK+NpSWx/ToNZ4O4NsPQ1YiaYUrak0jpIoSCZShIKfGDANcPcDyPdt/mzn6FU6N5Qvp3XYTtzgDfDyhO59GNw/JGz0bKOsIfAI/R8yqYahyDgPbgbS5OniJs6IxZYd5++TbOpRBjiRkKseK7lkyrWzVuXF3DL0T4zOWT6PE5bn3jLTLRAfH0uwOinyjlv/f15y0hlQxCLVJuddAUFUP7/m4gUrqIowWjjw5xtCf5qHzULiDfd1iklL8P/P5HcDo/lgjlcHkuYYyQMCSDoc3b5S0WR1xGUyGC/hD7IARjAjMUJaruovg1SrEnuX71Ok53ie2mzeT0aXy1hYePOehT8RQyizqabFM8fYrlbzqUJnYZmfgC6Qu3iBb2eeOFLcKFSbQn7zBd9BgJ56iuNcg/PcrOG8vYPZPST7XJFYvcvnUDPd3hYPsAzR5Q3QvopyMsOQMa3xzgomF39+l4e/RFiNZKl1PTHunjXXZe0dj3dSpvRdnbguScZMuYonmvBk2bkGmQHffYq1vohsfJJ4d4nsbm8xK77OPKAb6uY85FyBZNhobL3DPT5EdbFD6xR/VGhPFTn2Fs/A57mwHTxwM6fpX9IEAXx0krOjERI9DGqfXfxpc+jmxTsBapDG5j+w00xWLoDklFpqjYd7jXukngFrg4dvJwnO7Hxxj4LW5X1tApkg5HadsDjpXyTGRSWMa7Y2iEIibhZJiW7ZC9X7fbakOsiBo63FMcbEZRVIXkTJKOm0F6PeqNBoankjlWwPYaKEJ5sCdqd23Wrm0yd3GGU+dzDNEQ3ptEQyf47Oc/gW7oNPsDwob+SGKdt/mjAAAgAElEQVSHOgHiMK7s6dHvhqKzewNCYfMDXUakHCL8ZdA+UqPFI45E8pH4UbuAHPEDIoM+yAYoJcB7kGD38GYksMwIC8VppNLjYLBF1B2nXdsiNy6YzV8+9BEUJrghLDPD4rPH2Fm7xcz4HHdXXb5x9wa/+YUvsPZHL7C6sU7smw6J+RZX1mvc3h9yevcWsf0W8RmdXszjle8s03/O5dlfmCGmK+TTLlLrs/zWOu2GIHcmiWPF6FcbZPs7WJE4C9lTXL+7hFi4R6qSoh3eI3MsihgmWL/n42345MK7oCvU3lBQkj6ioaMrLrm0T3HCJaWsISdDlP9QoWQdoEqdvqMziIRYuxlB3GtTGhtihH1qK4Juc0jTs+g8d0AiDeMnVeKZBPmRXRKxp0gr28RjdaSWoq8uYHg3SYoihjFG0+9R7d/DkbeQAhSpUe5doxQ5Q0TNUxsskzRmuL1fJchZSAnFaIZ2N8a9gwax6AEhNUG1pSOEg2X2iGkupXiM0v3sHO8VyHfGtOd59Bot4hGLoeexOFJg31XotYaEwhFSxSRCCITQOeib9DoraO0Wg0GewvER5tPHUR8KYq6bOrXdOvWowoXZLuHQGIg5EGF041BItxpNSokY2WiEoedzbafMyVKB8AedoxJ7X5mUkuU315haHCeeeX+9EAZSO4lQwn+bn8ARR3yoHInkxx4Pgj5QQfpl0I8jhPWuFlFTImWMuJdj6OwzfaKPbT9HZZAjYU4TskxeWV1DKYVxVxLgWezd3kCr7xO9vUvjs7ucPVMkEsBE6hoddY+ZWJy7bp3l+qvEohFOGJ/k0j+aoVv9FnvlJn1/m73Xd4nLPDOnzmFu7zMe3yKghGMnke4a284QEiGaTgXp9YnGkpxUv4VxKUu6MM/yc03SqSW27wr0qM66X8SKRdFknYO7OvFYn4NWhOxBh2Y9xP7rBhfONrAbBvfumMiMSqnoMbAU7IZJp+Zz/ITL7qZGkNWIJWqUTnRo7+okVJ8Xvyp57Bd6hMav0XCjpMQ2yRGTjogSCv0ySWnTcpfpBxo9b4NS9DIZcxw9OKDvNYgoFhX3FglzlLHoWdKmy0bvz4loGSJ6jngyw26rQ63j0xu06Q80AimZzi7S6rlkjSGdRo9MKfWBI61qKucuzgOHxjM3dveZz2eJGhqafjjLC0cDpLuElBcoJWLUegUi0TyZMxpLe/vUOyGKD7mGaLrGhZ85y9fuXmfbjpEQ+0T0HDo+X79xjVREoxDLY6iH/Ruaykw2/dcGGngvQghOPDH/YIm45wyJmMa72xzluPxIkRwttz4qRyL5MUcocVDiSBmA9MFdeleAASl9cO8g1AJ2c5fy/gAvvEjK6uIH0LRttu5eoyjiZPNJlDM6tfazbF49wG4GPLZYIlxZYV+ZxNaX6bkpXv1/D/Bdlac/H8URQxRvwFsv3Ga97OGVAs6fPsXEzG3eOgixU43w4stvkpsdcOnXF3j1bg2n8xLUqljhcdDXsNsqkZxGajhgpZclNKKgaB3UkyayOcLMZ2o0v9NHD5UJ+h2slsP0SYV2T4O9PptCRYT7DK0sByt9tK0B6azOWtlDrjcpTIE+5bJ/RbDbCTEcusQVj82/0jEXLZ74rMqNlxXyxzoMgiLjYdjf3cHLKEhhEVNsIqHL7Pf+EkuNkFQmDpedjVHs4asI/QLxkIWUPQrWSQwlRs+rYWpRYnqRlDmNqUbRFIOoorJTqTMxMUMylEMIUIVCICX9Vo/GXvN7iuQ7uEGfeMTl8tQYQghiGfO74x00AR8hNEaScUaSh0ZB0i9zJpdk5eo22aciaLp2mKUjqBCJlvj8mRmadp2VSpOzI4fLpKYhSURc/EA+cEsBSEfCSH8fqcTf90D2vXhHIIeex43dfU6PFj9wJnrER8iRSD4S31ck7yfDfFFKufX92h7xo0MIBdQRUHMPymRQB+8e6GcAjexEETvaYqvRZWlvyLFCjmIiRkXNsvJKhatfe5OTz8bYsDVGUzu0HR0zFKFR99l/e53dWx5yskd2tMjqrR12XnRJL6QIe2G8hsfSi0vMzmxBUxL3M0xMQnmtjxbRyJ+K8fzv93AOXHKXz9LsxLDiTULuKLXlCqk5nc32Gvt3ouy3WsiD13FKOt3NLnK5Q6GQJrnocPuajgjDXKFL68Bh5VaGUKxL78BnMrbJ3jBJVStRaLcYUbqETqn0mwLpq8w/2Wb5WgjDlJRKQ8IZE0363HgrxOnHJd64QTBoI4ZxMmYUQRkpu5jeVYQbI6PF8Jy3iWsagVIiEB6eP8BV6oTNcwAkAp/mcJNA+lihJElzgs5wl4Ogy2TsSeKGgSPHyUcPhcj1fbYaLcZTCeLpGPH0+5cj34sbDHD8Ninr/YHFhZoH5f0iK9QSkQQsXLTRdI1yq0Or10QTO8wW84ggQSaUwMqOEzMOlz0/NXWCju/SHgwxxTbSNxDq/ViuQROEDo8oku9gaBrnx0e+5/6mdG+AOo5QEh9Yf8QPkSORfCQeZSb5e4AUQuwALwEv3n9dlVJ+/zQBR/zQadkDes7wwSzhHQ73IR9axhIJ0BZAdkCEkVIS08pcadloWo/lbZ+1rU1Oj4Robjc495nLbN3eIaoHhE5eJjK2xf6rK6jpAjdXlghFNIYdiWlVOf9pk/pqj4OVHsqoytkzKks3u+w3BPt/cZs7r4X4+X+a4bFPhFCagnBQJmCaoZfF39xl6Hr0wgr3Xthg4RcnCUezuBjMn6wjylG0iGBns0/i5JDYhElIvUdfBGRGoqzetRi8ZNARYaotE7etkoh16C4JOn0QMR//wOby0xW2ZIrxgs2tF6AV1YhPKaiTCkEFSrNQHO8xkCrTMzaGFcXuDFmqzPDEgoLDPHHzNH33Cqoygi67SGWUipcjouxT711DSoekVqfv1tCUEJu9V2m7ZYLAw5cOCXOcTGieQXDoohGJh4ksfnfvLQgkA9flzpsrFCfzpPIJDro9mv0Bc/nMB46/pUaxlA+ehQlhgHj3Uqbjeqzf3qY0mnkgwgPXIx5OEA/lAcFWo0VU3WU0nQMOz2/1yj1GF0aYy2fuBxn47u1C6Mce4Ur9YHRVIL01UMce7KE/QMn9jYX3iCM+TB5FJBeA/5+9Nw2SI03v+35vnpV1333fBxr3DDD3LGcPcpda7oqyZNJmSJYs05LJsGzaliPssPiJDsqWQ/pgRlhmhGVLpugQbZ5e06R3yd3Z5c7uXJgBBvfV6Pvuuq+sPF9/KAADDBqDBgZLcnf6F1ERXVmZb2VXVuXzHv/n/7wKvAy8Qs+tXQAdIcS79ALmm/Sccuo/qBP9tBCEIefXtpgt5ohHzD33CcNe3uPH0ctXUxBKgtC9CkoOocRIWirHBodImTc4e+kWV9ZKHOrPkx+IoGsam7e2KY6paBmHxT9rMpUc5Pm5FkO/OM3GlVvEssf49m99l3BzFGkqFHNlnGoLY+w4x74cY2WpBFaFTrnEmd+vM3RIY3Fpl45XQxUKLbdLdqTL5NBJqk4JqSp0vC7VG4JYvkFVbxLLBFQ0H/e7WfJ9GZydFuV8CpoNop2AcNknNeZRueUzZu7iRgSjk5LqkEJ2pcz1jkk7mWB+xSZzOmS1rBPJKSRiDtGwTBedyFiI4to4gY6JYGVxhuGjL7NVeodT06soxs9gEYLcRioZhHGcmpPCViNYQlIPGgSaiaJOYJmnuFr7GgjImbPENb+Xo0kWTZhoiomuDtxz/UIURcEPQnZbbWaKeZqaiZXoBQdL15EWdDsOuqGhfnTUFZYhrIJyZF/fqVK7Q9lxGL6nnYl8hk7LxlRsvPYVhiPHiCXHubdg5dizE5hm77lQPkHNyb2QAXt5hAi17+m+zwF7c5ACsm8eGSSllPPAPPAbAEKIJB8GzJeB/wz4ZXqjzStSyoMKq58AVVEYy6b3VDfe4d7q8g9jfreMrqqM5zKsLSSR0mV0ViC0SSbzKqHXZHDkJqODg6QzL/HCV6Ks3djg+S8NMjxtUi1FGHBWkX0e3/pGh9SRz1L1F1g6v4w2NMypl17k/PevUV6P4Gse1z9ooBhNHKXFxOko7sUkN98osXa9TOaURmVJxRyvsvotn0uyCazQqJt0pc/hlwZpjGzy/hvD5ApNFHOT1opDftiDjE4sbvDWb+jM/aSCo4Uc+SseE5kWsqjQEknUUOPMWZMjI1WqRpSB1W2cqTwIjZ1ShNZWSLbToRXqlHc09HzIi6/adEsOzraGq8boH19hs+3gpnxSGYPN1ct0nNPMHJkkKQQVbxknbNKROjGWiBqH6I8cpoPAUC36oscQUiGuF7GDBKGdw1CSlFseHbdDOlRolBqMHRnh5vsL5AYzJPtSNLoOfcmQVP7DWYGYaRAzjV4Jq2KS4mjhvmsr1AG4J+g+iqF0kqHn7p91KG9Wee8bH/Dsjx9DBn3slHeYPDZK1FC4ceZtcsOHKAkfy+mVznqaCKGAPvNU2zzgCfiUBEkhxLiUcmmP7WNSyuVHHf/Ywh0pZYNe+ZNvCCEywGeAXwC+DBxUWH0K5OIPl8JXd+oEnk9+aO+pOCklYRAynE6h3M5J6xvL90QawXUQMRBRWm6cRjXD6qV1lM/ViJmb9A/dJJXZZOnaBNFUEVMInj1e5Pcu1zBvbjI68hqvv3WOdbuEefE9tE4Z1Q+o1UPUbJnWgsnxFzwy7UWWO0fJzxXZXPCxtx3iaZ2rb+gUBiGUTYioDB6zyIw5xHWdbOIWF8wMmbSOSETZXRaIGZvF1QaoBjP/TotqOYKwdWqtIt5KQFfR2RYWkRtNinYHHxdbMxkakzj2LuuNOPaZgNnxOsef77A0bxLJCJJpn+YOdBsqmUkDK91he9Wmf66PydwMVlolDBaIW68BDrgXaIczRPQMo5HXaDtpXG+TqnONbOxzuGGbnDlJtVNlrbHGaHqMYn/+7jXRFIUIAnk7KX9kbggjoqNpGkc+JjF/+plxlI94pPqej/YRZakMW+BfA/0ZhNjfTzqVj/LSXz2Okghoek3M6ADVjo3tdiBVJZ42SZspkB2kdBBi71mNO3hBgK4e1I484C8lF4DkHtvPAXtXDL+Hx7KlE0LMCSF+XgjxvwohrgAl4F/QK4r8y8AXHqe9A54AKQnDh0+13vpgkT/7nTexDB1T17j27k3a9Q6RaAxhnLqbi+Z6dfRIlZnTp2ncqvIH/+L3uHlxjaqTIDduksmc44Wf+gqm8RLPHVUYOOaSLozws7/005ycGyarlbH9LY6/WmF0WmNk+CiOv0V5Q2LvZChO9ZGa6vLK59LULxmce8fEMgaZe3WW7YUCGxccPnjX5ex3AhYvzXPjjRLhezWihkqn2iH2YpuGEcXe6VKfDwgaKRQ1TiQqqSw2KasaiwspOo6Fflwnd1qSTrnEAo+RiTbxiEf/YJuxsTbFOZ+matH/jMCcVfBmoti6wZWzUdq1kERSY+pwwLOjgtr199hYO4cqQGt/h6b9Jr7+MopqsNW5QMO5ReitcHO7DN46F8u/yeXq1zCUODWnRNUuo5Ph0vo2tU6XeMQkF49ixS2y/T1BTTRhPRDo9kLV1PuS7wM/4PKb12k3OvfvKKKgTT40QIbyQWs4VeySiJ1nfvcChGlmi329qiHSI57tx7SiqIqCEq7Tsde4sV1CyoAgDHFvW9JdXN9ip9lCSsn5tU2qbfuR/5OUIdK7cNe79oC/OKR48scPGQ+csei5eezL4mk/6tZ/RG9q9SUgRS8qvwX8d/TWIW89ztke8MnI9H381FduKMvazU1qzQ7pRJShmQEiMRMpJb600ZUovueTjat0Nw12txpU19aQqwGl1QJGpI/k4Ajnvv42ufFpAneDpXkXdXqBzprO1Q8WCJducuK1MWKjHa42dEZedOnO1xFVnflqHUPaBHKX3Q2PVQ0CU+PwTId8Zh3N0Wk0bNpeSHa0ihVPQLfK9WWNyFGXzSWfndIYLb3E9Csule4I9V3B8Mwuq/NJZNLix39ik/lzCQrpDo3Ap1D0KDouK6/rZBM22/U4DamR0G1Wmib+CohOhLmxFmpcQ2l4nH0jythIFzOwqS4rnP58lERmgdHPSOKqQrd9koWFBfyZNcbENEPWKNlQxfPOInAx42PEYyeZ8G+iKkN0XI9DuV6B6416k3K7w3g+w1q1jqXrHzs7sF9UTWXm1CRW/P4ajkIoIPbuEIfSZ8u+RN6cwVBj9zQ2CNInZ0hiWj+e66EbOvnkKHBP2TltFiF96p1VKtVLOGKO1UaZ2f4Yo9l+LF3v5UH2F7H0R6d0CKEgleID4qIDDnjaCCH+lF4gNIUQf/KRl0eBsw8e9SD7mZv5VaAN/Gvg16SUNx7nRA/48yWVTzL5wjTXS2Vmux6JdC8nzgmalJ1b9FvHeev1D8iPrWG6E0ydGKMbhLzyC5PotYBIPIMekcT7P4vnhXzv91ZITEQJ5jfw1rZI52LMvtLH1XdqhMVZgsVNkkM7qOE5jn0OypsF5m9E8MQttEwf/dk61ZJF13IxjV0uv6cRBhbpvMVYsk3TrtE30cH3MkTSHfqSVzn/Z3HGXzFZOqcQpk0a7Rh/spTBwMO4WmK9EuH8mxFUR+DHAq5ux1lyTLQBSOckpVshoR2w6xSoNqFpeUQSUTZ3PVpbGk5Nw1BCClMeTV9nZ0cjfdGnb6xB6BXoaCrl1joxY5akqRNTFFBz+CKCK2IEwmSuMIsi4ihKCtu3WCptc2p0AE3VGEwlGEgmUBRB23FRlCfvepc3q2i6enfNMpp4POWnIjRy5jT6R9xshFAQ+jijBfBcjytv3WD29CRW3PrIfgLbdbm1UkHJpHn2aJF0PI6qgKl+GKw/ag7wcQi1/9E7HfCD54dvRPi43Cmv+Fl6AtM7hMAW+7Q/3U+Q/Af0BDpfAn7xdirIW7cfbwLnpLyn1s4Bf6EoisLoeB/9fsD8mXmUmQFS+SSmmqDPOkqr2kGRCpm+z6C2BZ6pYqQsAg+S0W0qa2dxmhFalSR6Ns8X/s4hqkqbjbURVlsmVrJBfiyOdtFHUkJxPC6/2UenHqAUobGiELoOsXibRmmLUq3F3JxHtSIhLahVDDzFxHJsVt4vEg40ee9tC2fNY6Da5ZpjsnUF1K5J4ctpjBWP1oLD6nQae9cnSKS4teKh5l2E7RKmNPoKLbYvawyM+diah+UFbG1p9A+3iAzrxCIeYbODpwXMzLXZ3jFwdiTn51M880KL+koIg4KtTcgXLRSjyaVKm+O5bWLGaxiqwVZ3hZz5LFbYouUuUumcQxERSt1dBiIhw+kkVWeJtt+iLzp+t8ByX/JDJ5lqxyYZMe+rJel7PmEoMcy9R2HBHiWpAj94UPH6MZjqx7vZ6IZ+e4T6YYDstrtUVl+nf/olbE9ltj/PcDzB5a0dZop5TPXBW4frB1zf3r1dNLo3uvwkHYQDfsD8iF8aKeWvAAghrkopf/tJ29mPuvXXgV+//WYFPlS2/g3gH/c2i7PcDpxSyt9/0pM54PFZLFUpJmIP9OQNTeXIy/fnsqlCJ5ZSGJ8aQOsobK2tE7oWdtNmdmaQSDSNrg9Q2vCZO73FcsPDaQVcf2+ZTsVBy1r4t5rEDo+TmEyjNBe4udvBCR1mjhe4cLFLuhgyd7xJW4fuJZvNt+PoKVD7Xa5dNdhZ9ckO6mwt+xx/cQfbhIjnMffTNleu5CnXIaj7rK3atL/WpVWTqHGF/HiCnZqLl4HopEf9hobwIVrvMDXb5oN2jKsX00STIQWtw3IqwvPjt+hsdwgiKm+/H8dYVEj0SbIZD9uymF/LUusInn22hluyWLNTdA3J7IjJ8ZEQXynQ7LxPPPEfk/Yvo7qr3LQbOKFAX/LZbGwx/cxfR7pVlj/YYHh6mrXAxsgFWB/J5w9DycJuhZlijqQVIfADELC1tIvXdZk4Prbn9f2osrVVa3P17Rv0jRUYPTz8yb9At/noCFXRVKQ6CUqS4YzGcCbVq1bSaKE/pOCypijk4zFWKlXaXY+5/gL33olv7pTIx2KPVGYf8OfAD+fa4pNyTghRkFLuCiGiwH9FrxrVP5NSdh918GOpW6WUu8D/c/uB6CkFPgv8F8A/vL3bgcTtL5Cly6uk8om7a5e261FuVRhKNkGdQlVVNEOjVWuTHvPwQ6iWO9TSDQI/JJaIc/3Md5k9lWSyeJy33v2AiFLg4sI1ZFVQLER58+tXaIZJokKhL6vghDu4ySIUo1TKLfAUdq+YtPwoQeBy44zg8BGbylqAl0pQ2rJJj3rcugChqZGPuwSGzkrH4ujJGsuKyVrDpLLRxq/7CBOyQzYqCknLJiFcKqNpBlWPvnKLZkWlo0dIVDp4gcpq0yA56LMdiWNmXd75IM3LL1WZX4myvarx7oUE3bIg9lmByAYsLmlUdqJ8+ec8VjdtKm6Cl6YVFK7SrJ/GaXaIp5/DczdAuURU0UgPD9MomQjvLEb8OF39Gun0SRJKlfNLV8jFX8a8R5yjKIJTo4N3hTgr19bRDY2Bqb7HKikeS0WZPDGG3dr7ty2l3LPSxuNimDpDM3P3bRNCMJBKIMMOMqiBUqDrSS5v7nBiqB9D0xhIJTBUFT8M746YW45Lq+uQjETu+0wehpQu+EsfK0Y64Cnw6QmS/wb4D4Bd4J8AnwNcYBj4xUcd/NjfQCHEJL2R5J3HUXqB0QbOPG57B3wyJvL3D1nMqIlufnhZvSCg4wV4gYKhCbYbLW6t7WCvbLBx9XUOv/oVDr0wy41ymUIuQWO7xcKtJo1IwGsvq6gqzB3JM3Hii+zudrh1ZYWOb+CUNik+U+TICxVKQZTLbwxhlnfQLI+VxTiabhGuq6jmNvZ4ina3TSwdkBzzcesKoQ+tqg5dgdO0kGWdvsE6kViAWtWJNTy8iIqigoKKTFZIbkCyLXDbgkzJQz+s0BjJEnRCFBHipgy6gSA94uMkEsh8k2qgEx23qAzCUNLBvaEQMyXpcWg1XOyaQiQisUyHty/FccMhxkZ3eaao8P73EyRicPhVGynSaLzDocSrhNJhJ7iECBPsLLXpO+TwzAsvkYym8f0Iyco1/I7D7s4uqXyCRKY33XkneC2UKqRHsiSjEdR70iYWL62QLiQ/VpwlhCA3uLdIxws7lLo3KVpHUW8Hl0B6qOJpe6R6ELYhrGGKGJP5wn3pHx8VKXlBQNNxmMrn9jn9KnqWd5+iu/gBP1CmgMu3//636ZnjNIGLPI0gKYS4NyC+DPR8rODO2uT/Tm9R9JyUcu9y5QfcRxiGLJxfZmh2ACsWefQBj0G71kYIiKd7N+akFcEL0lzcqnK836O0WiLoumT7+9lZzRBmNd568wrNdp3j/9Zr2MkY0+5z5PsbLN66zImfXqK0uM3ZN5KoYgeXKW6eWSQtFHLDcb7XSDA9WWRnpcbmlW2KOSifKhDVtpHLPs3lgDDXxdNDSBrgCbyWirseIFUdM+cTNX2quyqLVy0qmz4BPqEWcPh4h5s3LXzpY2+bZAoerZZG2UrRqPiItsD2LJotC2VGIbq1SzymMnBUYft8h5vnUnhFg7bQMRZsoqh4Zpq5z5So1CJU5hUaiwq7YYrtBYvRssfgq7tsbWhs1+PkBjYZHOwQWB12uwYGOdJqClVYmL4FW2WOf/4ouqaxXKkR031MPcLJ146jqirNanvPoKArCkbEuJsGEoYSNwhIF5JE4k/+fdCERdoYuxsg3bBDqXuDPuvY3W33snp9HaEoDM/s35gA6PmqKqleHUgUsrpGGEo+OoC9vl0ibhoMpZPsNtssV2oPdOr2bF/ooE08sF1KD8JdUAaeymj5086naLpVAKoQYhro3DEWEEI82iiZ/Y0kv0cvD/Ii8Lv0xDpv7sep4ID7sdtdli+vMv3sBIls/G55o0+CDOsQVhC3byoTJ0ZRlAfXjKYKWRYvLXPj+9f5a//Jl1EUhYkXp7ly9XXc9QYvvhYnnW6zeqHLH/zhO8weyvPFVw+zdjkD0T706nWamzB5Ks/mUJkTJwdZ3dlk7rkizx3J8/1//l3UigODFmGjhhI0iQ3r2Csez72yy1t/HCFlhuRyLcYPu7TyGqtvWmiGT99AFyVUaduCeJ/C+pZC0NXRIzWSwwq2aWFIG82K43QtPOKY41ALIFCiENfQ7QayGtKxBZeWkwjfQyvbWJqKsmyzLWIYLkTrNRoRjcauQFRd0kmHyxeixOI++YE6o7EasdlBdqstlOQYfvEY+DXyegFVGUcoMRx/B8PwaccVzr5znoS6ybu7cV576TgThRza7VFVfiRP6AdcfOMKs89PY0Z668YjH3GwKbXbrFUbnBod3Pd137i1RSwVvc+pRwhxVzAEYChRCpHZPQMkQH7owxGpDBuARstVUYTYl1pVCIO2X0JIg8vrDeb6CyTusVIcTCXujjDHc2k+8chQehBWQOnjYFXnKfDpCZLvAP8c6Af+GHouPEBlPwfvJ0j+BPCOlPIg+/cTYpg6+aEsqqbSN1b42H2r27XbgfRRl0i9L+fszvTd2o0NkrkEyVyCzUaTvniMwlCOuRdn7gZRLwg4v2Hxlb9+ipHJPFJK5k6o/GTnZTaub2LoGRbeUtCjCjWtD5nNMHt0gOZ2CbfZYP3dDUYHZhn98pcojiyzdOE8BBqhlmO5quDWVabGt4n6NmHLotzQYSMkFVMIhcBXYXa4y9Fnbb7+hxaurlCvBEwearJ5K8LVr1n85H9Y4+p1h/PXsqgGZPQakeM6jbZO9N0KzS8Moq7W8HMxxn/CpFsN2Jq38UKJn9bpNj2ilQ5GxqT4kzq19TzvrCsgFOL5Dhffh9ZawOyPd2jYUd5/HcQHLoePutQ3PVafF8ydOklM/RbJ+ByhOE6p8zYZK8fxZ3Ns7nYwGgNoy3VKOzWubWzz+aOzAFzZ3GHcsLj27jy5wSyDU/10HZeW55GPf5izWIjHSFuPFrPYfg2QWFoG7SOerjJsgYghhKDbcdB0FU3XHuyd4YAAACAASURBVEj9uJf70j3CHSDCTtPC1DSihgqyS4hFud2hmNhbIeuHXQxFZbYvT8y4P7DeGzDvLbUFsN1oYekaSWv/I2ehREE5tu/9D3gE4jEWw3+4+QV6ef0V4L+9ve0FemuVj2Q/6tbXn/jUDrgPVVMfaid3L1JKtpZ20U2deHrvS9Swu3R9//bN68Mb2B3zbMMyEKqgG9QZyXusvbdKo9zmxa+curtvPh7j8xOTaAgWL94ikVojlnuBnGawVG5z5dtXSBYSiJE06tkmSd+lHF5gcG6Fb/7LGomoRqEwya1z73D4lQjb8zY31w2spE40F2AvuayUFWpKElWB/IDPmh2ltCRQ3ZBwKMK1edheM0gmuyB18mmHFD6JySbVnMH1qxZ9Y12slYCJw10iwsfprrJ01cSphUTf36EzkkSxO+wsStpagki0hRMziW46KJqGPxHD6Ei2mzHaaYNIo4XsekTzAV0sbE/jjZsKWtsmPWaglYG6wXhB0q1UuF6fJxsfY2O7zlThJv3WEQSS0CmzXKnxyswJ/r0jp7j27k3WVnap5goMjxY50l8gauj8xN96gXhiDbsd4+xbtzAnsvcFSSHEQ0tH3Usg3bt/F0c+tL2T0gf/CmhHQMRZubpGuvCg5+vHIbRpAKZuHyKDXQjWsOVRNmpNcrHofakrd0gZPYWt9ZjqBsf30fZor/f/SKSUe86IHHDA43J71vNvfWTbbwP7SgvZz5qkIeU9v87etlHgPwdO0dPmvUfPaGBtn+d9wMcghODwi/cbQEsZQLgNSj9CKLhBgO0+uAR85c3rjMwNkR/Kcvn71xk8nMVMGYAg8CuE3gKK2bshLl5cZqPVIl1Isvp+hUtv3mT2tE51q8ZsMc/pr5xitVqjLgNejlq8+a++xZv/V5vMKZNjn51i6XyVlbPrvP4bZ9hqBtitFKgh5kqT7qaCqiu0Eim8Kw0CA9ITIfoVn4lXOgQbsFSPILsh5cCgrlgcn6qzsayz/EGcUAERSEQ84NpGBt/1qa9JmJRQiNG/3WFHUYlqDcKFEEVVcOMq7oCJWpKMmG3kgMJacZjE9g5isUndttC9gGLKwYo2qdciZEYVmpsqWizAjaXwym2KM5LdNZUjcw7901HauKCdoLyjMpgbIK2nkVLiBQrZdpVOq04+McTRV+aYOD7Wy30MwrtVXNJ9RQgFmhLnmedniKV6AdL3fG59sMT4sRFM6+O9UQHi+t4+r0JoSP0UtZ0Wtd0Vpp4Z/8QBRqgFpJIhLjSeGXm8NctH0XZc+hLxhypdtxZ3sFtdJk/snRZzwCfnh9Re7okRQnwG+DvAgJTyrwohTgMxKeV3H3Xsfvp/thDiZSnlu7ff7Dhwp+E7LgZ/D/i7QohXDxx5flAEvRJJSh4wyMdj5PeYARs/NorTcQCYOD5KNGmhKAp9J2K0ViVXz+4Sel0iVoTiaJ6VzQ8QboRjrx0mCAIc28H3fWaeneT17/wx3X748olX8LUY8b89w8J8g24yYO4Vn2Y8R5pbVBcMjpyeYf7aBpXtGqXtDn3xgGjdo+aG+KbO9Emb8rwg2PIoFw28doha7yLMEJlSGDrlcPR4A/FGnPKGgWG5aFKj5pmIXYWZiTbHT7c4V4tTudrF6o8w+5rEEh7v/L5NrZjEmNNQ1mykqdJSNbQA1HoHJ1TpZpIkrm+TMBxa6RTbYZTYxS3aVgF1RMcp24hGl854jrJjI5Y7XHgvxXIJTj2XR41m6W5u4QzDjWu3MKMmrtbkuZdfRfoqt84vMXZkmGjC4spb1xmY7LurUu0VxO6j7bhcr9c4Ho+gqyqqppLpT6MZnzzNQQiNSDxCWoj7FLP7xQmaBNIlqn040/GDSr9YqzWI6toDa7N3yA1le3mkB/xg+ZQESSHE3wT+J+D/AF67vVnSm3r93KOO309386Mf5T8FNoA5KeVXpZRfBebomZ3/6v5O+4DHRQgDoR9/sEjtRzCjBuvzW2wv7RBPx+6OKJKRCKOFAYK0TbxfvXsTP3HyWVpVWLu2QX4kT3VzhZ/5T5PEUjZHhjKcdOd5+9+8gW6EtFt53HYMrdvPhd9bJuUsYsarpIuSyekCfrtMwS8RHTLpOiblDviminw2y4bIs6ulcRMRWnqO0S+qOCMmrYSFg0llU2fDNlmeNwFBalCQnXQx/QDDbrHWMHnjT9PU3lEp1rtsLxpc+WNYf0ugiZCcV2XIr9DfrTEZL1FLWFQjSXR8imMOHMrQfzJkeK5LwawjNUHjeB87ahRrTiFq+gRJkyaw29Jx+mLsbnUor6dYW0wRBGVeeqXIhe9/m+tnXqfjLJJLjKKrUereMtVSBc/pGU8dfml2zzSOxVIVQ9PuilmEEBRH8k8U1PbCikXIFFNPdKwvXfzQeezjup6PH/QCmhcElFrtB16vdu43Pp8pZB8aIKG3dv9JVd++57N2Y4MgOAi2D0V8gscPF78MfElK+Uv0LOkALrHPqlVP0lX8MeDvSym372yQUm4LIf4J8M+eoL0DPiFhGLJxa5O+EYFmDjD1zDjLV9boGy/eDZKqABoOiXCMkckRut0OjVqd997ZoFluMzc3wsjcIIn059HUVaKJEC0/ye7mOpWuybd/9yqu7WE3bQ5N9NGdTLNiX6aZH8OtNPjuty9TyI1w8ZZNJBHiFeMMzHboNAUlP6RjmXg5INDpXGlRn4ihD2gUElWCfJR1t8CV6y6ZEQfXVlirxNBqHuG4TugKtHmXatRAi3s0Y6De7JAfdnFrKmEX9J2QctsknI7RpYuWUPE8n9CDzaBI4EtWSxm8mCA3GKCuKwTDSdK2i3sD1JKEiRhOTCHwdY5Ob5PdaVESMZYXL/GNb6/yU39jmpMvvEAmE+PytUtc2lxi2pxANaE4YOMF5wm9KWL63muB47n0vtYe/yKIaY9eK9+Lq5s7LJU3eHXcIBKZZb3WIBeL3k3RaHS7VNo2mWhPJLS5uI3dfHAq1Q9CarZ931rtJ0FK2eu0fGq0KY/Pp2i6dVBK+d7tv+98I3z2KZHeb5D86Fdtr/SPZWBfeScHPF2klGzMrxIxamQHbWLJKbqDMepdBwuFtRsbxDMxtpd3kcB8c4ml3bPE9DyqjPPiXzlJNhEnmrBIZhNsVlpEjSIjwzH+8H8LUUQLo11j4dwyJ378MMVXJBd+s8LmrSjXr7bYLdWJzyocHokykBE4hkJjucGtIEO+KCn4LYKqR6xgsVkskCs7rC6q1PQ4RX8Hud2gLxOy3MrSr9apmzop0yaT8HD6fbq7KkpeUspFYDtk46bAtEL8lEBXAoZnOmyej6D1SWp6BDYCTKVOtGPjDcfhrTp0PLrPDLDiR9heddEHFTpRFXPBJ7rVRjoBGoK+UgMPk9bYOOlpnUjbZ2AqghQzrM6PkYt4JBMpLGeUoaEV4tEO9TBk4NAx/LCF95BUYdfx7q5RSumDdw60wwjl431VnzZSSnzPR/+Yot6Pw3g+TdtpkozGiZgRZop5rm+XmC3mURRBMRG/TxlbVkKKgw+OIm3PY7VaJxuN0nIcbu6UeXZkcM88093uNaJanpiWf+C1O+iG/lCrvwM+ddwSQrwipXzznm2vANf3c/B+g+R/L4S4k1PiAdPc76oOMAaU99neAY+gVWuzen2DuRemH5k4raoqU88cwjA9BBWklEzmc8RNAxkExFJRCsM5cgOZXlsCxpwMmmJR3e5QXa2ROpHAsR0a5Q0qrse5966SsSympkcpbdTQ+wxeODlKab3EO9+rcu2NCJfeWsYOy5x+wcYQZQwzTaeloKV99KSDfsnGlQHtFDgVgarbFD9Xpf+4ZKttENMkSjLF5ls+zq5CMKgw2N+lKi103ad7PSQS8eg70oEdhcZ74GTiSC1AajZuRyGSCRi2OrQGNXbLOomgihOJcMRdp5ZKUJMuctQgMaSgWnXmW3kKbhNvSTCgNQiSBjJmEOYs5FyBMSeKl02T1Zrs7oSsexoLl9sMaVd5/+wtnp0e5TkLlt66weETQ5z47CCWGAJAV1PslcjRbnSYP7vI0VcPoelaT2ijTfXqQH5CpAx7a5638UMHN2zdt7Z4L7WdOuvzWxx7dW7P1x+XTDTKZ2Y+9AhWhEAI8YCxwN39UzHcepeFjeW7o0kpJYmIybMjvTzRmGkwWcg+1J0nqQ+hKU/XhONTyadnJPmrwNeEEL8G6EKI/5Ke8PQ/2s/B+wmS36U3LL0zh3QOGN9jv5+9/dqnGiklW4s75Iezn6i3HomZ9I8X9uUsEgQBmb7U7anVngIyHb19E1EVBib6gF6FkCCUqKKGpc0j1BEKIwPYHYf/9xtnkMs1EkbI8z81xZJTRx2JcuYb7yIkvHbiGf7k99/i+c9HkQu7OC2HofECqWKamRclm/MXuPxNl1olJB4NGZtwsQZVzqzl6IgQkYWc2mDn+x1K53S0do3IMYvy+yH6gMkLrzUYsDZYWo4RIHBLPqWagbduYcQV9K02fkwQ+B5hRMVbV6jqEdxalzVvjEY+Qbxa5chnbTa+2aKMSuC6mIFGJdSJDWp4aAyX1skOGiy28ngoFIZDOmOgLvlkfEE61k+QaKO0t1i9pNIoJog6Dpuuw8mpURavrhJNl0nFBskNF+9en3ajQ6AImr7HUPr+IuixZJTZ56dwu97dih9CeXhB9Ia70TOjf8i07R2klOCdRWrTCKU3OvNCG9uvPTRIpgpJrMcst/U4dD2fhv2gr6yUkjAIGUoncUwT554czetn5skP58jftttTFeXu9Oy9+J6PpmuY6sGE1Sfmh3Nt8YmQUv7fQog28Ev0Zjy/APy8lPJP93P8fvIkP7fPc/lvOBhJIqWk07TxveATBUlN1x5ZYPkO85dWiFkmw7N7O7bc3CmRtiy8IGCpVGW64JOPDSOVQTZ2a/iez4szo2wqJoXhHGtbLuXAxV5bp7SySzEWQ1ZtpotZBqMhHyzWmX52nBtnbuEUo1zcaTJ/pZ9go449Ege1w823AzIZCyWqooaS/G6JF14q883VflKHVVrf9ag1klBUiCstlpZ1wnQU24rj7irUW1Gckzq5OFg7NUqYuBkdGUI4kMK0u2gZn3heZ7duoIcdRJ/KxfIoVrJKJ2eilrqYVQ890iXYBTuMEcspeOtgxgzScYPALBGuekSjJmE+ytJGnU7D42TeQtUc0terKDETcSRF3WiTUl0MAtrOLmuda6i7Adu2hlypEssmILf36NCKRbh1fol4OvZIIwldsVD2oSwVQiC1GRAfTmdaWvo+152PoigKkeij002elJS+wDPDffd17gLps7q4iFtVmD09hWmZmFavEHjgB4zMDWFaHy9Ia1SaLF1a5fiPHT6wpHtafHrMBLgdEPcVFD/KU9N4SykvPq22fphRFIWpk+P3bZNSsnBhmcGpvgeK2n4Ux3YIQ4kVi7B8dQ3TMugffzA/bnt5l3QxidBVShHoH3y4qjEbjWIZOoaq4gUhjicpbfgItcq3vvk+f+1nPgNtl0QqjmM7fPC1S1z/7nmmjvik2yGzp0fom8jSlRt8/5ZDqi+O7miMzoEn2zS3YXZ8EOfkBPPrW0QWqzieQmO9jRmRhHFJVU/xp9/TyAkbLjkQMUj5HVptgVLt4juCMzJFqtthbLhDu9+kmdLBDghMjciPZZjc3mR7w6Tk+DjZCK4LTszC16NMxLYpLWp0FR+jqBNZacGqS3soTuKIj7bkYZVaNA4N4AyGxC4tsKVmSR+XTB2O0lxLUCm1cWVA2ojitNNEWcEf1nCrNgXfR49otNs+F88ajIzFqG9GWFrbYaW6xYkjs+CHzPbtvU62UWvAYIK+wqMFMpb2aH/TOwjlydSsPzCUPJoSIwhDlss1cvEoEcPHLDj09fXyc6W/AmqBylaX7aWdB0q67UUiE2f62YmDAPkU+RQJd+4ihJgDvgx8IKX89n6O2Y+ZwL8LfFNK+akfJT4JQRCgqipWIoK6jzJBpfUKnuMzfnSE3EAGVds7S6fT6LDl2iTScZ4ZH/pYr817qzKM5dJ0Ow4ry2v4js+oGSVhGLz7rctoWVCzeQ49N8X0qQk6lfd44Svj7KzrrFxexW2vorWLxAqC7ZUOsWiclbMb9I86mEGKzZs6mU6XWlMngoMPCLfD8dk2169YRAcMnptucu57MWzXIqwIYo6NlYTCcYGuC/wFSSIMuaVl8FdCnLaCHzGJbHrsLOo0VQul26EznETd7cJCiGp1icYhbXVxL2/jRU0S0qaWilF7tp/upk1iuUIkGiJuNmBApdOB+OYu/fkY030GZdWivLJJdypFOh9joeYQmS2QtyLstNo0bQ/Fsai0W0yFId1Ml8qVMqd/7jM0z63gZlXWah1GXA9rjxmEpBUhajzaD/WHHaH2OnS26/L+yjqDqSSvTo8xkLjXTs4FGdDWITPVt792hbiv5qWUkt1Wm3wsdnft0vUDqh37vkLXvX1DWv4uMS2PIv5yqosPePoIIaaAf00v1eMN4FeAPwM6QFYI8fellP/yUe3sZyT5W4AnhPgmPa+7r0kpW0985p8igiDg8vevM3ksycDwDsLof2Cf+XOLDEwW77qwDE7oSHrTYfH0w+XwE8fHOLuyju16+zKj3lzeoaoEzAwWiURN+ieKaLrK6NFhNF1j/MVB5ssXGS6MMTozgqZrfOf/vEVp5RrL1xKMHh4lmf0xauVFEpFB5tUNDs2dRtMGubZwkbrt0W451CttJga7BNKj6apUWyqLZ6P4rkrZM/k6Qz2xieUQWhk6qsbgUJ2tchLnUpOYCd6Ywtxwk6VbPnoV7IJFux7Da6r4iQDNActp4AsFRQmILdZZ/QDCooI5Y9GxNbZtA2PY4lBrh+1lCbs+g8/ZxE6GLG7k6BbiOIbDdtulcksyNbDOzKRB12vjqj6nJrJMdMa50GxxVBlmofQm0UKTTLZAsZ4jlrD45v93hvzhQardPHOxLE23xk6zRTERx/Y8srEPOyfxfVyjH3Z218rUdurMnJokbhp8+dghmt0Hcy/vWOBpWoPIEy5JeEHIeq1BMhIhotyueuL7tz//2H0jzpCAblAlqmbgIEh+mvgfgVvAP6ZnS/cHwN+TUv7W7cHfLwNPJUhCL1A+B/wmPQeeP7q97Y+llI+fgfwpQVVVJk+MEU2awN7rRMl8Aj1y7w3UQTzksuyslhBCUBjuTdmdGh166Hv7nk+91EQ3NAI/4MzXz5M5MUifaWFZsHT+LWK5Q9gNh+FDg6hdnWIwQ6QDl69cpzCcI5EdQUqDzKhGyxBM9udZvraG1/UgobO9VWb2VI4lP4WyW8fbDRG5GM2mT22zhR2NEnohXsNFDULMThvP1Si+COEFj/LVKkpSYamqIytNctmAYtHDb6ucntzkxUHJB69bSN1hre1T7kui1x0SgyFNW8NFwYhbyIIg1Bzykwq13RZG3QRNIC47tERAIinxYhq1VY3iUZ/BoMqVEmCFODsCLWWyvupy+rNF1ta6LFVUPLfGdjNAGBatosVc7jSNTol3ahXe1+r8XDRJcSTPt9++zKmfOEZ7pcJUJo6z1WJ+vYZRjN8XJOF+E/I/L1qOy/xOmeNDfXt6rz5NUoUk0cSHqtO4aXxs52DwIwKnx8HQ1Ltq2LvvFzE5PvRgR1QVOoXI01Hz/kjxoz/d+hIwKqW0hRDfo2dwfsev9XeA/2U/jez3V/M/SymPAc8Av0bPs/X3gG0hxL8SQnxJ3KtDP+AuPdcbjVBaNKu9Afj1925R3akDPaNqw/ywNy3UIYS69xSUbur3FVSGXv7dXq4iTsdhZ6WEYzu4XY+f/Luf5cdePsrFqyuU6y2OvhgwNqvz/jcvcP3MLYQQtIOQxWoVp+Nw5usfsLveIJkbwLUrDM4MEImZDE73sdBsEtnq4JQavP3u6+gtm9GYwth4H5GGi5V2UCIC1fYpGm1kRCKzOk5UJTvg4gUa62oCBjS+9NVdjAEDNaZiR6MsNZIslONc+G6ElRsGAyMBhhoQb7dJX69gbdgktZB+rYnZsYl5TYiqRGIwMtjmhddaWMMCTJVEVtI3aCOGDPRCisMvh0S0EFV0SFXqJLKC2IkRrOEI8QGPcyuCShemx7McHTxObEzFjQacPb9EJJehOJFgqn+E8UiUStdhXQ8prZZQbJ+R0TrZgRgDk0UOHRqmkIjdp/KU0qO8+j1K66uf+Dv1OFi6xlA6+QMPkNBzyrkzI3IHKUOcoHn3ec1duV3N5PGRUtL1DkrWPi3u+Lc+yeOHBFNKaQNIKRtAU0oZ3H4ess9uwmMJd6SUF4ALwD8SQrwI/BzwM8C/D5SEEL8jpfwHj9Pmp4V2rcPK1TWOfeYwAxPFRxbX9VwPu9Ulmf1Q7r6X5djSpRVS+SR9YwVatTZGRMeIGJhRk8Jw9m7Vkavv3KQ4mqdvJEcym0WxvgjojMwNYloGbtcjFrcomgalus2xn0mRkBPYaocJOUHSFXz/j84QiRq8MDfJuaVz6AmLTjNOUg/x1YC+8Qhdu4hGDV26qKaPsF3ijk8Yd1hftpj6nGRpCeThDJ0th/PvthE7XU692KARRHCqCqkZn+FBlz/62iDZoMXp11q4nZD8sMflM1F2LzvkMi7pZkCrHsErCGxb5crbcYoTHYxUQLQeEuoS29DQfQcrYdNpSryNkEY0iR9JkW+aVMolOksKdTsgdbjC7IhBrbXMdkQjbKrkfJfcXJrXjs1ycSfOq8dVtq9uog0k6GxscHhqEM2dZ2styuQRE8U4SqvWpmp3iEUjd0tBCaGjWc+jaH++066qolBIPB0Xm3uRUoK0e+WrPgYnbFF1Fum3TiCEQBMRVOXhn8FCqUI2Gv0whekeanaX+Z0yz40NHQh4DngSnkjO+8TqVinlO8A7Qoh/CHyWXsD8WeBHNki6QRtNiTzR4n8yl+Do7QTuZO7ReV6tapvt5V2SLzy4b8PuoioKUa3OxLEhFE0nCEO2lnZI5hIUR/K4XY/yRpXsQAZFURg7Moymq2zMb7G2VSc/lMdzfA6/MINhmfh+wKWVVYzFGtuX1/nqzPPgrvL9r20ghcLos1Fs16MrQrqXbuB2ba5cLJFJ79AOFBYXI7jtSyTTJmFulFJlCyMiqS526Zt1OHqsiSBk6Zs6Zc2nf6KDd63KrqOh5ySJOZ2Nr0uqG4JczOHmgoVRcQhjgvSwj5c30QOba5eijE11+ds/v8O3vpXi2pmQoO3QdVTEjsvupoadlaSP6DgRndqaTf+IQ67gc2MtSbemYsQlgjq7m2myIzGcQCEWr2KX1lndSsFEHk2t0Z+zGMxEMaIprm3s8syJGc5dWUaZyrC+uMsXnz/G6REDY9Cnf+w5Nha32Vw8QzLTIj1whL5UAiklrh9g6hrp4pNZv/2lRNbBv4nUT/Nxk0gRNUmfdexuUHtYJZN2o0Or2iaSMtHUvdtLWxFODPUfBMingeDTkAISF0LcW8FK+8jzp2pL91CklBL4DvAdIcSPbIAEqLiLJPVBotrDE8EfRuAHVLdr5Aaz+/qRZ/rSD82TPP/BLfqHUkz376Lps+y2fTZqTZ55ZoJWrY3nekQTFtOnJli6tMrQTD/RhIWUkmOfmaNbfQthJNlYCNhe3sXturz41dOkyhb9L+V55QsnKa2vUV6+SXm+xuDRfsrNDie/eBwMje7iBwReyJbi09WKZAKFybEI567YqJ6PVWoxMl4HS8fZCLBXBKWkjr8laKxqhKZP6JWRQqD3K0ST8PYfGmRTEkTA0nULW9cZHu3SsmHhmolfNNk5Z2HaEtmS/Pav59ncNhl7ySFeC1lciNDwNfyMiql5xJtd9AWoezqlmo6T1iiaVW5aYxjdLkpMwelKrMU2ruKROFJnOGHjGzYxRyAPWYxkrlLZjpCOPE/95jI3FJWg6+K5PgMTRfo3HN7a6DKTG6V6s8SzE6Ocf+N7DE9nKAzl6Nhdrr0zT6sQ4dT06I+UeEcoaaR+8mMD5B18N8QwP/5+FPgBnuMxnH54DumdupulVvs+f9gDnpAf/Y/v80+jkf0Eyd8AdvfT2J353ochhPgfgK8CI0AL+CPgv5ZSVm6/rtKrIP036SldloBfkVL+7n7e/wdNMXL4iSXkruOxu1Yh05e+r6L8fvBcj52VEmbUIBKNMDNQIJ1PIW4XvM1Gw7vpBevzW+QGM/z/7L1nkBxpeuf3e9OWN12uq9pbNBrezADj1xtyucu75YnLIzck6njShXSSIhQh6UIRlCh+0IU+nOLi4sgLkqL2QhTFPd5RuxztLrl+xw8wM/CuAbT31eV9ZWXmqw/VwAAD1zOz4I7BL6Kiu9MDWZnPa57n/w8lw7Q7HTx+E0VVKOUqLF1aYerxcTyR/SA8jO7XGN0/xJWT12jVWsRbYJXLzNfPEEn143gmSO49TU+sQyPsYf+hXaxcXOaNeZXJo4fR9POsz62Tq1Qxe6c5+MWDyIbF+TPzjMUNFI9NardNOw8nz0f5pS9vEZ1zyPqDaFLDE29hmuBmvDT/VjA4XiWmKwjg8mUVBl0md7UouQEufcfAbDnoigRH5eqCCZZg9pLGeKpGPG2hrEK9DjQk/qhNftNAShfCUJ6XVEw/8b4ysd2wvqEQrFQIT+uIBQ/N7Ci2LVCWKuz/4m62IgXquQbRhEZeW8IplIiWMzQDMBrvZf94hnNn5lh64Rz2UpmB3hjn5ouUfDpXVkzceIN8rcH4/iE0v4nvIxQgb/AgRxp4WwRg79NT9/W4DPUEb5tauJVb9WbbtsNSoUTIY2JoD8fK62PDRzxISilf2Om2Qog/lFL+F3dbtxPFnd9+Nxf2ABzgt+jalETo1rB8A/jK9vr/Evg63RbA1e3lfymEuCClvPJzvI73xPupsfL6PXcYKe8U6UqKm2VWr62TGk6w/9lpFEXBdV1sy8bwGARUg8JGEem6+IM6G/lLVJ04e8bSOLbDwoUl4v09vH7qKiOpGANjb9eSjewbA4zlxgAAIABJREFUxPAY7I8FaTQttq7VqRQsGpUWDTIsX6qz8cNX8S1v0D+e5PAzOXItnVK7w+VFlUrbJNJeI+TzMJzpsO/AINdPt7DtLCITomWrRDo6F163aRY7aP0QCtZ57Kky/983Y2Q8Nfbuczh9IkRmokmrquC2FMIBF1MVzF01iHqbNG0DqTgs1HoQSotgr4XegVLeIB7sEB+18DYlw+kyltTIxwTeoIHSbpEtG9Cx8ZZsIi2JOqgiQi6u5rLhSdDflDQaCoOHdRb1FaZKHtqal1hokJeuWPRfMBkdW2IkPYm9lKPhU+nRl/itzx9ic7aEOdzD1atrDD8xDppK2OMhEfB95F7kTatD3bJ25NbhupKWJpg4Mvq+TKDz60WySzmmj0/i0bX7ZnU/4l3wEQ+S75LfAu4aJN9XypsQQhFCPCmE2JGYopTyf5RSnpZSdqSUW3SNMD9xyybjwM+klDOyy7fpSt3tvcvh/k4pbpZoVJsP3vAhYHgMpp+Y5PFfOowQCrVyA4DCRom3fniOuXNdU5ZgTwAranL53Dx+q87u3u4cWDlXYfzQCKnhJMF4kHDi7dR7KSUnvnuKwkaJueVNzl5fZvTgMeYv5Fi9uMqXvnQcj9+HGpb0DMxy/cxlZk45LL5lQytCPWngjoaJj0H22gLLC1c49/0LYNYRZoB4u8VQrEhHWmxuGAhFobgAq2t+vv9CL3sPt3GLLrUatC1Ym/GQ3dJxFbh+zsfmssm+/jL7PtPC1sBuCpSGha47pCMWag2yV3UuXfSTFQZ1oWK1odNWwDLQOgYtYRCfArPXpNTUya5oVE9Fqc0ZNFdNVLvFwGAPAa1DMLRMxbYouVH2TX2SYmWEYKnD8V89QFNp8L1v/pQfX3iRUycvs3tqF24qDAkTn+4y9twuNFUQC3gJeIz7BkgpJc49HEM+yDSsDvn6zp4Dy3FYKVVQzffnOBJNhRk78MjR4xEPlXs2Gd5vMzdIV8ngE9s/3y2fppste4M/Af5cCDFN18bk721f44t321kI8Z+xreQ+ODj4Hk6/cyqFGkEpb1P9eL9cOzVHtDdyU9j5XpS2ykhXEk1FqBVrWE0LohBLRzGf2Y10uj6iVtPC5zFJHZ4k6H07O7CwUSLRH+PyhUXWly+zOz0G7MZqd6iX6ph+E3/YSydvo5heKvkq4USYUCxEp91ibF+YzO5jWLV1Ir0G8+eXkZ4crlVgMhZhw7RpGjqVxwJsbpQRnXVaVyA87EFXXJYuqDi5GkKVZAYsekMdZMrHnokisy9pBL2SpVoQGfXQ2Woztb9BcVnl4BMlrp4J06gbjA+32XW4zeJ5HREDfd1lbsaDZgoU08HVFbKndQy/4I3zMfSQSjwJI+M13vypQWUZ3KiCUm/jt3yEBqMsLpYpz9pMfSJINNYkHtdoF5MYsyVeWC5y0Wzymf/kKzz7+WeJqx5KC3WCao7QQIiAMMhtefAgCGtVdk0YZLcsZl5bRdmTZsvvp9q26AkFuLS0Rp/mYWj87bq+hlOg2lmn1/vza/9J+zoovQ/VfisW8N2m4HTHNUiXmr2JX0tu9/rurif8blBVFdV75yiOlPLRvOR7Rn4cEnfeDff8z9iJLN1f3me1TjcC/74QYgtASvkf7eSKhBBfBf4x3czYG8zRDbYX6DpIt4GvSymzdzuGlPKP2S4IPXr06EO940O7+3/ux+wdSWJui01bts1GpcZANHzHg29bNq7b/ef1T2ZurhdCENxW5WlaHV566QJJr5fxgbfrLFeurVPJVRjZN8iIV6dVq1LKB7h24izZy6vsOjzC4FQfuqmTbTbx9vjwBj3seWoSj8/DhTPnCPlzJOPHmHmrweXXZph6fB9qQKO4cIp4NYf3apNAJkxdBFhTCvhTNorfT6HsoNQCBIwaIqZh0WEt58fXaOPx2WgRgdGv8+rzXvbtbyIGOmRtnUURoalJzHCJg58pcOp8GL9iE5+2yec1ju7PogiXs6/72NwyGZyyKGQ9lOoKzpZFIuXS8KqsKGGs1Qa1gSBqsUZIb2JEBXnXjy8BxoKJktbYOFVFHZnFTY1hhk2sep5OyGD3QQ8e/3eJq0dZPuWhYjTJeCKM9tdJ7rd5+c9OEp4KESzrNJ00ZWOGVtqDu77B9VoDNxIgPGGil9vUPG+/1JcKJXTLxdRT3OqtJe15UJII5b2WbBi8z8Gh942LS8up4lV7HroE3LnVDfoioduGfi3bYS5XYDTe84E1uP5A8DFyAXm/7KQn+WtAFrh8n/13ZlexjRDiHwB/BHxZSnnqllV/CEwAI8AyXcWEbwshalLKH7ybc3wYCEbfbvE7rqTZsZGSO7z4btQ6AsxuFdBUheFYVwR7Y3mLpWyRqelBPBEfSuf2nYsbRXxhH6qqEvR7efzpgzSqDSoX1gj1RSltlhndP0yz2kJu1AgH/MyeW+TqG7P8yj/5HNeulxkYGeSt66exNxZRdC/TTxzix998mTevCzIeg/KWgWfvJNa5i+xNmqwFRwi3m7RqLSpLFsF4gJG+LTZKJsWSTjvn0mO2efkHAbYuquAzWXcUhg62IaaQzSlYMZ0rV8MEohYi6aHkE1x+Tac0q3JiPYgdkKTjFj1tm7nLXowejUCkg2U59E108EZdzl82aNsKMUNSBGwNEjGHhuqneWUJ3XXJpCK02xEq7TKyukkz38YbTBLweeg/9DhL5WVSdpvAoSXceT/J0TH6g2EunG9i9fmJmQY1bZ2zL53n8U8fZtezWX78/17E8SvsG5lEKDYhw6Qc0qm22uguNMsNrI7EEQrRniZC/HxGJ4T2cEdTdoIqNBKeyb+Tc43Eonfo5KqKwKvrKI96mA/kQyQK8AtlJ0HyvwV+F1gC/pmUcv3GCiFEhK7Uz38jpbzrkOg7EUL8NvAvgF+RUr7TuPkI8AdSysXtv18VQrxEV7X9AxEkCxtFFFUhknhv7gvSLYOzidBvf5F4DZ1dqTjFbJlwPHjPRIdMJHRbA1D3mQifht80OHZ0klxtlrK1Qng789Xj95AcfNuZwrEdXvyrE7hNiz2fO4Av5MUb8GC1O0wcHuGVb73A1LFBnv3qMYQQfPVrz7GaK3G5uoWv2SAYsKgXr4CqYIW9BPv76ekpow946E+H2T9exV9KsXpli/EvTqJf3cJyZhgcMJhZzlC2LExZZKkSxFuQOMsO+qjKBj6WXndRR70cGVll+RWF2XiE2ppBfyDHyeUAzbwk3G8h6w7NZZNrkRBKpQ11SXywjS1c3LTL6rJGou3S15siX26iBRwCmxrtps5axY86qqN2DJqtKjPn63iVFtFEnj1Hxpi57GPv7l3Mfv8sr+tzjD8xSSS9hRVv8FzvLxGNDFBqt3AuzDHaa3B4/zil6iqXXryG3ZKEQ0EOPjdMZX2Nhfl5WukSR/c/Q6PTIWAaZJdyGLUSI/umkW4DaZ3BUicxtRhCG3lP36kPGhVrHeGuETCnH9gAaHVsDFW9p8HyDZq1JqbPvO25CHnvFBxQFYWh2Ltqsz/iI4oQ4qm7xJhb1/+GlPIvbvx5r+12kt36L4UQfw78c+DKdhnHv9jWbH1XQ5xCiP8a+J+Bz0sp37jLJq8AvymEeF5Kubqt6vMJui7SHwhsy0Z5P8M4woB7zBk5tsPqtXU8PuOellq+d7ScY7EQsVg3EWe1UkMSIX2L4e7E4dHbz+G4TD0+TnZ5i1qpTjQV5k/+j+8RaEn8qsZjn+tFOnkUbYDiZgnDo7N+bR1vWyMzcoR2s8jffOsyVHQ+OWTS23cWdzxKqxHhmseHFRkmv7CAYzmohklk0EvZClNteLEvNTHGAwQCZWoXbcR+P4QtlKUmWqsNLqjY5LwOVakgvCpKzWJktI3Vsbi84seIGXj9LYqbAmvZwVOTSA8sL5pggxPVabYsGoUOZs8mIqRQ6EQQVpN4Jkpy0INevYIDRJ6MM/MD2FrKoylBDn/xV3CTlyjPL3MgrWF6TZy5PNVOgOaySX3CIS9WWK9kGXJD5NeXqU37MSIlBoYtbEvQIoQ/WSXZO4WqTrBa6kqwXV7P0mMLRkZCKOkaUloIxYelTpBvvELK/zSq+u7rbz+I6IoXpIaUDXC2bvZwpXRBlm4znL68kaUvEiIZvP886vXTCwzu7iMcf+96r494Bx/9OcmXhBDPA78ppazfZf0f0dUgB5i+10F2NIEhpdySUv4O8Bngy3SD5Vff5QVDV/c1BPxUCFG78bll/X9Hdz7ypBCiCvw53YD8Zzs9QVfb4OGRHEw8MNHmfgjhRah3T2ZQNZW9T0090HPyXozEo4zF01S3mljtzs3lTavD5fUsjuvSaVnU8vNU8luUcxWKjSZa1WL3/hGe+tXHSA7vQ4oxGtUmZ169gqKpHDg8zuoLM9iKoNrWsdQQQ3sG8CXjFGUPm6sGf/tvT9FZKGI1iujFZaanSgQLHQb2ZnDiUWqaF8enYSseorYPN+xDkR0OPVkjcQwGR1scGGlglOsENZdQWjI+Vieqtjn3lp9LuQgiLShugmlCYJ/JwDEHNe6idroNDNdxcOJe7JhOy9bw+ho8eXQL/3IWPWEiYybXT85RzlvEEx7qCwa9/T0MTiV57Av9dOoKpZzGhg0rGw2uvPoK0Yhk6c0sP/vfX2Rl8To9/jCjiV7spM26dZZzJ2bxaP0M7XkG02fgyA44YVYummzmrlJv1dioVNnbm8Qpt3FsD+hHbtYYmlqclO8oygPk3W7wsL/fPw+8WgSveQCBCbf6H8gG2HPcWk69J50isYNykt3HJ24LkFJKpHRZn9ukXmn8XK//Y4N4H58PB22gF3hFCHG3pJKb/xIp5T1Fld+tdusbwHEhxH9Kt3xjiXfRm5Ty/qPg2yK0/2T7865p1ppcP73A7uMTaDvwbvxFYrU7GKaOYzvvWlzgXtwQsc6tFlBU5aZwuqYqBD0mihD4w37GjiZoD60xFs3QdHWSIymEK9FNnbWtIh6/wdmT16hp4NoOAkFmIkMsE0XtC9HfSFNeylMt2swU4uweHaZnt4lVt9lcsZk+sItL8wuMfLqXlTdmmPuLNTrSwTNoIOazONECiceC9FFj7jsKbS1ClTbe3QoD+9ssrYQQczVmz6jIko1mKLRaGilvm+hTguVFLy2/QXC9TrusYjhg+sG1QCmVUcoSFMHGoskJXaXT46GpqyRrC9gDgvWtAK3VEPUChJw6YwdTRPuyZDeu4m1KJg4d5We1n8GCzo//+gxTQ2FS6T4Mbx+ltTzrxSVMGUV3UuiBBAE9Sba0RHYxz+74Xk7OX0PLWaSTFkZHsHmhQd8z0+w6OgaA67p02hbGtvuLqr2LDNDOGaQ6iFB/sRJ39baFqih47vOcCSUAysTtfxtHb9tmp8k1dzzP7hq4ZRwnCh+ChsMHkY/BtG2HbmLoN4A3hBBfkVKevGX9jr447ykVbtuochddObrngdx7Oc7PG9NnMri77+8kQLabbTYXdyREdAdWy+Lya1eplupceOUKzdp7r78s5yosz6zetmzi8ChqwMTeLg3RVZX+W7JmNyyLwlaApXNF/DZEhcba7Abf+aMf8uprlzjzyhU2Lq7y5MEJVF3Dtmx2jWcoLeR5fPcohguKKti1d5qwESCUDrMhK2wsLbJn2mVyzwEmJo4yuqsPT6zI1GN97H1yF55GC38YPNNpwrUIm+sm5UwMbTxKZ1+MTK9Lb6eBZ72JXRWIIQ96UBBLtXErGtW8n5i/zcizkuiwQyHiRx4N4SQV2hNh/E+ZHHyighnuQNvBEg5bax7i8RZpbR1ptfDXTfwhjaLTIZk0CY2oXL+6xF/+WYdvfXuWq6fnaK5XOTJ+gD3PHsHjEQzvUsns6ePFH55h4/QqSTVM+cwWgWqG3n6HSmeNQNTP2KERqu0Cg3GX4cEUNAL0JfsZ3zNw8964To384s+4fvr6bfesVqpT2Cg++IZro6C8t/nwnyerpQrZ6i/QVlZJgDpE/0T6DueRR+yAG9qt7/XzIUFK2ZZS/kPg39Adwfzauz3GTkpAfgD8V1LKmVuWfQo4IaX8H97tCR8miqL8nc1Z2JZN4z0O8xgeg8nHxrYdO3SUewg6341yrkJ+rcjo/m5x9er1DUrZ8m2lIQDn51dJeLyMj6TvOMZgcDdDhzTsjoPruGQm0ziD0C+SZFJ9FDfKPPPlx5i9tEx5s0y11mDX0XE2Fzb55r/6Dv5YAN1yGZhS+I3f/iyax+DkKxeZ+LJCrK+fv/rmq9irVcYOj1BrlBCeOpXgGOgajz8XYdMXYbOcY2iwAws6a6ZBj1ll64pL70AbRuIErQY5y0O4z8GqOigRhU5RsnpBEB1r0O/vcHleQ+QtXEPiWa/Tqrks5wz8GYmeMtCNDlvzLrW6h2bRxal6CAR0JvYFuHixQGCwgAimMRQNs23w7OP7aBW2aBs2uWIFq1omOZRE0R1a2TKZ6T6Ez0+mb4Kf/MkpAkNRnPMdkokRIv4YrY7NtY11DvTvoSbLXDj5Mpn+AYKRtx+z2WyDtpIkuacrmXdD+9RqWTRrrTvu1TsRH4AACTCZij94o4eIEEZ3fv9dIKWkbnU+Uhq6j9gZUsrfF0JcBr4hhJiSUv4eOxw43snb+TPAzSdzW1/1h3R7kh9b/GE/I/veuwqI1++5+VPcJZM1W61xbSXLpdev0rHenl/0+E0iybcbAv2TafKOxUqx609Z3Cpz9oWLjAZD+Oxs1+j3FqTbQHGXUZTucGyuWGVlaQt/LIjWGySeiTF2cJjF5S1OnZvDmwzyysU5bHuVcPBFPIaGPxWkJhzeePkSW7ZFeXEWXdVo2X4or5PZH0Dr7+rJqvEnKbQHUUWZ0CGdQg0uvFZFVkLIwG5UTSdybYn2tRaleTj5cozmvEllRTJZW0HxuKw0Axh2E38Slus9XPipB7No40ubBGMSQwU1ptKo6xSvetmY8RDOtFBGg9iPpannNdTeQXp2pWlYAtks05tocOqcTXlToJd0vvCJg5i25NAxP+Vrc4jVVfp8bTprba6+1cQbCvDJz+xhffYSl64tcuSz+/nK1z/Jrn0Z3rqwgOO6NPJVBgwvVqNFRUiOHv8croBC+SyW3aSSyyO3ZmmtS8qNFrc+oz29UfrG09Q7W+RaV9/z9+oR96bWtri0PTf/CB76nKQQ4gtCiBkhxHUhxD+7y3pTCPHvttefEEIMby+PCSFu5K3863fs87PtY57Z/tzdVuYuSCn/Pd1E0N/Zrv//+ftJ3sIHejS7UqgSjAY+0GocUkryqwXarc5tpss38GgaMuhFHdRuGz5uN96ey3JdF1/Iy7Gn9yDNPE0bOs0Oc+cWmX5iEk2pUG5UWC7X6Ne9mF4Dw7QpbZWYs5bY15dG8RtEpnqpVxqsLG4S2+fvWmdtVvnULx0lu1rgiT0jXL5QZfLoMT71Gwl0r4ezr17m3GszfP/bP2UkfglfLYVDghNNm2ePZVg95uHq0iwBFXY/nuEHL87RUy9T7S2T1EymJyosNPoZmOzgjCu8eTqIOVyGjoLXqNOeVNHTKilvjWY+ANkOZkwSGlXwHlIptzQqKxIrlSATq6GqNn7ZIed6UZIalXKL5rUK0Qkd1y8x6mUs3Yft2MysaQynTZSOzdrZJSYODtPTE+Diq5eJ9e0nHBdUi1UG9+5GC29R26px8EuTRHothkfCXPzuWSafmqRVb3P9tTyFUo2FkR6sYpVz353HCJokPjGJbmgM+3qo2xPMr+ZhJcfYcBEznuL0G5v0f6p9s7F0A1MNoSn39xp9xNtItwH2DOj7EOL+r7Ogx+TQQPrvxID6Q8FDfD1ud6b+APgssEJ3TvB5KeWlWzb7R0BRSjm+PQz6vwG/DrTolh3u5e6SpL8ppXxzJ5fxzgVSyje3qyb+mtukPO7NBzu75T1gd2wWLiwzcXjkPWeJPggpJWvlKqlg4J7edw/i6mYOr09jaPruSj4h77Zhb5jbkntqpTqqphKI+Fm+soqiKgzs6qPe6aApBj3pAIc+vQ9FURDaKD6PQ4Y21ZUibY9OfrXA4pUi+784hEfXyERCBEyd88t5juwaoicdRdM1GtUmc9fXaOTrONkq507PMrvSh8Mao4EAsWiAf/Tf/z3+zf/6l5zfTHNweoJUX4LF6wucfOl7xNL7KcwWOfPCJZ58cg+f3j9OnQAn3ywxHG4h2xWCJclaxY8MppBumY5hMOCTdEyH5qbO1ozAM+pHNnWcjs3KRBrZcXjcWiI67DA/4+I6TVKRErW2l2zCg1ZpEwq64POTH0yjY9OTqpLMqFgVHzXDg1bv0K4lCZoVCILmM3n+j/8Dh5+s8NaLTWZKDmOZGOG+CK/Or6Cakn/7L7/Nc39/ktHkIUaOlHjrzCzhsB/Vb9C/b4Jr19bwKy2MAJiqyiAmxbUqnmCEaDSG7RQYO74fRUaIKBHEuMHC1SWuVFY50j9FojfKRrOJz9BJ+ptIV71paNzu2Giq8ujlvo2UEpxlUHtBmKD2sUNrQHT1kQrP2zzUucXHgetSyjkAIcQ36RpW3BokvwL83vbv/wH410IIsV2u8bIQYvx9XsMX77Zwu7zwGWBHFRo7feru9r/5gZy91XSNvU+/9zKKneC4kmKjif0+hm36omFS4SCebVm65ZnVuybwWO1ON7mn3p2vyoz1khrqeu6lR1OkhrujDX49ga740HSNgcnMzaBqaCqxgA9VV1mf20SoCo99/iAhj8nGQlftz2l0yOcq5D2SM2sbWLbN6dPXWLi+wdpbc7i2w2NPTxOXgpF9fWQODDK6f4jZs4s0dYtD+wYgqHHp7GnGxm1CI1PU1R5sj0YoFSE4noCqJJ3Zz+7D4xz9eoae5BhOOEzeaVEzWihNB7+ikosE6KwYeOuCWs7HxqyBUqnhjAcJV6p4ZsosntZ48yWT5lQPiqKQzfkIGhLnkqQpTcrLDrlVh4y+hbRbFPM6izUfuesSQxoUAgHOqAr+ARNfRuEqZay+XmbmVVaW1hDFOvmZDd54+QztYh4dwcjYBFOPfYqDz+3hk3//CUZ7oixfWScS8LO/P81njx3HkAreBCQOaDQ7BQbGUvjDPhzXRQISlxYRhBKhdyRJ71AMUaliNVq88TenMQG/oYNbptuY7nI1m2Oz8gtMkvkgIhsgbYRQEWryAz1q9IHl4Q639tFVTbvByvayu24jpbSBMrCTtO1vbA+1/q64z42XUr58n3VNKeX/vYNz7bgn+X0hxDstC358l2VIKXc8RvyweD+2PDtBUxX2ZlIP3vAuOLYDgjuSB4QQOLZLcbN0m9myYepEEiE0/c4W8I1h11spZruWWnufmrptues4BCI+Jg53yxAqherNF0s4GuTgs91a2kqrTatjUxIuh3cN4PlEDByd4YHdvPjCD9DdLRKhPmqlOptzmwyEopTzFb7wJS8vuRl+dH6OpBlD81rkpMORzx9gZT5LKhFms1am1rYpzqa4sh5EtWukAm1yS02ScZW4GWJuuYQxrNEZ68HzRgdZ2KTV4yOl6pTnW3g8LtWRfpxLBfrCRfQ+FUsqRPUqagimjii4VYdGU8dnNzAslTYqlVUFPa1Dro0sN/FEdDbLLkYmRCcZJNUfpPyCwxNfPERnq8bVC8sMHOyjJ9JH9UqbqGLQ3qjyp3/8FwwfHyU93ce5C/N4Wi2k63L50iJGaJhh3WboUIJrJ5bRMhr1apP1fJnJsT5q9ibZ1kXGgp/E8BgYnhjPPf4sQlWwahaZeHT7bt1uqbYrlUC7z3e6YXXQVeVj00sSQoA+9eANH/EwiQshbh3y/ONtLe0b3C14vbNjtZNt3slvbvcEg8Bf0bVW/L8eeLXvg50Eyf/lYV7AB4FGtUkpWyYz1vvQz7V0ZRXd0OifvL02rn8yQ61UZ30+S7CnO5+qaiqu69JqWHTaXdPZB+ENmKi6iuM4qLe8NPsnMnQsG9txqdSb9Nxiclsr1si+tURmLMXesV4WL69weCBDbqXAUCRFu9FhVckxUzVJ1SXLi+eo5iv8ym8doLm1j6XmKmeLOTa3bHb1Rjn/0zN0MgNMKTFaMke506TXo1E7dw6vL8nmpk7xwgaWksefivJYUqOVbFPMreJtQijjoyMb+NJR9n2+w5U5C013MTotvLRYEr3YcT8ercNmU6U20yQ9oaBLh+olhXzbJBozqIyMIwxwKzmCdZeeYVgQHsy1PBFF0LRMRLZKr9dPI7tFKajyxvIVfvlzuwg9dpzZ19eJmiZmws/g3jR9/Ql+UtjiW/9+heOfO0x/NIxuufz1H3yfXc9OMfzYCGrZwqOG2f9UBKtlkV0vsLCcZSATw+MJkvBM3cxoBYgkvWDPEj7+dmBsN9vYHQd/qDvc+qBawvlcgYjPS1/kkRrNI3aIAPH+SjlyUsqj91m/Agzc8nc/sHaPbVZEd0I5TFfm9J5IKVe3f1aFEP8P3WHdX2yQlFJ+5IOkdF1c5+8m461/Mn3PoaFAxM/08UkWLy0jFIXBqT4URblZhL4TVE0lGPHfdg4pJfPnF6lXmvgHezh1dpavfukJpJQoioKUksRAjMRAd6TDH/JipiwGdk+iqz6spoWjCUbH+hlTvFy2qmRP1dhYXCfUE2b1zRyVjQajY320y4sIPYjf0Jg6FMQODtOj5TCcJuFCnPOnNrBLRVRTobqpowqFkc8r/KQ5yma2iF5botcK0cxXmZsrUG9a+JpNViZH6NgdEkj2BRepmVBfEQR6A7h+waLWS6NQohVOolotLLWDvZSnPZnG2wDPSJhqHbyXNolNgtnbj79cx1TypA8dYxWHzvU1gk6Zn/zZm8TGB0gYcWZOXMM/HKNQqTN1uMWurwzzXHAAodjkZiuMPjlO/+Ewu/ccpLRV4er1JeqVJv0TaebOLaIbKlOpBMW1Ev0TaQz1nTV9Koggt86pFTfLNKtNRvYNIaUNsn7f0o+p3sRHVtBbOmuAjlATv+hL+ejxcL8ybwAnXfemAAAgAElEQVQTQogRYBX4GvAP37HN88B/DLxG10jjJ/I+klLbgTQipcwJIXTgS8CPHsbF38pHLnHnveAP+3+uBclNq4OqKHftAdyrN2h3uiPXmq6RGe99z3MsCxeWifZGbhtybjctyvkqYweGCUYDJHp8zM5epFmwmT46zYbdpnc4jqpp2I5LvC9GsV3D1E0MxWQ9P4Ou+/jcvkk2FrJMOg6JgSHWT+VoDs/QY88zNP0V5jbyrGwKdn/pOcZ2KeSbPq5d3GLpjet0PBYHnxwkFumn3dshFNTYeGODwvplrqz10+fX+MyXvWzuGcBXmufKKyahcBSrbZL0qyhlm+p0jJyloy3USO8S+LUO7XCN9JiX2ZoPf0zFqwsKZ11aJRtP0MberGG1WuQ3oRP1Eh5W6XvKIibWObkwSMzoYWMhT67ZIJKQhBMlzPHnaJpetkpN+g4OcehTe/nRn/yYhVqHSrHOwK+Oofd2aFwtsCAuMJQe4vzVZTKRIJHBGKojWd8o4M9EqJXrjIwkbquBvPEeEEJ0MzK1AXK1Ovlag129CXqHb5mxcMvdJBXj4D3v+Uc7oUeFh2y59fFEvt+e5P2PLqUthPinwPfptgD/TynlRSHE7wNvSimfB/4U+DMhxHW6Pcibhf5CiAW6EqaGEOJXgc8Bi3Sn/vTtY/6IrgfxQ+VRkHyfdByHfK1Bbzh4c9lCvkjQY9Iffbv137E6qJp6z/nStdlNpOsyND1wM5AuXl4h0R9DmBqGpu7oZXirR+UNihslgtHAzeHVmUKeUEASDgkst07Y68HUNFZKZRpWh6neBFHz7RpQgxA6BpfXs2w2KiTrDslMjMlDowRC+yiszvHm1TKdRIuRRoDcZomV15aZfuIQuxQve77+Sc5VC1hNyeiBDqdfOY93cpTBoyWOx/J8e3kad0OgB9sM7/FSnosTnMgh1yV2VKFUNegXJsr6HKWcwlrdIHvdIKRDo9AkLFySiTaGEUEJRok+0WbxQhFRbhH3tqj6DIw+E1/ApMdMUV5P0GhbeHp8yIiPVkEydWSaVKjCajlMY7FGdH8YXbMJ9fpZCdv0/kaYtDrM2tUVfLsSuIUgAa1JrxzEWwpzdXYRbRSqAZWO4+A3VHShUJE2jWqLreUcgYgf3dCZP7+EN+ghPfL2vLbfMBCBOxtGQo0hlY+G8Pl7Qajvbe7/Eb94pJTfA773jmX/0y2/t4B/cI99h+9x2CM/r+vbKY+C5PukbTts1eokg4Gbdj+Tqfgdw19zZxeJ9kZIDtxdqaRv/M75UE1XUVSFK5s50uEgqdCDHefNoBfLtrk1pSeajtDyKlSbbQIeg9FYErUTJxzpHs+7HcvT4SD5jeId85l9A8MANDZzFK5sYGgmQ3sH8Ad9QJjUaC++0nkOhgdITPq5+OoVljt+GrUWomGzN5RhMN3Da997i9dOnSK7nufYlz7F2fMuwd1fY2J2k/kLNX54ziU4GSTiNviVL7V5y97DyuIKPmFSrW9R/JnC/k8ZTB8PcX6lQeFkC6XPT8WrM1S1YGOTTsdlSQ/jRL047Q4VXSW2J0rJstEDGu7gEJ35Ilm3jXc6g1lbgLrKyIEBzl1foVRtYc6tsXfXAPGpBCEZZG5llSvuCrnNGIPBEKLc5ls/eYsR3UOkrbJ27irDh0cwoj46r82S3Sjyq7/zGVqNPPMrCkuXVoj2Rnjr1SuMT/ZRrzbo33X7nLTX0PEaOnbHZvnKKv27MjcbS48yNx/xUHj0tdoRj4Lk+yRgGuzruz3A3ejxdRwHXVXJrxeJ9kaIZaJ3O0R3n7sMzfaNdyXl9pjJ+2Y33kqh3uD1+SWeHB0iuR1Us4s5Vkol8u02iWCAhGFy7ewiU8fGqeZr9KSjKIqCIiG/mCcc9uMNeKm3LepbFYobZaJ9UZaWNrG2qqSeHMDVVS5dW2FyJM36co4BJUC8Tyc/1yIUCzP6aZtrdpvRnji616C4mafZWuXQl57j+uoixrDO8Z59BMImRvo6PU/XOfvyRZSVNfK+GNktHy0XvJ4MUduiqoaIHm/QVCssLVZorBr0xWrkmhp54lxvdxg7BI2ii7m6hllSqXpN+jIKzZk8jifAZn+A9uImyoUs40/3U5jfYBMv1QurhHwXUdM+3OvLKHWHyycuUTXLfOHpT1Jdb+LKXqK1Bk6nSmtygFGPj2qzTUTotFwoLWTxF30MTKZp11oUijP0BKsER0Y5/dpVxo+NsaE6NJotSptlhOjeq6jPe1sQFIpA9xgPzNB2bAfXdXeUzPWIR9yNR22vnfEoSD4kXFdyZnmdyVT8phiA+h5T9N9Nar/HcslUJfnrmyQPd4Nk30QvffRSKtdp11oYoQDTT0wiJWytFAhFbVQjTHapzNSxcVRVxXUlP5mZI+HxsmcsxY+eP8n88gaTQ2mGpvoo1pucOHEFxdSouhajyTBnfvQq4UiGiUPDNPU4pdUtShtZvvu9K2xWHcYTSQqFFpmhHk5tzHLyxxscibc4fuwAK7bg+NePc/rEC1jZBpV2ANEsYCdiFIpVRhIKpu1hab6JxxwjHNXYWpG4UZvE+gq1gk7V20O80eQrv7bEi3/px1f0oG0mUDIDPDO6zpVKFW3IT3tNQV0rYSktQlqEeCLCylaR+FKRRKaHakSjvGXj0ZKMH5lg/vkC+8IJ1qfCxDsCbyrME5mDvHL2GltrBfom0/y7P/ge6dEU//h3fx1XSLKVVVRlkvlCiWSmB49pcGxyCMdxaFdanPrJBcR4jH2Daby3BDpVVemfuFNv951sLGRpN6ybGr6PeMS74obA+SMeyKMg+ZBQFMHudBK/oSMG3rvM2DuHPh+E1bHJpHroSb/da72xv+pIatkKW/Nb7H16ClVV2X1sAmmdxrYV6pUG9UqTar5KfCjBaDxC0ONB+Aw+8YVDPF5t0ay1EIqgtlzg6Wf2MJiOIwRUNudwahfQR+qceaVMZEihkS1QvJDH6PHz+BPT9Kgm8XQPUgVXtVlfOE1tLYtV+SGZ3WF8vk/RXB0kM1hhY1UwHU2zXFyj4PgoLUHEq1Pu6TC8J0x5TbCwIsj0DdEUqzz5TJKePTE28wF+dsVH3VvHFjqBQ6OMagZydQ37Wg53w0N8dASXGvGSxbX1Kv0DKYajfjyWZOjZQVZfnaGDn75YmO//4Q/Y/fQEwUiWLemSn1/nhavz7N67j0je4sXnv094PMnYU7t48gsH+NFPz+AYCiE3QHNulePPTXPqrau8eOISu1IJ7I5DrVgjHAsyNtgNhq7rUivW8Ud8d9xr6ZYAHaHcnljWO5JEuo9ecvfDdttoivngDT+GCN53CcjHho9yWtwvnIBpvK/5pGatyYWXr9wmcP4gVp02RjqEL+hFSsnFV2eolbqm3JFEmIkjY0wcHsUFio2uwo8wDqF7EowfHEHTVKx2h9lzi9SqTTbLNdodm2iqK8A9sn+ItWoeLegwkOjB1DUMTSMcH2T/M19gU/NwsVakZoUZi47x3GefRhch9sRSrC5mKVxZJxkN0+OLcGTfKNHeBC+e9FO87qWTvcjhpxyefvZpDg6OY6sq7WsNhpo+OppOxePhmV9O8enPDuEqGhWh0FA6xIY8VHo9dPwu1fwWa6c7yIhA39ODd+0SnbUTXF7wMnkkRbtUYfn1y4weHgElhaapFM8uUynUEWMxdCXH3r0KhgOpgThlTfLCuetcWw1SP7HEyPAcB59sIXoMfBMJPvlPn2Xg8SGe+/IYjneJ7FoeveUQUDR0j8bM61fRFIX6TJZTZ2dp+BTGD42QHkmiGzqzZxbIrRa4ePIapy4v3im+7eZAVu64z6qq7tgSrmKt47jWjr9DHwVaTpls6wpSShbyReZzd9qQFevNR2Lnj3ggj3qSH2A8fg9jB4bf1bzTdG/y5vCsEIK+iV68gbd7skIIfEEvhXqDc1eXmYpG6R1OIu1ZQMUXHGZ4eoA3/vY0bk0nvW+AWMB3c3/LdlgrFxhNGXi83VZ6s9YE4eDvKbEr2M/E5zNQd+ibTNNutFm7tMqpH75FreOyWbIoewR7poc4MgibIXj9+2OsLdVxZZDWsuCt0ipapYUdNqi3HZyNIrFYCJ+r4fUNc36uyHplg+EDw0RqFjJiY5YbXPzGAsKx2XN8nEbUZe/wAIt/lef0hSqJ0BZS1FCnepHLBnOnLhD1R1k7t0ZHCzKQjBJWNJYuSzrLUK03eOPKIpkvTrGUL7OarTLgehgJPUNPaoCZU+sM7Ruk0GiydyTGqZfeIBYa4HOfOkRxs0LWyFHflCQ8QWTMRzDoo38iTSIU5NKrZ+kbLhGKfZH+XRlyqwX8IS9SCKr5KqbPxPRpONJG1969fKW7Xfer6RpSSjpuA5cwKg+2iLJaFvPnlxg9MPShnu80lRAJzy6EECQC/jtkXFxXMp8vMJ6IdTWSP4Y8mpPcGY+C5AcYIQSByP3rN8vNFgv5IlOxHoQQmO+Qqosk7l6E3uP3cXgwg2M7SLeO6whcIuha97yxTA+O7TDYE7ltP6+hc2zodkmw2bOLFLMlJp4aRfHCaseieX4FzaOx2mqSmk6SPXeC537tS5w+ucDCjy9zeGKQWLyHKycWOfrMY4zEImxtlrm2uE4o4DLc6+dPv/kT0k+O4lzMYhoGHl1n/m+ucXlzndB+L08fHcGoO6ytFViq6Zj+OOGjk+wKa3z/G69R+uVBWpP7sZrzJAIKVq8P9TzE+02SI3D1ep3hr00zOXoUe6lELruJHvPR2TOAWmywtbyO9+pJCuUIyZEBQkmdN9/Ic/qN1zmwZ4Txp0ap5+vUsgLLSnH+5WWm9u3m1MkraL02E73DTB8a59qpecpNi+unF5CWzchkCd0osHhphcx4V1xi6rFxdF1j8dIKqt9Ej7dRtQYJT9eRznLqCCHQFR8PIruUo1qoMXF4tHsvPe9CjEJXifZG7ppI9mFCCIEuusHPfxf/SEGVQ30qQv14Bkh4NNy6Ux4FyQ84ju1w+cQ1xg4M3VW03Wfo9EfCbMxnUTX1Drm7+xGKdesmpZMjt7pBraowdqAbFMcODANdB3pVCDRVIeb3kVsrUFgvMjTdf3O4b/exCWbXt1irWByMDxDItGmoXmbenKXSbuNLBsk8/gQdadB7ZJgjx6cIRQMsXlllavowSxdW0HtjZDI9hHsCvH5xjni6wu7hPFc6XkI+lV1HRlFNi5cubWJZfnR/mHDHodW+iOFNYRci7P/qINnFVex0m4HHxqHfpEcRpN7SMW0vbiPA1NEwsfEkeq3GarmArphsnlzkN/7zTzK/us7575yj4LYYmUxTDzVZLK/ja7jEhUrRlLR7fUTTEUoeyXdefQW13mLq2c/SWFpjcM8Aq1c3GdnVT2IoTsg0sZoWw3sHuHzyKo7lsLAvSUxNsDv6GFrQh2HqpHf1UG2sE9X6Gd4zwEqxTLWuMJZ8O4Gn4eSRriDquXeQXC9XKTdbTPTH6OmN3HO7+6Gq6j3LlD4qrJYqSCdPX/jD3RB43zzqSe6IR0HyA46qqfRNpO8QCLiBrnZdPqJTntvmP11pd4fr3uFNWMlXUbUyvlAfQggs20HKCPGhY8TukgjScRxajosQgpCmszGfJbucIxQL0mnbuI5LfDxFSGjUN4so46Jr8zXswes3EXqF03N1rHAAf9BL3Ahy6bWrjB4YpubYXDyzyMJPrpBdz3P8q8eJBzX8MT+eSIb9h4/yhCfFgr5K7xOjLJw+QUBbZdwbIe338PIP3qDkxoi5GkeeHMBtQaivl7MvXOXpXz/Oa8//FMXVGRrrEDAUtt6qoyXqbJgF1C0P0aqkcP46+XqBf/V7C/QMDCHHe9kfDFD12ow3+/DZHpqaSfHSBvGpXhJSRxwcYsus0xNNsXZtkRf/9i0i+zIcPzzFuVMvMza5h+p6mY6hsXRtg61Wg0NPTpEZTjK3tMlgYg/egJ/lmVWqhRqxYT9LM8s4CS+aoeEU60zsvt1CTXGSzGzmODzo3lNUIurz4jf0bib1h7wn+DAJmgaO7EVoD88p6H50nzmJucM55YfC+9du/djwKEh+CIgm763beQMhXOhcROqTCOGlbudpOUUSnu7QaKVQpbhZRlUdfL5r+EIxwMt6uUo+V6bf5yeaCuO67m01esOxbpbsVrXORqPBvqd3Y7U7aLqKdCXlRpPL61kOD2ZI3JJRuza7gdcPkfAGid4UPsXD/JtzTB4dZe/TU9StDo2wQVwaOEdGuLqUpXPiAkf3LuKKIQx3iPF9n0Ztb/Ctf/5jrpXa/PrXPkFIyxD5pTirWxVKuTq1hcss5f0ojT4m9w2T/e4l1LyLkWuza49JLHGA+eIMjdZ1gu4AXi1K9vU1NufX6envEA3ohAcdGok45UCNHr2H0pUNito64YkUz37FYPmsTWlGUndcIkEf5dkcU2xBTWOkP4HYaNI+u0EunSQcTHH95DLSERgeneHdfcSwCQT8XH1rlnA8iKw0eev16/hCPiRd+7M9ex9H01UKa4WblmnNWpNGtUUsHSVgmkz1Ju6ruuTRNTy/yBfvh4T7zUE6tsPq9Q36xnsfWkNjrVyhbTvsSn20e+wfFR49UR8ZVFBTsJ2cEdCS+LW3rdl0Q8Mb8JAciCNlBpwlFmZUPEE/mYAft+Myf36JUCx4Uzv0hpSedCWb85t4wj7o6dp3ATiug2jaHBxIo4gOp5cXGE8OEfJ66GgldC2Ire1lPKnz+plrpP9/9t4zRrJ0ve/7vSdVztVVXVWdc8/0xJ3NuzeSvJeZEimblAxKACEBCoAB2R/8xbJh2B9sfzBgWBAgwZYoAhItCZREG6TJS3H37k27926YPNM5p8o5nDrBH2qmZnq6p6cn7uxu/YDana7z1jlvnao6z3me93n+z0gYl9dFqVJnqVDgTCpOug4TkqDx7TOsvn+bD38gMTsZZL9QwXIpTMYmSfzW6ywu7XDtp4t8dGuV//z8MB7bxHB4kAoytmXhzlfZ+WCB+PkUr6QucPn96xAxaW4v4pFMSoU+NLcPG8HwcAB/JExEbJPfV/EMnCIWVdnJ7eOX86gTQSaCDoZnRln8Xp6ByRihM3BtaZ+qV2VgMIZX9OML+BieTjJ/bY1gIsSfb24y19fHmbdHWbm+wfL1DbSol/5oAFWROf/NOW58tMAn719BaduEMw4q+Qr9Q1FWV/ZQh0KMerz4Ql5s26bV0KkWqkQSISRJ4HP2yhmeN7ZtY5kWVnsDSYoiJN+jX/SYDIWC2C9BO95etPVk9IzkC8C2bbDrh2rdHvWaplnCKQdOVEYihOh0ar/vb3Hfx+vyurprmrZtU82XCcZH0BxOrudyTMejhBMhlj9bRdEUoskwK1c3CMX8WJbNwnu3OP32NAxDrVxna36H5GQ/W4u7nO7zg1Viv7jNgM/E5xghmPBhWi2W1y+T8J0maMkkokEa1Qaf/OgWjX6Zc323GJr9GpKkoTd1Wq+NsvJ+le1yk2+cjVJtZ6lVK+jYvPa101wYGuTjzBa5UpHPPryN0NyMvjLBb//6efLbBdK3mrz1tRD/4t/e5OrmZS4145w7P0Y626RP1PF6PSjCREm4OTOY5Gf/wYF/SGPDsLhEhGRYYnH1J+xt+IjHU5RViXx5h/3tFsMRPyW5jNfQ0S9XCP/cHLGwn7/4wWcMJKPMnh7Gk/dxbnAAp6rw6eVldlsNXLkir39tjkatyfLyDqtX1pHOxHDaMs6qQWI0jsvvwqkoeCUZRVNIjFhg3CLYd+qhiVc9ng+KqjByehDbWOd59ZXvyFd+viZKPGeB8y8TXxojebeLxovCsiyK6RKhePDRRswugbGIrb5yoJfgcZi2TlFfp885gyKerQdhtAXr806mLrlxuBycccRxqgpCCIZmUzjcDmy7zch0BdmVBFvlO3/rG91OKQ6XRiQVplFpUi3XyefLbNTbfPPUuyjWGpZlENBS2LZNpamQLmaZuzSBYVlYNrz57mlajQKZjTViEx3BhM/+8hq2LDEXi2JaHWm/hewqZitM261S3yhwdbvKr369n5inTuRCAeKv8t5faHy0aXPWlAkG9pBoM+mTKQ0N0zc1ScUr49m3WP10gzO/NsNi9RaRvTFuXF2g0N7HZft5/c2LrLx3i8XddSJTEr/8y9NsVnz4NSfDX+/nn//+VRaCEb71i2dIBfysOqrcXNrGGDLxhRqYjXX2c2GGE2Y33Pn6t84yMDdE2JK49dEC129vwmiQqdfGqeVrvPmd8we+N8GwF6/DyeInK6QmwxgtN7FhGyHEgZKOB7Ftm2pLP9LLrBZryKqMy/PVzeB8UoTy5Vcy6hnJk/GlERN40YkKerPN7kr6RMZZSEFQz3UNZLNtsF08XCB+P4rkIOE+91wUQzSHypl3Z3HcqXN0aWr3gu0JeO5cjGU0VxRZ1lBUBZfPpN38EZaxiaJ2PM1QPMhVvcJPPl2g39nEocgsF0OsZlusXF1jfz1DYrSftWub5HcLfPLZEvObe7g8TrJbTRauxrBMQTFdxga8Xid6qYGUb9I2TPRmArNoM664OP/qJJn5dT76g3U+/bN9hmZ/EdMOcLY/jnwzy5VPM2TlBEHPeZz1Jv6WC7e7xIj2n5CcTebemeXV1+e4MObGGdJxqQ76gwGKO2VM2yLdqNHwB5Dbp/ngny/z7qlRmvkfQ7HJ28NzRKsSXtXDn/z+j2moFnWHgZry8faFt2iHx9itQ6McvtfyTJLIlitk01kUn8E737nAL79xlpHxBH6fG8u0yGylSa8vAB2d3kDEx+wbk7j9QSpFu9tSK7uVY/nK+oHP0DAtLMumrrf5ycoGuWodgJK+RaG1BsDND+dZubz2zL8/PXp8lfjSeJLPulNCtdlio1Bitr/vyH073Q5OvzV94v0Jca9WyzBNqs3WY89p9do6kWS4W7rxJJQbTYqN5qH6x0p7F92qE3GM35mvBMq9DMvFm8v4onn6w/eSDVRN4Te+eZ7s0h4BOQMkGY0EufnjefpSEULxAJpT49Xvnie3WyDh9dLX12n7NHF+lPGzQTCukS5FcQ6GmZ0dYubVKIgQkiwzFYtiiyp7hSx7S/u8+1cGWck72LtR4NMfbjH4+gSnf3WY8r/6AJ+7D4fXzU//LEt0cJJvnHWD2yCg+VlfaJEc6+sY5K1JHC2dd94ZZHu7xHe+ESfnsDn15iD5Kws0NrZJTCdoeiv09UeoFRos1xu4Bn002zV2pBbW0jYukUXKhJH8ASaScXYX9sgVLDL+LNWaxPRgHL3Y4Mb8MqX6BufOf5ud3Txvvj7D3NszLH22iqGXaVZWcfUFsRUTv5ZA1VRUTWXs3CACQaPaIJIKE+jzH/i8FtNZvA6NwXCQ8Wi4u8blViLcDRPOvDqJJH9p7oNfOA29zc3dNGdS/Uf2hv2i0xMTOBlfGiP5rNEU+VCHhmeF1+lguv/xO637Ij401+HC6LbeppzrJHg8is5a5WFcchiH5D9iSwe3GiPonULSDq6rWuo6Y+eGcSmdLFpNgelXxnG4NCzT4sr7N/AEXKgOQXTUg6reF+IRPlBG2avusprJc3Vpma+d0Snv9BMc7GPJWqSvEYNgEfOncLXsJTAZ5q1vDfLJ1hX6Sj6ciRjf/a23qBarVIt1Ws0gSxu7mPV5bqyXadacRJomaqtO9vufklX6UYvrlD9YJb8Oi5bE13/nXQJWi++OSXheS1LWh7myvE4tD0rRxGGrVK5kWDXcOPCQrjbw9CfAGaLWaOENeXCG3HhG3TQrn2E1R1krlWC9iCw5Ub3jbG+kafo0vNHODU5qOsFSxkG7BpYpsIVFrVxHcWkYVpuSOY+rNcDG1X3m3p7pev13GYuGu5mu47H7ErSke2UNT3Mz1QMcisJoNPSlNJAAUi/ceiJ6RvIhaIpCIvB0F5mbP5knNZkgEH248bmftRubBGP+hyZrRJOHm+/WSjWWr6wjOSwCcfdDw7P75SqZao25ZPzI9StFcmBZKnqr3c1evZ/B6dSR+404JroX5r1ShbDHRb5dY2HtChdTp/GGPLj9LvpTGxStKpbVhyZ3DK0QCjZBvnkpxFttg/WNfSRbYBo5anWDoD+J5vbQdJzlu7/Xz+52lu3NfXRL4d1TF7CNztfXMk2u//A2IHjtNy5xrbTLxs8ylJDQ8DB7aYb0ThqzLTF9NkPDB4UFm2CkTTA+REuvsJWDmcl38Y1G8DT3cTLLfG2HwnKR7OZ1CMVpLmxw8Y0ZcraJcCtkFvfYLKxw4dcuYQUchD2QWR/l3PAQmsfBrc0SAZ+g1ihjtn2c6Y9Qb+ksFgqcH0jg8zjB7UQTXurFJrsb2zjHo2wv7DA+FCWYiuB9M4CsyKzf3MQf9ROKBdhd2adZbzE6N4RtpkHyIcTnU/P3MmMaJvVKA1/o0X1Yj0KSBGHPoxWOHnp802R7cY/EWOzEEn/Zao3tYplzA4/uBPM0iF6d5InpGcmnwLZtsq1FAmqqe+G/n4GpJJ7AyX9k3pDnoaIBR6EbJrlWk/7RGHJfkYZZwCcdbt4MEHI7cT2ihi63UyC3k2fmtckTz+Hu++7I4xVxaypuTWV9OUNE32V8LIkn4MG2/QRxHvLMr+/sE/N5EcD4aAJZkgiGfWytpUn6U2REjYTHj8vjwhVTCTlKnBo6R63SJrORZSNX5Ed/8AMyS3t866+/i6YonJ0S9GVduCKXWF9J40m1eW18hNUPM8gtidyCl61qk3qrxbuhKOffCjAwqvLBv10m3MyyXNhgJHEKs2Ew8vY0rcsSyWScqVCIxc/WqPhkxFQfslOw0q6x+t7HvHFpGofUZPa1USzhYyNf5NJ3LiBLgmsfL7DdbOAN+/C5ISUpSJLESDRMw+miWWsR7POT2cqScLsIjCVxuB3sraXxBj2omoo35MXp7kQRwokg+b0iq9c3GJmug1CgZyQPUS3W2JzfYe7tmUcPfh7YYD+mgHrA5USRXozn2jOSJ6NnJOFA4K8AACAASURBVJ8CIQQuOYgsjr5LfNxw14Oe4ur1DSKJ0EP3o5smZcNgcCAGRI4NDWtKp1vHcUSSoUNrX3dp1JroDf2hXnGl2SIV9N0p1Hbyu7/ySxT2S2zO7zB8ehBFVVC1w/MbiYRotdv86c0lfnluirDHjT/s41TYx8rWPj++tsRvf+0i85t7DMYjxP1vsbWQZnczw8+uLvPaL16kbziKW1Nwhr3YNkylLuJ6JcWPtnOc/dZpVMvA2ZQIn3IjOUcZeDODz7bY/MEilmnzZ/MmHl3F4bPIXd3kws+HaKJwyVPhex8W8LUk9OUcyb85R1bXqS9uYmdyOAZTGMNB1N06lYU0681+4uMGbn+TD/+fj1n1uQnFwxTqdW7upjk9kKCeWye7niX+ThyAZq1FOVchGAsQ7AtgCh0rmMHlGKecq9z7bO4LpTtcDoKxAPVyA6EOHTqnW4u7RFNhnI9xw/VlJBD1f64hZ1mRGT41+FivUWWZoPvLGd79otIzkk9Ju+Bgd2uLyYtjz3zfvpAH1fnwMI3XoTGXjD+TY+2XqzQbTaIu95Hh1lqpTrVQe6iRHAgdDBFLkkQkESLcH2T58hrekKcrUnA/PqcDn9PBb54/hfsBIeqgo82bSRftUpGNhX1SfSFsW2N7aY+R04Pgd1IoVhkY7CNnC37ykxvomuDUWIq+RD/nXS4ikoYmSwSiflqZHKah8x//5H0mEqN8/ZvnaBom169tMDPuYdvM4Gk68ZhOXHabfL2BYShUDIP+V0f56NZtYqEw42Nh5H6J5Z+s83f/9s9RWc2TGI9x+6fLFNyCETXON75+lvVsgbSuM5py4VKiFLby5DUHydHzrN3eQtNUhICh2QGEEJiGyc5Chv5TPgQSoXgQ0zDRW21kRTrQa9Llcd6ptzuM2TYey4NpmybVlk7I/eXzRp9HTsGXhd6pORlfCSN5ey/DQNCP9ykUS0zDxGgbhxIoPAH3c/uyRVORRw96RqiyRC5fwzJqjJ4ZPiRPF02Gj1wThU6N6q0PF5m4MILs1Kg0W932WkIIxs4NI4RgYT+LS1VIBnyUMmW8UR9Xt/cY9fkJh1zYxho2bgQVhDKOUSuTDEE4vMm3vjbF/kaBbLPN5MUxgjE/br+Lm5dXmXl9DOnSBL7v38CHjGGaLPxsmdG5IXZX0zSqTebeiTIaWGe/OsVv/M53GEoNgN/Blb+8hsOwGInEuLJ3G1ciwo01B5cueFlTE/wXf+MMjdU8E3MhPv30fQrNIO54nFgywrXQZ8SCfobfjSNEm4nzQeq6h8ZmgbpbxZUIMujz4GQJqdkmbcAP/vIyv/ArrzF/dY2LU4PddlaNapPYUBTbstHUzs1CYb9IvdLA0E1CMT+xoXvJXqZh8un3rpGc7Gf4AZ3Xx/Veqk2dtXyBkNtFtloj4HJ22631+LJi9xJ3TshXwkj6nY6n/tFntnLd9kP3ozlUtOegilLX2zgU+VitzkfRqDVxuLQDxu5hhD1uwrOdAup6pcHSZ6ucenPqRI19FVXpihCUGi12SmUiXjeWZZOp1ujzehBCkAz6USSJVl1nby3DWMANu1V++P9e5+d/900cWgOhhLEti9xOHtWdRJZl3l9YY2JAEE+GMA0Lt6/j8fjDPi6+NdN9f+e/fprLm7tUbn2GP1DBFz6FrEjozTYlI4OwXPzsxzfxItMfbrG4n6ZWqKEu5Pl0r8nf+of/GduVIvniElrtBn7dwO+aQXJo3PzRDiqTxB0qy1dWGQgF+Bu/+CalTIXvf/8azVKWppXF5xil79IIM/0RLAAhiHpfwTlRxV9pcPrv/wputxPbrTAymMCpqeyvZ9ic3z5QuwoQigfJbOYYOzdMfq9Iq9HqbpcVmdGzh0OtT0LI4yLk6TTp3iqU0WQZ1dUzkl9mBL01yZPylTCSyeDJskuPIzYUpW/g6T27ht4mU60dqlN8kPn9DKmgn5jvyTLzAJY/WyU1lTyRQPr9uLxORuYGT2Qg7xKI+qk2W9R0nTOpTvKQYZnslioEXU4ckoL3bjhVVTj1xlSnI0mjjT/qpZRrkduCuXf86IaLrcUFZl4dRwjB3nKRkb44ezYMBHwHMnBVh8rSZ6skxuN4/G5OJ2Ms7xbA48U0TDSXhux20K4rrFxZY9QfgKibj66uYFau8Nrrl0jEBtBcMoMDfVSvVegLhNm+CbEBQW5jEbNvCkmYlIs1VMnGMRFj5epVbEvH5RlA0gRBd4RazY2o6JT2ipSCPoIeN1uFEk5FId1osPz+DcYujSON9pGIBFEVGdu2Wd9IMzI72DWA28UypZ0iatNgZG4Qj99NbjuPdadLS7Peot1qozlVJFnCaBvYtv3QDErDalEzMvjV1LHhRyEE5wefb1Zlj5cH6SXQj/0i8MKNpBDifwL+OhABmsAHwD+0bXvjzvbfBf47IAFcA/6ebdufPO1xS9kyWwu7jyUAcD+SJD0TfSLTttEN85Hj5pJxlMfwIg3TQhLiwDrVzOuTj2Xo7iKEwB9+eMJDraUjSxKNQo1aqc7AZOfCureRwfSocGd9UlOUYy+6/oiP0+/OsrCbIRQP4bvTYFpzqCiKzM5KmgYWP//NC1hqgY38NhvXJUJOJ3OvT3fnmrXalFZ3ODWewuV1ER1KcDufZ/Ont3G1LBp9LjSPg8Hxfmi02S9UyKgWupbCHRoh3NonEPVg2zaLS7uoQoKSRq1kUy3UiF0q8MP3rvLar11i58YWDcNgzyPj0C3sG+ukJmKU4jW2d9aI2IPom5uMjrioynFOJWJsF7fY3y2S3S+yd3uFNyIupuJRyrkKmt+JMhzCF/ejmzVkSaPabLFtNLgwnOh+DveHULPbOW7+eIFTb01RK9a4sV2gf7SP8XOjR57n/Y0Muco6Z+aSfN6aoT16fNH4PDzJPwD+F9u2S0IIN/A/An8IvCWEeAf4J8BfAb4P/JfAnwghJm3bPl7H7RF4gx4Gp0/ekPh54XVoTMQe7ZE+bnh4OZPDqaoMR+55qE9iIE/CdrGMU1WIOFRMz73wYD5fwaV2vPbcboFA1PfIOUhCwu9xoSoyBWGxn8kx3hdh6tI4W/PbzN9YJ5AIEvc6CPQP8L2ry4yOJtnbzbFVr3F2OMXc3Ag7C7u0GnonvNkfYkIV7LtrLP/5dZQVwcXffJ2wx40mS8SH+5gTY2TWMghLZfzcGSzL4kcfXOPimzOk4mHausHS5RX2ltMkfB5+5zdPkxxPURxJorfafPjRJ4T0DJXTYcxBmUBcYX8twuJOkfBAlN1Gm7iio+ttNj5dRGOHX/29t2k7+gl73NQbLVavbzBxYZSLQ53v5UrxNvmKxOn4FMPhIM6HeIb+iI/h0wOkJhK0W21C8SBbi7sPrXGNxvsIhsMn1g2+S7Pe6nirTxHy7/GSInqJOyflhRtJ27Zv3/enACzgrnv3t4E/sm37zwGEEP8r8A/oGM3ff5rjyor8hVcgMU2T9RtbDEwl0JwHM0FHIqGHZjs+ayZj98pNPAEPpmXRaBucvjCObppYlkVmM4vTraEEjv+KKbLUDT37nQ5caucirzlUxs6OMHqmk/RjG0sokpdf+aXXWc0WWLy9RTIVRZUlNEVm6swwpWyZpU9XmXtnmut/eoXUVJLv/s67tHUDt8eFaVjImspKOsP68h5fe+MUrYbO9dsbpMsVyhjI1SoD/RE0h8rMq5PMr+3TurHKyGgGTbEoZxO899F1nJYgGp7Eo9XYvtrANdpHIJLgzakoll8lv5vHHZD53j//FI/fzfAbl1gqm0xFbLL5Mv/mB58yPZFkXLt3M5TyzOCTdW7tpRkKObn64Qa+VB+z453EHNOyWErniEoq/ogPIQSaUyM21Ic35D1gIC3LwrZs9KaOy+vC8QSJq0ufrZKa6CcUP35poMcXD0FPceekfC5rkkKIv07HY/QDBvAP72w6B/yLu+Ns27aFEJ/def4rjxACh1tDHGEMX2SX8wfXtfK1BlvFEhcGk9yVVHgcQYK7eO4rASnnK+yupBk/N0y93MAfmehui/u99L8+i/sBTysQ9TPzugvanzJ5IYQnHMHQTQIRP9tLu/z0gxuc+fop4okQGYdGoVrHrrVxtC30fB0jW2F4qpO8VCvXMdsmQxMJokEvn9xepb89zcCIk1ca42ys7qNFg0yEg4yPtllZ32coGaJwO8MHC6s4XC0GXEk8oRCn3pzCEfXxw49vsvfBFi6nymzAx0gs0glb15osFookAj76fJ5OQbm1yMfrKzj999bTBQKnquIL+NBiBw3X3WSmuyx8vIwkS9iWzfSrEzwObb3Nxq1txs8P43T3Ooh8Wekl7pyMzyWOYtv2v7JtO0Bn3fG/p7P2COADSg8ML9IxpocQQvwdIcTHQoiPM5nM85ruS4MkSaQmEt0EDdtYxjb3n+kx9svVxxZf7/N5OJs6qPSzt5YmvZl96GtabYPWnY4Z6c0stVLt4PaGji/kplqssbW4e2+/pQpt0zpgIFezBbYKna/NZqbAbrWfzLZBMV3i5ocL5HYLlIwWVY+M4nPgc7sIDob4/ntX+MHVBdw+F9/+1nkmUjGckoxtt6hmPqSQydA/U2PXKDI1msLv9pKp1snpOpqqUFvPs7Wwh9vnIhj1c/vTDzn9Rpzf+1vfoS+c5Opf6Hz249t8urRN2OPmojvI8HSKRq2Fz+ng5rV1yuUqCz9bJunzYFda6E0dTZER6hSv/+ov4HBpFNIlNrezWLbNcCR4rJaoaZq09TaDMylGzwwxcfHodcrjkCQJl9eJ5tR6dYY9vvJ8rtmttm3vCSH+GbAihBgCKsCDqZhBYPkhr/+nwD8FuHTp0pfytsg298AqINTZwxtFEJ5Rr0nbtrFtqOk62hOUyzxYquL0OI7tQLFVLCEQjPWF0ZttHC4Nw7So6ToeRWF/LU3/SIxgXwCH28HG7W2GZlIYloX5QKF82ONCFoJauc7a5XXGzg7jDvnBrbF5e5t6pcEtpUV8rI+BSIjFdBaXpjE8N0DU4SLg96JqKqffnr5jFGRiI+dACpNv5Nhv7jE7GUeWJDx6jXg9Q9p0UlBs1FqDSCrE/7eyghaScQSzCD3CsOQicqYfu21hbxa5+eE8p96YppQpYTRq7LeaFCWTnN5i5o1J2gJWbu2gqTLFTJlwf5BcpcbWfgGPJPPZ6jZuv5Pyeh6X13mkMANAej1LrVRn4sLjG8fuZ6nIJMePljfs8WWhVyd5Ul6GEhAF8ABJ4Apw8e4G0blinQf+6POZ2kuAFARxdMhLyM9ObGCzUKKht4/sTtI2TfK1BnH/yctRJK+DjUKJOTrrwFsLO2gujdhgp9XWaCSMEB3P5252bL5WZy1XZMLrw7BsfPeVrtx1aB5U9mnobTyahiJLLC+sobZM+iMBWlE/S+kcv/b3v0O2XMe5u8tw1Eer2sDrcBBw2gx6M3f6fHbCvNuLe0jsMzgzTKXkpJzbIzEa45zaIF0qI0kCr99J3Sfx2qtnufy9q1y/vcbo8j6Omzle+folrn50DW8oxIVvn6F/NMapd2Z5/w9/xP5WjgnDwB9uMPemRN92EvwOSlsFdor7WFE3/skYLWeeraVdvMEL2A6F0VMDmBWdym4Rq6qzv55h5rVO+FRv6mwv7TE0m0K3yzhkH7HhKJb5eHqhD6Pa6twwfVm7YHzV6YVbT8YLDbcKISQhxD8QQsTu/D0A/GNgDbgN/DPgrwohvi06V67/CnAC//5FzvNFsZEvPrL5shDOTtPm50y/3/vQ2s1W22C/XO3W6Z0Ep6rS570n+u6P+A6IvUuSoFlrcv2Ht2nrbaAjaHBhsFP24JmOsVPqaJe6PM5DXUgsyyK9keHK5g5XNncAGJ0bYuLCKIoqE3A5uTiUxOF04PY66R90ks9v06g2SQR8uDQfKOMH+nwOTidJTg6AUJEVGVXr3EPu1Wr8p/kVru/sUbNdDA2fYeXjVYZmUrz666/iHQpz4Y1p8ptNZs5+m4uXprn90yUuv3cdp8vB6bdmMAMOlvdy5Gpurqb9eBIBfnx5ga3VPfKajWXpXLm+yq3NJlMX53D7XIxGwgyFgjhVhYCqIdnw6nfPU5QsdMMgt1voNnkutbdpWw1kWWZ/PUt2OwdAfq+AeYKSo6NYzxXI1epP9NoeT8aTLHc8CUJ0Enee9PFV4vPwJH8J+EdCCA+d9cb3gZ+zbdsAfiiE+Ht0jOXdOslfetryj5cVv9PJC0pIPZa75RraQ0oOvE4HZweODr9VWzpuVe1m1m7ki/R5Pbg09YDn2ag28UcPZhc7PU7Gz41011h1w2QhnWUqFmE8Gjk2Rd0yLYqZMqMjAapmZ6AkSSRG72nZ3l1PC7ldhNxjEB7Dsk3qRh63EgZxUGZPVmTy+052lvY49eYUbl+nn+jZc+Nou/u0TRtVlthutoiPxYgnw+yvb/Px/DrKeoHIaIy8ZJFUZYZmUlSLNS6/dx1ZlQkKhe0PFnCcG2ZsLEG2Wme4L4QvKBgZVLHa21S9AfzBEK22jM/RyfwFiA9EkRWZ6+u7vNsfom2aWDYYuoHm1DB0g37X3L3PK+hG1RRM02RvLYPT4zyU2HMSZvtjSJLAtm10q4pD/mJnh38RqOk66gtqlN0TEzgZL9RI2rZt0TGSx435l8C/fDEz+nwJvgSZg7Ztk944ulzDtm0ym1kiyTDyQ0Jut/fSjEXD3b57umFi2vd+fIVaA5/TQbPewtM+2DZMCIE3eM/bVCSJkNuFLEldo2sa5pHHVlSFyQshMJaJa6+e6L0upXME3AJT3sEpB5CEfOd9tsGYB2WSSq6C3tQxDZOfvn+d8QujaKZNq2WgqjIbn6yiOyRur2QQr09xKhFDifXRSDaIJEJk9or8q3/9PqfPKMy9dZb5j3cJ9AdQHSp9yTDxkRiSJCH2q/SpTlSviqbFQAty9pzGVmWflcISTvUiHk3Ftm0kSeLbf/UNqo0W7ZbOZCyKbdukJpOsXF2jXm7gcDmwrSoIZ6ebiGFimRan3pg60bk5irufgWE3ybWWiTtPIUuHm34fh23rYJUQ8uM3Gf8qMhY9Wh+5x+dHr0r4c8C2bUzzyUJgzxohBLOvT+IJHO6HaVkdb62tGw99/fmB5IHGtBOxSFd+zrZtVnMFarrO8OzAAYN4FJIkSAX9B5KA5n+2RH6v8JDJh0A5feApo21QSJcwDZP0RgbbtsmVLqO31vE6NIRl4pKDXQOZ3sxSKDew8FNrmqSmU1z89lnyxSrLlRK2KrGxuEnl1nXapkVwpI/Tsx5OvTHJarMKgMfrIpoMI4QgGPXRaLX48b+/jm3L1MtNPvjzy3z003lSUwnWb27RrDVRHSrhZAhJlrj6/Vs06vD+v/kRXt2B3xGnWG+Q2cqx9Nkq0FEvaufrrN/cAmCvXOXG7j4T50fv1TEaS2DlO9vX0mze3jn2fN9PIV2iWb8X5rNtm7UbmzSqDVTJRb/rzAEDWa80TrZjuwHmyefR48UhhP3Ej68SL0PizleOzFaOwn6J6Uvjn/dUjkWWZaZeOX6Oiixh2yZY+yD1d1VdCvtFfGFvV03mSRmZG8LhPtp7EUKAOOid1isN9lbTuH1O9tYztHWDstuHrPjpD/j49PuL9E14ccUNFEmimC6RrQlmBvvZLJRIBCxiPi9Op8bZ6SESQT/mQJBye4uk4iCZ9CGMDfqHTuHXQ7g1leVMrqOx22hjmRbvfusctfwE2a0tfIE9Cvkyia9N0jQtQvEArVqWaCoJisT6XoZiOo98WaJZbyFJCjN9o2wv7bG5nmbqPkH9stNAHewYxJDLgetBJRz1DOKO8e8fjWGfcA251WhR3C+CHej2oOwIFajdDOW7NxXQqaNc/HSFqVfGcHmPD+MKKQBar8z5OOz2Ikg+hPziMopFL7v1xPQ8yc+BcH+QodnUowd+YWiDlQM63rFt2+ytZWjWHi8BoVBr0LyTiGJZFpVijaXPVtGb7QPjGrUmazc2se3DP3J/2Mfs65NUCjVMw6RV15lNjhP0dJoWz74ySyoxwdXtPYqNJlOvjBOuWsgNgzPJ/q6gfMDvYXokQaPWJDGUYrDvFAs/mKdtyHy4GqLStEkv7rG1s8jGrRVs0yK7nWNzfpv2ZhErU2NrqUJsZIZXvnWWqKXgUhWCcZWN/Z+Qzua4sr1HMhbirV98hVA8iNEyWLu+0U1K+uSzJTKVGrXyneQZdQev506izm6J/fk9dMPg+s4+umF0DSR0bnBOIktYLda4/dMlhk4NHFLWSY73H2oNB3TKZd6aPmAgs9s5Nm+v0FlR6fFYyFEQT9+E4XHpJe6cjJ4n+TmgqMpz01U9DttuI8TDmzg/CW29jaI6EOqZ7nNCiG6ZwuOwX6kS8bhxqgrFdIndlTTDpwa63s1dZFlCdRx9/m7uphkKBQj2+XF5nXj8Bz3NliQoVmrM9vdR2ipgDGnEB6MsfbZKcrKfxEgn8ce2WxR2r2ExwMBkkuREgkgqgkNTsPerLGzOU85WmfpmlLFkBK/LQdXj5OaP5/GGfegtnYGJBJIc4vzZBKVchUK+TDDkp2/0O6RCIaKG2RVFsHWTd3/zjU59qSRx4VtnmH5nhlomz+q1NebePsWg7zQ3drK4FJ2+wQilbJn06m2CQQeydPSan26Yx5ZweIMeZl+fPNDQ+SQ8+P11eZ3I3AA7eCghqsfxCCn04o9JT5bupPSM5FcE28yCuQ7aK0+1H8uysG27e1Fd/GSF+EiMSOLgD31rYQfbhqGZk3vMM/fVaIbiQfyRowXSNadGauLo7iJBlxNNkVGUo29EbNvGtCycisJupYFpmITiQWR1C+n+dFrbJDESJLOrsHR5lYnzo12v6vW3TnHrowVuzi8wNJ3qFu4nR+P4/tqbSLIMtn1gnXdpaYdMVudb0SBDkU59q1uT2CqUSJf2qcyvcOmNd3H73OiGwUa+xGg0hCuWJhzrnFun6mQkEsatqpiGQbtlkNvOMhrshLQ38sXumm5ut0Cj1WbbbnF+IHGsbOGDOsBPgifgwe1/40BJTY8eXwZ6RvKrghQ+tH73JOytpmnWWoyd7Wicjp8fQT2i80RsKMoR0dBjKecrWKZFsC+AEOKJvO1H9Q5tpstk1zKkvnGa4VMDtFsGbb3N+W/MHRgnJDdIUwRjOp5gJwRr2zZCCGRFZu7tWaZfnThUuO8Ldcok6tUqlqUDCoufrjI0HicuHzwhi5+u4Onz4aiAK5U4YFQFnTIXSZlGuu9nqrWtTjKNpuD2OYlPvonb6UA3TOp6G9OykaVOHZzLoXI6HOwayK1CiYjHjUtTqRSqeIOeZyo71zOQXyBEz5M8Kb01ya8IQkidC/9TEhuKMjB1z4tzuBxHtlJyuByHwqSPollr0ag2n2p+1n2SdXpTv+PR3rsYqA4Vy7LvlLfkuPr9GweyQE3TZH89092P5tTw+N1UClVu/Oj2gf03Kk2MttEt3L9Lsd7gZ++/x97mFYQQhPuDmDJsFSsH5hIdCBPpCzA4FSI8HKFWbZDdyVOoN6HcYunTVYTQDrS4KmXKVAs1NKdGdFxjM/1HGEYbTZGZ6e/rhlbD/SGCMT+O+4xgo93GsCz0VpuVq+sHsll7fPWQsJ/48VWi50k+Y2xbB2MBlKkv5Z21oirwbJc1u4Tiga6wwJNgWRY3fjTP6JkhvMFOE2WjbXY9QIBoMkw02VkzS4zFiQ5GsE2rW4/ZbOrk9oq4Il6W8nnmkv1oiozb72Lo1MCBG4LMVg7NpVEv1QknQt1tNpC48Arbeh1/q4w35KGYLnFxtBMWrettbu7u4043icQC+FMql/f22XrvOmNDcQbfGMfX58OX6MxzJZPDNmwaK9k7nTkc2LaNR3MyFBlElo/+GafXs9TKdSbOd8LBk7EobdNkPVdk5q0pHOpz+iB7vPT0sltPTs9IPnPkjvB479Q+Fm29zc0fLzB16XBZgWVZrF3fJDnRf6x3KkkSI3ODuP2d1ztcDkZODz50vBACTVPZnN/GNCxGTg+yValSi7uoGm2GwkFUWcK2WwgMzAcM7vi5kUP7tG2b3MIeyZE+RGkRw9hDmBcopstYto0dchH3eYkpDpbTu4yeGcQpw7jiZ9erERyJkroTMm41WlSbOUr1Jm5NJTXRT13ao6kLauudVl/t6BgXPZ357O7l+A8/u86vvXuBVNDf1XE1rI7HqEgOsE0EbWTpxeuxFjMlFFV5ZL1sjx4vE70r+TNGCBmUgc97Gi8UvdVGlqWHqvKcBFVTmXxI3Z0Q4pFdRe6S2cxh2zb+8Mkl1BJj96Tsxvsi5Gt1FFnqiiTYxg56o8H2koQ35Hmot9uoNSlmyhT2S/QNhGnVQ5hWAKPWwp0KUK00qZZbRJ0bxCNjbA0EO0Uz5iYOuch3f+ESgei9NdXVW6ssrnzGmdfeRXJoBEMBTLtzflwD4DeCmErHQDb0NqulMq+ODNDn7cxblmVkWabQWkMImaA2iEKasVDphdbk3aVebqA61J6RfEnoeZIno2ckezw1m7e3cXmdh9orGabFSjbPSCSIpjz6q/YwfVEhxIlbN/kjXhyuk4e5bbuFzAYonaJ9RZaIPdjtRB7B4YW5t+9J5RX2i4TjDQQmQukkMa1d3+CDP/mE6YtjuP1uxs7OUtzJs7u4iTQVRXgUVMkmW1NIRZy8dW7yzhxGiQwKNgtlyhtp2sUGY2eHmTgzQWI4ScU2+XBti0TARzlTp5yr0HBKCLdG2OPm6vYeCb+PiWQfQU07dK6D2vB97yUJdG4Ksts5ZFUhFHuwO93joRsG1ZZ+QHnpKHrtt14eeiUgJ6eXuNPjqRk5PUh85HCdnhCgyvJzbdxbzlW6XUQAoqnIkQXwD0eAUDr/f9gIIQ68B72pk93OY9tekO4ZmIlXxhj/xizevk5/yk9urHD16iqD00lSkgN3psFwOIxO/EDhvxByNznH5XUSige6CT7lbAWHbjPckKhmK9za3QiJywAAIABJREFUTrO1mycgKbjrJks3NsCGlmHQTle5/oPb6E2darHG0uVV9KZ+YP5CSN1aWdu++58Oud0CC58c2br1WKot/ZHdbHq8fPTEBE5Gz0j2eCxsu4Gtf9xJULqDrMhHFqPLksRoNIT6BE2cT8ruappq8cnbOQmhIZTRAxmkj8LldTHz2iTlPKQ32+ws76E3dW7sZjhzYRznYJitQokLE4O8+uYMgUSIYCxAajJBwO3qilhblkXbNFlMZ2mbJkmfF6ll0NYNstt5Pv7J99F8ArfXiUdWkBSZmZEE/X0BkiNxwmEvpb15Uu4WqaCfSq7C4EwKzalhGib7GxmqpYefm76BSFdlZ3dln1a9Rf9ojMxWjlL25EYv7HFzJvV8vcRqs/VYrdp6HI+gl916UnpGssex6K02rcb9pQIOkEdfmszd6UvjDw0XNuutAyUbzxpJlpBkiVZDp5St4KkZRHweRmMRYj4PXp+bhiK4vraD0Taolerd3o7Z7RwLHy9j2za1Qh2BoJStsHZji1qxRjgRZOL8JNFEHx6/u9PKzKHgcztwuRzc/MkCQpI4d3qSgNd3R+Vokr6BjlBBIOrHH/Kyt7JP2zQxH3EeXD4nvrAXf9iHbVmUaw22CqXndu4eB9u2ub2fodR8uvKgHj2ehJ6R7HEs6fUMuyvp7t9CSAg58vnNZyNDIX2yi/fSZ6uUMg/3iBq1Zrdp8fbSLrVS7dj92bZNq23QarS4+ZN53H4XfQMRBmYSeNy38KotzLbB2se3sdsdY5gM+Am2bPI7BTZub3Pth7cBCMYCDM0OYDbbKJkaWBaRRIgL3z7D6JlhZFkm6h9CvhMaTY73IztVHC4HA1NJkuNxXF4nqak5FO1oGTh/1E8kGWY5k2ercLxnWM5VUdSOxx8b6sMfCxypjft5IITg/ECSkPvxe2L2eAhPEWr9qoVbe4k7PY4lOfFyJVsISTq2GfP9TL86fqxqz+btbYQkmDg/2qlxfMSOi/UmS5kcFwcTxEdi3X1f3U4zFh6hfyyBbZWJD+SQVYlqS8fr0Bif6yTO9I/GqJc7LaZkRUZRLTSnxtw7s/fe3/1rn4ZJ2zTxODQK9QYr2TyXhjuZ0w+KkR/F8OydsYZ5UHLvCCRJHHj/AZeTgOvz73d6F+UFNSL+KiGJnhj9Seh983ociyRJRyrqfF70DUQI9p0sG1PV1GOThoZODdCsNmk1dBJj8UNi6A8SdDs5k+pHlmUiiVB33zP9fQQ8KYSQKWUFtjxLtdnm5m6a9n19QxVVwR/plKYU9otc/XCea9t7tNptPl7fonFfAlK50WS/XGU9XwQg5HZxqj9GMdPxopv1JttLu9i2zfzWPj/70c2uV2zbNra5i213emvmNrKPNDIDU0lcnpfHKPZ4vtzNbu15ko/m5bn69ejxgnG6HJx599QhgQLbtklvZLrrh3dZv7mFcUT7L49D63hiXVQ2Pl1jwu3rJi2ZlsViOotudAxZKB5k9tVJYj4vmqIwHo3gvOOZWpbN/H4Wv8uBv2ayfnMTIQT7S3t88r2r1Ct1rv3gNpVCFb2p43WohCM+pDvCB7a5A1YWbB1FlY/smLK7ss/S5dUTn6v8XoFGrbcm+GWil7hzMnrh1h4vPXulCmGP+9iWT88Sy7QopMsE+vwHBBJcXieKdvAnU6g1qOk6Ec2BqindMKgn4Mbl7XhmumEgSxKyJHG31EQIgcfj5G5ZfcjjYnNxh9xWjlPvzjIVixBwOdESIQrVOvN7GVSvRjAWQEgS06+O4wt5ufzedYIxfzeka1sthF3qti7zhcAXeqDuE9hfzxBJ3uvc0qg1aVabDw3jlrIVhCT1vM0eXzl6nmSPlxrLsslUa10P7Hmxt5buJu7Iisz0pfFD9Zbx4b5DXqcQAkkItuZ3yO8Wus+7fS6EEFiWzSdrW2QLFYbDQTRFppyrsH5r68B+yrkKa9c2sCybbLXOdqkCgMvjxO1z07YscKsMnxpAc6q0jRY35z/EEXCQk0x0w8AwLW7vN9GZOvT+jLbB7sp+Nxln+rUJUpP3hOoblQa313bRH/Ces9udcpDRuaGnFh3o8fJwV7u1F259ND1Pssczw7QsdksVEgHfHa/p6ZEk8dxr8KCjovMkdXhBt5Og24l5znPk2q0kCeKWyt7iHhv9FS4OJVEdStfLvIs35OHit89022UlAvdk9YJuJ25JOtD3UZZVXGqQofPjbBRKgGDz9hamKii46jT3ygxOJrr1q6ZhUivXsSwLWZYPeYTBWJAQxp1SkXves2lYyEovwePLSC9x52T0PMkeT4RlWdz8cIFa+V6xumnZlBrNR9bkvYykJhJHhiUfRaHWoKG3sYD1fPHI9z46meTUKxNMx6PIkoTL6yI2GMW2742VJOlgP0khaDVarFxbZ+3mJrc+XDxQrxoI+xkZnUaRZcaiYTRFJhDxMZ6MspUrUSzXsO8z+g6Xg4nzo0eKPnSOL5jp78P1gC5tfLjvRJm0Pb5YCAGysJ/4cbJjiO8KIeaFEEtCiP/miO0OIcT/fWf7R0KIkTvPR4QQ7wkhqkKI/+OB17wihLh25zX/u3iecl536BnJHk+EJEn0jxwMP2qKzOlk/EQ6rbatY7fnse32I8e+jDRqTbYWd0lXa1RarU4NpWEe2WhaCIGqyvjvK6mwzQy0rxx7jMJ+iXq5TjAWYOrVg+Hf9EaW5ctrB8aH+0O4vC4ujQ9y/rXpJ2pa/STorfZDayrL+Qqr19ZPtB/bttla2HlAvKLHFxHR0V38x8AvAqeA3xFCnHpg2O8BBdu2J4D/Dfif7zzfBP5b4L8+Ytf/BPg7wOSdx3ef/ewP0jOSPZ6YcH/oKTp/SCA0vrBfQdvGMi2m49Fuhup0PHpkqYVpmIcFEKQQKJOHx95309A/EmPk0jgL1TKK86CHF04EGZhKdDVanweVZotP1rcfGYZe/GSFwn7xyG2aU8P7GB66aVpH3mj0ePY85+zW14Al27ZX7I6G5R8Cv/7AmF8Hfv/Ov/8d8G0hhLBtu2bb9g/pGMsuQogE4Ldt+yd2567sXwK/8RSn4ET01iR7fC4IoYAy+nlP44lxeV0MzaRONLZZa7K1sMNGq8ZELIrHoXXevzhoPGzbZr9xk5A2jEu5kyWrqcz29x3Sv1U1FVVT0Zt6t/YSYLd+i0xOYcSfxB94upZUbk1lLBp+oLylQylbxh/pyOFNXBhBdRzdPszpdhzbA/R+hBBdAYQezxv7ea9JpoDN+/7eAl5/2Bjbtg0hRAmIANlj9nl/xtvWneeeK1/Q2/gePb44eAIezrwzS9zvw3FMKFoIQZ9zCqccOPCcz3nPyOhN/YD4uObUiKbC3U4oXiVBaV9nb/WelGAxW+aDf/djzPuEDZptg6Z+ONRtWVa3HnL9+iZUD4c+23qb9ZtbNOudbQ6X46USnOjxaJ6BmEBUCPHxfY+/c8QhHuRBF/QkY55m/DOh50n26PGcaOttJElivVDC49DoDxzfCNpoGwhUhPrwXIRaqU5up3CgOXN2O09hr8j0qxP4tCDvXgoeWCPUHDoe7zam0UaWZbYWd/nZ/gLhUImvzX4LIXlpNVpoTo1Spsz20h5zb88Q6g/i9h2ui1Q1lTPvzj5Uzcg0TPbXM8RH+h6aKPTg+Kdp2N3jyZCfzr5kbdu+dMz2LWDwvr8HgJ2HjNkSQihAAMg/Yp/3hxqO2uczp3f716PHc2JrfofdlX2Cbicex6O7pmwv7bG9tHfguUqzxbXtva7RC8WDTFwYxbZtDKvjyUWSIUbPDB143f0GzOWNcPEXfgHN0TF4/rCXt6dGOjqwonOfvPjJCsVMmVA8yMxrE51jxQIP7c15XFKhaVrUK40D2bX3c39ijt7Uuf6j212vtMeXhp8Bk0KIUdFpGfTbwB8/MOaPgb9559+/BfylfYyqvm3bu0BFCPHGnazW3wX+47Of+kF6nmSPHs+JwZkUpq2jixJeNfHI8QOTh8c4VYWYz8vm/A6SLHXHtKwK+dYqEWkGo2UcKB95ECEEiHshXH/Ehx8fMNx9burSeHdd8WmzYjWHysT5o9ebLcvi9k+XGDs7jC/kRXNqTJwfOfG6ZY9ng3jOa5J31hj/AfBndApv/y/btm8IIf4H4GPbtv8Y+D+BPxBCLNHxIH+7Oz8h1gA/oAkhfgP4Bdu2bwJ/F/gXgAv40zuP50rPSPbo8ZxQVAXLbKG363B0XkuXVqPF8uU1Ji6OHQg9qrJM3O+lLmTEfQk0TtlPzDlDYadKMV0iOhChmC1T8ilM9IXxOo82OrZtAhZCHJzQ/UIFzxNJkph9ffLA8Y4z8D2eH89bOce27T8B/uSB5/7Rff9uAn/tIa8decjzHwNzz26Wj6YXbu3R4zmiyR4iznGgo+FabnSSYkzTPJCAozpU4iMxVO3o+1a3z3VIJUeRHPQNRIikwti2jT/kJRX041SPscjmJhjLANQrDZY+W32ufSPXb26yv5458Nz9BnL12jqZrdxzO36Po3kRYgJfFnpGskePF0S+1mCr2DGMzWqTzdvbWHcUeiRJOtB+63EoZcoIIJII0efz0Kw02F3dP3Ls/9/evUe5edd3Hn9/JM395rnbY2diJ7GdG5BNU8g6oS0Ny63L0lPKktKedtlus4fCoaHd3VLKQrYlUEq2hbbQNtzacja9ZZeeHEoLoRBaEgM2Cc0NO7ET3+I447HH47nPSPruH88zjkaWZp7RSHo0o+/rnOfM6Hke6fnqsUdf/e5zc/2QugyAVGOKzt72kq4ZVe9QD519xTss9W7toaNn9TMdubVLkC15qyeeJJ2rks1dHVy9ZQAIqhivvfmqJUMnJhaev9AZpxgzu2hw/45rh5dMHWdmBTvNzE7PcXDfERbCSzQ2NTAw3H/h+MjxUU4ePnXR89aifVMbLW3NmNmSISiLOns6vD3S1TRvk3RuFczSgF3UplcO89lpmhKdQPGkcezsOLPpNLsH+4qe09HdXnAe2ubWJq66cWfR9seW9uaL1tAsl5Fjo0ycneSKf7N+J5DYSBZXAXEr8yTp3GpkjgIGqSvK/tK9TZeveM6WrnaiLlZy+sQZmloal8zIs1wHnVImeI+qd6h72WpXV33JOqs2LVXVq1sl3SnpWUnnJY1IulfScHjs5yU9JGlM0qikf5D0kmrH6FxRyUuDLSaNqRTNEYdoZDNZMpnKfxCmF9Irdv5JNaR8weYaUoYZd+pGHG2SXwCuM7NOYDtwjGDyW4AO4IMEMylsBR4GviqpJYY4nbuIlKpIVetazE7PFewhOnhpf1UWSj647/BFE5xns8bDx55jYjaeSQKy2WzBNlDnVqvqSdLMDpjZ4pIIArLA7vDYJ83s/nAW+Dngw8Bm4Mpqx+ncejE/O8/kuSnMstj8I1h2oiyvu5DJ8PCxk0wXmOM112Uvu5RNeck4kRDbe7tpbYznC8WpZ0c48vjxlU+sW0ZS2ZK3ehJLm6SktxGsC9YJpIFfLXLqLcA0cKjI69xGsLYYw8PDhU5xbsPr7Omgsydo77PkMESseJnPTtOYaC16vCGZZLini+YV1gctVo3a0xa89nw6zcjEFNu6K1+qXdR/SS/ZKlQ1r1eCqEte1b1YhoCY2T1m1gVsAe4AHss/R9Iu4DPAr5lZwa/GZna3md1gZjf09/cXOsW5DeXE2DizC+mix5XsDZbhWkE6O8fo7EEWsrPLntfX3lZwqaxCMulMwTlY5zNZJufmKzppQb6Gxoai8866gJcko4l1nKSZnQI+DXxJUs/i/nAF628Ad5nZn8QVn6ueTDrDycOnvB1pBVPzC6Sz0T6kzOzCslf5UokmBlteQkOifJ1pzjw/xtEnTyzZd/7sBPNjU1y5uZ/Z6bmqJkpXnBTM3VrqVk9qYTKBFNAGDAFIuh54APgdM/vdGONyVZTNZpmZnC26coQL7B7soz3CiiIAE2cnefp7z2BmzKfTTOZ1oklGKHFGMT0xw8F9h+gd6uaK67YvOTY/u8DcTFCKfPp7zzBxdrIs13SuWqqaJCUlJL1L0kD4eBvwSeAIcEDSTcA/Ae83sz+sZmwuXg2NDVz+su1rXoHCvaizt4OrbtyJJE5PTnN8bHzlJ0U0PjPL0yPBAvKNzQ30DnWTTCZ59uw5zk2/WHrtG+phy45BJHHVjTuXjNl08UpiJW/1JI6S5BuAxyVNAd8h6JjzagumMvkQwcKbvydpMmd7ZQxxOrfuNYS9S7du6uTKzeVrt29IJmlrDEq0qYYUfVt7AWhraqSxyALKDWXo6erV8eURjJP06tYoqvq13cyyBEmy2PFXVTEc5+qKJMyySGv/btza2FBweMdgR9uS+WgLmRibJJFM0NYZ9H41M0YmpuhrbyW5wnN/sPcptu0eYlN/9XrKbkz1VyIsVS20STq3LixkMpydmo47jJJNLZxmdO6psr1eNptlfnb+wuPTJ85w6JFnAXjh6GlOHRkp+Lzx0+eXtE2ms1lOnZ9gIcKQjR0vGfZVQ1xVeQOQcxFNzs1zfGz8wvi/9aY51U3DMuMiV+vsqXOMHBulbecA6WyG4YFO2rqC12/paKZYQWXbrqEljxuSSV62bUuka/oCzeWxWN3qVuZJ0rmIultb6G5dvzMkJpUimVz7n/yZ2cO0pnrp3dJNZ28HaUHWjIbGhgvtjouTG7ja5ROcR+NJ0jm3Ki2pTaQSzUgimUowNTqxZD3LRaOTU0xNzcCZGS65cuuKbZWuenyprOg8STpXBWazkD4OqcvL0nEmTq2p3gu/z03Pc/LwC3T2dZBMLu3VmpCCxJhMIEWbtSeK6YkZzOxCxx9XGi9JRuNJ0rmqSIBSBK1BG0drRwvX7NkNBKuRzEzOXlh5pKetNWi/LfOMkedGxslmsp4kXVV4knSuCqRGSO2IO4yKmF1IMzE7R2p6gbEXxiu+PNfQ5Zsr+vr1QFB3c7CWypOkc3Xq/PzzGFm6Greu+rmnjoxgZmzZMcjM/AKjk1NctWWgYNukq0Xmq4BE5EnSuRpw6sgIs1NzbL/mkqpdsylZ+njD1s4Xe/l2t7XQ3VZ6r9/5dJqzUzP0tLVemK3HzDh2dpwtXe00rrBUl1s9yUuSUa3vHgTObRCtHc1Vn3KtKdlBU7K0oRqdPR00NKbKEvPY9Cz7jj7H6cmpC/vMYDadJuMT3ldMgmzJWz3xJOlcDUg1NiC0bpaSeu7ceR781hOMvbD2SdMHO9v5iWt3s3VT54V9iYTYPdhHSxnmey1FJp0hG3FJMrexeT2GK6v5dJq5dIaOZl/wdjVaO1q47KWXxh1GZJtamrn+5qvpaS9PD9OoCztXy9EnT9Dc1rRhOwkJI+njJCPxJOnKamx6ltOTU1w7NBh3KK6C2poaaYu4ruVaTI1PkWxI0dzaxEImQ1KJggl17IVzmBk9m7vLct1tu7aQSG7cijbh4ySj8iTpymqws53BTp+Aup6YzUN2FCWHVj55lU6fOEtzWxObtw9w4NRpettaGcqpll2UyWSDhswyaWyu/BeAuPncrdF4knTOrY3NQ/YclthS1pl1gCW9fXcN9JEqUrrrG+op63WdW+RJ0jm3Jkq0Q+LqSOeePztB+6aV15wspKnBP67KRZhXt0a0cSvdnXM1JZPJcPSJE8xMzMQdigOSspK3euJfzZxzVZFMJrnmpt2+GkgNENTdeMdSeZJ0zlWNJ8haYT7jTkT+P9Y5VxVjL5xjYX4h7jCcWxUvSTrnquKFo6dJNiRp6IlnFh33Ih8nGZ0nSedcVVz58p1leZ3RySlaGxtpjWnKuo3CVwGJxqtbnXPrytmpGabn5+MOo6D0QprHv/UDZiZruwevFLRJlrrVEy9JOueqbmx6hnPTs+zoW/00crsG+yoQUXmkGlJs3TVEU2vtz12c9JJkJF6SdM5VXUMiQVO4duRKzIz5ufXT4ad7oMt78W4g/i/pnKu69uamgnOwFnJuZJyn9h+ucET1ZXGcpK8nuTKvbnXO1bRNA120drbEHcYG4+Mko/Ik6ZyraZJoaqn9Nr71JBgC4m2SUXh1q3POOVeEJ0nnXCQnxsYZmZis+HXMjNnpuYpfp5hMJsMzjx5lbia+GKohISt5qyeeJJ1zkTSmkjQmK99CM3F2kqf2H8bKuIjyakiiua2JRJG1KzeCxaWySt3qibdJOuciGehor8p1Onqa2P3DvWVfwDmqRCLB0OWbY7l2tXibZHSeJJ1ztcUmaUyNAINxR7KshewsKTUirc8SZ71Vm5Zqff7rOuc2LCV6UMNL4g5jRWfmDjGTGYs7DFdhVU+Sku6U9Kyk85JGJN0rabjAeR+VZJJ+rtoxOudqw/jMLJOztdmBpr/5SlqSPXGHUZLF6tZSt3oSR0nyC8B1ZtYJbAeOAX+Ve4KklwOvB56venTOuZoxNj3DuZnZWK5tZjz72NGik5UnlYqt3bQcPElGU/U2STM7kPNQQBbYfWGH1AR8FrgN+MvqRuecqyXbe1c/AXq5BL1cmzdkL1cBifWb36sqlo47kt4G/DHQCaSBX805fAfwdTPbu56/pTnn1r8tl9V256HS1V+JsFSxJEkzuwe4R9Jm4BeBxwAk3QC8BbguyutIuo2gxMnw8EXNms7VlUwmQzIZbWUN51w0sdYjmNkp4NPAlyQNAJ8H3mlmkab1MLO7zewGM7uhv7+/kqE6V/MO7jvMmedrr7fl+TMTPLn3YNxhuBzBKiClb5GuIb1O0kFJhyS9t8DxJkl/HR7/jqTtOcd+I9x/UNJrc/YfkfSYpO9L2r/6d756tTBOMgW0AQPANcD/yalm7Qb+WNLrzexnY4rPuXVhx7WX0NjSGHcYF2nramXbrqG4wyi782cnaOtqXZ+ld0Gygq1ZkpLAJ4F/B5wA9km6z8yezDntF4ExM7tC0q3AR4G3SroauJUgHwwBX5O0y8wy4fNeZWajlYt+qaqWJCUlJL0rLDUiaRvBjTwCPA0ME1S1Lm4ngfcB765mnM6tRy3tLTX5gZ1MJens7Yg7jCXSmbVNrXZueobH/vUZpsanyxRRdQmRXMMWwcuBQ2b2jJnNE4xgeFPeOW8C/jz8/V7gFgUlpDcBf2Vmc2b2LHAofL1YxFHd+gbgcUlTwHeAaeDV4Q05kbsBGYJvGmdiiNM5VwEL8wuxXn92Ic3Dx08yu5Be02tc8tJL6eypreRfRX2S9udst+Ud3wocz3l8ItxX8BwzSwPjQO8KzzXgq5K+V+CaFVHV6lYzyxIkyajnb69cNM65apsan+LQ949w7U1XkkzFU+ptbkhx1eZ+mhtK//jb3LX+k+MaS0ijZnbDMscLFTfzu9MWO2e5595kZifD2sj7JR0ws39eOdzSbbwBQM65mtXa2crO6y+LLUEu6miu70WcBSSlkrcITgCX5DzeRtB8VvAcSSmgCzi73HPNbPHnCPBFqlAN60nSOVc1kmjtaIk7DAckUMlbBPuAnZJ2SGok6IhzX9459wG/EP7+0wTj4y3cf2vY+3UHsBP4rqQ2SR0AktqA1wCPr/lGrKAWerc655yromDu1sp1bzWztKR3AV8BksDnzOwJSb8F7Dez+whmVvuCpEMEJchbw+c+IelvgCcJJpt5p5llJA0CXwxHP6SAe8zsHyv2JkKeJJ1zzpWdmX0Z+HLevg/k/D5LMHlMoefeCdyZt+8Z4GXlj3R5niSdc64ORaw2rXueJJ1zrs6IyB1w6p4nSeecq2Hnz0xU5HUT3m8zEk+Szrm6NnJ8lMxCpmZX/Ag6fJZXMHerlySj8CTpnKtrLe3NZNKZlU+MSVdfZ9wh1DVPks65utbR3X7RPsuchkQXwRC/jUgk5dWtUXiSdM65fNlToAbYoEkyqG71JBmFKlHfHQdJp4GjZXipPqBqy7DEyN/nxlEP7xHq+31eamZlWzRX0j+G1ynVqJm9rlzx1LINkyTLRdL+FSbu3RD8fW4c9fAewd+ni4eXt51zzrkiPEk655xzRXiSvNjdcQdQJf4+N456eI/g79PFwNsknXPOuSK8JOmcc84V4UnSOeecK8KTZAHhith/KulpSROSjkn6mKTmuGNbK0nJ8L2cDt/b/5W0lvFSNUfSRyU9Iem8pJOSPi2pJ+64KkVSQtJDkkzStrjjqQRJr5b0bUmTkkYlfSrumMpJ0mZJfx3+XY5J+rqkqq+d6C7mSbKwFMFg3jcCm4BXAj8OfDTOoMrkvcCbgFcAix+oX4gvnIrIAD8H9BIs0roN+HysEVXWe4DpuIOoFEk/BtwL3EXwb7oN+EycMVXAp4AeYDcwCOwHviT5elZx8447EUl6J3Cbma3rb3eSjgK/ZWafDR9fDhwCdpjZkThjqxRJPwHcY2ZdccdSbpJ2Af8AvBl4BLjEzE7EG1V5SdoLfNPM3ht3LJUi6VHgj8zs7vDxbuAA0G9m9TDLUM3ykmR0twCPxh3EWkjqAoaB7y3uM7PDwHngpXHFVQXr/t+uEEkJ4HPAfwfOxRxORUhqA14OzEp6OKxqfUDSRpuR5mPAmyX1hc06twHf8gQZv7pLkpL+LGy7KbZ9qMBzbgduBn6z+hGX1eKaO+N5+8/lHNtQJL0Z+CXgV+KOpQJ+BThlZv8v7kAqqJvgc+qXgP8EDAFfBb4saVOMcZXbg0ASOA1MAj9F8J5dzOouSQLvAvqX2T6ce7Kk9xC04/24mR2rbqhlt7jEeX614yaC0uSGIuktwKeB/2BmD8cdTzlJugL4NYL/zxvZ4v/Zz5vZo2Y2D3wEaAD2xBdW+YQ1Al8DniL422wF7gT+RVJtrgRdR+ouSZrZpJmNLrNd6AAh6X8SfBD9qJk9Hl/U5WFm54BjwPWL+yRdRlCK3FDVkZLeDvwp8EYz+0bc8VTAzQRf6h6XNAosfgl4VNIvxxdWeZnZOHAEKNR5YqN0qOgBdgB/aGbnzWzezD5D8Pl8Y7yhubpLklFJ+hjwXwgS5MG44ymju4Ffl7RDUidfADFuAAAF1ElEQVRBj92vbKROO5LeTdAT8rVm9mDc8VTI3wCXA9eF2xvC/a8B/iKuoCrkU8DbJV0tKUXQBjsLPBRvWOURtjs+BfyypDZJKUn/GegAHos3OueLLhcg6VLgvwHzwL/m9MI+ambXxBZYefwOQTvPPqAJuJ9guMRG8gkgDXwjtwe9mV28BP06FdZ45NZ6LP4tnzKzyXiiqpi7CBLG14Fmgl68rw9LmRvFTxJ03jlKUJV8CHiLmT0Ta1TOh4A455xzxXh1q3POOVeEJ0nnnHOuCE+SzjnnXBGeJJ1zzrkiPEk655xzRXiSdM4554rwJOnKRtIdRebD/VqR828Pj9+bt3+5+XV/Jue8B4qc0xwevyV8fHPe678j3P/+vP07w/1vq8a9kNQp6eOSjkialvSD8J4o55x+SX8g6buS5iUdiXDti+5rnPfCufXMJxNw5TYOvK7AviUkDQAfIJjQOd9vA3+St+8dwNsI5rjM9Q3gfXn75sKf3yFYW3IP8K2c43sIBuLnz/25+Lhcs/SsdC/+DPgRgvgPAa8Cfg8Q8PvhOVuBtxK8l+8DA8tdcJn7Gve9cG5d8iTpyi1tZt+OcN5HgL8HLsk/EC7fdTh3n6TPAl8zs/wP/7PFrmdmk5Ie4+IE8G8Jpm57qyTZizNq7AGeM7OjEeKPoui9kNRKsPj17YtrCAJfl3QNcCsvJslHzWwwfM5dwE+vcM2C97UG7oVz65JXt7qqk/TDwH8kWF0lyvkvBa4G/rKEyz1IkAgWX2uAYM7TTxBM7H5Vzrl7qN58oCmCv79Cy5ZdqG41s2zUF4xwX2v1XjhXszxJurILJ2jO3XLb2AT8EfC7ZvZcxJe8lWBC678rcOw1YXvetKSvhAk110PAQLi0FARJ4jkzO0Cw8smeMK4ugkRc1urFYvfCzM4TTFL+PyRdJ6lD0r8nSHKfLOE6Ue5rrPfCufXIk6Qrt15gIW+7Jef424HNBJNWR/VW4MthYsn1TYKFh19LsJL7MMEafNtzzlksDe3J+bk3/H1vzv4bCf4eypkYVroXPw8cIJiw+zxwH/DbZvbnJVwryn2N8144ty55m6Qrt3Hg1Xn7DsKFEsqHgXeb2UyUF5P0CuAy4Nfzj5nZB3Me/kvYc/QAcHu4YWZHJD1HkAD+Ivz5xfA53wZ+M/x9sQPL95eJJcHSL5bZFapDi96L0O8DryBIcM8QrBF5h6RRM/vsMq+bH1ek+1rOe+FcvfAk6cotbWb7ixx7H3Ac+KqkTeG+FNAQPp4ws0zec24lWJ3+71e6sJmdkvQgOYtKh/YCeyQ1AD9EsB7h4v7dknoJEsN3zSy9zCU+AOQm5v8F3LHM+UXvRVgt/A7gNWZ2f7j7nyV1AHdJ+vwq2iNXc1/LdS+cqwueJF017QZuAMYKHBsDXknO8ISw5PYW4O+iljxD+eu/PQT8FPCjBCXBRwDM7JCk08BNBCW6P1jhde8GvpTz+OQqYsp3Zfgzv7T2CLCJoKq20PCYQlZzX8t1L5yrC54kXTW9H/h43r6PE1RLfpCLV2H/EYJxgpF6tUoaJPiQ/1zeoQcJEsJ7gIfNbC7n2LeB/0qwqO+yvTnN7CRrS4y5FodWXA98JWf/DwFTwOgqXms197Us98K5euFJ0lWNmT2ev0/SOWDUzB4o8JRbgTPA/fkHwurKjwB/S5BwhoHfALJcnDAeAWaA1/Pi+MNFe4E7CUqfe6me/eH2OUkfAJ4laJO8HfhEznhFJC2OjdwFtOY8/qaZnV7lfa3Fe+FczfIk6WqSpBTwZuDeIm1jZwjGE36EoGpyAngA+EkzO5Z7opktSNpHUDLN//DfG77Ok2ZWqLqyIswsI+mNwIcI2jr7CZL9HcD/zjv9b4s8fhXBe17NdWvuXjhXy5TzhdU555xzOXycpHPOOVeEJ0nnnHOuCE+SzjnnXBGeJJ1zzrkiPEk655xzRXiSdM4554rwJOmcc84V4UnSOeecK8KTpHPOOVfE/weD6TmjDDdenwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "execution_count": 67, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAF/CAYAAAAirDIZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeWycaX7g9+/zXnXfLN6XSN1Hq9Wt7p7umfGMZzxjG9nxxPCZtbPGJrCzcAwjSP6IYyC7wcII4kUSYIFdbHYc23C8MbzOOs56x/Z6bPecPT19674p3lexDtZd9V5P/ii2JEokRbElsVv1fICCWPW+9dZTFMlfPcfv9wgpJYqiKIqiPEjb7wYoiqIoyseVCpKKoiiKsg0VJBVFURRlGypIKoqiKMo2VJBUFEVRlG2oIKkoiqIo21BBUlEURXnshBA/JoS4LoS4JYT4jS2OB4QQ/3bj+FtCiPGNx18WQpzbuJ0XQvzkbq/5RN6HypNUFEVRHichhA7cAL4ELADvAP+ZlPLKPef8KvCclPIfCSF+HvhJKeXPCSHCgC2ldIUQA8B5YBCQD7vmk6B6koqiKMrj9jJwS0p5W0ppA38MfPW+c74K/MHG1/8O+KIQQkgpG1JKd+PxIJ3guNtrPnYqSCqKoiiP2xAwf8/9hY3HtjxnIyiWgQyAEOIVIcRl4CLwjzaO7+aaj53xpF/gaenp6ZHj4+P73YxPDM/3kYChqc9JivJx99577+WllNnHdb0e0S9t7D0/v0rpMtC656GvSSm/ds99scXT7p/b2/YcKeVbwAkhxDHgD4QQf7XLaz52z0yQHB8f5913393vZiiKojx2QojZx3k9G5tXtC/t+fl/6/9JS0p5dodTFoCRe+4PA0vbnLMghDCABFC89wQp5VUhRB04uctrPnaqG6Fsy7Edauv1/W6GoiifPO8Ah4QQB4QQFvDzwJ/fd86fA7+08fVPA69LKeXGcwwAIcQYcASY2eU1H7tnpiepPH6VQo38QoEjLx3c76YoivKYCW2r0ctd8nc+vLEy9deAvwZ04PeklJeFEP8UeFdK+efA7wJ/KIS4RacH+fMbT/8M8BtCCGfjlX5VSpkH2Oqae38Tu6OCpLKtzECKdH9yv5uhKMrjJgSIJzuQKKX8S+Av73vsH9/zdQv4mS2e94fAH+72mk+aCpLKjoT4CJ82FUX5WBJ8xJ5kF1FzkoqiKIqyDdWTVBRF6UZPeLj1WaGCpKIoSrcRgBpu3RUVJJUtSdkC2UBo6f1uiqIoj53oLN5RHkoFSWVrfhX8NVBBUlGeSUJV29oVFSS7jPQbIHSECOx4ntCzoD+2KliKoiifSOqjRLfxFsBb3fSQlDbSW9unBimKsi+E2Puti6ieZLcxDj2Y+ygb4K+onqOidAshQA237ooKkl1mq+IAQkuCpirrKEpX6bIe4V6pIKkoitKNVArIrqj+tqIoiqJsQ/UkFUVRuo0AoSru7IoKkoqiKF1HqOHWXVJBUlEUpRuphTu7ovrbiqIoirIN1ZNUFEXpRqonuSsqSCqKonQbgSomsEsqSCqKonSd7isvt1cqSCo7klLitB2soLXfTVEU5XFSQXJXVH9b2dF6rsyN927vdzMURVH2hepJKjtK9iaIJML73QxFUR431ZPcFRUklR0JIdRQq6I8awSqmMAuqSCpKIrSjVRPcldUkFQURek6AlTt1l1R3yVFURRF2YbqSSqKonQbNSe5aypIKndI6YOfA61XbaOjKM86NSe5KypIKvdwwFsFLQ2oFa2K8kxTQXJXVHdBYaVc5fpqHiECCOs0QqgAqSiKAipIKkAiFKQvFr1zv5QrM3V+Zv8apCjKE7ZRu3Wvty6ihlsVQpZJyDLv3A/HgiCT+9giRVGeKLVwZ9dUkFQeEAgFCIQC+90MRVGepC7rEe7VUx1uFUL8thDishCiIoRYEkL8jhAifc/xfyCE+L4QoiSEyAsh/koIcepptlFRPoqZy/OUcuX9boaiPJQUYs+3bvK05yQ94BeBDHAaGAZ+/57jMeCfbDw+BLwPfEMIEXrK7VSUPYlnogQjqheuKM+KpzrcKqX8zXvurgkh/gXwR/cc/5f3ni+E+J+B3wSOAh88lUYqykeQ7k/tdxMUZXfUss1d2e85yS8CFx5yvAHcejrNURRF6QICNSe5S/sWJIUQPwX8MvC5bY4fBv5P4L+TUla3OedXgF8BGB0dfUItVRRFedZ0XyrHXu1Lh1sI8TPA7wA/IaV8f4vjx4FvAv+rlPL/2O46UsqvSSnPSinPZrPZJ9dgRVGUZ43Kk9yVpx4khRD/EPjXwFeklN/c4vgLwLeA/0VK+c+ecvMURVEU5Y6nOtwqhPh1OqtXf1RK+c4Wxz8NfB3476WUX3uabVMURekm3ZbKsVdPuyf5z4E48E0hRO3D2z3HfwtIAP/7vceFEJ99yu1UFABajsviemW/m6Eoj5eg89d/r7cu8rRTQHb86CKl/OGn1ZZutVats1yu8txw/3435WPL9Xxu5vJM9KRxPY9aq73fTVKUx0/1JHdlv1NAlKcsEQpiGfp+N+NjTROCaMBC1zQCpsGRfrUoTFG6lQqSXcYy9DtBslqqEUmE0bQuGz95CE0TjKRVgXflGad6krui/jp2KSklM5fmqZcb+90URVGeMsne67Z224If1ZPsQqVGk5lCidOfPqJ6kYrSjT5cuKM8lPo2daFowGI8nULTNG5fmKVeru93kxRFedpUMYFdUUGyC5m6TirS2VglkghjWGpAQVEUZSvqr2OX6xtTKzcVpRt129ziXqmeZBeR0kZ6azueY7dsbp2bxnO9p9QqRVH2hfgIty6iepLdRNbBz4G+fe9R0zUi8TBC67LfBEXpNqonuSsqSHYRoaVA62wK7NgOQghcx6NZa5HqTQBgmAYDE3372cyPLSmb4K0hDLUtm/IJJ0CqccRdUd+mLjV7ZYEffP09qoUq66vrDxwv5ysUV/Ncf3cKz1NDrwBID7D3uxWKojxFKkh2qdFjwxw4OUp6MMWBU2ObjvnSJb94C7tynlRfQuVSbhBaFGEc3PGcWttmrapSapRPgCecAiKE+DEhxHUhxC0hxG9scTwghPi3G8ffEkKMbzz+JSHEe0KIixv/fuGe53xr45rnNm69j+m7sS013NpFpJSdL7wpTGuIoUMDrK+Vcdou2eHMnfOqzgrJwzFS1jhCSyH2MHfh+m00YaCJ7qoT23IcKq0W2Vhkv5uiKDvaebuJj0YIoQP/EvgSsAC8I4T4cynllXtO+y+BkpTyoBDi54HfBn4OyNPZb3hJCHES+Gtg6J7n/YKU8t0n1/rNVBehS0jZBOddpLQB/Z7HQfr+pnNj5gDJwDjCmwL54FDsbpTsaepu/qM0+ZH4vo9/3/vYDz3RCJPZzMNPVJR99RF6kbv70PwycEtKeVt2/uj8MfDV+875KvAHG1//O+CLQgghpfxASrm08fhlICiECDyGN70nqifZNYJgTKJpAdAO4DouTrtJskeC6Nl0piZ0EDrSfA6w9vRq6cBBtF1+BpNSgl8ALY0Qe/vcNn+98zs1dmx4T89XFOWR9Agh7u3NfU1K+bV77g8B8/fcXwBeue8ad86RUrpCiDKQodOT/NBPAR9IKe/dr+73hRAe8KfAb8k7Q2RPhgqSXUIIASINQL1cJ79YZOb6NY6+3KJ38EtAcIvndD68Ld9eJZaOEk3ufghRF4/yo+WANwtaBAg9wvPuGjiwu6kJKeWeho8V5Zny0fMd81LKsw95hfvdH8x2PEcIcYLOEOyX7zn+C1LKRSFEjE6Q/M+B/2t3Td4bNdzahcr5KoZl0PuCQdVII0QnQLabba6fu4rtPt0VnEJYCOtFhNhbgASwghZWcOder912uPjdq7QaahNlRXnCu4AsACP33B8GlrY7RwhhAAmguHF/GPgz4B9IKafutFnKxY1/q8Af0RnWfaJUT7ILDU724zouKUJ4Lbj+7hQHz4yj6RotI4/t96C7afSNfSeflbxJK2AyfmKEQGhvQ8iK8kx5sl2kd4BDQogDwCLw88Dfv++cPwd+CXgT+GngdSmlFEIkgb8A/gcp5RsfnrwRSJNSyrwQwgT+HvC3T/RdoHqSXWvq3Ay1FZdQMHonzcO0TJ478Rn8apArb97gSQ31SymRzlWkX3si199JPBNTw61K15M82Z6klNIFfo3OytSrwJ9IKS8LIf6pEOInNk77XSAjhLgF/LfAh2kivwYcBP7H+1I9AsBfCyEuAOfoBN/feXzfla2pnmSXOnBqFN3U0XWd3pG7C3eEEERTESafH39iwUQIgRQxEB+vHp1050FLIrTYfjdFUT7xpJR/CfzlfY/943u+bgE/s8Xzfgv4rW0u++LjbONuqJ5kF/J9n0a1ydUf3MRuO5uOFUurLK1dJxzbPD8onYtIv7TjdV1/93N9whhGPIEgWcqVqa13kvmrpRp2a/P8qpSS/FJxm3QRf+OmKM+4j1LcvMsGYlSQ7AK5ao1c9e7QZjmfZ/riHJom0I27PwLra2Wuff829YL74EW0QRDbr251/Ca51hU8/9EW/RTrDZbL1Ud6zoekO0u7PrfpsUalQaveAmB1do1KYfO1XcclN5fHue/DAYAwxhBaYk9tUZRPGin2fusmKkh2iQ+nF6VskkxMc+SlEQLhALc+mKbV7PQAg5EgR188ypHjpzY91/cl00WB7W7/42JqIbLBY+ja0xtC9WWImYvnqJXuBsqhgwP0DHWS+Q8+f+DO1+1mm1KujGmZHP/UYQKhnXOTpV9FSlWzVnmGPeGydM8KFSS7QG8sSl88CtBJs7BOE44lGT4yyA/+w3us3F4FIBgOkO7v7BJyfwUbiaTu5ml55W1fx9QezLV8mHQkzEBib3OAutnL+MnnCMfDAHiex6XvXaVefrB2aqPSpLi03FkwJH2k9DaqD23DvQFy+/eqKJ90qie5O2rhThfyXANwCQQtfuJXf5R45sEgNXNpDtescPDocTTNYDKboeos4+9z78r1WmiyiND7EELHCkrwi6D3oOs6I0eHCMUezLdM9SVJ9obBWwUEeIsgq2AevzOXamj39C7NM3uu/rOVD1cKq5W1ivLJooJkFyksF7Gbzp3FOpom6BnO3MmH/FA5XyE7lqYmGvjSQ9uonhMzB556m+9XaN8gRolQKA3ooI/y4WIb6S0Sz2TuBDcpJU7zNmYwi9DinYVCRie/WeqDQCfgV51lhNBIWnf3iXzUAOn5PpoQ2wbBsjOPlD6pwPgjXVdRnhj1eW1X1HBrF5m7usTy9CqDk330T6ZpezXs5oMrUhdvrSBdwUD8+Obe1cdAT+gYodBn71QJEkKnk1cM+DWQdxfkrK9VmL4wx1Z/DTrP68yfJq0xEubIA+c8ipu5Agul7YdnI0YvUbP/I72Gojw2AtDE3m9dRPUku8iZL5y883XdLWNlbW5fmmX8lQzJ4CBCCCrNFt5IHCspabolQkZq2+tVSzUWbiyRzCaeWlUe/cOAuAVhHtl0P5mNE469BsKi6qwSMTJ3esWbnrdN78/26njSIWQkH9qu8UwKbYeh1L3M1yrKk9Rtc4t7pXqSXWL2yjyNavPO/YjRw2j2FP0He1iamaNlVym2pwkYBq2FdSqVEqViYcftp8yASTgWxrG3SBn5GBBCEAgFkHi0vBKedHH8Fo7f2tXzHb9Bzc1Rthceem7QNLAMHcfz+GB+iYb9YIrJTqQ7h/T3lgqjKMqTo4JklzADJmKLYZLSYo3pb+dYvPI6N96+hXRcRvszRI0s+Ws2rfr2BQKC4QBjx4cZPTq07TmPm+M3WWtd27SAqObkdszPbLhFEtYophak7uaoOaubj9sOpUbzgedFzCwJcwj5wOYF2zM0jaFknJo3S91Z2/XzNgqFPcL5ivIRqWICu6KGW7vE4OTW82GHX5igVa1TLxdY+KCB0bqGoev0jZ3i1GePfexWY+rCJKSnEdxdnNPy1rG0CPo2e1+6soUhO3Or9849VuwlJJJWK0Gl1SIVfnBVrKVHsPTdbxEmhKA3FqXl9aI/QkUhYYzt+lxFeRzUcOvuqCDZxaSUOLZL/8QAty86lPM5KmtVCsslesd6SGQTROJhmhsVbEKR/Z9X04RB1Ly7d6QQgp7g4R2fs3nVqsDxW9SdNUJ6ipnCOgHd4VBvzw5X2FqnhrO25UrYoB5/5OspylPThUUB9koFyS7iSxdX2lhaJ/m+Wqoxc2meUCxIvVTn0AsH+PR/+jJLU6tUS3UKzRYnjo+TXygAMHLkwWFV6dwEfQChRZ/qe/kofN9HSp+AHmUosXVvb2m9Qk80gnVPeoyUHsjm3ffq3uyU6jNGt7yGonxcdXYB2e9WfDKoINlFmt46dWeN3tAxAKLJKKNnxnFsh8DaOulIuJOQf3gQ2/W4spzD9rwtgyN0KtxIz3wgz3I/tL0qphZGE1u3xfXbCKGjC4PLS+uMpbMQgGjgwSAppaTSWCIeSGMZnV6r9OtIbw38JUTgtc6JxiT3T9BIvwG4CE31JBXlWaCCZJcorpQwA0F6kp2hSd+XLKyXWS1XSNqClpBMPDdGYbmE03boH+/l+ZGdiwcs385hNwUTzz04l/e0ldozhI0sISO5Kd2i5ZWpu3mQEkMLkbCGONSbIWxtTiWR0r6TNymEIGy0KdaKREMbQdK5AO5tMO/Wtd1yFxNZAr8BKkgqH3eqJ7krT3V1qxDit4UQl4UQFSHEkhDid4QQ6R3OlUKIX3yabXxWtept7JaDQOPSG9dYWM6zVC5SeWuWylyB2ECCiu9gWgZm4MFcRM/1WJnJbUoJGTjQy8jRQey2Q3Fl5220dqPUnqHm5Pb03L7QSTzZfmDlqi4CBLU4MXOQiJ7B8Tzytcamc6RfBufcnYLmUjbJRur0xIc37rtgHITgVxDm5uLv9xP6EMI8tKf3oChPk6rdujtPOwXEA34RyACngWHg9+8/SQjxMvDjwPJTbd0z7MPVrbO3l1lPGEQCBpYzzeipXhzXx1isUrq2zLW3b23aPgs621nZtkNuLs/S1ArFegPfl+iGjmmZtGot8ovFh7ZBeisbi122FjJSBPRHn9uUsoUQgqQ1ummRDnSS+CNmlqq7TN3L07RdbuXyeP496RYiDuYpxMZQrRAhgqGThAMbbZE1hDeH0GK7Wu1bqjdZ2WL7r6a7zlrr+iO/P0V57ARqF5BdeqpBUkr5m1LKD6SUjpRyDfgXwOfvPUcIEQB+F/ivgEfbnFDZkWHqhIMBDo/1o/ka3lwCQ4Y4cGIUYehUogIj7uNL704eou26TOdLeLrGxHNjOK7P7XyRlns32MUzMQ6/OLnja0vpdYqLy+0T+YN6AnNjUdFuSb+GtN9DSgexTe3UcrPF4lqIuDlE0NQ51NeDqd/90e88b/OQ8b1zikJLgnkc6T+YS/mhG6t55ovrAPhS4snNOY+VYhUNE8tPkZt7lPxJRVH2037PSX4RuHDfY/8T8LqU8s2HfWoXQvwK8CsAo6NqheHDJHrumSeLwUs/chbHb1Aor3PktVGuFz5g4EAGoVco21UoJ1meWuHFVzfKvQUsoskIB/bw2kLoYJ3e8ljNyRHQY5ja7uc2pWyBexOpHwRkJ/huU7IuZJoMJBIIIbAMg/HM9qX27l5fAu7durDeMleXVhnInMYvtyivVRg/OQISdENnMBnH0DqBNxMNs7ZQ4PbcLCMns+TqN8lf0kgcdbG0CAuLC6SGXsPU9z+lRule3TZsulf7FiSFED8F/DLwuXseOwv8DPD8bq4hpfwa8DWAs2fPqnIlj8DxHEqNOvOrs3zn669z9MgkfYleevqOMXd9nsHJPqx0EN3qY6V5iZ7AoU3Fzj3pom9RB/VepXqTSqvNWGbn2qe2X8fQApg8ygIgA7RMp9C5+QJihx6oZehkYw8WBJBSgjeL1LIIfIR2z5Zh/mqn5/thYNcPkA2nSYSCuJqO03aYuTSPEIKJ58bwqi2sWKizulWEiGeitGotps8tYcQDpPti9GWSrDavcPCFA+ja9jVoFeWpUEFyV/YlSAohfgb418BPSCnf33jMojM/+V9LKWv70a5ukquvcGFxlp7AKIfPfp5PPz+J7hvouk4gEMLQLXRDJ5ZIYHjepsLinnRYbV4mGzy84/CorgksQ0dKueUwqGM7GKZBOvDofVMhDNAHN+6Ekf46kiiaZlB31vCkS9x6+NZe0lsBJPglsF64e0DLgpbE98rgr9ComSxfbpJ+LUogFMBpu1ghi76xLM7GfG1mKEUqdROMIwRCCfoO9NKsNlmq1fFMwY035xg6foBU9NELF2yn2mpzYzXPmZFBtC7bnUH5aKQqSrorTz1ICiH+IfC/AV+RUr5xz6FB4ATwf9/zBzUF/CshxI9LKX/h6bb02dae9RlYj9P0phgfjSEcCCeDCKExfOhucOmkQ2Tu3G+6JaanrzKQOYQZDiOlT9VZIWL24nliU/J9PBSEhsPlN65x8jPHHmjDzfdu0zfeS2bg4cOfO6k7eSqNb7Luw4HYj6JrATT54I+275XALyD03rtzjsJEaBnQN5eFE0KnXm5x8bvv0ztkM37qFMc+NYJhdq77Yb3a9bUy89eWOPXZzvuT8vk7qSFWwMT3fNJCEokE8aMRIolHm3N9mLBlMpFNqwCpPJourMG6V081SAohfh34J8CPSinfue/wPHD/xOKbwD8D/ugpNK+rCE0QCARoR0s0yz43Fr/HwIk0Vji9qczbQqmM6/uMZ1LUKw2WpguEo1ksPYzddnAcG8doUG7UubVW5cXRQZCS8lqFdH+KSDLM2Imt92ocOzVKzfvoO4g4fhPfOEhaBNExMfXNw7a+OwvODXAugHUG9N7OrhvSRki3EyiF1hl+dS+CfgBXhjHDAYLRLJd+sIgZlowcudubLq6UCMXDWCGLgy/c7Qnfnzs5fXGW1dk8pz9/glRvgoZbwPCCd+rBuq6H76xiBvsfeaNnAF3Ttqw5qyjK4/G0e5L/HHCBb947/CaljMpOktqmPYmEEB5QklIWnmoru0D/eC+Xvn+RsJUnnTzJfK2GFIOEjc4fed+XrNtzhIMJ9I25QsPUiSXi9I93EuxvvD9Ffb3BmS+cQkrJiYEQuqbRqDZZmc6RyMbRdZ1Yauu0DmEZLK2WyEQjGPrWAaIzx6fd2WR5KxEzg65ZrDYu4uPQqx8DBMvrdYQQDEQkeEUI/SzCGEQIHQkIBBIdIR0QIYQQSK2P6Uur/N03LzMw0ceLJw6Q6Iljtxw8z0PX9U7O6HSOUDSEa7scenHivjaXQCQRQqDpOgOHkyw3ckTtMIvzcwyMjNwJkrnZZeqFCxx86QuAWsijPD1q4c7uPO0UECGlNDeC4p3bDuePSyn/zdNs4yeFlD5Sbr+N1cMYpk48laI+f5DF61VOPncEUYSg1llkM5UvMLOaxxcF4sFO4JSGTmYwRWG5Uzgg1Zekd6wzvyaEILJR4i0cC3H81SPo+s7l6sKWyZmRwW0DJAD+Eng7p8uaWpio0UvCGkcTOqvFW5y7+hegVYlYFsIYRgTPAnXwljrt1eIILUa7aVNafBO58RpC78MKhclmE/gNm8JyiYGJPlJ9Ca69dQvf99F0j2Mvp0n2xckvF3njP36HuVxnkbaUNri3QDZZt+cZfj7B6NEowVADz/XQailC+t3h5b7xAcaf/9KOHwIU5YlQeZK7st8pIMpe+Wud4GHtaiHwHfVKg8tvXCMYDXL0pQMMjq1y4XsrrOf6aVRaSF9iyzrZQJDSJYGTbCMDfqdSz9IKoarL9MwKX/6xs2SHMg99Pc/1EJpA0/b4eUzfOf/yQ0IIUoERPOnQbLhEW9foC2uY5kbwMSbBrwI60ssh/RrCGMNxBqnVJSntbuAaPjRI70gPS7dXWV65zfT6Mj2JEYyAxvy1RUaPJpDuLRKpQYYO97O2vEw6OownHXRhIc2znQ2ftTaaMAkEexgLDFBtevgD0U0fHnRdf+iHiftJ6ePI1p1C9YryqFSB891T65s+qbQsmMcf+WmtehvDNFi8ucz3/uxd3vrrVSprS1x98zLRZARH1LlV+B4L16dJppJEGKDUnkNKn15b48J/PIfn+YCgWuosQp69unCnd3m/uasLLE2tbnnsYT5cFXv/yljpreLbFzfOaSOdC0hpU24vcqn0/0K0xuEz/wmGMbCR7wi+/Q7S2xi1F0Hw13CaU0RTEXqHTC5+5wLNWvPO+yg0p3D8GkNjY0SCSdbsK2QOmiRHQ51eqHmCeqVOpF8wdNYmZNa4Vfk7KvYyUnZK9+laAMdvbKwGvgRam1ggsPm9ODeQ7hyuV+7kfu5CyytTbE3t6XuqKHeoTZd3RfUkP6E6izx2v6nvhzIDKdL9Scr5CuVClfxinETmDO1Gm3hPjJqzSHnKJ22GKCwUaDea1J0Co6MhEtkY+liK1147Dq7Hhe9c4bkfOk48EyMYvtsWKSWu42JaJkOHd5+acG9e5fLtVVr1FgdObV51KqXsVNnxmrTcArpsUbTXSWs+UauPYCveyd+U7U7Qca4g9UFw10DeRJrPI/QkwjrD1Nu3yA6XSPcF6TsUp+00WJ7NEcsGiEV7yB6Pb+SGjlNzhqg6K9iUicsMQotTXI2xMrfKkRcGEAGLTGCS1cZlyuYCI5GX8KVD3c0TMbJkg0c66TL3jaq6pKk4eVz3ItngEYR58KHfp075vthDz1MU5aNTQbILCSFIZhNEUxHKuTLpgRTX3rrJ2997l/FTMcL0M/n8OAMTfYSiQVr1NjNX5rCCJiePjBKLhrGCFtnhDK7jkepNbLp+cWWd1Zkcx189grVFsfTt6Jq4Uy4uM5jCc71Nx6X0KNf/PaZxilW7jOmeZ8DKYBljGJqFEBrH4l+G5p8i3Z5O3qO0ofV1CP40yAJtO4EuFjFCCSZPH6TVaLM8YxMcNkE08A6d5/LiDUKrx0meXCFljRMwYphahKq9gifbJK0RwkaaseMjxNJRwvEImmERIUjNyNMX7KSDmCKEJ21c2aJiLxExswT1zveqUW2ycGOJwOEiEofB0OcQG4t56s4aCEHE2D6fUntIIQdF2VEXFirfK/Wb1kWkXwYRA9rg13HaUQpL60w+PzdeY7oAACAASURBVI5vacwuX6b5eobhyZM0qy2mL8xx9JWDaIZOvjpHb9Tg+ODd9JAP67XmFwtYQYt4ptO7SfUliCYffb4sHgp2cisBK2h1CqI7swjzKACucx0NgYWP8G4Ql1Ec7QWazgxR2Ych2+DOdQIjoU7Kh4iA6IHGvwG9j4XrhxDem/QeeRvhfZX3/2aW3iMRpOvjyDrr7QWGYy9hBtqsNC4SNfqw7Qbr9hyaZiCkRlBL0naWqDW/QTL5CmtejZR7tLODifSx/SaedAlqPv1aHYFN0EiiE8DzbXTNwgwYpPqSpCLD6BspKB/qfL23v2Ce77NWrdMbi6rcSWVn6sdjV9ScZJfo5ADeQPplVmZmqZRmef/dG1gRCyRoHmizCVYl2L0OX/+dv2EuX8IMWORm81z9xjxO/sF8PM/3abUdps7PUCl2dr7QNI1AKICU9ra7fjh2J6Wi0zYXab+D9DcXWpIihq/d7U2ttmZoksSwhhmIfJ6yu866M0dv8NjGZssmwsgggq+CdQi8PDhXQQyAFgEMBsdtCvke5isGpVonTWXwaC8hPYrrtxiLvUoyPEQgrtFsRbiRm2Wx/h7pwAQT0R+iJ3iEkjODoaWQfoTr1dep2Mv4SGy/Rm/oCBIfiUfNKbNYLrNSLqN5QVqt75JrXgLAdTxqpRpX37hNq2Fjtx0ufvcqrUabsJEhbNzdQU5KSanevDO/uhPX88lV67j3bGmmKFtRW2XtjupJdgkhBNJ8Edfx+NZb56gurdMq1Hn5h09ye62I73vU1tuc+tQwLNsc/8xR2uHOj4cm4IUfeZHhiZFOAYG2Q369hl9uIgZi3FhYwbm1xsTp8c0v6t7G8yyazd4HciXnri4SigYZnOxHCANpTILY3PusuWVsv06P3oP0S4TNYxh6mLpXZ61dIGoNkLKGKbanKbZvMxQ5Q8wcBH0Q6VUh8AL4Psg1RPi/AL+Ap02hHzfI27MMD75K39ABLOHh2re53V5kLPoqmeBBcs1rVL0ZbFGmbdfxqg49wYNUnRWWKkX8xvMkY4eIRtKEjTT51jV0LYDtN0laIzTaN1mpf5tKM0u+tMDhTIhaqUrYd5FHOh8cDMtg9NgQetBHCBg9NkQg1JnbtdsOru0SjoVoOW1url7n9MgJAubOw9cB0+C54f6P8JOiKMq9VJDsItVinVypwvjZAwxjkZ8rMHlmnNe/eZ7KlRXS/UksP0rPaJ30gEErN0K71eLCd68yfnKUaqlGvdygmK9QimhMJmOENJNo1SXzwgTRRJjiSolGpcnw4UEwJpi5PE9x+QYv//gLm9oyemwIjVWkcwVhHkdom/felu4MIa/N+lwIb6KJJm8hRBwdH91dpO1OoWkpevQkEfs8UrfQ/XWkH0B6ebAvgD4K+OAuIM0KQkTAb6PbYWrLAxQyZYLyNj1mL2t2g5ZXZKH2Lpbm03TmiAcDJM1+mrJIUE/SdNdBaPSEemhbSxyIv8i6Y6ILjZa7TMw83Xk9oO6skrYOEouWCQUtemJx0sFPYfmdFbahSJDeg3EEGiV7BkuLkurpFJzypUtxuUR1vUr2uEVMT3J2WEMYT37gx27Z5OYLDB3s39XemconmPrv3RUVJLuI5/kEPHjlUOePsWnoVNcbBFJhyqUqYwcHWJ3O0XcwQ3He5Y3/59scPjvJwGQfPYMp1nNlRo4MEYoFGfQ76RmVtQrxZBQraKIbOgWnzVKhSP2dBkdeOkg4HiA9MPFAW0zLRMosyLuLfqQ7B/gIYxy0XoTu4DnlzopW4iSsA53cUPMoKU8joGcQQiMcPE2o/nVwVpDihwG9My/p3AYtjLReolLwSWajxIJjHBhxcRLL+JpLrnmZIC6apnEq+bMs2xdZqr1DQASJGn00ZY6xyGdJB8fwpEPZnsc2muiaSa71Ad+fvsRXDn+VGEV82SRpjVNs3yYZGMGgApFXSDk+FxfOM9Y3Qig8gRAGl9+5jJW1CQaCiFiLpNVZxdtwi1ScJfrHT9LjJ6k4C6CF0PTncP02hni0nMpH5fsS13a3LUqvPDu6bdh0r1SQ7CKp3gQ33p1i7toi8UyUWqnB0OEBRLNCu1onlonSM5hh7VaT6cvzVJw2iWwMDY2e4TSm1RnqazdsPNejvt7gg9cvYgYMXvxyZ0spWxM4cYtgtDO82j+Uo9nyaNYChKL3bWwsAiACnQ2ZcUFL00lzBqGFMSw4cDLRmdf0LCQSQR2p9aLpWSpegZgzjdB6O/tJ+kVk408QwU8hIj+LlA74LZzyXzB3rorzwjCp1Bcx9BoJw2U0dAI39Dz59g1i5hEa7hrV9iIhPUXVt+kzBL3Rr6KbnQVJs4USEauHUnUJXa4xXYkRFy9T9yqE9S+StHq5vrJGMgaJcB+SGIIgjfYUxzM3aRtpXBnAd3yWxN8Snhkmrh9n4swRAhsrW33fv7PjiidtZtZaDMaaJKOSYnuagdAphNAo1BokQsGdqxU9hPSL4K8jjLsfYoLhAOPb1NpVniFdmO+4VypIdpkDp0axWzatehvTMrj+znVWK1cJRkzmC+ssTuf44s9+GtvzGJ7MMDIxzMqNZXzPx2476LqG3bQJxUJERl1e+OIw8ewYiZ44vu8zoFskB/uo2w6F5RKFhSDBmIZpVR4Iknf4OaS3itCHEXpnoY70GwitswUWIoir9eNLm4B5HKQko7tUfR1hXwDzLAgPX3+B1eabJDxJu/k+Qc2kbi/Qoy8y8ZLOuj9F23sFRzZIhz9FG4nvt1hvz1JuzzMQPkbW0HC1MHW/jNv+Aa3QBGH9GMgKHlO4jBKyUswVW1xZWWA808ti0SYThkxUJxYMETNSyPZFhJzH1XqZLQ+RjL7MmDWJY7vcunCLgfQA0Ug/kVgvkehG6oebZ611hbDRR75WRzPXqLmL5Gtp+uJ99AaPUm2vY+oh5krrHDQyxPTA1t/TXbEemAdWuodUIwW7ooJkF1mdXePS964ihOALf/+z3Hhvive+cYnsSIa/98uf5cr1Ba6cP49ru4wc6sduOlx/8zqjR4dpVFsUloqYAZNGpUmyN0Ek5hFLZHn37+axAgZHXznE8u0ch89OYKZMHNshEBojmuwEASmbID1wp0AfROhZADyviCCG8OaRWppS+ypRmcPWD9Fs/oC4FcfWT7LavErIyJDRj3B79hxecoHDloOpZ8EYR/MrpKxRTM3Ely1M2oSs0xSas0gZJqZXsVt/R4AYldb7nG/XiFuTuJ6DS5uo0Yuv9aCLJLV2gTU5wCm3SVhcpGIHEW6GUChKoXaFwcRB1urguTqzaz6kHQ5mJQOJGO/NLjISnsPxqiy1XCayHro5QNtxmL48RdWfZ0i+hhYwCEY6Qa7u5qm3KwT1BAsFh1ozx0sHejjWG6LVCgItdPcSV3JtspEhzox0dh7JLxZw2i4DE307/t9/+L0X2t0FVJ2vty2drCgKKkh2lVa9xcBkH9Fk5w+jFTI5+ZkxNE2nUW4yMZxFvniIS9+7Rn6pwOBkP4demCAUDXD7/CwTp8fwJbh2jup6jUiiFyEEk6ejSCAQCnDitSNAJ21BN/Q7ARJAujmQLYRxoFMabsOavUbcmiRinQHAFEEEJnW3QMGpEQkcJmoOdBIrpI3nutj2ABPhA5jetztzj6IG0iUoYpRyNzHCKyxqMdKRQWzjENXmB6QCR6i0btDwAujGBGFxFcdbBJElYQ1TaN8mpcPV4nvkq6MMpkNUynnCyc9xbqlEwDRo2HW+dWuVYEBnoifDaqXKrbUS/YkYhVqdm7kil3MXaaTinOpZIdJ0qayH6Mmc4dziMvlijTOnj7O+ukxfduTOqt+Kvcil1VscSp1hKJ4l2OOBcAhpKc6vzoPMMJya5MWhBLrQ8HwfXdMIhAPoxi7mKb01kG3QDj2mnyblE091JHdFBckukJtbI5LoVMnxpcRu2SzcXOLa27cIhVzqtSYzl+dID2Z4/ounCIUtzn3zIuVijevvTDF0cID+A724jkdhsUi90uD8ty/z5V/6PNFEhHR/Csd2kFLie53Vncu3V7n+7hQHTo1QXqtw5gvPITQDfA9kDfx1fG0Yz/XIhl+9Mw8npSTiT4ExRq+VpdcMgT7MUv0HhM0BkuYYde8mBw9lCMsS+CZoYSAF3hV8+lldWCTYcxkROAjWB+h+kBh1llqL9AVfYq72XYKeSYsIQRHD9ho4XgvPtyn4LTQ/ygvpUVbtKDfXe/nmze8jRQbflxzIptGMfhq2y59+cJlTQ/0c68uSCocoN23y9Qa2HeA7Uw2kfoKTvcepNDwKc+ukEiHsWIRYOE30MISNzo4rdssmGzzKSwNDmIZGxIxRbKzy11cv89kDLzGUraDrKYSWwQTaTptzC8s8NzS07TZk9xPG/Vu1Kt1MFTjfPRUku4Dddgm6PnbLJtWXJBCy8D2fYy8forC8jlgrEQyF8HtCXFxaYSIcxQyYDB3sYeXWDVzXw2m76KZBOV+hul7nx3/5RwgGHHyvhJAF3v2rFXrHh/E9HytoEghb9AylcdsO9XIT1/XQRAahpwAXhEd+oUApV+HQi2P40kUX1saejjEQmc4KVS2F685Ra1/B1MJcmPkb6pUrPHd0Ep8S680GEeNNAuYx8OvUW1cJDS6wap9FL9xkuX6JSOYV+oKnGLVO4Ng5LMIENDDNMA27QMNvQmuFtDXKcrvMXLXAzNJpSs0Mx7Iea9UmplGh3M5Ta7eJhoIMRqPU2zYT2TSVRovpfIkfOjROb9xgrRZgMJ4gZvTRcA3KjRKi4mDGMqSG0sQjYdq2AE/Dkx5X37pJ31iWtlMnODBPyPOJB36IydRxImaA20WTZOLur6olVjjaUyVk7b7kn6I8QAXJXVFBsgsMHxoAOikgsWSESrGGFTAYOz5Cokdy4+2rrCwkaOaKNCI6AbOOrgkmT4/QN9jAMCXruXVEXqPVsGnX2wQCJtXCLJEoCNNg5Pgwmh5g5fYaB188gNNyGDo0gK5rmEGLK9+/TmYwxdDBTlvyS0VC8RDJ3gRVZxXXb5IJbhT3Np8H+43ObhrmCTRhMRz9HK32OUKBLOHEGW4s5emPlllt6EzEemiV38SLhnFJse41Kcnr2EvXSfeGcBKLzNWPINrvs9D4AboWoi9wlogRZ9H+Dqv2GuFAhIVynVbzU1TWqhzPVnl/XuLaeXytl/nCOi+M9aGLCC+ODtKTaDKYDVOqLzC33iYV7OEbV24SsKocH4oSMQYI6AaVZptb5RVOj4+QDcc5v7hMcXWdt9/5Bo0lg8//9KcZO5Ol0sihewkygUnKre9wa2WBVDhM0DI5PXAMkyWkWwItSctNE48O7Or/3rEdbrx7m8nnxwmG7y7y8aWr6r92M7W6dddUWboucf3dW0ydm6FZazF/fZHZq4tI6ROL5+gdG6NZaSINwZGRPqIxH+m1ufrmLNnhMMK7iRXyacsc/QeyvPCl0zRrLW5+0ODtv62QW4zSe2AYvSfGyc8eY3kqR7vl0jOYJtyjY1sF0v1J+saynRJ0UnLu9QssX/sOptUmqgmSZoaKvUS1fQPhXgT9EOCBO4Pwlgj5U6R0ODQ0xshgiPPX5li+ukqyHMPwGjTWmxihH6Egw6yZETQ8/EiY7GAQz1tgqvZd5mpvYbsthO8z07jMrerfEtBfIpfrp10dwiZMT9IjX7O4tAKeDwOpk9hOgNm1GvhRPnVghOVKjeqKjluMIPwIq+U2qXCQ6XyJd6frtFoxUvECq82rpKIeLw4fJxNOE7JMxjMpSqslhhJJXv3CKO3AKjLQwo9USI4GEFoAI/DDDCUS1JoLOO2LCFml2LRAS7GWP8f5+Ska9u7+3w3TYGCiFyu4ude52rzSKY6gKMqOVJDsEpnBNM997jjRZISRYwMEhxq0vCpT61O4YZOJ58ep31xBq5YxxetEei4yN3OV6Rmdhell+ici1JwPSA14GPEg3794k/X8Kp5TYPHmChffvsnlyzPU1+sEB2Isyjae5yF9QUCfxY++jTAA5zL4q3zmJ2JMPD8GIoTwFhHebQzZxPCXkfoR8HM0XBe3PUelrXVqsLY/gOrvETCDfOGETn+vze1LkmJ+hP7Jk1Tat8gvVtBbTVxrjdHDcRwtzKLjEg40sLQAIT2GBfRZGRLaAdYbEUwR4FuzFWZzAd64WWSuUOLiaosj/T1YpoVhWJwe6cPUdH7/jfc4P7tMueHw/kyOpZKgVPd4e2aRtWqNU0P9PD88wFLJp21HKTVcAqZJvnkdxy3jLZT54O8ukeqbpH/iGKuFFMI1GY+9RsRIoHnTRM0kg6kEzw1YGEKj3brMarVG0w3z/fNhou0EkcDutkkTQpDuTz2w6XVP8CBBPf74f9CUTwxVu3V31HhLl+gZTNNwC1RaRbx6jFqpidG3QsBPUKtptP15Xv5ii+OfWuTid2ym8gHK2jrVwk0M7QimNcBg/Et8608u0/f8m7Tn4/SnoySyBumhETRNw3NqWCGL8vklBkZTLFy7BVoE4UYxRAXhV5HGMI1WgPXGCradJiWnSJjjCE0nJFLACEJY1L1+qvYbOLbOYjnDK4N94BeQwke6C4xmHEgbrMxdoLIapeC9SHZgjWMDi9SEzbKfZdFuo0sdzWtQ9aZoYxPiBE2WKFZ6McQBTvcPsrp+mpl6gaVGmGurZXqjaQyzSUCs4No54sHnmas3SQVMWo6L0Op8a3kWK2ZRb7X5dE8votTimtMkFQryZx98wERPglcmxik7MywuLyFnq7jReUKRGAdOjdI3PshsIYcvHULaMlL2IUQAaZ69U+lGGCMgDBrFGkszK+QrM5wYazExsf0WWjvxXA9N1xBCdPa2VLpblwW7vVI9yS5SnGvQWjOxeiQ9o2kMc5zRgc/hOR4L03PI5EEWa4cIxg/QT4gzk0GOHq8xPimxAibpoX6qpQa5q1WOHBpj/LnniCQP0qy2SGbDZLKLhKM+B18cI5CZon/oLcIRl+zIIP2jryH8HPg2mhGgxUHy5TYBHKSsslLJUS2XEcLCky4Vt4QV/jKm5RNZf49GYwVEgao2QKX6xzS9FWp+P0veEOVmH7m5AuXFHKVim5Y+gOaV0HDxZJO2FiBrDqGjU20ssrY0yGoNlmpXOLcwRyQ4xe18jeVyGYCeaATpx1muG3x72uVmLs/cWpHf+5sfUKjU+MrxPnzPplRrElyqs/wfLvHCsXH0UpuZS/N8eug247HrhI0YfaEjBAouertEI/gBtvE3GEaO8tJ3sRf+jMlsikDoZZBNfN+/EyBvnZtmebrG9MUcFy7MUVxbZzwQwyvqaFsUEJi7tkh+qbjj//+tczOszecf/w+W8omkepK7o3qSXaC2vk4kPIsVTlMVK6StIzTXW8wVZxmZGOPQsRMcOtJHizYr+RC3r47ROxnFjyzy1jszZLMf0JftZ/7aRYSTJ5U4S3Z0FN+ZI5YM0qpMI50+0I8iZJNgKIVjj6NbR1i7WuD2xRaHXwoR6UnQan6PaOAYEz29xMx/j/BfBX2SavEy5cYC8WSSqrOCj0syMAHmLxKdvEowooHxFaIk8WWFQnsB5Lc4eyZLOnKW+fnbVOtxrMHj2HaDWrnJULyHnGhgE6bst4hwmJiZYpkogegtNCNHrpTkB+fD2DLIsViJ98uS+WIFTdOJWRaWFSAeNJnsGWNmNsdzA32s5CN8990ZBkez/PpXvsT70uTd/+9djo0lSWrLhP1F1haSDGdvoNHPcH+D+PFDvH+hRi43xeHjccLRCLWqRUgP4joO7dYHLNxYZvTQWfTwCLFsDF8IVksVPv3p4+iGTiBowUQ/KzO5Tq9Q0yhUaiSycYJhi3Bsc0Uj6TcAB6F16uOOnxjGMJ/sr3y9bTNbXOdoX1btZ6k8E1SQfMa1m22mzi1w9KU0Pb0DxPwo6/M2b33jHP1nV0nkh1i6bhMISUaOj1C/egXfHSAe0QhFh/H0LOvLt7H1i6Al+cn/5ue4+tYi1UKNWqmM066RyPZSvlgkO5YmHi8AQSr1IBUMjr96lKtv3aC0WsaKJSi6DmFxDU1PkNBMKtVb6NUrOMWjBAcFq7NrxPqKtP0Sq/8/e28eI1ly3/l94p358r6Puu8+qu+e7jk4wxHFQxIlimtJ9Mq7a60WsgUYu7ABA/7DBmQsjP1jF/A/C6+xWO16bcuWYFiiRVESKVEiKc59d08f1UcdXXdWZVbex8uX7wj/UT3NnoNiS+QMNWR9gETli4iMfIV4+b4vIn5H5fdQ5ZChPySimeBpoGTRxJC0CtVgFE+NcLP7x+TyBfq9MgfeKN3AZtvWaemreG1oGB7JSB6XbWzvBnWOY/Rs9ivHGQ7CtPoe3b7D606Eoe0RlgPyuQSWYbG9G8GKDLh1uwKmRseE9coac9JGbPfoNrrMnpuhulWjeXsd4/Qe5e0nGDajOD3o1L6K2+tgRROIUBVXW6C+O6Cnt7nzmiSQBxiWQTMY4dbSPqUpg516i/39GjnVYGQyR/h+OL/2sIylJYilIgSB5LWvv8Xyxh6zZ6ZYPDH5PpFEtiDown2RNK0fJITdo6GrKgkrdCSQHweOhuiROBLJjwEyaIFfQeh/82gppmVy6ukTKCoge4QUk2xxi5HFJPXVdba7B1x/boMTn11kr/Mdur0yRniIohiUxj3aPYERjxLNKcw+dp7Keo29vQPu3niRz/7SHLZ9ktGFArWdJr6n4gVhVP9l4mocX19ESknp+CgvfucFrEiMSPEcbnAXRB9nuMvW8g5augS6i0EU194hpIQJgDo+fe8amueDH2XouzS8gBQefeoEMk3L7VEPYrSVDLVOmbx3QCjkMVqYpDpsUatvosRCdJQG7bKKHzfoDV0avThhuYjt98lYfcJaFlVRcIyAXq1Lq+2QmBlh2Oiz/+oOwlJJLxSROy2a6/e4FE2xe7PL9b+8weM/f5HcRJb4MM6wWcRrZbn50nUm57ukcnEGZhp/uIVb3sX3t+lnz1Mz01z6fIp0YRQpJVf+47cpZjx6vS1e+bMGvqmSefIkO29tUHo2iu8HHNQqjI5GiSQOA66ffOoYo/MlZCCJJt69x9jzDtBEDFN/NFeRHxaGpjKaPDII+jvPT+Cy6d+WI5H8WKCDEvn+zb4HqqYigwbSXaHfzRO2Vlk8c5LKyA5Bt0sqe5fR8ShK+BILz7xIrd0mVSqihnOMz/0OO46NDAo0BuOsV+8QzDnMz4+AOku71sVol9FiIbbfVijNFMiMfJIYz7Pvfh3b/zSxWIrzz5ynEFNZq0NXnCQVG6CEn6CUa3J3N0XpmEGuUMJNLdML4PrtG0znIWSoDI04jSBJY/g8aRV6pPBlE49pVp0rpBWfiDnFWHGBmv0cviiQ0gIawy6h2T7SU6ivBdQ2DHKPqUStGnV7kpXlPeLRPNFGDz8lWKk1KYQ9SnqI5noDseMwNfRxMlFS+SQ/dXmSnaVbpM5kkTWNrcE9PHeSr/7bP2XmzAipQp7A85k+M0mnUUEGAyo1hXptyOSIhqnMcu7xLF5QZGv1DtnjFnZvl+p2CysWwswe50pdY35eJxqNs1euMXG8hBEy2Fkus3W1i3muy+j8oUiWpgoM+0MUVSGeib1rzB2/gxQeXVshFjIxHiV03RE/WRyJ5CNxJJIfA4QSBn4wa0ShpOjbU6xefZ2TT3+esNFC80rI/IBP/GefJ9CmqDuvIVSdWOkyUrTo2is0PY+iPM5re3Wed/9vfvrYBU6Yx8FfJa73acguYTZo7fZoeccppX18z0BRT5IWAwbDVVRjjmzcQsgqM9kxhNCpHGzh2bP0ezsUjoUxYxrbvTfpOhtoXg43ZtGx0kTUDGubXycpV9EzCoaSQYgNAq+NoVxh2vDxiNF1buIaF2m40+SMU0SVJRx6SE/S7loMhYYy6rJVTbK6OY4iDNpCsFatMKVHybnwTHGEprOMrNSZGKjUhWDv2hbTI0kirT1eXq7iDhy6lXVmfv4C5ZpLfrdBc38He84jns3TbfXptRssv/EGN19Q+NXfepbJfIxh9QBJAj0ygSXfYGLuOAFRPLeNa28yeXKOkdkxNu06I9NNouFxsrtJcuMZAPSQjqKqbG7fITsTxVQPRTFetIgnUg/G2bEdBj2HKjVSeplKZxE1VURXTYRQH+TETBoTR8EEftI5EslH4si69ScIKx7n5NOzNPZbuP17eJ1NVE/HV0x058uMhM4zHvsMaT1HoMTpOZvUO2Gq7TgZZYKz+VniCsSNY2wN9qi7+4wVj6EoBrFSieSxEl23iu3ts1yts9OJI2WTnlum51aQ7irYf4b07qAHYcTggPHjCoHucrARUO2vovgbuM19Bu0+w36Vt958FcuzYThJVCh43MVza1SGIbygQkx2CYZ9VH+PZu/b7DfarFc7rNYkOln67TRRGSWa9Wm6ESoHJY7nThKTFrYToArJgeLwRqtOq7EFWy4xPY/h2ww3qiRjYULWgPREmuiJEfZWqwyGfbx6n/G5SarbdYonpgjPJgn8JtX1FTaXKuzvhghEBrs9SdpqUBzrMH4sx0t/tMT2xgRv/MUuzapOIrdAOHWB0vw4V2vrBKJMPH4BoaYoTObwGbJbXyKSDPHEL1zk+OPzKPcTL/e7fW7cfoG+892gAN1mn+r2AZVuD08ucmpshoRZOcy8AoBAETpHd8gjjng0jh4lf4IQ9FBlg3ZtQDh2nLHT87y5dYV8J0cuMokR7FNz9+mLMIXIE2zaJsmIizAdZkKL7Pa7KNooIthFFWFUEULxlrnVu0beOsN0zqTtplH8q5TCYTRrlkjocw++P/AEDK+BtEnmopCewpUeduc17izVOPeJTyP1Mj0joDRq47b7CC3KzPRprmwuYdkzmOEIQ7mN1PpUBho3diwO/IDJMQ1bKEyk+gTaDTq+ypA2ltmlOwjTtS0U6dB1fN6qbaF7XQwlSdwVuLZHdKtDdfUAE4Xir8zRsxxClaUqUgAAIABJREFUQYXBwCNwfa58bY3c6E0yeWgywc3n73DhiWPcW6sy6Y7yxu/uksl1iCRUMqU0lz4zwv6Ww9rVdYKBx8zJEJlSl6kzc2TGMqRKAbH72Vhcx0NIiBsZpBdif7CGlD6l8BkECndf3EX3O1z6ufMkrRGEEHQaXZqVFpcf+xym8d1VhkwpRaaUYiIooov7hjzqCO8ks1aFRtI4Sqp8xNGe5KNyJJI/IUgpEUqafbfN+NwSeuQ4BBX8vRZ7nRWyj8fpD2/Q8zX6lSka0a+QTGXJxhbxlBFWml+m7VZQBoK1fpeMVaRh1zFTc8wmvkSYHpriEY2co7UX8MKdu0wu3ONkLkNt6zbR3ONY0RnQZgjcZVr9v6DSTZIxhlwYu0g+9Rq67tF0AsJWiMbuGG/fqJNbEHzzTYWEEsW0yty5WcNXY7gZl1x4wHS4RcpTqIkoNh61rT6GYRAvStyBh3At7IFLo2dR6WQZ1AR6v0d+zKHe9yl3JdGejzISIzGWxeoErF5b57jYoK5HEf2ARkUjO5knP7JJYTzB+nKKbsNh5swU7WqH7HiGZCHJ9e/cYnt5yKf/8wJTJxbYWXZQzRKdVpNKdZJULk5mrsNb336FXkNijCR49qnzlI4n6XtVTo9OUh0s0xruMxF9Aj8YoikGT33uWQAq3lUUT2ckco5us0e73mX82CiO7bzLctVzPQh0hHk/KIF4tOg8R/yEcSSSj8SRSP4YIqUL/i6o4wih4Lh1Xvurlzh1ZgzCWfbbFmbwTcKBoHnnOtPHbuL18gyss7iKiZaawlNus9/9Bjpt0olfZzxyAaP7Te6t38UVOcKcpRfcxVb/Penoz6KEzmASpT/Y4aB1k3MTc+QSAwLndfrtOqHkY8igB8LCdna5s9cip2/Q01J0u/Nc3YFi9EXCoR7xepRuv8Tuyy+jtht88+Asnzw3j6zeZTS5QVtCpWvRdy1GkwOEK4lIj44AdcJH68KwXaAdGBidCIrdprFXpN9N0ev0kTt1pvpdGiNJ9EBD0QTRjks6ZDGlGdxQB0gtTatWp17ts/j4Mayoy+mn+7z89ST5MZ+ZM8dJ5RM89jPniCZ8mjXJhc+d4cRjYTTNZuNmhcXHqhBaQDrXePFrO3hqAkPX0cMhJh83eeFrV8nIENFciMJ9Y5ysOUfGnMEN+uzY10iZM8TMPIH0cQZdkuZhsmUrGqJZabGzUuZgp86pp48DsH37BgiF7bt9zv30IpH4UVLlI96P5J21hSO+H0ci+WOJBGkDAaCgBneZOmEQCW/j2lOs39zlzKU9rNAMP/Wf/gaD7i6RRIF67yvEzZM0lQMUt0JJG6Pl65SXXiMTmeKACLnxAtnoHGsrdxlLl+iILL5j0G0GBJll2k6Let8mPRiwb/tEc9/ByCywv/Yy5tw1sL6Ao8wz9Gv0winyOtj9v2SrcwvcS6yuv439yiqLP1enMDHgxnaYGl262xUGmXUark4QBEjFQIRsWihUlABLCnJKQHtggDFk7W6LXtygWlZor2YJzdoYlQ5KLcDbcTFiNspSF7Xl4gSSMTcgMt3g5dcdOmEFMxKFaARLN/HzYTavbKCnThOLOyTzFu6gTjyzSK+xiddb4bP/8B8yaK8TiuWQsk3icg436OD64LTPM+x9DSXfYe9uHFXROPfkp8n84gT796qYWpioXqA93MWTA9LmDIYSxVLT2F4de09BDyls9suoiRIhrYYbq3H66ROYEYMgGOAP3sIPxtHVMunxk8igjeM8z+17Y8wW5kmE+kgZIEQIoRwJ5088H0EWECHEzwL/GlCB/yCl/JfvqTeB3wEuAjXg70sp14UQnwX+JWAAQ+C/k1J+6/5nLgL/B2ABXwP+Gynlh6r3RyL5Y4gQBlIdA1xAQzUuYGXu4WhxUpEUxx+P4PcvosQFA6fMwFwiLQaMxn6Bcu85qncatMwLWKU/o1F2UTph3Po21bpHbHyIn4my2XeRfhlHzeNaGZzK20SDCDv3qiTyYbRMiEK4S693mXpHxQr1OPB0nMEeWesYschx1iqvYGSOU4ylyblblOsqJxdSvGnv8NzGPlNZ+NQnWjR/O+DOdZedpSRRfC4/VSeRqFO7aWCeCJjJ20gkt4M4ng1BCNKlLhE7Ss2N0GCWwWs9ErdrWGaS6GyM9Q2b2m4FVYJMW2jTaQZqF3/oEqm7FB8f5c5alYipMV/sYP3KcfbWfUaOa9y7uYll7dDYS3HpZ89T33GprPw5sdw0qOMcdL+OLhtYkS8w8PYYhG1OfurTpPMTdBffxHZGUFWVVCFFr2kzMltECEFYy+BLl+Zwk6hWQFctpBzg+AGBhNHIabKhSUxFQdV1QpkYw8GQ1/70OrGMQ2FcMnN6DDOco7jg0x76JDyNjXqDM/kyoNLzk3SHkuJ9X8vOwCGs61S7PfKx6IcSBEBKG6SDUJI/9L6P+LuJEEIF/lfgs8A28LoQ4qtSyqWHmv0G0JBSzgkhfhX4V8DfBw6AL0gpd4UQp4A/B0bvf+bfAr8JvMKhSP4s8PUP8385EskfV/wyUkqkbCGM8ySNcYTQUBUD00+zvrlMKmMgndcInDJtfQxLzdJZHiVfmqLZshnYCwg9imsdsKtsM7NwionIZdZWh/SWbdQnmhzTXN5cXqJWvcIXF/4p4yfP0GzuEzZDSCvPXv07DIIOc3MzqMopGh2TfnuLyegUWSXC7o2reKln8bw815oVTvtVommd3p9UqRkBrqmi1HtU9y28go4ceLQ8jfa+ie5LKnWfQOrsNEyqhRBuPcJ4tokZ8thfaeH3U5SyBuVaj+KUgRpVaK+HKL8xRE+CjkK049F+ax9HaJjdBu0a3Hp1mUQ+ysh0Hk10KY1Xef4PDhid0CmMNNnbzqGrOzR3bmGoIULhAZo2C7JKRM0wEKNYWhoz2GYnWKcZN7DcBLs7NkL2iWY6RFMWsQWbndVdpO8wNudSGzroSgg06DhbDIZXieYuYxoTTCpTmOqhMY7G4R7kwU6d7GyJquhTnA0Ip04ivX1MMSQf/STJkIftegijhADcnk1v2AfA8wNu71WJmgb77S6psIWpfAi3hKAFQROORPLvFh/uTPIysCKlXAMQQvw/wBeBh0Xyi8A/v//+D4B/I4QQUsorD7W5CYTuzzrTQFxK+fL9Pn8H+HscieQRfyu02cMb0/AuUkrUYAtECJRJ3HAFY/4GnjvGrtNltWUzLldRK3ep9MeJ+hGuLl/n1LiB4hapl6vECk9z0OjQyXyLvPEpxlIWudwMm3dv02g2OD3y8wjD5M7mNo8dX6C8do+16v/HzIVRRjJZ7H6TeHySres32bl1l8WnDCaOP8VecA/Hb9LwdGbVKFvVFLHqn7OOTmVP5fb/2aeph8imuwy6Fn5E5d6mykgJ9BkPM6uw24LoVEDH1nBjPlIX1LeitOyAollle2+NxBtQGU1zsDvErB6QLVnsWAauomB4Dp7wUCYy5Fo21R3wqwHDfo9kJsKVb3dpVB2gh6rtc/rxBJ75LOmUTibxHIp+HIen0aOXwLuN6V9D0xYInLfAvUXBTKLKMYTu409m8JUatuUjvCyWmkYvKfi+R2u4ze32i5xOfQlNMbG0LC03RxgVLxgAPPCPfAfDMrjwzAl8U3CjvEnHcdh6s8n4iVHi6QCXFoauACEAUhGLVOS+0KoKFyZGqPds8rEo5t8irqv0K6DEESL0/jrpgRwg1CKoxb9x30d8uPyA1q1ZIcQbDx3/tpTytx86HgW2HjreBh5/Tx8P2kgpPSFEC8hwOJN8h18GrkgpHSHE6P1+Hu5zlA+ZI5H8McTze1QG18lZZ9GtXwAgkBnwyyAlCWOM4SDO3uA6CfUxjkVctsq3iAUR0qUeaW2UaSOAlolrmohEhFanQTLh09mNcfpTKdTgp7l9Y5OwdZ7FiSRqNMwLz73Gt9bKZDSLZm2bYmaBkHC5vrtLTNlnRouROVEmUcwQK22x3/wTZh+bYa+qkVzb5fipZ9hfr/DnL8VpKFHaqo/XP8BIC1qqS38nxInP1DE8n4ZtoNsaMCRkejhNBV94BH2NSs/k7doI3SBMeADFYgvzXJr9FRdd9Rk54RLbadPq5AhJhf6+g9CGRIYH7JDkxJMdhnaCZ35xEqlkWX27hvRqzF/KYbtFhgSU5t4i1D/A1AsMCbh3vcb8hVfRjZv0ZALHE2SDFfpijpA+jeG3iOsjzKTjOEEHTXFxfRtV1XH1FgO1iSITnEh+geF+mJrZIFtaIKxnaQ93SBjjNPs2vDt3Mql8gkFvQCwc4cnpY6iKgnZ6gnq5QXO/RXbBpO+3EELBkDZ9d41w6HEUoVLpdHFcj/H0DzDDC2ogtMMHsPfVHUBQAeXM377/Iz48fjCRPJBSPvY37P29e4d/bRshxCKHS7Cfe5T2HxYfaTABIcS/EkLcFEK0hRC7Qoh/L4RIv6fNrBDiD4UQrfuvV4QQ+vfq84j3o9IhpYKKIBh8k8DbQSgxkF3wN9EVi2L8ZwmbF6lX9rFqDgEhynctgrVpXnr1JrHxIqWzeRYuJMjPrxAfjWGFfdyDPquvbJEqhRkZ6fPqwSYvL6/w+otvMdh8nXMyTj2okDqhsLPbY79hkhGTzI//Em9WrrDvaExPZklY5ymvPMWVlQoddY2z58vs1L/OxvU3WQw5PH1myNi5JkZUQRwM6awolEbr9G3J5h0D3VNoLxmsf0Pn9ksJFEPBb6h07Dh1dHqehXRUpuQeqzc0tsOCYcYiHxki9DDbTonA9og5ewjHJ55WiXdtnGt9NBFh9tQ4u/civPRHt0kXspx4fIp8qcQzX7jE7EIUpdXlxssdfG8FQ6xw/OzLdNUy/UBFenfIaXWGSoJ64GJLHyklbmCjaAMyVgFFUQnrabpehdZwi7R2nKg2R0wromgSVTv8aZpqnJTSoDeo8K3nrrG1usfu6h4AUga0ax02lg4frtX7iZWjyQjZySxkwphKkmo7YODaSMViIDWk9Ol3bBRfEtJ17K6N53oMPR8/CB5cRw+//14I/QRCSX9wnVoEbfEHupaP+NiyDTzskDsG7H6vNkIIDUgA9fvHY8AfAr8mpVx9qP3Y9+nzh85HPZP0gX8E3ACSHFo2/e8crk0jhMgBzwO/Dfw60AXO3//cEe9BSh9k6303KaEWCSl5wEUqaVCS+P4BilSRUkf2v4yvLcJwHSupsrbXYrfqMJlNEtLaXJzMceOF5/FGLfLHY+y+sUZjz6G/kiJUTJNI9rEbW1T39ghtw8BdxlTGOfe5Zynf9nnu68t88deeRLHWub09RN/tEgmvkLFKZBNzfPnN28xNScrGFrZmE1IGBF2TF79RZ25slMXLA3x9m+2/imL7Ho2my9iUTfoi9O6auNWA57+aZP58Db9jkTvj0rJ0LNMhMWjjDX0uT61w62aCtzZyWHnYvBdFdQfY4zEKe210R0PLx5kMrWNvh1C7BZqNGm5fUttPMhwe0K3dJJrWEdYemtVjQIZMPsDSNzFT/4TFBKjWq6CNokmFsDqLpZcQg2+DSCC186hyHT9wCWtpKoPbIAPaYodi+AwgcTUbTYS4W19C+Hmm05skcjnC5vihbysCwziNIWJ88rJH2+5w726X4nSend4Sew6cfez4u8a/79XwlBD7zj76YI/AzxFS06iKRjp0iWq3R3ulSjwTpTCZ484bq6QKCeq6JGzoTKSTVDs9tpstzo+P/EDXqBBHMWP/rvIhBxN4HZgXQkwDO8CvAv/gPW2+Cvxj4GXgV4BvSSmlECIJ/Cnw30spX3xwvlKWhRAdIcQTwKvArwH/y4f6X/ARi6SU8n946LAqhPg3wO89VPbfAptSyn/+UNnD695HPIzsg3cPqScR4t2LAofHJsI4D0DNWSUUtIgoMdDPs9ZZ5u0VBXVd0NArRHwTVwi60SQvfeUvaJYPOJ64yM7yFksbU5zMQu6TVdpah5YxQqcjUdRjfOqiy07fx2zlaCC5ev3bFI1zvPqNP+byk0/DMMvmwW2u3bpHMnUC3WgwZhRIaxbRgoIMn0V4VcrDcfqRP4VoluU7e2y8WmBq3sab7POJ81Ve+0aErS8ryL5k6pJDeSPNxksm45/2kYpKqDogXPAZNkxu38yQnu9jRhV6hNiuJdBcl0TcIVK1qCVG0GNNJtoBO/0TdNw9aDsoAw3SHvXaLoFrclD2EPEI80/2ySVPYIzG2FneJZUfIzd6nXjyAohLoKQIghZCBuDdQSphAgxawzuYSp6qc4eonsOXLpaaIGlMsNl9BUMJkzInCSkJ5jIJhsEASzuBriaQckh/8DK7Tp+J2NOYioYZDVFpt5g/O42iKGRD02gJF/09wcu7boWEMcaliQUC6TMaMdmoNQlpKuVWB4RgbD7PQa9PAZg7P4WiKAQ7NSKRw8ADqbCF9dfsUXYHDhHTeJAk+oiPGR+yC8j9PcZ/xqFlqgr8RynlTSHE/wS8IaX8KvC/Af+XEGKFwxnkr97/+D8D5oDfEkL81v2yz0kpK8B/xXddQL7Oh2y0Az/6PclPA9ceOv4UsCyE+CPgGQ6n1/9KSvm7P4qT+7uOUGJgXPzAOhl077c59IlLh04inC4IC6GNovnw7LFZzOkmQytPr1aiXxngd9Z4/FyfP15Pk1XG2dhZI7WYQ25IFMWm0WgTKZYRrmDtzWWWbZtnv3Se84+f4eWrZUaSjxOeS5NNjmArglZrG+eUSjH+STa3ffapszA2TT41RWu/wdCZZ8cecPf1FzleOMXynmQ+/1Po57cJp5sYtxQCrUuy4JOfFdx+y6LWE8QWPYy2znB3yK4bJmZ6JFJ9BB7ZkTbVVor2rkJye5/0aI2Gk8CSPcxKD29/n+F0nP2hx4nsKJZusr5SRgx9QlYILVAxLJ1Ln1EgaBJxFHr9MnvOMqfOV1G0zOFenPcmUkQIrAt4g9+j5fWxjTP46iz50AJ5GaAqBkljDE869L0DQloKU41SsE6iChPbq9Nyt8mYczh+nZbbIm3OkNBHCemTJKWNIlVaw2126gqmmqDS6TCWimOIEIWYRbvZRIkOiekFAPLWiQfXwTtBzPv2Eh1ZoBDPU0rGcFyPtYM65WaHUjLG3b0D1td2uHxiCmKHRj3b1Tb1Xp+nZiffdW35QcCtvSrHClni1gfsRR7x8eBDfr6RUn6NQzeNh8v+x4feD4AvfcDn/gXwL75Hn28Ap364Z/rX8yMTSSHELwP/JfDsQ8VZ4BKHvjK/zKFo/rEQYkNK+cIH9PGbHPrMMDEx8aGf88eK4L6B2H2RVOQAR51ifW+FaH8NNZkG6dJUy8SUPOXqCiGpsXjBZGXtPLnRO+hC4nkaIUfFyEeo3ouhDnfJzyu88pbOyIkUopBn/Y5EDP+EWzdbSJliv7HDcJiivLKBtpchfCxKWbtHfS1G7bkWL2Y3+aXPSYxuEU/tMLUwymY6SaKlsjPRZPHMFGxW0bQpZh9P8vrLNfY6gtiei6kE9K0EObVGZVtFuagycq6NY8OrWyly8SG6EmBsOjSMEsGUJB30iAY9fKnhKQMiYyZ6v093Y8iN8j3OnM0gWz3siM+5T4W4uxwiqA9J5vroGrz8px5f/I1NCiMlwloPQw+B/hT4Lh3nOq56l5CIMQyaeISIivChu40AN+hTdZYpWItY2ncNZMLa4RK5qUbQ1TCWmiCq5xj4ncOHfKEykDGqzjUiRhEvcFiu9DheKDFwPSqdLtdevsOJqRLVyh6j5yNsViEbjeD6h7sTY6nEg+/Lx4sc9Azy8cOUa6auYbse1W6PUjJGx3GYPTFGItVC+l2EOkrMNAGJPXQJ6dqDWaOqKJwfH0FTj/IjfJw5it36aPxIRFII8SXg3wG/KKV866GqDvCylPIP7h//hRDiz4BfBN4nkvdNjn8b4LHHHjuKsvQQQpt6d4G/Dl4CS58mkgiRzKfYa/U5aLYZeN8hHDxDKpZCN66TyfgYM332xTqlkslaQ6M8MHDMIacuTxITJhF3mVb8gGjrOCsdk90lBSfw6MccEpqFveMzNZ4n0CxuvLjLwuIsIR9SI20WZ1qUO0ucyxyjW9coxqOcXRjl7Ve2mRgp0ZVxBnaJ139vifmwgruXwZM2ra0AViXhZoPNjk5oxKF2XcOZNklGXey9MJvtgJwYoKIy1mlyZyuBp0OvY+Em43SdPhEfrHqfaMgiSCikCvvgFsCMIqMbTMzWiZ16lnzpbTw3xJkFhdGZPcob0JAjpHIDZOQc9uCPCPnrRGmz6lv4YpoFcxxFidL36jh+F4FAQeUdI7xmf0AsZDwwsgGIaIfpsFzfR5EWhnb4swxpcaZizxDWUoS1FF88C51hlRt7O4T1U5y9OE8uFWN0voSqqljaAOu++D2M5wes1g1OFnP4QUDbdkhFLD45P8XAbwFwcfLQkl4GKqBQtzcJhwPy0TFeX99mcaxI4qFZ45FAHvGTwkd+pQsh/gmHAvkFKeW331N9lQ826T0SwL8BQ8+n5wzfXagt0vHS9KRJqpjDCwTbzQbzKRfNO49uGbz9rausXvfw7GnioWMURvKM5s6RtgawtQyVa2y96uLYY8Smwxg7Js07daIx+MQnJziWiHBayWA6Ot+8vo7byTN+8jyxiVnu3W5x79omn/lPPsHJJy4ymtxitfVnXAluU7U3mJo+y4lLKrHuDfq9NtnYKE1lSGyhyUgxzcK0SaIIStijb5ukngCRCUHBJON1EJU+x3IVLNFh67qBp/Tp1CCdtqlXBcbQJnZnj7DdIxEdgBEQTYXRogZ3NjXWrg4ob1W4fsVB92H0p8e40xuh2/Cp7w1oiYtk58aJJPPs75/BUwJ6IoujLaJoI0xEn2Ys9gSq6CHo4QZ9JAGaYmCqUVrDHdygz3KlSqVbOYxjC6zXGqxWawDsNNvcqzXxg4ArW7vYQ0lYS71rGHUZ5kxhhnrfxoqGUDUV5b7gJqwQhqaRsEIkrBBte8BLqxsIAdOZFKqi0BkM2aw3qff6LO1t03DW8aX7oH+hJBk6JuuvVDG8BAfbNVIt710Cudfq4LxHiI/4GCJ+gNdPEB+1C8h/DfzPwM88bLX0EP8OeEII8feEEIoQ4lMc+sh85aM8z48z0r1BpbXJvYMqDbvFZr2JlJJASup9m/G0SWu4g66qzKa6hEIFtPEo8UyZ/OSQt5d0djs6c/ECllej02zyzPwlLl46hX6gkRBFtne2iTNgMv9JLlwYYaQtee2FJQZKBds9YGquxxd/fgzCFe7U38Tv1Zi7UGDiC0WW9iuoO9PEO89iv53hWKmIN4yx2+pwECgoIYXa/j3CUZ2f+y+K2KUwbsGlOVQIDQMyF1xIq/SqOsnMgOmn6ughSSgt6CkqtY0Qd74T5+ZfjdLpa+gbA8LVLhouWlIhL4bEohEmUikiow69xpB0SEHR25gyRiQoMuASd+69wfDmOolklSd+Zo+0+iqWgKi1wdjYChExxA2q7AUGTX+IInTK/bfpBFE6vqTrVgmkR0hNEtFyKEJBAqfHkqDeQ7o3kDKgEItSSsQBGE8lmM2mqXR69AYu2ntCxPm+z8rrm9TXbXRVQRUC3/O5/vxNuq0GALbXZK9/nb5XQxEK/aGL4/nU+zaNbp9MNEw2FmGj3iQRilMKn0UVh/Fw3aGL5weYlsnUCUGltkJuPMP82al3nUejb+N4HyySD4fRPOj2GHqPZpgugy7S23zEq/yIHwpHIvlIfNTLrf8a8IBvP2wVJ6WM3v/7ihDiH3DoQPq7wD3gH78ThuiIR0AdZTQdITqs0rLLBJ6K72ygGGcwNRURlEHRkTJgt7lL1c5yeWaCLbuJsRCnubXDqLMKTghHOHRra7x+ZQNFwsGW5NKXLJbe3qEUO6AfvE0tbPPcV/pMzE0yefkc6ekQw9Rd0vkWX/nyFulBQM6Ios9EKHWGaP0NblRW+OnP/hJNv0bjlkowc4CpdjlRXCSbnkH343z72lUs3aO6lydQriHTMWrVBIYbIOoOelygRHwYCjo1lU7XYGRqSMtLIU8mGLR8uvE8RneAodcQdRXNHtCL+BwcdNA2fYrNMHOlMLPzIdxKm0/+skmjOU2+UKd1UMZdNLj4mRCZtI1PDBmU8YJVDBEDr8xE5Cx9MUPb3cRUBihCpedWCOsZHK+NpSWx/ToNZ4O4NsPQ1YiaYUrak0jpIoSCZShIKfGDANcPcDyPdt/mzn6FU6N5Qvp3XYTtzgDfDyhO59GNw/JGz0bKOsIfAI/R8yqYahyDgPbgbS5OniJs6IxZYd5++TbOpRBjiRkKseK7lkyrWzVuXF3DL0T4zOWT6PE5bn3jLTLRAfH0uwOinyjlv/f15y0hlQxCLVJuddAUFUP7/m4gUrqIowWjjw5xtCf5qHzULiDfd1iklL8P/P5HcDo/lgjlcHkuYYyQMCSDoc3b5S0WR1xGUyGC/hD7IARjAjMUJaruovg1SrEnuX71Ok53ie2mzeT0aXy1hYePOehT8RQyizqabFM8fYrlbzqUJnYZmfgC6Qu3iBb2eeOFLcKFSbQn7zBd9BgJ56iuNcg/PcrOG8vYPZPST7XJFYvcvnUDPd3hYPsAzR5Q3QvopyMsOQMa3xzgomF39+l4e/RFiNZKl1PTHunjXXZe0dj3dSpvRdnbguScZMuYonmvBk2bkGmQHffYq1vohsfJJ4d4nsbm8xK77OPKAb6uY85FyBZNhobL3DPT5EdbFD6xR/VGhPFTn2Fs/A57mwHTxwM6fpX9IEAXx0krOjERI9DGqfXfxpc+jmxTsBapDG5j+w00xWLoDklFpqjYd7jXukngFrg4dvJwnO7Hxxj4LW5X1tApkg5HadsDjpXyTGRSWMa7Y2iEIibhZJiW7ZC9X7fbakOsiBo63FMcbEZRVIXkTJKOm0F6PeqNBoankjlWwPYaKEJ5sCdqd23Wrm0yd3GGU+dzDNEQ3ptEQyf47Oc/gW7oNPsDwob+SGKdt/mjAAAgAElEQVSHOgHiMK7s6dHvhqKzewNCYfMDXUakHCL8ZdA+UqPFI45E8pH4UbuAHPEDIoM+yAYoJcB7kGD38GYksMwIC8VppNLjYLBF1B2nXdsiNy6YzV8+9BEUJrghLDPD4rPH2Fm7xcz4HHdXXb5x9wa/+YUvsPZHL7C6sU7smw6J+RZX1mvc3h9yevcWsf0W8RmdXszjle8s03/O5dlfmCGmK+TTLlLrs/zWOu2GIHcmiWPF6FcbZPs7WJE4C9lTXL+7hFi4R6qSoh3eI3MsihgmWL/n42345MK7oCvU3lBQkj6ioaMrLrm0T3HCJaWsISdDlP9QoWQdoEqdvqMziIRYuxlB3GtTGhtihH1qK4Juc0jTs+g8d0AiDeMnVeKZBPmRXRKxp0gr28RjdaSWoq8uYHg3SYoihjFG0+9R7d/DkbeQAhSpUe5doxQ5Q0TNUxsskzRmuL1fJchZSAnFaIZ2N8a9gwax6AEhNUG1pSOEg2X2iGkupXiM0v3sHO8VyHfGtOd59Bot4hGLoeexOFJg31XotYaEwhFSxSRCCITQOeib9DoraO0Wg0GewvER5tPHUR8KYq6bOrXdOvWowoXZLuHQGIg5EGF041BItxpNSokY2WiEoedzbafMyVKB8AedoxJ7X5mUkuU315haHCeeeX+9EAZSO4lQwn+bn8ARR3yoHInkxx4Pgj5QQfpl0I8jhPWuFlFTImWMuJdj6OwzfaKPbT9HZZAjYU4TskxeWV1DKYVxVxLgWezd3kCr7xO9vUvjs7ucPVMkEsBE6hoddY+ZWJy7bp3l+qvEohFOGJ/k0j+aoVv9FnvlJn1/m73Xd4nLPDOnzmFu7zMe3yKghGMnke4a284QEiGaTgXp9YnGkpxUv4VxKUu6MM/yc03SqSW27wr0qM66X8SKRdFknYO7OvFYn4NWhOxBh2Y9xP7rBhfONrAbBvfumMiMSqnoMbAU7IZJp+Zz/ITL7qZGkNWIJWqUTnRo7+okVJ8Xvyp57Bd6hMav0XCjpMQ2yRGTjogSCv0ySWnTcpfpBxo9b4NS9DIZcxw9OKDvNYgoFhX3FglzlLHoWdKmy0bvz4loGSJ6jngyw26rQ63j0xu06Q80AimZzi7S6rlkjSGdRo9MKfWBI61qKucuzgOHxjM3dveZz2eJGhqafjjLC0cDpLuElBcoJWLUegUi0TyZMxpLe/vUOyGKD7mGaLrGhZ85y9fuXmfbjpEQ+0T0HDo+X79xjVREoxDLY6iH/Ruaykw2/dcGGngvQghOPDH/YIm45wyJmMa72xzluPxIkRwttz4qRyL5MUcocVDiSBmA9MFdeleAASl9cO8g1AJ2c5fy/gAvvEjK6uIH0LRttu5eoyjiZPNJlDM6tfazbF49wG4GPLZYIlxZYV+ZxNaX6bkpXv1/D/Bdlac/H8URQxRvwFsv3Ga97OGVAs6fPsXEzG3eOgixU43w4stvkpsdcOnXF3j1bg2n8xLUqljhcdDXsNsqkZxGajhgpZclNKKgaB3UkyayOcLMZ2o0v9NHD5UJ+h2slsP0SYV2T4O9PptCRYT7DK0sByt9tK0B6azOWtlDrjcpTIE+5bJ/RbDbCTEcusQVj82/0jEXLZ74rMqNlxXyxzoMgiLjYdjf3cHLKEhhEVNsIqHL7Pf+EkuNkFQmDpedjVHs4asI/QLxkIWUPQrWSQwlRs+rYWpRYnqRlDmNqUbRFIOoorJTqTMxMUMylEMIUIVCICX9Vo/GXvN7iuQ7uEGfeMTl8tQYQghiGfO74x00AR8hNEaScUaSh0ZB0i9zJpdk5eo22aciaLp2mKUjqBCJlvj8mRmadp2VSpOzI4fLpKYhSURc/EA+cEsBSEfCSH8fqcTf90D2vXhHIIeex43dfU6PFj9wJnrER8iRSD4S31ck7yfDfFFKufX92h7xo0MIBdQRUHMPymRQB+8e6GcAjexEETvaYqvRZWlvyLFCjmIiRkXNsvJKhatfe5OTz8bYsDVGUzu0HR0zFKFR99l/e53dWx5yskd2tMjqrR12XnRJL6QIe2G8hsfSi0vMzmxBUxL3M0xMQnmtjxbRyJ+K8fzv93AOXHKXz9LsxLDiTULuKLXlCqk5nc32Gvt3ouy3WsiD13FKOt3NLnK5Q6GQJrnocPuajgjDXKFL68Bh5VaGUKxL78BnMrbJ3jBJVStRaLcYUbqETqn0mwLpq8w/2Wb5WgjDlJRKQ8IZE0363HgrxOnHJd64QTBoI4ZxMmYUQRkpu5jeVYQbI6PF8Jy3iWsagVIiEB6eP8BV6oTNcwAkAp/mcJNA+lihJElzgs5wl4Ogy2TsSeKGgSPHyUcPhcj1fbYaLcZTCeLpGPH0+5cj34sbDHD8Ninr/YHFhZoH5f0iK9QSkQQsXLTRdI1yq0Or10QTO8wW84ggQSaUwMqOEzMOlz0/NXWCju/SHgwxxTbSNxDq/ViuQROEDo8oku9gaBrnx0e+5/6mdG+AOo5QEh9Yf8QPkSORfCQeZSb5e4AUQuwALwEv3n9dlVJ+/zQBR/zQadkDes7wwSzhHQ73IR9axhIJ0BZAdkCEkVIS08pcadloWo/lbZ+1rU1Oj4Robjc495nLbN3eIaoHhE5eJjK2xf6rK6jpAjdXlghFNIYdiWlVOf9pk/pqj4OVHsqoytkzKks3u+w3BPt/cZs7r4X4+X+a4bFPhFCagnBQJmCaoZfF39xl6Hr0wgr3Xthg4RcnCUezuBjMn6wjylG0iGBns0/i5JDYhElIvUdfBGRGoqzetRi8ZNARYaotE7etkoh16C4JOn0QMR//wOby0xW2ZIrxgs2tF6AV1YhPKaiTCkEFSrNQHO8xkCrTMzaGFcXuDFmqzPDEgoLDPHHzNH33Cqoygi67SGWUipcjouxT711DSoekVqfv1tCUEJu9V2m7ZYLAw5cOCXOcTGieQXDoohGJh4ksfnfvLQgkA9flzpsrFCfzpPIJDro9mv0Bc/nMB46/pUaxlA+ehQlhgHj3Uqbjeqzf3qY0mnkgwgPXIx5OEA/lAcFWo0VU3WU0nQMOz2/1yj1GF0aYy2fuBxn47u1C6Mce4Ur9YHRVIL01UMce7KE/QMn9jYX3iCM+TB5FJBeA/5+9Nw2SI03v+35vnpV1333fBxr3DDD3LGcPcpda7oqyZNJmSJYs05LJsGzaliPssPiJDsqWQ/pgRlhmhGVLpugQbZ5e06R3yd3Z5c7uXJgBBvfV6Pvuuq+sPF9/KAADDBqDBgZLcnf6F1ERXVmZb2VXVuXzHv/n/7wKvAy8Qs+tXQAdIcS79ALmm/Sccuo/qBP9tBCEIefXtpgt5ohHzD33CcNe3uPH0ctXUxBKgtC9CkoOocRIWirHBodImTc4e+kWV9ZKHOrPkx+IoGsam7e2KY6paBmHxT9rMpUc5Pm5FkO/OM3GlVvEssf49m99l3BzFGkqFHNlnGoLY+w4x74cY2WpBFaFTrnEmd+vM3RIY3Fpl45XQxUKLbdLdqTL5NBJqk4JqSp0vC7VG4JYvkFVbxLLBFQ0H/e7WfJ9GZydFuV8CpoNop2AcNknNeZRueUzZu7iRgSjk5LqkEJ2pcz1jkk7mWB+xSZzOmS1rBPJKSRiDtGwTBedyFiI4to4gY6JYGVxhuGjL7NVeodT06soxs9gEYLcRioZhHGcmpPCViNYQlIPGgSaiaJOYJmnuFr7GgjImbPENb+Xo0kWTZhoiomuDtxz/UIURcEPQnZbbWaKeZqaiZXoBQdL15EWdDsOuqGhfnTUFZYhrIJyZF/fqVK7Q9lxGL6nnYl8hk7LxlRsvPYVhiPHiCXHubdg5dizE5hm77lQPkHNyb2QAXt5hAi17+m+zwF7c5ACsm8eGSSllPPAPPAbAEKIJB8GzJeB/wz4ZXqjzStSyoMKq58AVVEYy6b3VDfe4d7q8g9jfreMrqqM5zKsLSSR0mV0ViC0SSbzKqHXZHDkJqODg6QzL/HCV6Ks3djg+S8NMjxtUi1FGHBWkX0e3/pGh9SRz1L1F1g6v4w2NMypl17k/PevUV6P4Gse1z9ooBhNHKXFxOko7sUkN98osXa9TOaURmVJxRyvsvotn0uyCazQqJt0pc/hlwZpjGzy/hvD5ApNFHOT1opDftiDjE4sbvDWb+jM/aSCo4Uc+SseE5kWsqjQEknUUOPMWZMjI1WqRpSB1W2cqTwIjZ1ShNZWSLbToRXqlHc09HzIi6/adEsOzraGq8boH19hs+3gpnxSGYPN1ct0nNPMHJkkKQQVbxknbNKROjGWiBqH6I8cpoPAUC36oscQUiGuF7GDBKGdw1CSlFseHbdDOlRolBqMHRnh5vsL5AYzJPtSNLoOfcmQVP7DWYGYaRAzjV4Jq2KS4mjhvmsr1AG4J+g+iqF0kqHn7p91KG9Wee8bH/Dsjx9DBn3slHeYPDZK1FC4ceZtcsOHKAkfy+mVznqaCKGAPvNU2zzgCfiUBEkhxLiUcmmP7WNSyuVHHf/Ywh0pZYNe+ZNvCCEywGeAXwC+DBxUWH0K5OIPl8JXd+oEnk9+aO+pOCklYRAynE6h3M5J6xvL90QawXUQMRBRWm6cRjXD6qV1lM/ViJmb9A/dJJXZZOnaBNFUEVMInj1e5Pcu1zBvbjI68hqvv3WOdbuEefE9tE4Z1Q+o1UPUbJnWgsnxFzwy7UWWO0fJzxXZXPCxtx3iaZ2rb+gUBiGUTYioDB6zyIw5xHWdbOIWF8wMmbSOSETZXRaIGZvF1QaoBjP/TotqOYKwdWqtIt5KQFfR2RYWkRtNinYHHxdbMxkakzj2LuuNOPaZgNnxOsef77A0bxLJCJJpn+YOdBsqmUkDK91he9Wmf66PydwMVlolDBaIW68BDrgXaIczRPQMo5HXaDtpXG+TqnONbOxzuGGbnDlJtVNlrbHGaHqMYn/+7jXRFIUIAnk7KX9kbggjoqNpGkc+JjF/+plxlI94pPqej/YRZakMW+BfA/0ZhNjfTzqVj/LSXz2Okghoek3M6ADVjo3tdiBVJZ42SZspkB2kdBBi71mNO3hBgK4e1I484C8lF4DkHtvPAXtXDL+Hx7KlE0LMCSF+XgjxvwohrgAl4F/QK4r8y8AXHqe9A54AKQnDh0+13vpgkT/7nTexDB1T17j27k3a9Q6RaAxhnLqbi+Z6dfRIlZnTp2ncqvIH/+L3uHlxjaqTIDduksmc44Wf+gqm8RLPHVUYOOaSLozws7/005ycGyarlbH9LY6/WmF0WmNk+CiOv0V5Q2LvZChO9ZGa6vLK59LULxmce8fEMgaZe3WW7YUCGxccPnjX5ex3AhYvzXPjjRLhezWihkqn2iH2YpuGEcXe6VKfDwgaKRQ1TiQqqSw2KasaiwspOo6Fflwnd1qSTrnEAo+RiTbxiEf/YJuxsTbFOZ+matH/jMCcVfBmoti6wZWzUdq1kERSY+pwwLOjgtr199hYO4cqQGt/h6b9Jr7+MopqsNW5QMO5ReitcHO7DN46F8u/yeXq1zCUODWnRNUuo5Ph0vo2tU6XeMQkF49ixS2y/T1BTTRhPRDo9kLV1PuS7wM/4PKb12k3OvfvKKKgTT40QIbyQWs4VeySiJ1nfvcChGlmi329qiHSI57tx7SiqIqCEq7Tsde4sV1CyoAgDHFvW9JdXN9ip9lCSsn5tU2qbfuR/5OUIdK7cNe79oC/OKR48scPGQ+csei5eezL4mk/6tZ/RG9q9SUgRS8qvwX8d/TWIW89ztke8MnI9H381FduKMvazU1qzQ7pRJShmQEiMRMpJb600ZUovueTjat0Nw12txpU19aQqwGl1QJGpI/k4Ajnvv42ufFpAneDpXkXdXqBzprO1Q8WCJducuK1MWKjHa42dEZedOnO1xFVnflqHUPaBHKX3Q2PVQ0CU+PwTId8Zh3N0Wk0bNpeSHa0ihVPQLfK9WWNyFGXzSWfndIYLb3E9Csule4I9V3B8Mwuq/NJZNLix39ik/lzCQrpDo3Ap1D0KDouK6/rZBM22/U4DamR0G1Wmib+CohOhLmxFmpcQ2l4nH0jythIFzOwqS4rnP58lERmgdHPSOKqQrd9koWFBfyZNcbENEPWKNlQxfPOInAx42PEYyeZ8G+iKkN0XI9DuV6B6416k3K7w3g+w1q1jqXrHzs7sF9UTWXm1CRW/P4ajkIoIPbuEIfSZ8u+RN6cwVBj9zQ2CNInZ0hiWj+e66EbOvnkKHBP2TltFiF96p1VKtVLOGKO1UaZ2f4Yo9l+LF3v5UH2F7H0R6d0CKEgleID4qIDDnjaCCH+lF4gNIUQf/KRl0eBsw8e9SD7mZv5VaAN/Gvg16SUNx7nRA/48yWVTzL5wjTXS2Vmux6JdC8nzgmalJ1b9FvHeev1D8iPrWG6E0ydGKMbhLzyC5PotYBIPIMekcT7P4vnhXzv91ZITEQJ5jfw1rZI52LMvtLH1XdqhMVZgsVNkkM7qOE5jn0OypsF5m9E8MQttEwf/dk61ZJF13IxjV0uv6cRBhbpvMVYsk3TrtE30cH3MkTSHfqSVzn/Z3HGXzFZOqcQpk0a7Rh/spTBwMO4WmK9EuH8mxFUR+DHAq5ux1lyTLQBSOckpVshoR2w6xSoNqFpeUQSUTZ3PVpbGk5Nw1BCClMeTV9nZ0cjfdGnb6xB6BXoaCrl1joxY5akqRNTFFBz+CKCK2IEwmSuMIsi4ihKCtu3WCptc2p0AE3VGEwlGEgmUBRB23FRlCfvepc3q2i6enfNMpp4POWnIjRy5jT6R9xshFAQ+jijBfBcjytv3WD29CRW3PrIfgLbdbm1UkHJpHn2aJF0PI6qgKl+GKw/ag7wcQi1/9E7HfCD54dvRPi43Cmv+Fl6AtM7hMAW+7Q/3U+Q/Af0BDpfAn7xdirIW7cfbwLnpLyn1s4Bf6EoisLoeB/9fsD8mXmUmQFS+SSmmqDPOkqr2kGRCpm+z6C2BZ6pYqQsAg+S0W0qa2dxmhFalSR6Ns8X/s4hqkqbjbURVlsmVrJBfiyOdtFHUkJxPC6/2UenHqAUobGiELoOsXibRmmLUq3F3JxHtSIhLahVDDzFxHJsVt4vEg40ee9tC2fNY6Da5ZpjsnUF1K5J4ctpjBWP1oLD6nQae9cnSKS4teKh5l2E7RKmNPoKLbYvawyM+diah+UFbG1p9A+3iAzrxCIeYbODpwXMzLXZ3jFwdiTn51M880KL+koIg4KtTcgXLRSjyaVKm+O5bWLGaxiqwVZ3hZz5LFbYouUuUumcQxERSt1dBiIhw+kkVWeJtt+iLzp+t8ByX/JDJ5lqxyYZMe+rJel7PmEoMcy9R2HBHiWpAj94UPH6MZjqx7vZ6IZ+e4T6YYDstrtUVl+nf/olbE9ltj/PcDzB5a0dZop5TPXBW4frB1zf3r1dNLo3uvwkHYQDfsD8iF8aKeWvAAghrkopf/tJ29mPuvXXgV+//WYFPlS2/g3gH/c2i7PcDpxSyt9/0pM54PFZLFUpJmIP9OQNTeXIy/fnsqlCJ5ZSGJ8aQOsobK2tE7oWdtNmdmaQSDSNrg9Q2vCZO73FcsPDaQVcf2+ZTsVBy1r4t5rEDo+TmEyjNBe4udvBCR1mjhe4cLFLuhgyd7xJW4fuJZvNt+PoKVD7Xa5dNdhZ9ckO6mwt+xx/cQfbhIjnMffTNleu5CnXIaj7rK3atL/WpVWTqHGF/HiCnZqLl4HopEf9hobwIVrvMDXb5oN2jKsX00STIQWtw3IqwvPjt+hsdwgiKm+/H8dYVEj0SbIZD9uymF/LUusInn22hluyWLNTdA3J7IjJ8ZEQXynQ7LxPPPEfk/Yvo7qr3LQbOKFAX/LZbGwx/cxfR7pVlj/YYHh6mrXAxsgFWB/J5w9DycJuhZlijqQVIfADELC1tIvXdZk4Prbn9f2osrVVa3P17Rv0jRUYPTz8yb9At/noCFXRVKQ6CUqS4YzGcCbVq1bSaKE/pOCypijk4zFWKlXaXY+5/gL33olv7pTIx2KPVGYf8OfAD+fa4pNyTghRkFLuCiGiwH9FrxrVP5NSdh918GOpW6WUu8D/c/uB6CkFPgv8F8A/vL3bgcTtL5Cly6uk8om7a5e261FuVRhKNkGdQlVVNEOjVWuTHvPwQ6iWO9TSDQI/JJaIc/3Md5k9lWSyeJy33v2AiFLg4sI1ZFVQLER58+tXaIZJokKhL6vghDu4ySIUo1TKLfAUdq+YtPwoQeBy44zg8BGbylqAl0pQ2rJJj3rcugChqZGPuwSGzkrH4ujJGsuKyVrDpLLRxq/7CBOyQzYqCknLJiFcKqNpBlWPvnKLZkWlo0dIVDp4gcpq0yA56LMdiWNmXd75IM3LL1WZX4myvarx7oUE3bIg9lmByAYsLmlUdqJ8+ec8VjdtKm6Cl6YVFK7SrJ/GaXaIp5/DczdAuURU0UgPD9MomQjvLEb8OF39Gun0SRJKlfNLV8jFX8a8R5yjKIJTo4N3hTgr19bRDY2Bqb7HKikeS0WZPDGG3dr7ty2l3LPSxuNimDpDM3P3bRNCMJBKIMMOMqiBUqDrSS5v7nBiqB9D0xhIJTBUFT8M746YW45Lq+uQjETu+0wehpQu+EsfK0Y64Cnw6QmS/wb4D4Bd4J8AnwNcYBj4xUcd/NjfQCHEJL2R5J3HUXqB0QbOPG57B3wyJvL3D1nMqIlufnhZvSCg4wV4gYKhCbYbLW6t7WCvbLBx9XUOv/oVDr0wy41ymUIuQWO7xcKtJo1IwGsvq6gqzB3JM3Hii+zudrh1ZYWOb+CUNik+U+TICxVKQZTLbwxhlnfQLI+VxTiabhGuq6jmNvZ4ina3TSwdkBzzcesKoQ+tqg5dgdO0kGWdvsE6kViAWtWJNTy8iIqigoKKTFZIbkCyLXDbgkzJQz+s0BjJEnRCFBHipgy6gSA94uMkEsh8k2qgEx23qAzCUNLBvaEQMyXpcWg1XOyaQiQisUyHty/FccMhxkZ3eaao8P73EyRicPhVGynSaLzDocSrhNJhJ7iECBPsLLXpO+TwzAsvkYym8f0Iyco1/I7D7s4uqXyCRKY33XkneC2UKqRHsiSjEdR70iYWL62QLiQ/VpwlhCA3uLdIxws7lLo3KVpHUW8Hl0B6qOJpe6R6ELYhrGGKGJP5wn3pHx8VKXlBQNNxmMrn9jn9KnqWd5+iu/gBP1CmgMu3//636ZnjNIGLPI0gKYS4NyC+DPR8rODO2uT/Tm9R9JyUcu9y5QfcRxiGLJxfZmh2ACsWefQBj0G71kYIiKd7N+akFcEL0lzcqnK836O0WiLoumT7+9lZzRBmNd568wrNdp3j/9Zr2MkY0+5z5PsbLN66zImfXqK0uM3ZN5KoYgeXKW6eWSQtFHLDcb7XSDA9WWRnpcbmlW2KOSifKhDVtpHLPs3lgDDXxdNDSBrgCbyWirseIFUdM+cTNX2quyqLVy0qmz4BPqEWcPh4h5s3LXzpY2+bZAoerZZG2UrRqPiItsD2LJotC2VGIbq1SzymMnBUYft8h5vnUnhFg7bQMRZsoqh4Zpq5z5So1CJU5hUaiwq7YYrtBYvRssfgq7tsbWhs1+PkBjYZHOwQWB12uwYGOdJqClVYmL4FW2WOf/4ouqaxXKkR031MPcLJ146jqirNanvPoKArCkbEuJsGEoYSNwhIF5JE4k/+fdCERdoYuxsg3bBDqXuDPuvY3W33snp9HaEoDM/s35gA6PmqKqleHUgUsrpGGEo+OoC9vl0ibhoMpZPsNtssV2oPdOr2bF/ooE08sF1KD8JdUAaeymj5086naLpVAKoQYhro3DEWEEI82iiZ/Y0kv0cvD/Ii8Lv0xDpv7sep4ID7sdtdli+vMv3sBIls/G55o0+CDOsQVhC3byoTJ0ZRlAfXjKYKWRYvLXPj+9f5a//Jl1EUhYkXp7ly9XXc9QYvvhYnnW6zeqHLH/zhO8weyvPFVw+zdjkD0T706nWamzB5Ks/mUJkTJwdZ3dlk7rkizx3J8/1//l3UigODFmGjhhI0iQ3r2Csez72yy1t/HCFlhuRyLcYPu7TyGqtvWmiGT99AFyVUaduCeJ/C+pZC0NXRIzWSwwq2aWFIG82K43QtPOKY41ALIFCiENfQ7QayGtKxBZeWkwjfQyvbWJqKsmyzLWIYLkTrNRoRjcauQFRd0kmHyxeixOI++YE6o7EasdlBdqstlOQYfvEY+DXyegFVGUcoMRx/B8PwaccVzr5znoS6ybu7cV576TgThRza7VFVfiRP6AdcfOMKs89PY0Z668YjH3GwKbXbrFUbnBod3Pd137i1RSwVvc+pRwhxVzAEYChRCpHZPQMkQH7owxGpDBuARstVUYTYl1pVCIO2X0JIg8vrDeb6CyTusVIcTCXujjDHc2k+8chQehBWQOnjYFXnKfDpCZLvAP8c6Af+GHouPEBlPwfvJ0j+BPCOlPIg+/cTYpg6+aEsqqbSN1b42H2r27XbgfRRl0i9L+fszvTd2o0NkrkEyVyCzUaTvniMwlCOuRdn7gZRLwg4v2Hxlb9+ipHJPFJK5k6o/GTnZTaub2LoGRbeUtCjCjWtD5nNMHt0gOZ2CbfZYP3dDUYHZhn98pcojiyzdOE8BBqhlmO5quDWVabGt4n6NmHLotzQYSMkFVMIhcBXYXa4y9Fnbb7+hxaurlCvBEwearJ5K8LVr1n85H9Y4+p1h/PXsqgGZPQakeM6jbZO9N0KzS8Moq7W8HMxxn/CpFsN2Jq38UKJn9bpNj2ilQ5GxqT4kzq19TzvrCsgFOL5Dhffh9ZawOyPd2jYUd5/HcQHLoePutQ3PVafF8ydOklM/RbJ+ByhOE6p8zYZK8fxZ3Ns7nYwGgNoy3VKOzWubWzz+aOzAFzZ3GHcsLj27jy5wSyDU/10HZeW55GPf5izWIjHSFuPFrPYfg2QWFoG7SOerjJsgYghhKDbcdB0FU3XHuyd4YAAACAASURBVEj9uJf70j3CHSDCTtPC1DSihgqyS4hFud2hmNhbIeuHXQxFZbYvT8y4P7DeGzDvLbUFsN1oYekaSWv/I2ehREE5tu/9D3gE4jEWw3+4+QV6ef0V4L+9ve0FemuVj2Q/6tbXn/jUDrgPVVMfaid3L1JKtpZ20U2deHrvS9Swu3R9//bN68Mb2B3zbMMyEKqgG9QZyXusvbdKo9zmxa+curtvPh7j8xOTaAgWL94ikVojlnuBnGawVG5z5dtXSBYSiJE06tkmSd+lHF5gcG6Fb/7LGomoRqEwya1z73D4lQjb8zY31w2spE40F2AvuayUFWpKElWB/IDPmh2ltCRQ3ZBwKMK1edheM0gmuyB18mmHFD6JySbVnMH1qxZ9Y12slYCJw10iwsfprrJ01cSphUTf36EzkkSxO+wsStpagki0hRMziW46KJqGPxHD6Ei2mzHaaYNIo4XsekTzAV0sbE/jjZsKWtsmPWaglYG6wXhB0q1UuF6fJxsfY2O7zlThJv3WEQSS0CmzXKnxyswJ/r0jp7j27k3WVnap5goMjxY50l8gauj8xN96gXhiDbsd4+xbtzAnsvcFSSHEQ0tH3Usg3bt/F0c+tL2T0gf/CmhHQMRZubpGuvCg5+vHIbRpAKZuHyKDXQjWsOVRNmpNcrHofakrd0gZPYWt9ZjqBsf30fZor/f/SKSUe86IHHDA43J71vNvfWTbbwP7SgvZz5qkIeU9v87etlHgPwdO0dPmvUfPaGBtn+d9wMcghODwi/cbQEsZQLgNSj9CKLhBgO0+uAR85c3rjMwNkR/Kcvn71xk8nMVMGYAg8CuE3gKK2bshLl5cZqPVIl1Isvp+hUtv3mT2tE51q8ZsMc/pr5xitVqjLgNejlq8+a++xZv/V5vMKZNjn51i6XyVlbPrvP4bZ9hqBtitFKgh5kqT7qaCqiu0Eim8Kw0CA9ITIfoVn4lXOgQbsFSPILsh5cCgrlgcn6qzsayz/EGcUAERSEQ84NpGBt/1qa9JmJRQiNG/3WFHUYlqDcKFEEVVcOMq7oCJWpKMmG3kgMJacZjE9g5isUndttC9gGLKwYo2qdciZEYVmpsqWizAjaXwym2KM5LdNZUjcw7901HauKCdoLyjMpgbIK2nkVLiBQrZdpVOq04+McTRV+aYOD7Wy30MwrtVXNJ9RQgFmhLnmedniKV6AdL3fG59sMT4sRFM6+O9UQHi+t4+r0JoSP0UtZ0Wtd0Vpp4Z/8QBRqgFpJIhLjSeGXm8NctH0XZc+hLxhypdtxZ3sFtdJk/snRZzwCfnh9Re7okRQnwG+DvAgJTyrwohTgMxKeV3H3Xsfvp/thDiZSnlu7ff7Dhwp+E7LgZ/D/i7QohXDxx5flAEvRJJSh4wyMdj5PeYARs/NorTcQCYOD5KNGmhKAp9J2K0ViVXz+4Sel0iVoTiaJ6VzQ8QboRjrx0mCAIc28H3fWaeneT17/wx3X748olX8LUY8b89w8J8g24yYO4Vn2Y8R5pbVBcMjpyeYf7aBpXtGqXtDn3xgGjdo+aG+KbO9Emb8rwg2PIoFw28doha7yLMEJlSGDrlcPR4A/FGnPKGgWG5aFKj5pmIXYWZiTbHT7c4V4tTudrF6o8w+5rEEh7v/L5NrZjEmNNQ1mykqdJSNbQA1HoHJ1TpZpIkrm+TMBxa6RTbYZTYxS3aVgF1RMcp24hGl854jrJjI5Y7XHgvxXIJTj2XR41m6W5u4QzDjWu3MKMmrtbkuZdfRfoqt84vMXZkmGjC4spb1xmY7LurUu0VxO6j7bhcr9c4Ho+gqyqqppLpT6MZnzzNQQiNSDxCWoj7FLP7xQmaBNIlqn040/GDSr9YqzWI6toDa7N3yA1le3mkB/xg+ZQESSHE3wT+J+D/AF67vVnSm3r93KOO309386Mf5T8FNoA5KeVXpZRfBebomZ3/6v5O+4DHRQgDoR9/sEjtRzCjBuvzW2wv7RBPx+6OKJKRCKOFAYK0TbxfvXsTP3HyWVpVWLu2QX4kT3VzhZ/5T5PEUjZHhjKcdOd5+9+8gW6EtFt53HYMrdvPhd9bJuUsYsarpIuSyekCfrtMwS8RHTLpOiblDviminw2y4bIs6ulcRMRWnqO0S+qOCMmrYSFg0llU2fDNlmeNwFBalCQnXQx/QDDbrHWMHnjT9PU3lEp1rtsLxpc+WNYf0ugiZCcV2XIr9DfrTEZL1FLWFQjSXR8imMOHMrQfzJkeK5LwawjNUHjeB87ahRrTiFq+gRJkyaw29Jx+mLsbnUor6dYW0wRBGVeeqXIhe9/m+tnXqfjLJJLjKKrUereMtVSBc/pGU8dfml2zzSOxVIVQ9PuilmEEBRH8k8U1PbCikXIFFNPdKwvXfzQeezjup6PH/QCmhcElFrtB16vdu43Pp8pZB8aIKG3dv9JVd++57N2Y4MgOAi2D0V8gscPF78MfElK+Uv0LOkALrHPqlVP0lX8MeDvSym372yQUm4LIf4J8M+eoL0DPiFhGLJxa5O+EYFmDjD1zDjLV9boGy/eDZKqABoOiXCMkckRut0OjVqd997ZoFluMzc3wsjcIIn059HUVaKJEC0/ye7mOpWuybd/9yqu7WE3bQ5N9NGdTLNiX6aZH8OtNPjuty9TyI1w8ZZNJBHiFeMMzHboNAUlP6RjmXg5INDpXGlRn4ihD2gUElWCfJR1t8CV6y6ZEQfXVlirxNBqHuG4TugKtHmXatRAi3s0Y6De7JAfdnFrKmEX9J2QctsknI7RpYuWUPE8n9CDzaBI4EtWSxm8mCA3GKCuKwTDSdK2i3sD1JKEiRhOTCHwdY5Ob5PdaVESMZYXL/GNb6/yU39jmpMvvEAmE+PytUtc2lxi2pxANaE4YOMF5wm9KWL63muB47n0vtYe/yKIaY9eK9+Lq5s7LJU3eHXcIBKZZb3WIBeL3k3RaHS7VNo2mWhPJLS5uI3dfHAq1Q9CarZ931rtJ0FK2eu0fGq0KY/Pp2i6dVBK+d7tv+98I3z2KZHeb5D86Fdtr/SPZWBfeScHPF2klGzMrxIxamQHbWLJKbqDMepdBwuFtRsbxDMxtpd3kcB8c4ml3bPE9DyqjPPiXzlJNhEnmrBIZhNsVlpEjSIjwzH+8H8LUUQLo11j4dwyJ378MMVXJBd+s8LmrSjXr7bYLdWJzyocHokykBE4hkJjucGtIEO+KCn4LYKqR6xgsVkskCs7rC6q1PQ4RX8Hud2gLxOy3MrSr9apmzop0yaT8HD6fbq7KkpeUspFYDtk46bAtEL8lEBXAoZnOmyej6D1SWp6BDYCTKVOtGPjDcfhrTp0PLrPDLDiR9heddEHFTpRFXPBJ7rVRjoBGoK+UgMPk9bYOOlpnUjbZ2AqghQzrM6PkYt4JBMpLGeUoaEV4tEO9TBk4NAx/LCF95BUYdfx7q5RSumDdw60wwjl431VnzZSSnzPR/+Yot6Pw3g+TdtpkozGiZgRZop5rm+XmC3mURRBMRG/TxlbVkKKgw+OIm3PY7VaJxuN0nIcbu6UeXZkcM88093uNaJanpiWf+C1O+iG/lCrvwM+ddwSQrwipXzznm2vANf3c/B+g+R/L4S4k1PiAdPc76oOMAaU99neAY+gVWuzen2DuRemH5k4raoqU88cwjA9BBWklEzmc8RNAxkExFJRCsM5cgOZXlsCxpwMmmJR3e5QXa2ROpHAsR0a5Q0qrse5966SsSympkcpbdTQ+wxeODlKab3EO9+rcu2NCJfeWsYOy5x+wcYQZQwzTaeloKV99KSDfsnGlQHtFDgVgarbFD9Xpf+4ZKttENMkSjLF5ls+zq5CMKgw2N+lKi103ad7PSQS8eg70oEdhcZ74GTiSC1AajZuRyGSCRi2OrQGNXbLOomgihOJcMRdp5ZKUJMuctQgMaSgWnXmW3kKbhNvSTCgNQiSBjJmEOYs5FyBMSeKl02T1Zrs7oSsexoLl9sMaVd5/+wtnp0e5TkLlt66weETQ5z47CCWGAJAV1PslcjRbnSYP7vI0VcPoelaT2ijTfXqQH5CpAx7a5638UMHN2zdt7Z4L7WdOuvzWxx7dW7P1x+XTDTKZ2Y+9AhWhEAI8YCxwN39UzHcepeFjeW7o0kpJYmIybMjvTzRmGkwWcg+1J0nqQ+hKU/XhONTyadnJPmrwNeEEL8G6EKI/5Ke8PQ/2s/B+wmS36U3LL0zh3QOGN9jv5+9/dqnGiklW4s75Iezn6i3HomZ9I8X9uUsEgQBmb7U7anVngIyHb19E1EVBib6gF6FkCCUqKKGpc0j1BEKIwPYHYf/9xtnkMs1EkbI8z81xZJTRx2JcuYb7yIkvHbiGf7k99/i+c9HkQu7OC2HofECqWKamRclm/MXuPxNl1olJB4NGZtwsQZVzqzl6IgQkYWc2mDn+x1K53S0do3IMYvy+yH6gMkLrzUYsDZYWo4RIHBLPqWagbduYcQV9K02fkwQ+B5hRMVbV6jqEdxalzVvjEY+Qbxa5chnbTa+2aKMSuC6mIFGJdSJDWp4aAyX1skOGiy28ngoFIZDOmOgLvlkfEE61k+QaKO0t1i9pNIoJog6Dpuuw8mpURavrhJNl0nFBskNF+9en3ajQ6AImr7HUPr+IuixZJTZ56dwu97dih9CeXhB9Ia70TOjf8i07R2klOCdRWrTCKU3OvNCG9uvPTRIpgpJrMcst/U4dD2fhv2gr6yUkjAIGUoncUwT554czetn5skP58jftttTFeXu9Oy9+J6PpmuY6sGE1Sfmh3Nt8YmQUv7fQog28Ev0Zjy/APy8lPJP93P8fvIkP7fPc/lvOBhJIqWk07TxveATBUlN1x5ZYPkO85dWiFkmw7N7O7bc3CmRtiy8IGCpVGW64JOPDSOVQTZ2a/iez4szo2wqJoXhHGtbLuXAxV5bp7SySzEWQ1ZtpotZBqMhHyzWmX52nBtnbuEUo1zcaTJ/pZ9go449Ege1w823AzIZCyWqooaS/G6JF14q883VflKHVVrf9ag1klBUiCstlpZ1wnQU24rj7irUW1Gckzq5OFg7NUqYuBkdGUI4kMK0u2gZn3heZ7duoIcdRJ/KxfIoVrJKJ2eilrqYVQ890iXYBTuMEcspeOtgxgzScYPALBGuekSjJmE+ytJGnU7D42TeQtUc0terKDETcSRF3WiTUl0MAtrOLmuda6i7Adu2hlypEssmILf36NCKRbh1fol4OvZIIwldsVD2oSwVQiC1GRAfTmdaWvo+152PoigKkeij002elJS+wDPDffd17gLps7q4iFtVmD09hWmZmFavEHjgB4zMDWFaHy9Ia1SaLF1a5fiPHT6wpHtafHrMBLgdEPcVFD/KU9N4SykvPq22fphRFIWpk+P3bZNSsnBhmcGpvgeK2n4Ux3YIQ4kVi7B8dQ3TMugffzA/bnt5l3QxidBVShHoH3y4qjEbjWIZOoaq4gUhjicpbfgItcq3vvk+f+1nPgNtl0QqjmM7fPC1S1z/7nmmjvik2yGzp0fom8jSlRt8/5ZDqi+O7miMzoEn2zS3YXZ8EOfkBPPrW0QWqzieQmO9jRmRhHFJVU/xp9/TyAkbLjkQMUj5HVptgVLt4juCMzJFqtthbLhDu9+kmdLBDghMjciPZZjc3mR7w6Tk+DjZCK4LTszC16NMxLYpLWp0FR+jqBNZacGqS3soTuKIj7bkYZVaNA4N4AyGxC4tsKVmSR+XTB2O0lxLUCm1cWVA2ojitNNEWcEf1nCrNgXfR49otNs+F88ajIzFqG9GWFrbYaW6xYkjs+CHzPbtvU62UWvAYIK+wqMFMpb2aH/TOwjlydSsPzCUPJoSIwhDlss1cvEoEcPHLDj09fXyc6W/AmqBylaX7aWdB0q67UUiE2f62YmDAPkU+RQJd+4ihJgDvgx8IKX89n6O2Y+ZwL8LfFNK+akfJT4JQRCgqipWIoK6jzJBpfUKnuMzfnSE3EAGVds7S6fT6LDl2iTScZ4ZH/pYr817qzKM5dJ0Ow4ry2v4js+oGSVhGLz7rctoWVCzeQ49N8X0qQk6lfd44Svj7KzrrFxexW2vorWLxAqC7ZUOsWiclbMb9I86mEGKzZs6mU6XWlMngoMPCLfD8dk2169YRAcMnptucu57MWzXIqwIYo6NlYTCcYGuC/wFSSIMuaVl8FdCnLaCHzGJbHrsLOo0VQul26EznETd7cJCiGp1icYhbXVxL2/jRU0S0qaWilF7tp/upk1iuUIkGiJuNmBApdOB+OYu/fkY030GZdWivLJJdypFOh9joeYQmS2QtyLstNo0bQ/Fsai0W0yFId1Ml8qVMqd/7jM0z63gZlXWah1GXA9rjxmEpBUhajzaD/WHHaH2OnS26/L+yjqDqSSvTo8xkLjXTs4FGdDWITPVt792hbiv5qWUkt1Wm3wsdnft0vUDqh37vkLXvX1DWv4uMS2PIv5yqosPePoIIaaAf00v1eMN4FeAPwM6QFYI8fellP/yUe3sZyT5W4AnhPgmPa+7r0kpW0985p8igiDg8vevM3ksycDwDsLof2Cf+XOLDEwW77qwDE7oSHrTYfH0w+XwE8fHOLuyju16+zKj3lzeoaoEzAwWiURN+ieKaLrK6NFhNF1j/MVB5ssXGS6MMTozgqZrfOf/vEVp5RrL1xKMHh4lmf0xauVFEpFB5tUNDs2dRtMGubZwkbrt0W451CttJga7BNKj6apUWyqLZ6P4rkrZM/k6Qz2xieUQWhk6qsbgUJ2tchLnUpOYCd6Ywtxwk6VbPnoV7IJFux7Da6r4iQDNActp4AsFRQmILdZZ/QDCooI5Y9GxNbZtA2PY4lBrh+1lCbs+g8/ZxE6GLG7k6BbiOIbDdtulcksyNbDOzKRB12vjqj6nJrJMdMa50GxxVBlmofQm0UKTTLZAsZ4jlrD45v93hvzhQardPHOxLE23xk6zRTERx/Y8srEPOyfxfVyjH3Z218rUdurMnJokbhp8+dghmt0Hcy/vWOBpWoPIEy5JeEHIeq1BMhIhotyueuL7tz//2H0jzpCAblAlqmbgIEh+mvgfgVvAP6ZnS/cHwN+TUv7W7cHfLwNPJUhCL1A+B/wmPQeeP7q97Y+llI+fgfwpQVVVJk+MEU2awN7rRMl8Aj1y7w3UQTzksuyslhBCUBjuTdmdGh166Hv7nk+91EQ3NAI/4MzXz5M5MUifaWFZsHT+LWK5Q9gNh+FDg6hdnWIwQ6QDl69cpzCcI5EdQUqDzKhGyxBM9udZvraG1/UgobO9VWb2VI4lP4WyW8fbDRG5GM2mT22zhR2NEnohXsNFDULMThvP1Si+COEFj/LVKkpSYamqIytNctmAYtHDb6ucntzkxUHJB69bSN1hre1T7kui1x0SgyFNW8NFwYhbyIIg1Bzykwq13RZG3QRNIC47tERAIinxYhq1VY3iUZ/BoMqVEmCFODsCLWWyvupy+rNF1ta6LFVUPLfGdjNAGBatosVc7jSNTol3ahXe1+r8XDRJcSTPt9++zKmfOEZ7pcJUJo6z1WJ+vYZRjN8XJOF+E/I/L1qOy/xOmeNDfXt6rz5NUoUk0cSHqtO4aXxs52DwIwKnx8HQ1Ltq2LvvFzE5PvRgR1QVOoXI01Hz/kjxoz/d+hIwKqW0hRDfo2dwfsev9XeA/2U/jez3V/M/SymPAc8Av0bPs/X3gG0hxL8SQnxJ3KtDP+AuPdcbjVBaNKu9Afj1925R3akDPaNqw/ywNy3UIYS69xSUbur3FVSGXv7dXq4iTsdhZ6WEYzu4XY+f/Luf5cdePsrFqyuU6y2OvhgwNqvz/jcvcP3MLYQQtIOQxWoVp+Nw5usfsLveIJkbwLUrDM4MEImZDE73sdBsEtnq4JQavP3u6+gtm9GYwth4H5GGi5V2UCIC1fYpGm1kRCKzOk5UJTvg4gUa62oCBjS+9NVdjAEDNaZiR6MsNZIslONc+G6ElRsGAyMBhhoQb7dJX69gbdgktZB+rYnZsYl5TYiqRGIwMtjmhddaWMMCTJVEVtI3aCOGDPRCisMvh0S0EFV0SFXqJLKC2IkRrOEI8QGPcyuCShemx7McHTxObEzFjQacPb9EJJehOJFgqn+E8UiUStdhXQ8prZZQbJ+R0TrZgRgDk0UOHRqmkIjdp/KU0qO8+j1K66uf+Dv1OFi6xlA6+QMPkNBzyrkzI3IHKUOcoHn3ec1duV3N5PGRUtL1DkrWPi3u+Lc+yeOHBFNKaQNIKRtAU0oZ3H4ess9uwmMJd6SUF4ALwD8SQrwI/BzwM8C/D5SEEL8jpfwHj9Pmp4V2rcPK1TWOfeYwAxPFRxbX9VwPu9Ulmf1Q7r6X5djSpRVS+SR9YwVatTZGRMeIGJhRk8Jw9m7Vkavv3KQ4mqdvJEcym0WxvgjojMwNYloGbtcjFrcomgalus2xn0mRkBPYaocJOUHSFXz/j84QiRq8MDfJuaVz6AmLTjNOUg/x1YC+8Qhdu4hGDV26qKaPsF3ijk8Yd1hftpj6nGRpCeThDJ0th/PvthE7XU692KARRHCqCqkZn+FBlz/62iDZoMXp11q4nZD8sMflM1F2LzvkMi7pZkCrHsErCGxb5crbcYoTHYxUQLQeEuoS29DQfQcrYdNpSryNkEY0iR9JkW+aVMolOksKdTsgdbjC7IhBrbXMdkQjbKrkfJfcXJrXjs1ycSfOq8dVtq9uog0k6GxscHhqEM2dZ2styuQRE8U4SqvWpmp3iEUjd0tBCaGjWc+jaH++066qolBIPB0Xm3uRUoK0e+WrPgYnbFF1Fum3TiCEQBMRVOXhn8FCqUI2Gv0whekeanaX+Z0yz40NHQh4DngSnkjO+8TqVinlO8A7Qoh/CHyWXsD8WeBHNki6QRtNiTzR4n8yl+Do7QTuZO7ReV6tapvt5V2SLzy4b8PuoioKUa3OxLEhFE0nCEO2lnZI5hIUR/K4XY/yRpXsQAZFURg7Moymq2zMb7G2VSc/lMdzfA6/MINhmfh+wKWVVYzFGtuX1/nqzPPgrvL9r20ghcLos1Fs16MrQrqXbuB2ba5cLJFJ79AOFBYXI7jtSyTTJmFulFJlCyMiqS526Zt1OHqsiSBk6Zs6Zc2nf6KDd63KrqOh5ySJOZ2Nr0uqG4JczOHmgoVRcQhjgvSwj5c30QOba5eijE11+ds/v8O3vpXi2pmQoO3QdVTEjsvupoadlaSP6DgRndqaTf+IQ67gc2MtSbemYsQlgjq7m2myIzGcQCEWr2KX1lndSsFEHk2t0Z+zGMxEMaIprm3s8syJGc5dWUaZyrC+uMsXnz/G6REDY9Cnf+w5Nha32Vw8QzLTIj1whL5UAiklrh9g6hrp4pNZv/2lRNbBv4nUT/Nxk0gRNUmfdexuUHtYJZN2o0Or2iaSMtHUvdtLWxFODPUfBMingeDTkAISF0LcW8FK+8jzp2pL91CklBL4DvAdIcSPbIAEqLiLJPVBotrDE8EfRuAHVLdr5Aaz+/qRZ/rSD82TPP/BLfqHUkz376Lps+y2fTZqTZ55ZoJWrY3nekQTFtOnJli6tMrQTD/RhIWUkmOfmaNbfQthJNlYCNhe3sXturz41dOkyhb9L+V55QsnKa2vUV6+SXm+xuDRfsrNDie/eBwMje7iBwReyJbi09WKZAKFybEI567YqJ6PVWoxMl4HS8fZCLBXBKWkjr8laKxqhKZP6JWRQqD3K0ST8PYfGmRTEkTA0nULW9cZHu3SsmHhmolfNNk5Z2HaEtmS/Pav59ncNhl7ySFeC1lciNDwNfyMiql5xJtd9AWoezqlmo6T1iiaVW5aYxjdLkpMwelKrMU2ruKROFJnOGHjGzYxRyAPWYxkrlLZjpCOPE/95jI3FJWg6+K5PgMTRfo3HN7a6DKTG6V6s8SzE6Ocf+N7DE9nKAzl6Nhdrr0zT6sQ4dT06I+UeEcoaaR+8mMD5B18N8QwP/5+FPgBnuMxnH54DumdupulVvs+f9gDnpAf/Y/v80+jkf0Eyd8AdvfT2J353ochhPgfgK8CI0AL+CPgv5ZSVm6/rtKrIP036SldloBfkVL+7n7e/wdNMXL4iSXkruOxu1Yh05e+r6L8fvBcj52VEmbUIBKNMDNQIJ1PIW4XvM1Gw7vpBevzW+QGM/z/7L1nkBxpeuf3e9OWN12uq9pbNBrezADj1xtyucu75YnLIzck6njShXSSIhQh6UIRlCh+0IU+nOLi4sgLkqL2QhTFPd5RuxztLrl+xw8wM/CuAbT31eV9ZWXmqw/VwAAD1zOz4I7BL6Kiu9MDWZnPa57n/w8lw7Q7HTx+E0VVKOUqLF1aYerxcTyR/SA8jO7XGN0/xJWT12jVWsRbYJXLzNfPEEn143gmSO49TU+sQyPsYf+hXaxcXOaNeZXJo4fR9POsz62Tq1Qxe6c5+MWDyIbF+TPzjMUNFI9NardNOw8nz0f5pS9vEZ1zyPqDaFLDE29hmuBmvDT/VjA4XiWmKwjg8mUVBl0md7UouQEufcfAbDnoigRH5eqCCZZg9pLGeKpGPG2hrEK9DjQk/qhNftNAShfCUJ6XVEw/8b4ysd2wvqEQrFQIT+uIBQ/N7Ci2LVCWKuz/4m62IgXquQbRhEZeW8IplIiWMzQDMBrvZf94hnNn5lh64Rz2UpmB3hjn5ouUfDpXVkzceIN8rcH4/iE0v4nvIxQgb/AgRxp4WwRg79NT9/W4DPUEb5tauJVb9WbbtsNSoUTIY2JoD8fK62PDRzxISilf2Om2Qog/lFL+F3dbtxPFnd9+Nxf2ABzgt+jalETo1rB8A/jK9vr/Evg63RbA1e3lfymEuCClvPJzvI73xPupsfL6PXcYKe8U6UqKm2VWr62TGk6w/9lpFEXBdV1sy8bwGARUg8JGEem6+IM6G/lLVJ04e8bSOLbDwoUl4v09vH7qKiOpGANjb9eSjewbA4zlxgAAIABJREFUxPAY7I8FaTQttq7VqRQsGpUWDTIsX6qz8cNX8S1v0D+e5PAzOXItnVK7w+VFlUrbJNJeI+TzMJzpsO/AINdPt7DtLCITomWrRDo6F163aRY7aP0QCtZ57Kky/983Y2Q8Nfbuczh9IkRmokmrquC2FMIBF1MVzF01iHqbNG0DqTgs1HoQSotgr4XegVLeIB7sEB+18DYlw+kyltTIxwTeoIHSbpEtG9Cx8ZZsIi2JOqgiQi6u5rLhSdDflDQaCoOHdRb1FaZKHtqal1hokJeuWPRfMBkdW2IkPYm9lKPhU+nRl/itzx9ic7aEOdzD1atrDD8xDppK2OMhEfB95F7kTatD3bJ25NbhupKWJpg4Mvq+TKDz60WySzmmj0/i0bX7ZnU/4l3wEQ+S75LfAu4aJN9XypsQQhFCPCmE2JGYopTyf5RSnpZSdqSUW3SNMD9xyybjwM+klDOyy7fpSt3tvcvh/k4pbpZoVJsP3vAhYHgMpp+Y5PFfOowQCrVyA4DCRom3fniOuXNdU5ZgTwAranL53Dx+q87u3u4cWDlXYfzQCKnhJMF4kHDi7dR7KSUnvnuKwkaJueVNzl5fZvTgMeYv5Fi9uMqXvnQcj9+HGpb0DMxy/cxlZk45LL5lQytCPWngjoaJj0H22gLLC1c49/0LYNYRZoB4u8VQrEhHWmxuGAhFobgAq2t+vv9CL3sPt3GLLrUatC1Ym/GQ3dJxFbh+zsfmssm+/jL7PtPC1sBuCpSGha47pCMWag2yV3UuXfSTFQZ1oWK1odNWwDLQOgYtYRCfArPXpNTUya5oVE9Fqc0ZNFdNVLvFwGAPAa1DMLRMxbYouVH2TX2SYmWEYKnD8V89QFNp8L1v/pQfX3iRUycvs3tqF24qDAkTn+4y9twuNFUQC3gJeIz7BkgpJc49HEM+yDSsDvn6zp4Dy3FYKVVQzffnOBJNhRk78MjR4xEPlXs2Gd5vMzdIV8ngE9s/3y2fppste4M/Af5cCDFN18bk721f44t321kI8Z+xreQ+ODj4Hk6/cyqFGkEpb1P9eL9cOzVHtDdyU9j5XpS2ykhXEk1FqBVrWE0LohBLRzGf2Y10uj6iVtPC5zFJHZ4k6H07O7CwUSLRH+PyhUXWly+zOz0G7MZqd6iX6ph+E3/YSydvo5heKvkq4USYUCxEp91ibF+YzO5jWLV1Ir0G8+eXkZ4crlVgMhZhw7RpGjqVxwJsbpQRnXVaVyA87EFXXJYuqDi5GkKVZAYsekMdZMrHnokisy9pBL2SpVoQGfXQ2Woztb9BcVnl4BMlrp4J06gbjA+32XW4zeJ5HREDfd1lbsaDZgoU08HVFbKndQy/4I3zMfSQSjwJI+M13vypQWUZ3KiCUm/jt3yEBqMsLpYpz9pMfSJINNYkHtdoF5MYsyVeWC5y0Wzymf/kKzz7+WeJqx5KC3WCao7QQIiAMMhtefAgCGtVdk0YZLcsZl5bRdmTZsvvp9q26AkFuLS0Rp/mYWj87bq+hlOg2lmn1/vza/9J+zoovQ/VfisW8N2m4HTHNUiXmr2JX0tu9/rurif8blBVFdV75yiOlPLRvOR7Rn4cEnfeDff8z9iJLN1f3me1TjcC/74QYgtASvkf7eSKhBBfBf4x3czYG8zRDbYX6DpIt4GvSymzdzuGlPKP2S4IPXr06EO940O7+3/ux+wdSWJui01bts1GpcZANHzHg29bNq7b/ef1T2ZurhdCENxW5WlaHV566QJJr5fxgbfrLFeurVPJVRjZN8iIV6dVq1LKB7h24izZy6vsOjzC4FQfuqmTbTbx9vjwBj3seWoSj8/DhTPnCPlzJOPHmHmrweXXZph6fB9qQKO4cIp4NYf3apNAJkxdBFhTCvhTNorfT6HsoNQCBIwaIqZh0WEt58fXaOPx2WgRgdGv8+rzXvbtbyIGOmRtnUURoalJzHCJg58pcOp8GL9iE5+2yec1ju7PogiXs6/72NwyGZyyKGQ9lOoKzpZFIuXS8KqsKGGs1Qa1gSBqsUZIb2JEBXnXjy8BxoKJktbYOFVFHZnFTY1hhk2sep5OyGD3QQ8e/3eJq0dZPuWhYjTJeCKM9tdJ7rd5+c9OEp4KESzrNJ00ZWOGVtqDu77B9VoDNxIgPGGil9vUPG+/1JcKJXTLxdRT3OqtJe15UJII5b2WbBi8z8Gh942LS8up4lV7HroE3LnVDfoioduGfi3bYS5XYDTe84E1uP5A8DFyAXm/7KQn+WtAFrh8n/13ZlexjRDiHwB/BHxZSnnqllV/CEwAI8AyXcWEbwshalLKH7ybc3wYCEbfbvE7rqTZsZGSO7z4btQ6AsxuFdBUheFYVwR7Y3mLpWyRqelBPBEfSuf2nYsbRXxhH6qqEvR7efzpgzSqDSoX1gj1RSltlhndP0yz2kJu1AgH/MyeW+TqG7P8yj/5HNeulxkYGeSt66exNxZRdC/TTxzix998mTevCzIeg/KWgWfvJNa5i+xNmqwFRwi3m7RqLSpLFsF4gJG+LTZKJsWSTjvn0mO2efkHAbYuquAzWXcUhg62IaaQzSlYMZ0rV8MEohYi6aHkE1x+Tac0q3JiPYgdkKTjFj1tm7nLXowejUCkg2U59E108EZdzl82aNsKMUNSBGwNEjGHhuqneWUJ3XXJpCK02xEq7TKyukkz38YbTBLweeg/9DhL5WVSdpvAoSXceT/J0TH6g2EunG9i9fmJmQY1bZ2zL53n8U8fZtezWX78/17E8SvsG5lEKDYhw6Qc0qm22uguNMsNrI7EEQrRniZC/HxGJ4T2cEdTdoIqNBKeyb+Tc43Eonfo5KqKwKvrKI96mA/kQyQK8AtlJ0HyvwV+F1gC/pmUcv3GCiFEhK7Uz38jpbzrkOg7EUL8NvAvgF+RUr7TuPkI8AdSysXtv18VQrxEV7X9AxEkCxtFFFUhknhv7gvSLYOzidBvf5F4DZ1dqTjFbJlwPHjPRIdMJHRbA1D3mQifht80OHZ0klxtlrK1Qng789Xj95AcfNuZwrEdXvyrE7hNiz2fO4Av5MUb8GC1O0wcHuGVb73A1LFBnv3qMYQQfPVrz7GaK3G5uoWv2SAYsKgXr4CqYIW9BPv76ekpow946E+H2T9exV9KsXpli/EvTqJf3cJyZhgcMJhZzlC2LExZZKkSxFuQOMsO+qjKBj6WXndRR70cGVll+RWF2XiE2ppBfyDHyeUAzbwk3G8h6w7NZZNrkRBKpQ11SXywjS1c3LTL6rJGou3S15siX26iBRwCmxrtps5axY86qqN2DJqtKjPn63iVFtFEnj1Hxpi57GPv7l3Mfv8sr+tzjD8xSSS9hRVv8FzvLxGNDFBqt3AuzDHaa3B4/zil6iqXXryG3ZKEQ0EOPjdMZX2Nhfl5WukSR/c/Q6PTIWAaZJdyGLUSI/umkW4DaZ3BUicxtRhCG3lP36kPGhVrHeGuETCnH9gAaHVsDFW9p8HyDZq1JqbPvO25CHnvFBxQFYWh2Ltqsz/iI4oQ4qm7xJhb1/+GlPIvbvx5r+12kt36L4UQfw78c+DKdhnHv9jWbH1XQ5xCiP8a+J+Bz0sp37jLJq8AvymEeF5Kubqt6vMJui7SHwhsy0Z5P8M4woB7zBk5tsPqtXU8PuOellq+d7ScY7EQsVg3EWe1UkMSIX2L4e7E4dHbz+G4TD0+TnZ5i1qpTjQV5k/+j+8RaEn8qsZjn+tFOnkUbYDiZgnDo7N+bR1vWyMzcoR2s8jffOsyVHQ+OWTS23cWdzxKqxHhmseHFRkmv7CAYzmohklk0EvZClNteLEvNTHGAwQCZWoXbcR+P4QtlKUmWqsNLqjY5LwOVakgvCpKzWJktI3Vsbi84seIGXj9LYqbAmvZwVOTSA8sL5pggxPVabYsGoUOZs8mIqRQ6EQQVpN4Jkpy0INevYIDRJ6MM/MD2FrKoylBDn/xV3CTlyjPL3MgrWF6TZy5PNVOgOaySX3CIS9WWK9kGXJD5NeXqU37MSIlBoYtbEvQIoQ/WSXZO4WqTrBa6kqwXV7P0mMLRkZCKOkaUloIxYelTpBvvELK/zSq+u7rbz+I6IoXpIaUDXC2bvZwpXRBlm4znL68kaUvEiIZvP886vXTCwzu7iMcf+96r494Bx/9OcmXhBDPA78ppazfZf0f0dUgB5i+10F2NIEhpdySUv4O8Bngy3SD5Vff5QVDV/c1BPxUCFG78bll/X9Hdz7ypBCiCvw53YD8Zzs9QVfb4OGRHEw8MNHmfgjhRah3T2ZQNZW9T0090HPyXozEo4zF01S3mljtzs3lTavD5fUsjuvSaVnU8vNU8luUcxWKjSZa1WL3/hGe+tXHSA7vQ4oxGtUmZ169gqKpHDg8zuoLM9iKoNrWsdQQQ3sG8CXjFGUPm6sGf/tvT9FZKGI1iujFZaanSgQLHQb2ZnDiUWqaF8enYSseorYPN+xDkR0OPVkjcQwGR1scGGlglOsENZdQWjI+Vieqtjn3lp9LuQgiLShugmlCYJ/JwDEHNe6idroNDNdxcOJe7JhOy9bw+ho8eXQL/3IWPWEiYybXT85RzlvEEx7qCwa9/T0MTiV57Av9dOoKpZzGhg0rGw2uvPoK0Yhk6c0sP/vfX2Rl8To9/jCjiV7spM26dZZzJ2bxaP0M7XkG02fgyA44YVYummzmrlJv1dioVNnbm8Qpt3FsD+hHbtYYmlqclO8oygPk3W7wsL/fPw+8WgSveQCBCbf6H8gG2HPcWk69J50isYNykt3HJ24LkFJKpHRZn9ukXmn8XK//Y4N4H58PB22gF3hFCHG3pJKb/xIp5T1Fld+tdusbwHEhxH9Kt3xjiXfRm5Ty/qPg2yK0/2T7865p1ppcP73A7uMTaDvwbvxFYrU7GKaOYzvvWlzgXtwQsc6tFlBU5aZwuqYqBD0mihD4w37GjiZoD60xFs3QdHWSIymEK9FNnbWtIh6/wdmT16hp4NoOAkFmIkMsE0XtC9HfSFNeylMt2swU4uweHaZnt4lVt9lcsZk+sItL8wuMfLqXlTdmmPuLNTrSwTNoIOazONECiceC9FFj7jsKbS1ClTbe3QoD+9ssrYQQczVmz6jIko1mKLRaGilvm+hTguVFLy2/QXC9TrusYjhg+sG1QCmVUcoSFMHGoskJXaXT46GpqyRrC9gDgvWtAK3VEPUChJw6YwdTRPuyZDeu4m1KJg4d5We1n8GCzo//+gxTQ2FS6T4Mbx+ltTzrxSVMGUV3UuiBBAE9Sba0RHYxz+74Xk7OX0PLWaSTFkZHsHmhQd8z0+w6OgaA67p02hbGtvuLqr2LDNDOGaQ6iFB/sRJ39baFqih47vOcCSUAysTtfxtHb9tmp8k1dzzP7hq4ZRwnCh+ChsMHkY/BtG2HbmLoN4A3hBBfkVKevGX9jr447ykVbtuochddObrngdx7Oc7PG9NnMri77+8kQLabbTYXdyREdAdWy+Lya1eplupceOUKzdp7r78s5yosz6zetmzi8ChqwMTeLg3RVZX+W7JmNyyLwlaApXNF/DZEhcba7Abf+aMf8uprlzjzyhU2Lq7y5MEJVF3Dtmx2jWcoLeR5fPcohguKKti1d5qwESCUDrMhK2wsLbJn2mVyzwEmJo4yuqsPT6zI1GN97H1yF55GC38YPNNpwrUIm+sm5UwMbTxKZ1+MTK9Lb6eBZ72JXRWIIQ96UBBLtXErGtW8n5i/zcizkuiwQyHiRx4N4SQV2hNh/E+ZHHyighnuQNvBEg5bax7i8RZpbR1ptfDXTfwhjaLTIZk0CY2oXL+6xF/+WYdvfXuWq6fnaK5XOTJ+gD3PHsHjEQzvUsns6ePFH55h4/QqSTVM+cwWgWqG3n6HSmeNQNTP2KERqu0Cg3GX4cEUNAL0JfsZ3zNw8964To384s+4fvr6bfesVqpT2Cg++IZro6C8t/nwnyerpQrZ6i/QVlZJgDpE/0T6DueRR+yAG9qt7/XzIUFK2ZZS/kPg39Adwfzauz3GTkpAfgD8V1LKmVuWfQo4IaX8H97tCR8miqL8nc1Z2JZN4z0O8xgeg8nHxrYdO3SUewg6341yrkJ+rcjo/m5x9er1DUrZ8m2lIQDn51dJeLyMj6TvOMZgcDdDhzTsjoPruGQm0ziD0C+SZFJ9FDfKPPPlx5i9tEx5s0y11mDX0XE2Fzb55r/6Dv5YAN1yGZhS+I3f/iyax+DkKxeZ+LJCrK+fv/rmq9irVcYOj1BrlBCeOpXgGOgajz8XYdMXYbOcY2iwAws6a6ZBj1ll64pL70AbRuIErQY5y0O4z8GqOigRhU5RsnpBEB1r0O/vcHleQ+QtXEPiWa/Tqrks5wz8GYmeMtCNDlvzLrW6h2bRxal6CAR0JvYFuHixQGCwgAimMRQNs23w7OP7aBW2aBs2uWIFq1omOZRE0R1a2TKZ6T6Ez0+mb4Kf/MkpAkNRnPMdkokRIv4YrY7NtY11DvTvoSbLXDj5Mpn+AYKRtx+z2WyDtpIkuacrmXdD+9RqWTRrrTvu1TsRH4AACTCZij94o4eIEEZ3fv9dIKWkbnU+Uhq6j9gZUsrfF0JcBr4hhJiSUv4eOxw43snb+TPAzSdzW1/1h3R7kh9b/GE/I/veuwqI1++5+VPcJZM1W61xbSXLpdev0rHenl/0+E0iybcbAv2TafKOxUqx609Z3Cpz9oWLjAZD+Oxs1+j3FqTbQHGXUZTucGyuWGVlaQt/LIjWGySeiTF2cJjF5S1OnZvDmwzyysU5bHuVcPBFPIaGPxWkJhzeePkSW7ZFeXEWXdVo2X4or5PZH0Dr7+rJqvEnKbQHUUWZ0CGdQg0uvFZFVkLIwG5UTSdybYn2tRaleTj5cozmvEllRTJZW0HxuKw0Axh2E38Slus9XPipB7No40ubBGMSQwU1ptKo6xSvetmY8RDOtFBGg9iPpannNdTeQXp2pWlYAtks05tocOqcTXlToJd0vvCJg5i25NAxP+Vrc4jVVfp8bTprba6+1cQbCvDJz+xhffYSl64tcuSz+/nK1z/Jrn0Z3rqwgOO6NPJVBgwvVqNFRUiOHv8croBC+SyW3aSSyyO3ZmmtS8qNFrc+oz29UfrG09Q7W+RaV9/z9+oR96bWtri0PTf/CB76nKQQ4gtCiBkhxHUhxD+7y3pTCPHvttefEEIMby+PCSFu5K3863fs87PtY57Z/tzdVuYuSCn/Pd1E0N/Zrv//+ftJ3sIHejS7UqgSjAY+0GocUkryqwXarc5tpss38GgaMuhFHdRuGz5uN96ey3JdF1/Iy7Gn9yDNPE0bOs0Oc+cWmX5iEk2pUG5UWC7X6Ne9mF4Dw7QpbZWYs5bY15dG8RtEpnqpVxqsLG4S2+fvWmdtVvnULx0lu1rgiT0jXL5QZfLoMT71Gwl0r4ezr17m3GszfP/bP2UkfglfLYVDghNNm2ePZVg95uHq0iwBFXY/nuEHL87RUy9T7S2T1EymJyosNPoZmOzgjCu8eTqIOVyGjoLXqNOeVNHTKilvjWY+ANkOZkwSGlXwHlIptzQqKxIrlSATq6GqNn7ZIed6UZIalXKL5rUK0Qkd1y8x6mUs3Yft2MysaQynTZSOzdrZJSYODtPTE+Diq5eJ9e0nHBdUi1UG9+5GC29R26px8EuTRHothkfCXPzuWSafmqRVb3P9tTyFUo2FkR6sYpVz353HCJokPjGJbmgM+3qo2xPMr+ZhJcfYcBEznuL0G5v0f6p9s7F0A1MNoSn39xp9xNtItwH2DOj7EOL+r7Ogx+TQQPrvxID6Q8FDfD1ud6b+APgssEJ3TvB5KeWlWzb7R0BRSjm+PQz6vwG/DrTolh3u5e6SpL8ppXxzJ5fxzgVSyje3qyb+mtukPO7NBzu75T1gd2wWLiwzcXjkPWeJPggpJWvlKqlg4J7edw/i6mYOr09jaPruSj4h77Zhb5jbkntqpTqqphKI+Fm+soqiKgzs6qPe6aApBj3pAIc+vQ9FURDaKD6PQ4Y21ZUibY9OfrXA4pUi+784hEfXyERCBEyd88t5juwaoicdRdM1GtUmc9fXaOTrONkq507PMrvSh8Mao4EAsWiAf/Tf/z3+zf/6l5zfTHNweoJUX4LF6wucfOl7xNL7KcwWOfPCJZ58cg+f3j9OnQAn3ywxHG4h2xWCJclaxY8MppBumY5hMOCTdEyH5qbO1ozAM+pHNnWcjs3KRBrZcXjcWiI67DA/4+I6TVKRErW2l2zCg1ZpEwq64POTH0yjY9OTqpLMqFgVHzXDg1bv0K4lCZoVCILmM3n+j/8Dh5+s8NaLTWZKDmOZGOG+CK/Or6Cakn/7L7/Nc39/ktHkIUaOlHjrzCzhsB/Vb9C/b4Jr19bwKy2MAJiqyiAmxbUqnmCEaDSG7RQYO74fRUaIKBHEuMHC1SWuVFY50j9FojfKRrOJz9BJ+ptIV71paNzu2Giq8ujlvo2UEpxlUHtBmKD2sUNrQHT1kQrP2zzUucXHgetSyjkAIcQ36RpW3BokvwL83vbv/wH410IIsV2u8bIQYvx9XsMX77Zwu7zwGWBHFRo7feru9r/5gZy91XSNvU+/9zKKneC4kmKjif0+hm36omFS4SCebVm65ZnVuybwWO1ON7mn3p2vyoz1khrqeu6lR1OkhrujDX49ga740HSNgcnMzaBqaCqxgA9VV1mf20SoCo99/iAhj8nGQlftz2l0yOcq5D2SM2sbWLbN6dPXWLi+wdpbc7i2w2NPTxOXgpF9fWQODDK6f4jZs4s0dYtD+wYgqHHp7GnGxm1CI1PU1R5sj0YoFSE4noCqJJ3Zz+7D4xz9eoae5BhOOEzeaVEzWihNB7+ikosE6KwYeOuCWs7HxqyBUqnhjAcJV6p4ZsosntZ48yWT5lQPiqKQzfkIGhLnkqQpTcrLDrlVh4y+hbRbFPM6izUfuesSQxoUAgHOqAr+ARNfRuEqZay+XmbmVVaW1hDFOvmZDd54+QztYh4dwcjYBFOPfYqDz+3hk3//CUZ7oixfWScS8LO/P81njx3HkAreBCQOaDQ7BQbGUvjDPhzXRQISlxYRhBKhdyRJ71AMUaliNVq88TenMQG/oYNbptuY7nI1m2Oz8gtMkvkgIhsgbYRQEWryAz1q9IHl4Q639tFVTbvByvayu24jpbSBMrCTtO1vbA+1/q64z42XUr58n3VNKeX/vYNz7bgn+X0hxDstC358l2VIKXc8RvyweD+2PDtBUxX2ZlIP3vAuOLYDgjuSB4QQOLZLcbN0m9myYepEEiE0/c4W8I1h11spZruWWnufmrptues4BCI+Jg53yxAqherNF0s4GuTgs91a2kqrTatjUxIuh3cN4PlEDByd4YHdvPjCD9DdLRKhPmqlOptzmwyEopTzFb7wJS8vuRl+dH6OpBlD81rkpMORzx9gZT5LKhFms1am1rYpzqa4sh5EtWukAm1yS02ScZW4GWJuuYQxrNEZ68HzRgdZ2KTV4yOl6pTnW3g8LtWRfpxLBfrCRfQ+FUsqRPUqagimjii4VYdGU8dnNzAslTYqlVUFPa1Dro0sN/FEdDbLLkYmRCcZJNUfpPyCwxNfPERnq8bVC8sMHOyjJ9JH9UqbqGLQ3qjyp3/8FwwfHyU93ce5C/N4Wi2k63L50iJGaJhh3WboUIJrJ5bRMhr1apP1fJnJsT5q9ibZ1kXGgp/E8BgYnhjPPf4sQlWwahaZeHT7bt1uqbYrlUC7z3e6YXXQVeVj00sSQoA+9eANH/EwiQshbh3y/ONtLe0b3C14vbNjtZNt3slvbvcEg8Bf0bVW/L8eeLXvg50Eyf/lYV7AB4FGtUkpWyYz1vvQz7V0ZRXd0OifvL02rn8yQ61UZ30+S7CnO5+qaiqu69JqWHTaXdPZB+ENmKi6iuM4qLe8NPsnMnQsG9txqdSb9Nxiclsr1si+tURmLMXesV4WL69weCBDbqXAUCRFu9FhVckxUzVJ1SXLi+eo5iv8ym8doLm1j6XmKmeLOTa3bHb1Rjn/0zN0MgNMKTFaMke506TXo1E7dw6vL8nmpk7xwgaWksefivJYUqOVbFPMreJtQijjoyMb+NJR9n2+w5U5C013MTotvLRYEr3YcT8ercNmU6U20yQ9oaBLh+olhXzbJBozqIyMIwxwKzmCdZeeYVgQHsy1PBFF0LRMRLZKr9dPI7tFKajyxvIVfvlzuwg9dpzZ19eJmiZmws/g3jR9/Ql+UtjiW/9+heOfO0x/NIxuufz1H3yfXc9OMfzYCGrZwqOG2f9UBKtlkV0vsLCcZSATw+MJkvBM3cxoBYgkvWDPEj7+dmBsN9vYHQd/qDvc+qBawvlcgYjPS1/kkRrNI3aIAPH+SjlyUsqj91m/Agzc8nc/sHaPbVZEd0I5TFfm9J5IKVe3f1aFEP8P3WHdX2yQlFJ+5IOkdF1c5+8m461/Mn3PoaFAxM/08UkWLy0jFIXBqT4URblZhL4TVE0lGPHfdg4pJfPnF6lXmvgHezh1dpavfukJpJQoioKUksRAjMRAd6TDH/JipiwGdk+iqz6spoWjCUbH+hlTvFy2qmRP1dhYXCfUE2b1zRyVjQajY320y4sIPYjf0Jg6FMQODtOj5TCcJuFCnPOnNrBLRVRTobqpowqFkc8r/KQ5yma2iF5botcK0cxXmZsrUG9a+JpNViZH6NgdEkj2BRepmVBfEQR6A7h+waLWS6NQohVOolotLLWDvZSnPZnG2wDPSJhqHbyXNolNgtnbj79cx1TypA8dYxWHzvU1gk6Zn/zZm8TGB0gYcWZOXMM/HKNQqTN1uMWurwzzXHAAodjkZiuMPjlO/+Ewu/ccpLRV4er1JeqVJv0TaebOLaIbKlOpBMW1Ev0TaQz1nTV9Koggt86pFTfLNKtNRvYNIaUNsn7f0o+p3sRHVtBbOmuAjlATv+hL+ejxcL8ybwAnXfemAAAgAElEQVQTQogRYBX4GvAP37HN88B/DLxG10jjJ/I+klLbgTQipcwJIXTgS8CPHsbF38pHLnHnveAP+3+uBclNq4OqKHftAdyrN2h3uiPXmq6RGe99z3MsCxeWifZGbhtybjctyvkqYweGCUYDJHp8zM5epFmwmT46zYbdpnc4jqpp2I5LvC9GsV3D1E0MxWQ9P4Ou+/jcvkk2FrJMOg6JgSHWT+VoDs/QY88zNP0V5jbyrGwKdn/pOcZ2KeSbPq5d3GLpjet0PBYHnxwkFumn3dshFNTYeGODwvplrqz10+fX+MyXvWzuGcBXmufKKyahcBSrbZL0qyhlm+p0jJyloy3USO8S+LUO7XCN9JiX2ZoPf0zFqwsKZ11aJRtP0MberGG1WuQ3oRP1Eh5W6XvKIibWObkwSMzoYWMhT67ZIJKQhBMlzPHnaJpetkpN+g4OcehTe/nRn/yYhVqHSrHOwK+Oofd2aFwtsCAuMJQe4vzVZTKRIJHBGKojWd8o4M9EqJXrjIwkbquBvPEeEEJ0MzK1AXK1Ovlag129CXqHb5mxcMvdJBXj4D3v+Uc7oUeFh2y59fFEvt+e5P2PLqUthPinwPfptgD/TynlRSHE7wNvSimfB/4U+DMhxHW6Pcibhf5CiAW6EqaGEOJXgc8Bi3Sn/vTtY/6IrgfxQ+VRkHyfdByHfK1Bbzh4c9lCvkjQY9Iffbv137E6qJp6z/nStdlNpOsyND1wM5AuXl4h0R9DmBqGpu7oZXirR+UNihslgtHAzeHVmUKeUEASDgkst07Y68HUNFZKZRpWh6neBFHz7RpQgxA6BpfXs2w2KiTrDslMjMlDowRC+yiszvHm1TKdRIuRRoDcZomV15aZfuIQuxQve77+Sc5VC1hNyeiBDqdfOY93cpTBoyWOx/J8e3kad0OgB9sM7/FSnosTnMgh1yV2VKFUNegXJsr6HKWcwlrdIHvdIKRDo9AkLFySiTaGEUEJRok+0WbxQhFRbhH3tqj6DIw+E1/ApMdMUV5P0GhbeHp8yIiPVkEydWSaVKjCajlMY7FGdH8YXbMJ9fpZCdv0/kaYtDrM2tUVfLsSuIUgAa1JrxzEWwpzdXYRbRSqAZWO4+A3VHShUJE2jWqLreUcgYgf3dCZP7+EN+ghPfL2vLbfMBCBOxtGQo0hlY+G8Pl7Qajvbe7/Eb94pJTfA773jmX/0y2/t4B/cI99h+9x2CM/r+vbKY+C5PukbTts1eokg4Gbdj+Tqfgdw19zZxeJ9kZIDtxdqaRv/M75UE1XUVSFK5s50uEgqdCDHefNoBfLtrk1pSeajtDyKlSbbQIeg9FYErUTJxzpHs+7HcvT4SD5jeId85l9A8MANDZzFK5sYGgmQ3sH8Ad9QJjUaC++0nkOhgdITPq5+OoVljt+GrUWomGzN5RhMN3Da997i9dOnSK7nufYlz7F2fMuwd1fY2J2k/kLNX54ziU4GSTiNviVL7V5y97DyuIKPmFSrW9R/JnC/k8ZTB8PcX6lQeFkC6XPT8WrM1S1YGOTTsdlSQ/jRL047Q4VXSW2J0rJstEDGu7gEJ35Ilm3jXc6g1lbgLrKyIEBzl1foVRtYc6tsXfXAPGpBCEZZG5llSvuCrnNGIPBEKLc5ls/eYsR3UOkrbJ27irDh0cwoj46r82S3Sjyq7/zGVqNPPMrCkuXVoj2Rnjr1SuMT/ZRrzbo33X7nLTX0PEaOnbHZvnKKv27MjcbS48yNx/xUHj0tdoRj4Lk+yRgGuzruz3A3ejxdRwHXVXJrxeJ9kaIZaJ3O0R3n7sMzfaNdyXl9pjJ+2Y33kqh3uD1+SWeHB0iuR1Us4s5Vkol8u02iWCAhGFy7ewiU8fGqeZr9KSjKIqCIiG/mCcc9uMNeKm3LepbFYobZaJ9UZaWNrG2qqSeHMDVVS5dW2FyJM36co4BJUC8Tyc/1yIUCzP6aZtrdpvRnji616C4mafZWuXQl57j+uoixrDO8Z59BMImRvo6PU/XOfvyRZSVNfK+GNktHy0XvJ4MUduiqoaIHm/QVCssLVZorBr0xWrkmhp54lxvdxg7BI2ii7m6hllSqXpN+jIKzZk8jifAZn+A9uImyoUs40/3U5jfYBMv1QurhHwXUdM+3OvLKHWHyycuUTXLfOHpT1Jdb+LKXqK1Bk6nSmtygFGPj2qzTUTotFwoLWTxF30MTKZp11oUijP0BKsER0Y5/dpVxo+NsaE6NJotSptlhOjeq6jPe1sQFIpA9xgPzNB2bAfXdXeUzPWIR9yNR22vnfEoSD4kXFdyZnmdyVT8phiA+h5T9N9Nar/HcslUJfnrmyQPd4Nk30QvffRSKtdp11oYoQDTT0wiJWytFAhFbVQjTHapzNSxcVRVxXUlP5mZI+HxsmcsxY+eP8n88gaTQ2mGpvoo1pucOHEFxdSouhajyTBnfvQq4UiGiUPDNPU4pdUtShtZvvu9K2xWHcYTSQqFFpmhHk5tzHLyxxscibc4fuwAK7bg+NePc/rEC1jZBpV2ANEsYCdiFIpVRhIKpu1hab6JxxwjHNXYWpG4UZvE+gq1gk7V20O80eQrv7bEi3/px1f0oG0mUDIDPDO6zpVKFW3IT3tNQV0rYSktQlqEeCLCylaR+FKRRKaHakSjvGXj0ZKMH5lg/vkC+8IJ1qfCxDsCbyrME5mDvHL2GltrBfom0/y7P/ge6dEU//h3fx1XSLKVVVRlkvlCiWSmB49pcGxyCMdxaFdanPrJBcR4jH2Daby3BDpVVemfuFNv951sLGRpN6ybGr6PeMS74obA+SMeyKMg+ZBQFMHudBK/oSMG3rvM2DuHPh+E1bHJpHroSb/da72xv+pIatkKW/Nb7H16ClVV2X1sAmmdxrYV6pUG9UqTar5KfCjBaDxC0ONB+Aw+8YVDPF5t0ay1EIqgtlzg6Wf2MJiOIwRUNudwahfQR+qceaVMZEihkS1QvJDH6PHz+BPT9Kgm8XQPUgVXtVlfOE1tLYtV+SGZ3WF8vk/RXB0kM1hhY1UwHU2zXFyj4PgoLUHEq1Pu6TC8J0x5TbCwIsj0DdEUqzz5TJKePTE28wF+dsVH3VvHFjqBQ6OMagZydQ37Wg53w0N8dASXGvGSxbX1Kv0DKYajfjyWZOjZQVZfnaGDn75YmO//4Q/Y/fQEwUiWLemSn1/nhavz7N67j0je4sXnv094PMnYU7t48gsH+NFPz+AYCiE3QHNulePPTXPqrau8eOISu1IJ7I5DrVgjHAsyNtgNhq7rUivW8Ud8d9xr6ZYAHaHcnljWO5JEuo9ecvfDdttoivngDT+GCN53CcjHho9yWtwvnIBpvK/5pGatyYWXr9wmcP4gVp02RjqEL+hFSsnFV2eolbqm3JFEmIkjY0wcHsUFio2uwo8wDqF7EowfHEHTVKx2h9lzi9SqTTbLNdodm2iqK8A9sn+ItWoeLegwkOjB1DUMTSMcH2T/M19gU/NwsVakZoUZi47x3GefRhch9sRSrC5mKVxZJxkN0+OLcGTfKNHeBC+e9FO87qWTvcjhpxyefvZpDg6OY6sq7WsNhpo+OppOxePhmV9O8enPDuEqGhWh0FA6xIY8VHo9dPwu1fwWa6c7yIhA39ODd+0SnbUTXF7wMnkkRbtUYfn1y4weHgElhaapFM8uUynUEWMxdCXH3r0KhgOpgThlTfLCuetcWw1SP7HEyPAcB59sIXoMfBMJPvlPn2Xg8SGe+/IYjneJ7FoeveUQUDR0j8bM61fRFIX6TJZTZ2dp+BTGD42QHkmiGzqzZxbIrRa4ePIapy4v3im+7eZAVu64z6qq7tgSrmKt47jWjr9DHwVaTpls6wpSShbyReZzd9qQFevNR2Lnj3ggj3qSH2A8fg9jB4bf1bzTdG/y5vCsEIK+iV68gbd7skIIfEEvhXqDc1eXmYpG6R1OIu1ZQMUXHGZ4eoA3/vY0bk0nvW+AWMB3c3/LdlgrFxhNGXi83VZ6s9YE4eDvKbEr2M/E5zNQd+ibTNNutFm7tMqpH75FreOyWbIoewR7poc4MgibIXj9+2OsLdVxZZDWsuCt0ipapYUdNqi3HZyNIrFYCJ+r4fUNc36uyHplg+EDw0RqFjJiY5YbXPzGAsKx2XN8nEbUZe/wAIt/lef0hSqJ0BZS1FCnepHLBnOnLhD1R1k7t0ZHCzKQjBJWNJYuSzrLUK03eOPKIpkvTrGUL7OarTLgehgJPUNPaoCZU+sM7Ruk0GiydyTGqZfeIBYa4HOfOkRxs0LWyFHflCQ8QWTMRzDoo38iTSIU5NKrZ+kbLhGKfZH+XRlyqwX8IS9SCKr5KqbPxPRpONJG1969fKW7Xfer6RpSSjpuA5cwKg+2iLJaFvPnlxg9MPShnu80lRAJzy6EECQC/jtkXFxXMp8vMJ6IdTWSP4Y8mpPcGY+C5AcYIQSByP3rN8vNFgv5IlOxHoQQmO+Qqosk7l6E3uP3cXgwg2M7SLeO6whcIuha97yxTA+O7TDYE7ltP6+hc2zodkmw2bOLFLMlJp4aRfHCaseieX4FzaOx2mqSmk6SPXeC537tS5w+ucDCjy9zeGKQWLyHKycWOfrMY4zEImxtlrm2uE4o4DLc6+dPv/kT0k+O4lzMYhoGHl1n/m+ucXlzndB+L08fHcGoO6ytFViq6Zj+OOGjk+wKa3z/G69R+uVBWpP7sZrzJAIKVq8P9TzE+02SI3D1ep3hr00zOXoUe6lELruJHvPR2TOAWmywtbyO9+pJCuUIyZEBQkmdN9/Ic/qN1zmwZ4Txp0ap5+vUsgLLSnH+5WWm9u3m1MkraL02E73DTB8a59qpecpNi+unF5CWzchkCd0osHhphcx4V1xi6rFxdF1j8dIKqt9Ej7dRtQYJT9eRznLqCCHQFR8PIruUo1qoMXF4tHsvPe9CjEJXifZG7ppI9mFCCIEuusHPfxf/SEGVQ30qQv14Bkh4NNy6Ux4FyQ84ju1w+cQ1xg4M3VW03Wfo9EfCbMxnUTX1Drm7+xGKdesmpZMjt7pBraowdqAbFMcODANdB3pVCDRVIeb3kVsrUFgvMjTdf3O4b/exCWbXt1irWByMDxDItGmoXmbenKXSbuNLBsk8/gQdadB7ZJgjx6cIRQMsXlllavowSxdW0HtjZDI9hHsCvH5xjni6wu7hPFc6XkI+lV1HRlFNi5cubWJZfnR/mHDHodW+iOFNYRci7P/qINnFVex0m4HHxqHfpEcRpN7SMW0vbiPA1NEwsfEkeq3GarmArphsnlzkN/7zTzK/us7575yj4LYYmUxTDzVZLK/ja7jEhUrRlLR7fUTTEUoeyXdefQW13mLq2c/SWFpjcM8Aq1c3GdnVT2IoTsg0sZoWw3sHuHzyKo7lsLAvSUxNsDv6GFrQh2HqpHf1UG2sE9X6Gd4zwEqxTLWuMJZ8O4Gn4eSRriDquXeQXC9XKTdbTPTH6OmN3HO7+6Gq6j3LlD4qrJYqSCdPX/jD3RB43zzqSe6IR0HyA46qqfRNpO8QCLiBrnZdPqJTntvmP11pd4fr3uFNWMlXUbUyvlAfQggs20HKCPGhY8TukgjScRxajosQgpCmszGfJbucIxQL0mnbuI5LfDxFSGjUN4so46Jr8zXswes3EXqF03N1rHAAf9BL3Ahy6bWrjB4YpubYXDyzyMJPrpBdz3P8q8eJBzX8MT+eSIb9h4/yhCfFgr5K7xOjLJw+QUBbZdwbIe338PIP3qDkxoi5GkeeHMBtQaivl7MvXOXpXz/Oa8//FMXVGRrrEDAUtt6qoyXqbJgF1C0P0aqkcP46+XqBf/V7C/QMDCHHe9kfDFD12ow3+/DZHpqaSfHSBvGpXhJSRxwcYsus0xNNsXZtkRf/9i0i+zIcPzzFuVMvMza5h+p6mY6hsXRtg61Wg0NPTpEZTjK3tMlgYg/egJ/lmVWqhRqxYT9LM8s4CS+aoeEU60zsvt1CTXGSzGzmODzo3lNUIurz4jf0bib1h7wn+DAJmgaO7EVoD88p6H50nzmJucM55YfC+9du/djwKEh+CIgm763beQMhXOhcROqTCOGlbudpOUUSnu7QaKVQpbhZRlUdfL5r+EIxwMt6uUo+V6bf5yeaCuO67m01esOxbpbsVrXORqPBvqd3Y7U7aLqKdCXlRpPL61kOD2ZI3JJRuza7gdcPkfAGid4UPsXD/JtzTB4dZe/TU9StDo2wQVwaOEdGuLqUpXPiAkf3LuKKIQx3iPF9n0Ztb/Ctf/5jrpXa/PrXPkFIyxD5pTirWxVKuTq1hcss5f0ojT4m9w2T/e4l1LyLkWuza49JLHGA+eIMjdZ1gu4AXi1K9vU1NufX6envEA3ohAcdGok45UCNHr2H0pUNito64YkUz37FYPmsTWlGUndcIkEf5dkcU2xBTWOkP4HYaNI+u0EunSQcTHH95DLSERgeneHdfcSwCQT8XH1rlnA8iKw0eev16/hCPiRd+7M9ex9H01UKa4WblmnNWpNGtUUsHSVgmkz1Ju6ruuTRNTy/yBfvh4T7zUE6tsPq9Q36xnsfWkNjrVyhbTvsSn20e+wfFR49UR8ZVFBTsJ2cEdCS+LW3rdl0Q8Mb8JAciCNlBpwlFmZUPEE/mYAft+Myf36JUCx4Uzv0hpSedCWb85t4wj7o6dp3ATiug2jaHBxIo4gOp5cXGE8OEfJ66GgldC2Ire1lPKnz+plrpP9/9t4zRrJ0ve/7vSdVztVVXVWdc8/0xJ3NuzeSvJeZEimblAxKACEBCoAB2R/8xbJh2B9sfzBgWBAgwZYoAhItCZREG6TJS3H37k27926YPNM5p8o5nDrBH2qmZnq6p6cn7uxu/YDana7z1jlvnao6z3me93n+z0gYl9dFqVJnqVDgTCpOug4TkqDx7TOsvn+bD38gMTsZZL9QwXIpTMYmSfzW6ywu7XDtp4t8dGuV//z8MB7bxHB4kAoytmXhzlfZ+WCB+PkUr6QucPn96xAxaW4v4pFMSoU+NLcPG8HwcAB/JExEbJPfV/EMnCIWVdnJ7eOX86gTQSaCDoZnRln8Xp6ByRihM3BtaZ+qV2VgMIZX9OML+BieTjJ/bY1gIsSfb24y19fHmbdHWbm+wfL1DbSol/5oAFWROf/NOW58tMAn719BaduEMw4q+Qr9Q1FWV/ZQh0KMerz4Ql5s26bV0KkWqkQSISRJ4HP2yhmeN7ZtY5kWVnsDSYoiJN+jX/SYDIWC2C9BO95etPVk9IzkC8C2bbDrh2rdHvWaplnCKQdOVEYihOh0ar/vb3Hfx+vyurprmrZtU82XCcZH0BxOrudyTMejhBMhlj9bRdEUoskwK1c3CMX8WJbNwnu3OP32NAxDrVxna36H5GQ/W4u7nO7zg1Viv7jNgM/E5xghmPBhWi2W1y+T8J0maMkkokEa1Qaf/OgWjX6Zc323GJr9GpKkoTd1Wq+NsvJ+le1yk2+cjVJtZ6lVK+jYvPa101wYGuTjzBa5UpHPPryN0NyMvjLBb//6efLbBdK3mrz1tRD/4t/e5OrmZS4145w7P0Y626RP1PF6PSjCREm4OTOY5Gf/wYF/SGPDsLhEhGRYYnH1J+xt+IjHU5RViXx5h/3tFsMRPyW5jNfQ0S9XCP/cHLGwn7/4wWcMJKPMnh7Gk/dxbnAAp6rw6eVldlsNXLkir39tjkatyfLyDqtX1pHOxHDaMs6qQWI0jsvvwqkoeCUZRVNIjFhg3CLYd+qhiVc9ng+KqjByehDbWOd59ZXvyFd+viZKPGeB8y8TXxojebeLxovCsiyK6RKhePDRRswugbGIrb5yoJfgcZi2TlFfp885gyKerQdhtAXr806mLrlxuBycccRxqgpCCIZmUzjcDmy7zch0BdmVBFvlO3/rG91OKQ6XRiQVplFpUi3XyefLbNTbfPPUuyjWGpZlENBS2LZNpamQLmaZuzSBYVlYNrz57mlajQKZjTViEx3BhM/+8hq2LDEXi2JaHWm/hewqZitM261S3yhwdbvKr369n5inTuRCAeKv8t5faHy0aXPWlAkG9pBoM+mTKQ0N0zc1ScUr49m3WP10gzO/NsNi9RaRvTFuXF2g0N7HZft5/c2LrLx3i8XddSJTEr/8y9NsVnz4NSfDX+/nn//+VRaCEb71i2dIBfysOqrcXNrGGDLxhRqYjXX2c2GGE2Y33Pn6t84yMDdE2JK49dEC129vwmiQqdfGqeVrvPmd8we+N8GwF6/DyeInK6QmwxgtN7FhGyHEgZKOB7Ftm2pLP9LLrBZryKqMy/PVzeB8UoTy5Vcy6hnJk/GlERN40YkKerPN7kr6RMZZSEFQz3UNZLNtsF08XCB+P4rkIOE+91wUQzSHypl3Z3HcqXN0aWr3gu0JeO5cjGU0VxRZ1lBUBZfPpN38EZaxiaJ2PM1QPMhVvcJPPl2g39nEocgsF0OsZlusXF1jfz1DYrSftWub5HcLfPLZEvObe7g8TrJbTRauxrBMQTFdxga8Xid6qYGUb9I2TPRmArNoM664OP/qJJn5dT76g3U+/bN9hmZ/EdMOcLY/jnwzy5VPM2TlBEHPeZz1Jv6WC7e7xIj2n5CcTebemeXV1+e4MObGGdJxqQ76gwGKO2VM2yLdqNHwB5Dbp/ngny/z7qlRmvkfQ7HJ28NzRKsSXtXDn/z+j2moFnWHgZry8faFt2iHx9itQ6McvtfyTJLIlitk01kUn8E737nAL79xlpHxBH6fG8u0yGylSa8vAB2d3kDEx+wbk7j9QSpFu9tSK7uVY/nK+oHP0DAtLMumrrf5ycoGuWodgJK+RaG1BsDND+dZubz2zL8/PXp8lfjSeJLPulNCtdlio1Bitr/vyH073Q5OvzV94v0Jca9WyzBNqs3WY89p9do6kWS4W7rxJJQbTYqN5qH6x0p7F92qE3GM35mvBMq9DMvFm8v4onn6w/eSDVRN4Te+eZ7s0h4BOQMkGY0EufnjefpSEULxAJpT49Xvnie3WyDh9dLX12n7NHF+lPGzQTCukS5FcQ6GmZ0dYubVKIgQkiwzFYtiiyp7hSx7S/u8+1cGWck72LtR4NMfbjH4+gSnf3WY8r/6AJ+7D4fXzU//LEt0cJJvnHWD2yCg+VlfaJEc6+sY5K1JHC2dd94ZZHu7xHe+ESfnsDn15iD5Kws0NrZJTCdoeiv09UeoFRos1xu4Bn002zV2pBbW0jYukUXKhJH8ASaScXYX9sgVLDL+LNWaxPRgHL3Y4Mb8MqX6BufOf5ud3Txvvj7D3NszLH22iqGXaVZWcfUFsRUTv5ZA1VRUTWXs3CACQaPaIJIKE+jzH/i8FtNZvA6NwXCQ8Wi4u8blViLcDRPOvDqJJH9p7oNfOA29zc3dNGdS/Uf2hv2i0xMTOBlfGiP5rNEU+VCHhmeF1+lguv/xO637Ij401+HC6LbeppzrJHg8is5a5WFcchiH5D9iSwe3GiPonULSDq6rWuo6Y+eGcSmdLFpNgelXxnG4NCzT4sr7N/AEXKgOQXTUg6reF+IRPlBG2avusprJc3Vpma+d0Snv9BMc7GPJWqSvEYNgEfOncLXsJTAZ5q1vDfLJ1hX6Sj6ciRjf/a23qBarVIt1Ws0gSxu7mPV5bqyXadacRJomaqtO9vufklX6UYvrlD9YJb8Oi5bE13/nXQJWi++OSXheS1LWh7myvE4tD0rRxGGrVK5kWDXcOPCQrjbw9CfAGaLWaOENeXCG3HhG3TQrn2E1R1krlWC9iCw5Ub3jbG+kafo0vNHODU5qOsFSxkG7BpYpsIVFrVxHcWkYVpuSOY+rNcDG1X3m3p7pev13GYuGu5mu47H7ErSke2UNT3Mz1QMcisJoNPSlNJAAUi/ceiJ6RvIhaIpCIvB0F5mbP5knNZkgEH248bmftRubBGP+hyZrRJOHm+/WSjWWr6wjOSwCcfdDw7P75SqZao25ZPzI9StFcmBZKnqr3c1evZ/B6dSR+404JroX5r1ShbDHRb5dY2HtChdTp/GGPLj9LvpTGxStKpbVhyZ3DK0QCjZBvnkpxFttg/WNfSRbYBo5anWDoD+J5vbQdJzlu7/Xz+52lu3NfXRL4d1TF7CNztfXMk2u//A2IHjtNy5xrbTLxs8ylJDQ8DB7aYb0ThqzLTF9NkPDB4UFm2CkTTA+REuvsJWDmcl38Y1G8DT3cTLLfG2HwnKR7OZ1CMVpLmxw8Y0ZcraJcCtkFvfYLKxw4dcuYQUchD2QWR/l3PAQmsfBrc0SAZ+g1ihjtn2c6Y9Qb+ksFgqcH0jg8zjB7UQTXurFJrsb2zjHo2wv7DA+FCWYiuB9M4CsyKzf3MQf9ROKBdhd2adZbzE6N4RtpkHyIcTnU/P3MmMaJvVKA1/o0X1Yj0KSBGHPoxWOHnp802R7cY/EWOzEEn/Zao3tYplzA4/uBPM0iF6d5InpGcmnwLZtsq1FAmqqe+G/n4GpJJ7AyX9k3pDnoaIBR6EbJrlWk/7RGHJfkYZZwCcdbt4MEHI7cT2ihi63UyC3k2fmtckTz+Hu++7I4xVxaypuTWV9OUNE32V8LIkn4MG2/QRxHvLMr+/sE/N5EcD4aAJZkgiGfWytpUn6U2REjYTHj8vjwhVTCTlKnBo6R63SJrORZSNX5Ed/8AMyS3t866+/i6YonJ0S9GVduCKXWF9J40m1eW18hNUPM8gtidyCl61qk3qrxbuhKOffCjAwqvLBv10m3MyyXNhgJHEKs2Ew8vY0rcsSyWScqVCIxc/WqPhkxFQfslOw0q6x+t7HvHFpGofUZPa1USzhYyNf5NJ3LiBLgmsfL7DdbOAN+/C5ISUpSJLESDRMw+miWWsR7POT2cqScLsIjCVxuB3sraXxBj2omoo35MXp7kQRwokg+b0iq9c3GJmug1CgZyQPUS3W2JzfYe7tmUcPfh7YYD+mgHrA5USRXozn2jOSJ6NnJOFA4K8AACAASURBVJ8CIQQuOYgsjr5LfNxw14Oe4ur1DSKJ0EP3o5smZcNgcCAGRI4NDWtKp1vHcUSSoUNrX3dp1JroDf2hXnGl2SIV9N0p1Hbyu7/ySxT2S2zO7zB8ehBFVVC1w/MbiYRotdv86c0lfnluirDHjT/s41TYx8rWPj++tsRvf+0i85t7DMYjxP1vsbWQZnczw8+uLvPaL16kbziKW1Nwhr3YNkylLuJ6JcWPtnOc/dZpVMvA2ZQIn3IjOUcZeDODz7bY/MEilmnzZ/MmHl3F4bPIXd3kws+HaKJwyVPhex8W8LUk9OUcyb85R1bXqS9uYmdyOAZTGMNB1N06lYU0681+4uMGbn+TD/+fj1n1uQnFwxTqdW7upjk9kKCeWye7niX+ThyAZq1FOVchGAsQ7AtgCh0rmMHlGKecq9z7bO4LpTtcDoKxAPVyA6EOHTqnW4u7RFNhnI9xw/VlJBD1f64hZ1mRGT41+FivUWWZoPvLGd79otIzkk9Ju+Bgd2uLyYtjz3zfvpAH1fnwMI3XoTGXjD+TY+2XqzQbTaIu95Hh1lqpTrVQe6iRHAgdDBFLkkQkESLcH2T58hrekKcrUnA/PqcDn9PBb54/hfsBIeqgo82bSRftUpGNhX1SfSFsW2N7aY+R04Pgd1IoVhkY7CNnC37ykxvomuDUWIq+RD/nXS4ikoYmSwSiflqZHKah8x//5H0mEqN8/ZvnaBom169tMDPuYdvM4Gk68ZhOXHabfL2BYShUDIP+V0f56NZtYqEw42Nh5H6J5Z+s83f/9s9RWc2TGI9x+6fLFNyCETXON75+lvVsgbSuM5py4VKiFLby5DUHydHzrN3eQtNUhICh2QGEEJiGyc5Chv5TPgQSoXgQ0zDRW21kRTrQa9Llcd6ptzuM2TYey4NpmybVlk7I/eXzRp9HTsGXhd6pORlfCSN5ey/DQNCP9ykUS0zDxGgbhxIoPAH3c/uyRVORRw96RqiyRC5fwzJqjJ4ZPiRPF02Gj1wThU6N6q0PF5m4MILs1Kg0W932WkIIxs4NI4RgYT+LS1VIBnyUMmW8UR9Xt/cY9fkJh1zYxho2bgQVhDKOUSuTDEE4vMm3vjbF/kaBbLPN5MUxgjE/br+Lm5dXmXl9DOnSBL7v38CHjGGaLPxsmdG5IXZX0zSqTebeiTIaWGe/OsVv/M53GEoNgN/Blb+8hsOwGInEuLJ3G1ciwo01B5cueFlTE/wXf+MMjdU8E3MhPv30fQrNIO54nFgywrXQZ8SCfobfjSNEm4nzQeq6h8ZmgbpbxZUIMujz4GQJqdkmbcAP/vIyv/ArrzF/dY2LU4PddlaNapPYUBTbstHUzs1CYb9IvdLA0E1CMT+xoXvJXqZh8un3rpGc7Gf4AZ3Xx/Veqk2dtXyBkNtFtloj4HJ22631+LJi9xJ3TshXwkj6nY6n/tFntnLd9kP3ozlUtOegilLX2zgU+VitzkfRqDVxuLQDxu5hhD1uwrOdAup6pcHSZ6ucenPqRI19FVXpihCUGi12SmUiXjeWZZOp1ujzehBCkAz6USSJVl1nby3DWMANu1V++P9e5+d/900cWgOhhLEti9xOHtWdRJZl3l9YY2JAEE+GMA0Lt6/j8fjDPi6+NdN9f+e/fprLm7tUbn2GP1DBFz6FrEjozTYlI4OwXPzsxzfxItMfbrG4n6ZWqKEu5Pl0r8nf+of/GduVIvniElrtBn7dwO+aQXJo3PzRDiqTxB0qy1dWGQgF+Bu/+CalTIXvf/8azVKWppXF5xil79IIM/0RLAAhiHpfwTlRxV9pcPrv/wputxPbrTAymMCpqeyvZ9ic3z5QuwoQigfJbOYYOzdMfq9Iq9HqbpcVmdGzh0OtT0LI4yLk6TTp3iqU0WQZ1dUzkl9mBL01yZPylTCSyeDJskuPIzYUpW/g6T27ht4mU60dqlN8kPn9DKmgn5jvyTLzAJY/WyU1lTyRQPr9uLxORuYGT2Qg7xKI+qk2W9R0nTOpTvKQYZnslioEXU4ckoL3bjhVVTj1xlSnI0mjjT/qpZRrkduCuXf86IaLrcUFZl4dRwjB3nKRkb44ezYMBHwHMnBVh8rSZ6skxuN4/G5OJ2Ms7xbA48U0TDSXhux20K4rrFxZY9QfgKibj66uYFau8Nrrl0jEBtBcMoMDfVSvVegLhNm+CbEBQW5jEbNvCkmYlIs1VMnGMRFj5epVbEvH5RlA0gRBd4RazY2o6JT2ipSCPoIeN1uFEk5FId1osPz+DcYujSON9pGIBFEVGdu2Wd9IMzI72DWA28UypZ0iatNgZG4Qj99NbjuPdadLS7Peot1qozlVJFnCaBvYtv3QDErDalEzMvjV1LHhRyEE5wefb1Zlj5cH6SXQj/0i8MKNpBDifwL+OhABmsAHwD+0bXvjzvbfBf47IAFcA/6ebdufPO1xS9kyWwu7jyUAcD+SJD0TfSLTttEN85Hj5pJxlMfwIg3TQhLiwDrVzOuTj2Xo7iKEwB9+eMJDraUjSxKNQo1aqc7AZOfCureRwfSocGd9UlOUYy+6/oiP0+/OsrCbIRQP4bvTYFpzqCiKzM5KmgYWP//NC1hqgY38NhvXJUJOJ3OvT3fnmrXalFZ3ODWewuV1ER1KcDufZ/Ont3G1LBp9LjSPg8Hxfmi02S9UyKgWupbCHRoh3NonEPVg2zaLS7uoQoKSRq1kUy3UiF0q8MP3rvLar11i58YWDcNgzyPj0C3sG+ukJmKU4jW2d9aI2IPom5uMjrioynFOJWJsF7fY3y2S3S+yd3uFNyIupuJRyrkKmt+JMhzCF/ejmzVkSaPabLFtNLgwnOh+DveHULPbOW7+eIFTb01RK9a4sV2gf7SP8XOjR57n/Y0Muco6Z+aSfN6aoT16fNH4PDzJPwD+F9u2S0IIN/A/An8IvCWEeAf4J8BfAb4P/JfAnwghJm3bPl7H7RF4gx4Gp0/ekPh54XVoTMQe7ZE+bnh4OZPDqaoMR+55qE9iIE/CdrGMU1WIOFRMz73wYD5fwaV2vPbcboFA1PfIOUhCwu9xoSoyBWGxn8kx3hdh6tI4W/PbzN9YJ5AIEvc6CPQP8L2ry4yOJtnbzbFVr3F2OMXc3Ag7C7u0GnonvNkfYkIV7LtrLP/5dZQVwcXffJ2wx40mS8SH+5gTY2TWMghLZfzcGSzL4kcfXOPimzOk4mHausHS5RX2ltMkfB5+5zdPkxxPURxJorfafPjRJ4T0DJXTYcxBmUBcYX8twuJOkfBAlN1Gm7iio+ttNj5dRGOHX/29t2k7+gl73NQbLVavbzBxYZSLQ53v5UrxNvmKxOn4FMPhIM6HeIb+iI/h0wOkJhK0W21C8SBbi7sPrXGNxvsIhsMn1g2+S7Pe6nirTxHy7/GSInqJOyflhRtJ27Zv3/enACzgrnv3t4E/sm37zwGEEP8r8A/oGM3ff5rjyor8hVcgMU2T9RtbDEwl0JwHM0FHIqGHZjs+ayZj98pNPAEPpmXRaBucvjCObppYlkVmM4vTraEEjv+KKbLUDT37nQ5caucirzlUxs6OMHqmk/RjG0sokpdf+aXXWc0WWLy9RTIVRZUlNEVm6swwpWyZpU9XmXtnmut/eoXUVJLv/s67tHUDt8eFaVjImspKOsP68h5fe+MUrYbO9dsbpMsVyhjI1SoD/RE0h8rMq5PMr+3TurHKyGgGTbEoZxO899F1nJYgGp7Eo9XYvtrANdpHIJLgzakoll8lv5vHHZD53j//FI/fzfAbl1gqm0xFbLL5Mv/mB58yPZFkXLt3M5TyzOCTdW7tpRkKObn64Qa+VB+z453EHNOyWErniEoq/ogPIQSaUyM21Ic35D1gIC3LwrZs9KaOy+vC8QSJq0ufrZKa6CcUP35poMcXD0FPceekfC5rkkKIv07HY/QDBvAP72w6B/yLu+Ns27aFEJ/def4rjxACh1tDHGEMX2SX8wfXtfK1BlvFEhcGk9yVVHgcQYK7eO4rASnnK+yupBk/N0y93MAfmehui/u99L8+i/sBTysQ9TPzugvanzJ5IYQnHMHQTQIRP9tLu/z0gxuc+fop4okQGYdGoVrHrrVxtC30fB0jW2F4qpO8VCvXMdsmQxMJokEvn9xepb89zcCIk1ca42ys7qNFg0yEg4yPtllZ32coGaJwO8MHC6s4XC0GXEk8oRCn3pzCEfXxw49vsvfBFi6nymzAx0gs0glb15osFookAj76fJ5OQbm1yMfrKzj999bTBQKnquIL+NBiBw3X3WSmuyx8vIwkS9iWzfSrEzwObb3Nxq1txs8P43T3Ooh8Wekl7pyMzyWOYtv2v7JtO0Bn3fG/p7P2COADSg8ML9IxpocQQvwdIcTHQoiPM5nM85ruS4MkSaQmEt0EDdtYxjb3n+kx9svVxxZf7/N5OJs6qPSzt5YmvZl96GtabYPWnY4Z6c0stVLt4PaGji/kplqssbW4e2+/pQpt0zpgIFezBbYKna/NZqbAbrWfzLZBMV3i5ocL5HYLlIwWVY+M4nPgc7sIDob4/ntX+MHVBdw+F9/+1nkmUjGckoxtt6hmPqSQydA/U2PXKDI1msLv9pKp1snpOpqqUFvPs7Wwh9vnIhj1c/vTDzn9Rpzf+1vfoS+c5Opf6Hz249t8urRN2OPmojvI8HSKRq2Fz+ng5rV1yuUqCz9bJunzYFda6E0dTZER6hSv/+ov4HBpFNIlNrezWLbNcCR4rJaoaZq09TaDMylGzwwxcfHodcrjkCQJl9eJ5tR6dYY9vvJ8rtmttm3vCSH+GbAihBgCKsCDqZhBYPkhr/+nwD8FuHTp0pfytsg298AqINTZwxtFEJ5Rr0nbtrFtqOk62hOUyzxYquL0OI7tQLFVLCEQjPWF0ZttHC4Nw7So6ToeRWF/LU3/SIxgXwCH28HG7W2GZlIYloX5QKF82ONCFoJauc7a5XXGzg7jDvnBrbF5e5t6pcEtpUV8rI+BSIjFdBaXpjE8N0DU4SLg96JqKqffnr5jFGRiI+dACpNv5Nhv7jE7GUeWJDx6jXg9Q9p0UlBs1FqDSCrE/7eyghaScQSzCD3CsOQicqYfu21hbxa5+eE8p96YppQpYTRq7LeaFCWTnN5i5o1J2gJWbu2gqTLFTJlwf5BcpcbWfgGPJPPZ6jZuv5Pyeh6X13mkMANAej1LrVRn4sLjG8fuZ6nIJMePljfs8WWhVyd5Ul6GEhAF8ABJ4Apw8e4G0blinQf+6POZ2kuAFARxdMhLyM9ObGCzUKKht4/sTtI2TfK1BnH/yctRJK+DjUKJOTrrwFsLO2gujdhgp9XWaCSMEB3P5252bL5WZy1XZMLrw7BsfPeVrtx1aB5U9mnobTyahiJLLC+sobZM+iMBWlE/S+kcv/b3v0O2XMe5u8tw1Eer2sDrcBBw2gx6M3f6fHbCvNuLe0jsMzgzTKXkpJzbIzEa45zaIF0qI0kCr99J3Sfx2qtnufy9q1y/vcbo8j6Omzle+folrn50DW8oxIVvn6F/NMapd2Z5/w9/xP5WjgnDwB9uMPemRN92EvwOSlsFdor7WFE3/skYLWeeraVdvMEL2A6F0VMDmBWdym4Rq6qzv55h5rVO+FRv6mwv7TE0m0K3yzhkH7HhKJb5eHqhD6Pa6twwfVm7YHzV6YVbT8YLDbcKISQhxD8QQsTu/D0A/GNgDbgN/DPgrwohvi06V67/CnAC//5FzvNFsZEvPrL5shDOTtPm50y/3/vQ2s1W22C/XO3W6Z0Ep6rS570n+u6P+A6IvUuSoFlrcv2Ht2nrbaAjaHBhsFP24JmOsVPqaJe6PM5DXUgsyyK9keHK5g5XNncAGJ0bYuLCKIoqE3A5uTiUxOF04PY66R90ks9v06g2SQR8uDQfKOMH+nwOTidJTg6AUJEVGVXr3EPu1Wr8p/kVru/sUbNdDA2fYeXjVYZmUrz666/iHQpz4Y1p8ptNZs5+m4uXprn90yUuv3cdp8vB6bdmMAMOlvdy5Gpurqb9eBIBfnx5ga3VPfKajWXpXLm+yq3NJlMX53D7XIxGwgyFgjhVhYCqIdnw6nfPU5QsdMMgt1voNnkutbdpWw1kWWZ/PUt2OwdAfq+AeYKSo6NYzxXI1epP9NoeT8aTLHc8CUJ0Enee9PFV4vPwJH8J+EdCCA+d9cb3gZ+zbdsAfiiE+Ht0jOXdOslfetryj5cVv9PJC0pIPZa75RraQ0oOvE4HZweODr9VWzpuVe1m1m7ki/R5Pbg09YDn2ag28UcPZhc7PU7Gz41011h1w2QhnWUqFmE8Gjk2Rd0yLYqZMqMjAapmZ6AkSSRG72nZ3l1PC7ldhNxjEB7Dsk3qRh63EgZxUGZPVmTy+052lvY49eYUbl+nn+jZc+Nou/u0TRtVlthutoiPxYgnw+yvb/Px/DrKeoHIaIy8ZJFUZYZmUlSLNS6/dx1ZlQkKhe0PFnCcG2ZsLEG2Wme4L4QvKBgZVLHa21S9AfzBEK22jM/RyfwFiA9EkRWZ6+u7vNsfom2aWDYYuoHm1DB0g37X3L3PK+hG1RRM02RvLYPT4zyU2HMSZvtjSJLAtm10q4pD/mJnh38RqOk66gtqlN0TEzgZL9RI2rZt0TGSx435l8C/fDEz+nwJvgSZg7Ztk944ulzDtm0ym1kiyTDyQ0Jut/fSjEXD3b57umFi2vd+fIVaA5/TQbPewtM+2DZMCIE3eM/bVCSJkNuFLEldo2sa5pHHVlSFyQshMJaJa6+e6L0upXME3AJT3sEpB5CEfOd9tsGYB2WSSq6C3tQxDZOfvn+d8QujaKZNq2WgqjIbn6yiOyRur2QQr09xKhFDifXRSDaIJEJk9or8q3/9PqfPKMy9dZb5j3cJ9AdQHSp9yTDxkRiSJCH2q/SpTlSviqbFQAty9pzGVmWflcISTvUiHk3Ftm0kSeLbf/UNqo0W7ZbOZCyKbdukJpOsXF2jXm7gcDmwrSoIZ6ebiGFimRan3pg60bk5irufgWE3ybWWiTtPIUuHm34fh23rYJUQ8uM3Gf8qMhY9Wh+5x+dHr0r4c8C2bUzzyUJgzxohBLOvT+IJHO6HaVkdb62tGw99/fmB5IHGtBOxSFd+zrZtVnMFarrO8OzAAYN4FJIkSAX9B5KA5n+2RH6v8JDJh0A5feApo21QSJcwDZP0RgbbtsmVLqO31vE6NIRl4pKDXQOZ3sxSKDew8FNrmqSmU1z89lnyxSrLlRK2KrGxuEnl1nXapkVwpI/Tsx5OvTHJarMKgMfrIpoMI4QgGPXRaLX48b+/jm3L1MtNPvjzy3z003lSUwnWb27RrDVRHSrhZAhJlrj6/Vs06vD+v/kRXt2B3xGnWG+Q2cqx9Nkq0FEvaufrrN/cAmCvXOXG7j4T50fv1TEaS2DlO9vX0mze3jn2fN9PIV2iWb8X5rNtm7UbmzSqDVTJRb/rzAEDWa80TrZjuwHmyefR48UhhP3Ej68SL0PizleOzFaOwn6J6Uvjn/dUjkWWZaZeOX6Oiixh2yZY+yD1d1VdCvtFfGFvV03mSRmZG8LhPtp7EUKAOOid1isN9lbTuH1O9tYztHWDstuHrPjpD/j49PuL9E14ccUNFEmimC6RrQlmBvvZLJRIBCxiPi9Op8bZ6SESQT/mQJBye4uk4iCZ9CGMDfqHTuHXQ7g1leVMrqOx22hjmRbvfusctfwE2a0tfIE9Cvkyia9N0jQtQvEArVqWaCoJisT6XoZiOo98WaJZbyFJCjN9o2wv7bG5nmbqPkH9stNAHewYxJDLgetBJRz1DOKO8e8fjWGfcA251WhR3C+CHej2oOwIFajdDOW7NxXQqaNc/HSFqVfGcHmPD+MKKQBar8z5OOz2Ikg+hPziMopFL7v1xPQ8yc+BcH+QodnUowd+YWiDlQM63rFt2+ytZWjWHi8BoVBr0LyTiGJZFpVijaXPVtGb7QPjGrUmazc2se3DP3J/2Mfs65NUCjVMw6RV15lNjhP0dJoWz74ySyoxwdXtPYqNJlOvjBOuWsgNgzPJ/q6gfMDvYXokQaPWJDGUYrDvFAs/mKdtyHy4GqLStEkv7rG1s8jGrRVs0yK7nWNzfpv2ZhErU2NrqUJsZIZXvnWWqKXgUhWCcZWN/Z+Qzua4sr1HMhbirV98hVA8iNEyWLu+0U1K+uSzJTKVGrXyneQZdQev506izm6J/fk9dMPg+s4+umF0DSR0bnBOIktYLda4/dMlhk4NHFLWSY73H2oNB3TKZd6aPmAgs9s5Nm+v0FlR6fFYyFEQT9+E4XHpJe6cjJ4n+TmgqMpz01U9DttuI8TDmzg/CW29jaI6EOqZ7nNCiG6ZwuOwX6kS8bhxqgrFdIndlTTDpwa63s1dZFlCdRx9/m7uphkKBQj2+XF5nXj8Bz3NliQoVmrM9vdR2ipgDGnEB6MsfbZKcrKfxEgn8ce2WxR2r2ExwMBkkuREgkgqgkNTsPerLGzOU85WmfpmlLFkBK/LQdXj5OaP5/GGfegtnYGJBJIc4vzZBKVchUK+TDDkp2/0O6RCIaKG2RVFsHWTd3/zjU59qSRx4VtnmH5nhlomz+q1NebePsWg7zQ3drK4FJ2+wQilbJn06m2CQQeydPSan26Yx5ZweIMeZl+fPNDQ+SQ8+P11eZ3I3AA7eCghqsfxCCn04o9JT5bupPSM5FcE28yCuQ7aK0+1H8uysG27e1Fd/GSF+EiMSOLgD31rYQfbhqGZk3vMM/fVaIbiQfyRowXSNadGauLo7iJBlxNNkVGUo29EbNvGtCycisJupYFpmITiQWR1C+n+dFrbJDESJLOrsHR5lYnzo12v6vW3TnHrowVuzi8wNJ3qFu4nR+P4/tqbSLIMtn1gnXdpaYdMVudb0SBDkU59q1uT2CqUSJf2qcyvcOmNd3H73OiGwUa+xGg0hCuWJhzrnFun6mQkEsatqpiGQbtlkNvOMhrshLQ38sXumm5ut0Cj1WbbbnF+IHGsbOGDOsBPgifgwe1/40BJTY8eXwZ6RvKrghQ+tH73JOytpmnWWoyd7Wicjp8fQT2i80RsKMoR0dBjKecrWKZFsC+AEOKJvO1H9Q5tpstk1zKkvnGa4VMDtFsGbb3N+W/MHRgnJDdIUwRjOp5gJwRr2zZCCGRFZu7tWaZfnThUuO8Ldcok6tUqlqUDCoufrjI0HicuHzwhi5+u4Onz4aiAK5U4YFQFnTIXSZlGuu9nqrWtTjKNpuD2OYlPvonb6UA3TOp6G9OykaVOHZzLoXI6HOwayK1CiYjHjUtTqRSqeIOeZyo71zOQXyBEz5M8Kb01ya8IQkidC/9TEhuKMjB1z4tzuBxHtlJyuByHwqSPollr0ag2n2p+1n2SdXpTv+PR3rsYqA4Vy7LvlLfkuPr9GweyQE3TZH89092P5tTw+N1UClVu/Oj2gf03Kk2MttEt3L9Lsd7gZ++/x97mFYQQhPuDmDJsFSsH5hIdCBPpCzA4FSI8HKFWbZDdyVOoN6HcYunTVYTQDrS4KmXKVAs1NKdGdFxjM/1HGEYbTZGZ6e/rhlbD/SGCMT+O+4xgo93GsCz0VpuVq+sHsll7fPWQsJ/48VWi50k+Y2xbB2MBlKkv5Z21oirwbJc1u4Tiga6wwJNgWRY3fjTP6JkhvMFOE2WjbXY9QIBoMkw02VkzS4zFiQ5GsE2rW4/ZbOrk9oq4Il6W8nnmkv1oiozb72Lo1MCBG4LMVg7NpVEv1QknQt1tNpC48Arbeh1/q4w35KGYLnFxtBMWrettbu7u4043icQC+FMql/f22XrvOmNDcQbfGMfX58OX6MxzJZPDNmwaK9k7nTkc2LaNR3MyFBlElo/+GafXs9TKdSbOd8LBk7EobdNkPVdk5q0pHOpz+iB7vPT0sltPTs9IPnPkjvB479Q+Fm29zc0fLzB16XBZgWVZrF3fJDnRf6x3KkkSI3ODuP2d1ztcDkZODz50vBACTVPZnN/GNCxGTg+yValSi7uoGm2GwkFUWcK2WwgMzAcM7vi5kUP7tG2b3MIeyZE+RGkRw9hDmBcopstYto0dchH3eYkpDpbTu4yeGcQpw7jiZ9erERyJkroTMm41WlSbOUr1Jm5NJTXRT13ao6kLauudVl/t6BgXPZ357O7l+A8/u86vvXuBVNDf1XE1rI7HqEgOsE0EbWTpxeuxFjMlFFV5ZL1sjx4vE70r+TNGCBmUgc97Gi8UvdVGlqWHqvKcBFVTmXxI3Z0Q4pFdRe6S2cxh2zb+8Mkl1BJj96Tsxvsi5Gt1FFnqiiTYxg56o8H2koQ35Hmot9uoNSlmyhT2S/QNhGnVQ5hWAKPWwp0KUK00qZZbRJ0bxCNjbA0EO0Uz5iYOuch3f+ESgei9NdXVW6ssrnzGmdfeRXJoBEMBTLtzflwD4DeCmErHQDb0NqulMq+ODNDn7cxblmVkWabQWkMImaA2iEKasVDphdbk3aVebqA61J6RfEnoeZIno2ckezw1m7e3cXmdh9orGabFSjbPSCSIpjz6q/YwfVEhxIlbN/kjXhyuk4e5bbuFzAYonaJ9RZaIPdjtRB7B4YW5t+9J5RX2i4TjDQQmQukkMa1d3+CDP/mE6YtjuP1uxs7OUtzJs7u4iTQVRXgUVMkmW1NIRZy8dW7yzhxGiQwKNgtlyhtp2sUGY2eHmTgzQWI4ScU2+XBti0TARzlTp5yr0HBKCLdG2OPm6vYeCb+PiWQfQU07dK6D2vB97yUJdG4Ksts5ZFUhFHuwO93joRsG1ZZ+QHnpKHrtt14eeiUgJ6eXuNPjqRk5PUh85HCdnhCgyvJzbdxbzlW6XUQAoqnIkQXwD0eAUDr/f9gIIQ68B72pk93OY9tekO4ZmIlXxhj/xizevk5/yk9urHD16iqD00lSkgN3psFwOIxO/EDhvxByNznH5XUSige6CT7lbAWHbjPckKhmK9za3QiJywAAIABJREFUTrO1mycgKbjrJks3NsCGlmHQTle5/oPb6E2darHG0uVV9KZ+YP5CSN1aWdu++58Oud0CC58c2br1WKot/ZHdbHq8fPTEBE5Gz0j2eCxsu4Gtf9xJULqDrMhHFqPLksRoNIT6BE2cT8ruappq8cnbOQmhIZTRAxmkj8LldTHz2iTlPKQ32+ws76E3dW7sZjhzYRznYJitQokLE4O8+uYMgUSIYCxAajJBwO3qilhblkXbNFlMZ2mbJkmfF6ll0NYNstt5Pv7J99F8ArfXiUdWkBSZmZEE/X0BkiNxwmEvpb15Uu4WqaCfSq7C4EwKzalhGib7GxmqpYefm76BSFdlZ3dln1a9Rf9ojMxWjlL25EYv7HFzJvV8vcRqs/VYrdp6HI+gl916UnpGssex6K02rcb9pQIOkEdfmszd6UvjDw0XNuutAyUbzxpJlpBkiVZDp5St4KkZRHweRmMRYj4PXp+bhiK4vraD0Taolerd3o7Z7RwLHy9j2za1Qh2BoJStsHZji1qxRjgRZOL8JNFEHx6/u9PKzKHgcztwuRzc/MkCQpI4d3qSgNd3R+Vokr6BjlBBIOrHH/Kyt7JP2zQxH3EeXD4nvrAXf9iHbVmUaw22CqXndu4eB9u2ub2fodR8uvKgHj2ehJ6R7HEs6fUMuyvp7t9CSAg58vnNZyNDIX2yi/fSZ6uUMg/3iBq1Zrdp8fbSLrVS7dj92bZNq23QarS4+ZN53H4XfQMRBmYSeNy38KotzLbB2se3sdsdY5gM+Am2bPI7BTZub3Pth7cBCMYCDM0OYDbbKJkaWBaRRIgL3z7D6JlhZFkm6h9CvhMaTY73IztVHC4HA1NJkuNxXF4nqak5FO1oGTh/1E8kGWY5k2ercLxnWM5VUdSOxx8b6sMfCxypjft5IITg/ECSkPvxe2L2eAhPEWr9qoVbe4k7PY4lOfFyJVsISTq2GfP9TL86fqxqz+btbYQkmDg/2qlxfMSOi/UmS5kcFwcTxEdi3X1f3U4zFh6hfyyBbZWJD+SQVYlqS8fr0Bif6yTO9I/GqJc7LaZkRUZRLTSnxtw7s/fe3/1rn4ZJ2zTxODQK9QYr2TyXhjuZ0w+KkR/F8OydsYZ5UHLvCCRJHHj/AZeTgOvz73d6F+UFNSL+KiGJnhj9Seh983ociyRJRyrqfF70DUQI9p0sG1PV1GOThoZODdCsNmk1dBJj8UNi6A8SdDs5k+pHlmUiiVB33zP9fQQ8KYSQKWUFtjxLtdnm5m6a9n19QxVVwR/plKYU9otc/XCea9t7tNptPl7fonFfAlK50WS/XGU9XwQg5HZxqj9GMdPxopv1JttLu9i2zfzWPj/70c2uV2zbNra5i213emvmNrKPNDIDU0lcnpfHKPZ4vtzNbu15ko/m5bn69ejxgnG6HJx599QhgQLbtklvZLrrh3dZv7mFcUT7L49D63hiXVQ2Pl1jwu3rJi2ZlsViOotudAxZKB5k9tVJYj4vmqIwHo3gvOOZWpbN/H4Wv8uBv2ayfnMTIQT7S3t88r2r1Ct1rv3gNpVCFb2p43WohCM+pDvCB7a5A1YWbB1FlY/smLK7ss/S5dUTn6v8XoFGrbcm+GWil7hzMnrh1h4vPXulCmGP+9iWT88Sy7QopMsE+vwHBBJcXieKdvAnU6g1qOk6Ec2BqindMKgn4Mbl7XhmumEgSxKyJHG31EQIgcfj5G5ZfcjjYnNxh9xWjlPvzjIVixBwOdESIQrVOvN7GVSvRjAWQEgS06+O4wt5ufzedYIxfzeka1sthF3qti7zhcAXeqDuE9hfzxBJ3uvc0qg1aVabDw3jlrIVhCT1vM0eXzl6nmSPlxrLsslUa10P7Hmxt5buJu7Iisz0pfFD9Zbx4b5DXqcQAkkItuZ3yO8Wus+7fS6EEFiWzSdrW2QLFYbDQTRFppyrsH5r68B+yrkKa9c2sCybbLXOdqkCgMvjxO1z07YscKsMnxpAc6q0jRY35z/EEXCQk0x0w8AwLW7vN9GZOvT+jLbB7sp+Nxln+rUJUpP3hOoblQa313bRH/Ces9udcpDRuaGnFh3o8fJwV7u1F259ND1Pssczw7QsdksVEgHfHa/p6ZEk8dxr8KCjovMkdXhBt5Og24l5znPk2q0kCeKWyt7iHhv9FS4OJVEdStfLvIs35OHit89022UlAvdk9YJuJ25JOtD3UZZVXGqQofPjbBRKgGDz9hamKii46jT3ygxOJrr1q6ZhUivXsSwLWZYPeYTBWJAQxp1SkXves2lYyEovwePLSC9x52T0PMkeT4RlWdz8cIFa+V6xumnZlBrNR9bkvYykJhJHhiUfRaHWoKG3sYD1fPHI9z46meTUKxNMx6PIkoTL6yI2GMW2742VJOlgP0khaDVarFxbZ+3mJrc+XDxQrxoI+xkZnUaRZcaiYTRFJhDxMZ6MspUrUSzXsO8z+g6Xg4nzo0eKPnSOL5jp78P1gC5tfLjvRJm0Pb5YCAGysJ/4cbJjiO8KIeaFEEtCiP/miO0OIcT/fWf7R0KIkTvPR4QQ7wkhqkKI/+OB17wihLh25zX/u3iecl536BnJHk+EJEn0jxwMP2qKzOlk/EQ6rbatY7fnse32I8e+jDRqTbYWd0lXa1RarU4NpWEe2WhaCIGqyvjvK6mwzQy0rxx7jMJ+iXq5TjAWYOrVg+Hf9EaW5ctrB8aH+0O4vC4ujQ9y/rXpJ2pa/STorfZDayrL+Qqr19ZPtB/bttla2HlAvKLHFxHR0V38x8AvAqeA3xFCnHpg2O8BBdu2J4D/Dfif7zzfBP5b4L8+Ytf/BPg7wOSdx3ef/ewP0jOSPZ6YcH/oKTp/SCA0vrBfQdvGMi2m49Fuhup0PHpkqYVpmIcFEKQQKJOHx95309A/EmPk0jgL1TKK86CHF04EGZhKdDVanweVZotP1rcfGYZe/GSFwn7xyG2aU8P7GB66aVpH3mj0ePY85+zW14Al27ZX7I6G5R8Cv/7AmF8Hfv/Ov/8d8G0hhLBtu2bb9g/pGMsuQogE4Ldt+yd2567sXwK/8RSn4ET01iR7fC4IoYAy+nlP44lxeV0MzaRONLZZa7K1sMNGq8ZELIrHoXXevzhoPGzbZr9xk5A2jEu5kyWrqcz29x3Sv1U1FVVT0Zt6t/YSYLd+i0xOYcSfxB94upZUbk1lLBp+oLylQylbxh/pyOFNXBhBdRzdPszpdhzbA/R+hBBdAYQezxv7ea9JpoDN+/7eAl5/2Bjbtg0hRAmIANlj9nl/xtvWneeeK1/Q2/gePb44eAIezrwzS9zvw3FMKFoIQZ9zCqccOPCcz3nPyOhN/YD4uObUiKbC3U4oXiVBaV9nb/WelGAxW+aDf/djzPuEDZptg6Z+ONRtWVa3HnL9+iZUD4c+23qb9ZtbNOudbQ6X46USnOjxaJ6BmEBUCPHxfY+/c8QhHuRBF/QkY55m/DOh50n26PGcaOttJElivVDC49DoDxzfCNpoGwhUhPrwXIRaqU5up3CgOXN2O09hr8j0qxP4tCDvXgoeWCPUHDoe7zam0UaWZbYWd/nZ/gLhUImvzX4LIXlpNVpoTo1Spsz20h5zb88Q6g/i9h2ui1Q1lTPvzj5Uzcg0TPbXM8RH+h6aKPTg+Kdp2N3jyZCfzr5kbdu+dMz2LWDwvr8HgJ2HjNkSQihAAMg/Yp/3hxqO2uczp3f716PHc2JrfofdlX2Cbicex6O7pmwv7bG9tHfguUqzxbXtva7RC8WDTFwYxbZtDKvjyUWSIUbPDB143f0GzOWNcPEXfgHN0TF4/rCXt6dGOjqwonOfvPjJCsVMmVA8yMxrE51jxQIP7c15XFKhaVrUK40D2bX3c39ijt7Uuf6j212vtMeXhp8Bk0KIUdFpGfTbwB8/MOaPgb9559+/BfylfYyqvm3bu0BFCPHGnazW3wX+47Of+kF6nmSPHs+JwZkUpq2jixJeNfHI8QOTh8c4VYWYz8vm/A6SLHXHtKwK+dYqEWkGo2UcKB95ECEEiHshXH/Ehx8fMNx9burSeHdd8WmzYjWHysT5o9ebLcvi9k+XGDs7jC/kRXNqTJwfOfG6ZY9ng3jOa5J31hj/AfBndApv/y/btm8IIf4H4GPbtv8Y+D+BPxBCLNHxIH+7Oz8h1gA/oAkhfgP4Bdu2bwJ/F/gXgAv40zuP50rPSPbo8ZxQVAXLbKG363B0XkuXVqPF8uU1Ji6OHQg9qrJM3O+lLmTEfQk0TtlPzDlDYadKMV0iOhChmC1T8ilM9IXxOo82OrZtAhZCHJzQ/UIFzxNJkph9ffLA8Y4z8D2eH89bOce27T8B/uSB5/7Rff9uAn/tIa8decjzHwNzz26Wj6YXbu3R4zmiyR4iznGgo+FabnSSYkzTPJCAozpU4iMxVO3o+1a3z3VIJUeRHPQNRIikwti2jT/kJRX041SPscjmJhjLANQrDZY+W32ufSPXb26yv5458Nz9BnL12jqZrdxzO36Po3kRYgJfFnpGskePF0S+1mCr2DGMzWqTzdvbWHcUeiRJOtB+63EoZcoIIJII0efz0Kw02F3dP3Ls/9/evUe5edd3Hn9/JM395rnbY2diJ7GdG5BNU8g6oS0Ny63L0lPKktKedtlus4fCoaHd3VLKQrYlUEq2hbbQNtzacja9ZZeeHEoLoRBaEgM2Cc0NO7ET3+I447HH47nPSPruH88zjkaWZp7RSHo0o+/rnOfM6Hke6fnqsUdf/e5zc/2QugyAVGOKzt72kq4ZVe9QD519xTss9W7toaNn9TMdubVLkC15qyeeJJ2rks1dHVy9ZQAIqhivvfmqJUMnJhaev9AZpxgzu2hw/45rh5dMHWdmBTvNzE7PcXDfERbCSzQ2NTAw3H/h+MjxUU4ePnXR89aifVMbLW3NmNmSISiLOns6vD3S1TRvk3RuFczSgF3UplcO89lpmhKdQPGkcezsOLPpNLsH+4qe09HdXnAe2ubWJq66cWfR9seW9uaL1tAsl5Fjo0ycneSKf7N+J5DYSBZXAXEr8yTp3GpkjgIGqSvK/tK9TZeveM6WrnaiLlZy+sQZmloal8zIs1wHnVImeI+qd6h72WpXV33JOqs2LVXVq1sl3SnpWUnnJY1IulfScHjs5yU9JGlM0qikf5D0kmrH6FxRyUuDLSaNqRTNEYdoZDNZMpnKfxCmF9Irdv5JNaR8weYaUoYZd+pGHG2SXwCuM7NOYDtwjGDyW4AO4IMEMylsBR4GviqpJYY4nbuIlKpIVetazE7PFewhOnhpf1UWSj647/BFE5xns8bDx55jYjaeSQKy2WzBNlDnVqvqSdLMDpjZ4pIIArLA7vDYJ83s/nAW+Dngw8Bm4Mpqx+ncejE/O8/kuSnMstj8I1h2oiyvu5DJ8PCxk0wXmOM112Uvu5RNeck4kRDbe7tpbYznC8WpZ0c48vjxlU+sW0ZS2ZK3ehJLm6SktxGsC9YJpIFfLXLqLcA0cKjI69xGsLYYw8PDhU5xbsPr7Omgsydo77PkMESseJnPTtOYaC16vCGZZLini+YV1gctVo3a0xa89nw6zcjEFNu6K1+qXdR/SS/ZKlQ1r1eCqEte1b1YhoCY2T1m1gVsAe4AHss/R9Iu4DPAr5lZwa/GZna3md1gZjf09/cXOsW5DeXE2DizC+mix5XsDZbhWkE6O8fo7EEWsrPLntfX3lZwqaxCMulMwTlY5zNZJufmKzppQb6Gxoai8866gJcko4l1nKSZnQI+DXxJUs/i/nAF628Ad5nZn8QVn6ueTDrDycOnvB1pBVPzC6Sz0T6kzOzCslf5UokmBlteQkOifJ1pzjw/xtEnTyzZd/7sBPNjU1y5uZ/Z6bmqJkpXnBTM3VrqVk9qYTKBFNAGDAFIuh54APgdM/vdGONyVZTNZpmZnC26coQL7B7soz3CiiIAE2cnefp7z2BmzKfTTOZ1oklGKHFGMT0xw8F9h+gd6uaK67YvOTY/u8DcTFCKfPp7zzBxdrIs13SuWqqaJCUlJL1L0kD4eBvwSeAIcEDSTcA/Ae83sz+sZmwuXg2NDVz+su1rXoHCvaizt4OrbtyJJE5PTnN8bHzlJ0U0PjPL0yPBAvKNzQ30DnWTTCZ59uw5zk2/WHrtG+phy45BJHHVjTuXjNl08UpiJW/1JI6S5BuAxyVNAd8h6JjzagumMvkQwcKbvydpMmd7ZQxxOrfuNYS9S7du6uTKzeVrt29IJmlrDEq0qYYUfVt7AWhraqSxyALKDWXo6erV8eURjJP06tYoqvq13cyyBEmy2PFXVTEc5+qKJMyySGv/btza2FBweMdgR9uS+WgLmRibJJFM0NYZ9H41M0YmpuhrbyW5wnN/sPcptu0eYlN/9XrKbkz1VyIsVS20STq3LixkMpydmo47jJJNLZxmdO6psr1eNptlfnb+wuPTJ85w6JFnAXjh6GlOHRkp+Lzx0+eXtE2ms1lOnZ9gIcKQjR0vGfZVQ1xVeQOQcxFNzs1zfGz8wvi/9aY51U3DMuMiV+vsqXOMHBulbecA6WyG4YFO2rqC12/paKZYQWXbrqEljxuSSV62bUuka/oCzeWxWN3qVuZJ0rmIultb6G5dvzMkJpUimVz7n/yZ2cO0pnrp3dJNZ28HaUHWjIbGhgvtjouTG7ja5ROcR+NJ0jm3Ki2pTaQSzUgimUowNTqxZD3LRaOTU0xNzcCZGS65cuuKbZWuenyprOg8STpXBWazkD4OqcvL0nEmTq2p3gu/z03Pc/LwC3T2dZBMLu3VmpCCxJhMIEWbtSeK6YkZzOxCxx9XGi9JRuNJ0rmqSIBSBK1BG0drRwvX7NkNBKuRzEzOXlh5pKetNWi/LfOMkedGxslmsp4kXVV4knSuCqRGSO2IO4yKmF1IMzE7R2p6gbEXxiu+PNfQ5Zsr+vr1QFB3c7CWypOkc3Xq/PzzGFm6Greu+rmnjoxgZmzZMcjM/AKjk1NctWWgYNukq0Xmq4BE5EnSuRpw6sgIs1NzbL/mkqpdsylZ+njD1s4Xe/l2t7XQ3VZ6r9/5dJqzUzP0tLVemK3HzDh2dpwtXe00rrBUl1s9yUuSUa3vHgTObRCtHc1Vn3KtKdlBU7K0oRqdPR00NKbKEvPY9Cz7jj7H6cmpC/vMYDadJuMT3ldMgmzJWz3xJOlcDUg1NiC0bpaSeu7ceR781hOMvbD2SdMHO9v5iWt3s3VT54V9iYTYPdhHSxnmey1FJp0hG3FJMrexeT2GK6v5dJq5dIaOZl/wdjVaO1q47KWXxh1GZJtamrn+5qvpaS9PD9OoCztXy9EnT9Dc1rRhOwkJI+njJCPxJOnKamx6ltOTU1w7NBh3KK6C2poaaYu4ruVaTI1PkWxI0dzaxEImQ1KJggl17IVzmBk9m7vLct1tu7aQSG7cijbh4ySj8iTpymqws53BTp+Aup6YzUN2FCWHVj55lU6fOEtzWxObtw9w4NRpettaGcqpll2UyWSDhswyaWyu/BeAuPncrdF4knTOrY3NQ/YclthS1pl1gCW9fXcN9JEqUrrrG+op63WdW+RJ0jm3Jkq0Q+LqSOeePztB+6aV15wspKnBP67KRZhXt0a0cSvdnXM1JZPJcPSJE8xMzMQdigOSspK3euJfzZxzVZFMJrnmpt2+GkgNENTdeMdSeZJ0zlWNJ8haYT7jTkT+P9Y5VxVjL5xjYX4h7jCcWxUvSTrnquKFo6dJNiRp6IlnFh33Ih8nGZ0nSedcVVz58p1leZ3RySlaGxtpjWnKuo3CVwGJxqtbnXPrytmpGabn5+MOo6D0QprHv/UDZiZruwevFLRJlrrVEy9JOueqbmx6hnPTs+zoW/00crsG+yoQUXmkGlJs3TVEU2vtz12c9JJkJF6SdM5VXUMiQVO4duRKzIz5ufXT4ad7oMt78W4g/i/pnKu69uamgnOwFnJuZJyn9h+ucET1ZXGcpK8nuTKvbnXO1bRNA120drbEHcYG4+Mko/Ik6ZyraZJoaqn9Nr71JBgC4m2SUXh1q3POOVeEJ0nnXCQnxsYZmZis+HXMjNnpuYpfp5hMJsMzjx5lbia+GKohISt5qyeeJJ1zkTSmkjQmK99CM3F2kqf2H8bKuIjyakiiua2JRJG1KzeCxaWySt3qibdJOuciGehor8p1Onqa2P3DvWVfwDmqRCLB0OWbY7l2tXibZHSeJJ1ztcUmaUyNAINxR7KshewsKTUirc8SZ71Vm5Zqff7rOuc2LCV6UMNL4g5jRWfmDjGTGYs7DFdhVU+Sku6U9Kyk85JGJN0rabjAeR+VZJJ+rtoxOudqw/jMLJOztdmBpr/5SlqSPXGHUZLF6tZSt3oSR0nyC8B1ZtYJbAeOAX+Ve4KklwOvB56venTOuZoxNj3DuZnZWK5tZjz72NGik5UnlYqt3bQcPElGU/U2STM7kPNQQBbYfWGH1AR8FrgN+MvqRuecqyXbe1c/AXq5BL1cmzdkL1cBifWb36sqlo47kt4G/DHQCaSBX805fAfwdTPbu56/pTnn1r8tl9V256HS1V+JsFSxJEkzuwe4R9Jm4BeBxwAk3QC8BbguyutIuo2gxMnw8EXNms7VlUwmQzIZbWUN51w0sdYjmNkp4NPAlyQNAJ8H3mlmkab1MLO7zewGM7uhv7+/kqE6V/MO7jvMmedrr7fl+TMTPLn3YNxhuBzBKiClb5GuIb1O0kFJhyS9t8DxJkl/HR7/jqTtOcd+I9x/UNJrc/YfkfSYpO9L2r/6d756tTBOMgW0AQPANcD/yalm7Qb+WNLrzexnY4rPuXVhx7WX0NjSGHcYF2nramXbrqG4wyi782cnaOtqXZ+ld0Gygq1ZkpLAJ4F/B5wA9km6z8yezDntF4ExM7tC0q3AR4G3SroauJUgHwwBX5O0y8wy4fNeZWajlYt+qaqWJCUlJL0rLDUiaRvBjTwCPA0ME1S1Lm4ngfcB765mnM6tRy3tLTX5gZ1MJens7Yg7jCXSmbVNrXZueobH/vUZpsanyxRRdQmRXMMWwcuBQ2b2jJnNE4xgeFPeOW8C/jz8/V7gFgUlpDcBf2Vmc2b2LHAofL1YxFHd+gbgcUlTwHeAaeDV4Q05kbsBGYJvGmdiiNM5VwEL8wuxXn92Ic3Dx08yu5Be02tc8tJL6eypreRfRX2S9udst+Ud3wocz3l8ItxX8BwzSwPjQO8KzzXgq5K+V+CaFVHV6lYzyxIkyajnb69cNM65apsan+LQ949w7U1XkkzFU+ptbkhx1eZ+mhtK//jb3LX+k+MaS0ijZnbDMscLFTfzu9MWO2e5595kZifD2sj7JR0ws39eOdzSbbwBQM65mtXa2crO6y+LLUEu6miu70WcBSSlkrcITgCX5DzeRtB8VvAcSSmgCzi73HPNbPHnCPBFqlAN60nSOVc1kmjtaIk7DAckUMlbBPuAnZJ2SGok6IhzX9459wG/EP7+0wTj4y3cf2vY+3UHsBP4rqQ2SR0AktqA1wCPr/lGrKAWerc655yromDu1sp1bzWztKR3AV8BksDnzOwJSb8F7Dez+whmVvuCpEMEJchbw+c+IelvgCcJJpt5p5llJA0CXwxHP6SAe8zsHyv2JkKeJJ1zzpWdmX0Z+HLevg/k/D5LMHlMoefeCdyZt+8Z4GXlj3R5niSdc64ORaw2rXueJJ1zrs6IyB1w6p4nSeecq2Hnz0xU5HUT3m8zEk+Szrm6NnJ8lMxCpmZX/Ag6fJZXMHerlySj8CTpnKtrLe3NZNKZlU+MSVdfZ9wh1DVPks65utbR3X7RPsuchkQXwRC/jUgk5dWtUXiSdM65fNlToAbYoEkyqG71JBmFKlHfHQdJp4GjZXipPqBqy7DEyN/nxlEP7xHq+31eamZlWzRX0j+G1ynVqJm9rlzx1LINkyTLRdL+FSbu3RD8fW4c9fAewd+ni4eXt51zzrkiPEk655xzRXiSvNjdcQdQJf4+N456eI/g79PFwNsknXPOuSK8JOmcc84V4UnSOeecK8KTZAHhith/KulpSROSjkn6mKTmuGNbK0nJ8L2cDt/b/5W0lvFSNUfSRyU9Iem8pJOSPi2pJ+64KkVSQtJDkkzStrjjqQRJr5b0bUmTkkYlfSrumMpJ0mZJfx3+XY5J+rqkqq+d6C7mSbKwFMFg3jcCm4BXAj8OfDTOoMrkvcCbgFcAix+oX4gvnIrIAD8H9BIs0roN+HysEVXWe4DpuIOoFEk/BtwL3EXwb7oN+EycMVXAp4AeYDcwCOwHviT5elZx8447EUl6J3Cbma3rb3eSjgK/ZWafDR9fDhwCdpjZkThjqxRJPwHcY2ZdccdSbpJ2Af8AvBl4BLjEzE7EG1V5SdoLfNPM3ht3LJUi6VHgj8zs7vDxbuAA0G9m9TDLUM3ykmR0twCPxh3EWkjqAoaB7y3uM7PDwHngpXHFVQXr/t+uEEkJ4HPAfwfOxRxORUhqA14OzEp6OKxqfUDSRpuR5mPAmyX1hc06twHf8gQZv7pLkpL+LGy7KbZ9qMBzbgduBn6z+hGX1eKaO+N5+8/lHNtQJL0Z+CXgV+KOpQJ+BThlZv8v7kAqqJvgc+qXgP8EDAFfBb4saVOMcZXbg0ASOA1MAj9F8J5dzOouSQLvAvqX2T6ce7Kk9xC04/24mR2rbqhlt7jEeX614yaC0uSGIuktwKeB/2BmD8cdTzlJugL4NYL/zxvZ4v/Zz5vZo2Y2D3wEaAD2xBdW+YQ1Al8DniL422wF7gT+RVJtrgRdR+ouSZrZpJmNLrNd6AAh6X8SfBD9qJk9Hl/U5WFm54BjwPWL+yRdRlCK3FDVkZLeDvwp8EYz+0bc8VTAzQRf6h6XNAosfgl4VNIvxxdWeZnZOHAEKNR5YqN0qOgBdgB/aGbnzWzezD5D8Pl8Y7yhubpLklFJ+hjwXwgS5MG44ymju4Ffl7RDUidfADFuAAAF1ElEQVRBj92vbKROO5LeTdAT8rVm9mDc8VTI3wCXA9eF2xvC/a8B/iKuoCrkU8DbJV0tKUXQBjsLPBRvWOURtjs+BfyypDZJKUn/GegAHos3OueLLhcg6VLgvwHzwL/m9MI+ambXxBZYefwOQTvPPqAJuJ9guMRG8gkgDXwjtwe9mV28BP06FdZ45NZ6LP4tnzKzyXiiqpi7CBLG14Fmgl68rw9LmRvFTxJ03jlKUJV8CHiLmT0Ta1TOh4A455xzxXh1q3POOVeEJ0nnnHOuCE+SzjnnXBGeJJ1zzrkiPEk655xzRXiSdM4554rwJOnKRtIdRebD/VqR828Pj9+bt3+5+XV/Jue8B4qc0xwevyV8fHPe678j3P/+vP07w/1vq8a9kNQp6eOSjkialvSD8J4o55x+SX8g6buS5iUdiXDti+5rnPfCufXMJxNw5TYOvK7AviUkDQAfIJjQOd9vA3+St+8dwNsI5rjM9Q3gfXn75sKf3yFYW3IP8K2c43sIBuLnz/25+Lhcs/SsdC/+DPgRgvgPAa8Cfg8Q8PvhOVuBtxK8l+8DA8tdcJn7Gve9cG5d8iTpyi1tZt+OcN5HgL8HLsk/EC7fdTh3n6TPAl8zs/wP/7PFrmdmk5Ie4+IE8G8Jpm57qyTZizNq7AGeM7OjEeKPoui9kNRKsPj17YtrCAJfl3QNcCsvJslHzWwwfM5dwE+vcM2C97UG7oVz65JXt7qqk/TDwH8kWF0lyvkvBa4G/rKEyz1IkAgWX2uAYM7TTxBM7H5Vzrl7qN58oCmCv79Cy5ZdqG41s2zUF4xwX2v1XjhXszxJurILJ2jO3XLb2AT8EfC7ZvZcxJe8lWBC678rcOw1YXvetKSvhAk110PAQLi0FARJ4jkzO0Cw8smeMK4ugkRc1urFYvfCzM4TTFL+PyRdJ6lD0r8nSHKfLOE6Ue5rrPfCufXIk6Qrt15gIW+7Jef424HNBJNWR/VW4MthYsn1TYKFh19LsJL7MMEafNtzzlksDe3J+bk3/H1vzv4bCf4eypkYVroXPw8cIJiw+zxwH/DbZvbnJVwryn2N8144ty55m6Qrt3Hg1Xn7DsKFEsqHgXeb2UyUF5P0CuAy4Nfzj5nZB3Me/kvYc/QAcHu4YWZHJD1HkAD+Ivz5xfA53wZ+M/x9sQPL95eJJcHSL5bZFapDi96L0O8DryBIcM8QrBF5h6RRM/vsMq+bH1ek+1rOe+FcvfAk6cotbWb7ixx7H3Ac+KqkTeG+FNAQPp4ws0zec24lWJ3+71e6sJmdkvQgOYtKh/YCeyQ1AD9EsB7h4v7dknoJEsN3zSy9zCU+AOQm5v8F3LHM+UXvRVgt/A7gNWZ2f7j7nyV1AHdJ+vwq2iNXc1/LdS+cqwueJF017QZuAMYKHBsDXknO8ISw5PYW4O+iljxD+eu/PQT8FPCjBCXBRwDM7JCk08BNBCW6P1jhde8GvpTz+OQqYsp3Zfgzv7T2CLCJoKq20PCYQlZzX8t1L5yrC54kXTW9H/h43r6PE1RLfpCLV2H/EYJxgpF6tUoaJPiQ/1zeoQcJEsJ7gIfNbC7n2LeB/0qwqO+yvTnN7CRrS4y5FodWXA98JWf/DwFTwOgqXms197Us98K5euFJ0lWNmT2ev0/SOWDUzB4o8JRbgTPA/fkHwurKjwB/S5BwhoHfALJcnDAeAWaA1/Pi+MNFe4E7CUqfe6me/eH2OUkfAJ4laJO8HfhEznhFJC2OjdwFtOY8/qaZnV7lfa3Fe+FczfIk6WqSpBTwZuDeIm1jZwjGE36EoGpyAngA+EkzO5Z7opktSNpHUDLN//DfG77Ok2ZWqLqyIswsI+mNwIcI2jr7CZL9HcD/zjv9b4s8fhXBe17NdWvuXjhXy5TzhdU555xzOXycpHPOOVeEJ0nnnHOuCE+SzjnnXBGeJJ1zzrkiPEk655xzRXiSdM4554rwJOmcc84V4UnSOeecK8KTpHPOOVfE/weD6TmjDDdenwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "plot_cmd_with_fits.plot(data_fits_file=\"M31-B09-EAST_chunk.st_with_sourceden_cut.fits\", \n", " beast_fits_file=\"M31-B09-EAST_chunk/M31-B09-EAST_chunk_stats.fits\", \n", @@ -2558,73 +1770,11 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": null, "metadata": { "scrolled": false }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: hd5\n", - "Completeness from HST_WFC3_F475W\n", - "Auto-detected type: hd5\n", - "Completeness from HST_WFC3_F475W\n", - "Auto-detected type: hd5\n", - "Completeness from HST_WFC3_F475W\n", - "Auto-detected type: hd5\n", - "Completeness from HST_WFC3_F475W\n", - "Auto-detected type: hd5\n", - "Completeness from HST_WFC3_F475W\n", - "Auto-detected type: hd5\n", - "Completeness from HST_WFC3_F475W\n", - "Auto-detected type: hd5\n", - "Completeness from HST_WFC3_F475W\n", - "Auto-detected type: hd5\n", - "Completeness from HST_WFC3_F475W\n", - "Auto-detected type: hd5\n", - "Completeness from HST_WFC3_F475W\n", - "Auto-detected type: hd5\n", - "Completeness from HST_WFC3_F475W\n", - "Auto-detected type: hd5\n", - "Completeness from HST_WFC3_F475W\n", - "Auto-detected type: hd5\n", - "Completeness from HST_WFC3_F475W\n", - "Auto-detected type: hd5\n", - "Completeness from HST_WFC3_F475W\n", - "plotting Av and Av\n", - "plotting Av and Rv\n", - "plotting Av and logA\n", - "plotting Av and f_A\n", - "plotting Av and M_ini\n", - "plotting Av and Z\n", - "plotting Rv and Rv\n", - "plotting Rv and logA\n", - "plotting Rv and f_A\n", - "plotting Rv and M_ini\n", - "plotting Rv and Z\n", - "plotting logA and logA\n", - "plotting logA and f_A\n", - "plotting logA and M_ini\n", - "plotting logA and Z\n", - "plotting f_A and f_A\n", - "plotting f_A and M_ini\n", - "plotting f_A and Z\n", - "plotting M_ini and M_ini\n", - "plotting M_ini and Z\n", - "plotting Z and Z\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_completeness.py:196: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.\n", - " gs.tight_layout(fig)\n" - ] - } - ], + "outputs": [], "source": [ "plot_completeness.plot_completeness(physgrid_list=file_dict[\"modelsedgrid_trim_files\"],\n", " noise_model_list=file_dict[\"noise_trim_files\"],\n", @@ -2644,7 +1794,7 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2660,7 +1810,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ diff --git a/M31_Example/datamodel.py b/M31_Example/datamodel.py index 91a51aa..cffea5b 100644 --- a/M31_Example/datamodel.py +++ b/M31_Example/datamodel.py @@ -59,7 +59,7 @@ # obsfile : string # pathname of the observed catalog -obsfile ="./M31-B09-EAST_chunk.st_with_sourceden.fits" +obsfile = "./M31-B09-EAST_chunk.st_with_sourceden.fits" # ------------------------------------------------------ # Artificial Star Test Input File Generation Parameters @@ -141,7 +141,7 @@ # astfile : string # pathname of the AST files (single camera ASTs) -astfile = "M31-B09-EAST_chunk.gst.fake.fits" +astfile = "./M31-B09-EAST_chunk.gst.fake.fits" #astfile = "M31-B09-EAST_chunk.gst.fake_cut.fits" # ast_colnames : list of strings @@ -172,6 +172,7 @@ # Distances: distance to the galaxy [min, max, step] or [fixed number] distances = [24.79]#[24.29, 25.29, 0.25] #number was originally 24.79 #used 2013AJ....146...86T as a reference +distance_prior_model = {"name": "flat"} # Distance unit (any length or units.mag) distance_unit = units.mag From 1258a7fbb43498b9755e382fbb1ee3fc9b61aae1 Mon Sep 17 00:00:00 2001 From: christinawlindberg Date: Mon, 29 Jun 2020 10:07:15 -0400 Subject: [PATCH 5/7] added ast_n_per_flux_bin and ast_n_flux_bin variables to beast_settings.txt --- phat_small/beast_settings.txt | 8 ++++++++ phat_small_multidistance/beast_settings.txt | 8 ++++++++ 2 files changed, 16 insertions(+) diff --git a/phat_small/beast_settings.txt b/phat_small/beast_settings.txt index 4d172a9..3b310d6 100755 --- a/phat_small/beast_settings.txt +++ b/phat_small/beast_settings.txt @@ -71,6 +71,14 @@ ast_models_selected_per_age = 70 # for an AST to be included in the list (Default = 3) ast_bands_above_maglimit = 3 +# ast_n_flux_bins : integer +# The number of flux bins into which the dynamic range of the +# model grid in each filter is divided +ast_n_flux_bins = 40 + +# ast_n_per_flux_bin : integer +# Minimum number of model seds that need to fall into each bin +ast_n_per_flux_bin = 50 # ast_realization_per_model : integer # Number of Realizations of each included AST model diff --git a/phat_small_multidistance/beast_settings.txt b/phat_small_multidistance/beast_settings.txt index 2e37a76..0f6b7b9 100755 --- a/phat_small_multidistance/beast_settings.txt +++ b/phat_small_multidistance/beast_settings.txt @@ -70,6 +70,14 @@ ast_models_selected_per_age = 70 # for an AST to be included in the list (Default = 3) ast_bands_above_maglimit = 3 +# ast_n_flux_bins : integer +# The number of flux bins into which the dynamic range of the +# model grid in each filter is divided +ast_n_flux_bins = 40 + +# ast_n_per_flux_bin : integer +# Minimum number of model seds that need to fall into each bin +ast_n_per_flux_bin = 50 # ast_realization_per_model : integer # Number of Realizations of each included AST model From 9609ca4fff23b0677715daa16868a6b897066551 Mon Sep 17 00:00:00 2001 From: christinawlindberg Date: Mon, 29 Jun 2020 18:43:00 -0400 Subject: [PATCH 6/7] updated to beastv2.0 --- M31_Example/M31_workflow.ipynb | 1349 +++++++++++++---- .../{datamodel.py => beast_settings.txt} | 109 +- 2 files changed, 1023 insertions(+), 435 deletions(-) rename M31_Example/{datamodel.py => beast_settings.txt} (72%) diff --git a/M31_Example/M31_workflow.ipynb b/M31_Example/M31_workflow.ipynb index a0253b3..f92b8e8 100644 --- a/M31_Example/M31_workflow.ipynb +++ b/M31_Example/M31_workflow.ipynb @@ -8,6 +8,8 @@ "\n", "In this notebook we will be walking through a standard BEAST workflow example using some data from M31.\n", "\n", + "Please make sure you are running *at least* **BEAST v2.0**.\n", + "\n", "You'll need a couple of datafiles to get started though. These file can be found at https://www.dropbox.com/sh/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama?dl=0" ] }, @@ -20,25 +22,25 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2020-06-19 10:45:42-- https://www.dropbox.com/sh/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama?dl=1\n", - "Resolving www.dropbox.com (www.dropbox.com)... 162.125.1.1, 2620:100:6016:1::a27d:101\n", - "Connecting to www.dropbox.com (www.dropbox.com)|162.125.1.1|:443... connected.\n", + "--2020-06-29 11:52:42-- https://www.dropbox.com/sh/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama?dl=1\n", + "Resolving www.dropbox.com (www.dropbox.com)... 162.125.6.1, 2620:100:601c:1::a27d:601\n", + "Connecting to www.dropbox.com (www.dropbox.com)|162.125.6.1|:443... connected.\n", "HTTP request sent, awaiting response... 301 Moved Permanently\n", "Location: /sh/dl/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama [following]\n", - "--2020-06-19 10:45:43-- https://www.dropbox.com/sh/dl/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama\n", + "--2020-06-29 11:52:42-- https://www.dropbox.com/sh/dl/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama\n", "Reusing existing connection to www.dropbox.com:443.\n", "HTTP request sent, awaiting response... 302 Found\n", - "Location: https://ucd953f43dd81ff63114de77483a.dl.dropboxusercontent.com/zip_download_get/AdVP-ZJhGHCSoInHG8cKTir0gqRi2GeRYHY91yWIMpkSMk_RTUjwHAmtKqnqoCFv4GdkSxgGdr7BqbWJNUQ8wvoloCilxyf2RYl-Ip1SIpjMQg?dl=1 [following]\n", - "--2020-06-19 10:45:43-- https://ucd953f43dd81ff63114de77483a.dl.dropboxusercontent.com/zip_download_get/AdVP-ZJhGHCSoInHG8cKTir0gqRi2GeRYHY91yWIMpkSMk_RTUjwHAmtKqnqoCFv4GdkSxgGdr7BqbWJNUQ8wvoloCilxyf2RYl-Ip1SIpjMQg?dl=1\n", - "Resolving ucd953f43dd81ff63114de77483a.dl.dropboxusercontent.com (ucd953f43dd81ff63114de77483a.dl.dropboxusercontent.com)... 162.125.1.15, 2620:100:6016:15::a27d:10f\n", - "Connecting to ucd953f43dd81ff63114de77483a.dl.dropboxusercontent.com (ucd953f43dd81ff63114de77483a.dl.dropboxusercontent.com)|162.125.1.15|:443... connected.\n", + "Location: https://uc8f7a9a016f30b7dc6908902a90.dl.dropboxusercontent.com/zip_download_get/Ad8YyXJOnfV4C9nmUSzo2W4ib4LyIWi0CZQyn7r0Hj6h5Hr5C0ukGZootVmfnuSAa--G_WzwSq9Tgj0oyf5OC8FA4kkUyQq8TvNQ2657jZ2QaQ?dl=1 [following]\n", + "--2020-06-29 11:52:43-- https://uc8f7a9a016f30b7dc6908902a90.dl.dropboxusercontent.com/zip_download_get/Ad8YyXJOnfV4C9nmUSzo2W4ib4LyIWi0CZQyn7r0Hj6h5Hr5C0ukGZootVmfnuSAa--G_WzwSq9Tgj0oyf5OC8FA4kkUyQq8TvNQ2657jZ2QaQ?dl=1\n", + "Resolving uc8f7a9a016f30b7dc6908902a90.dl.dropboxusercontent.com (uc8f7a9a016f30b7dc6908902a90.dl.dropboxusercontent.com)... 162.125.6.15, 2620:100:601c:15::a27d:60f\n", + "Connecting to uc8f7a9a016f30b7dc6908902a90.dl.dropboxusercontent.com (uc8f7a9a016f30b7dc6908902a90.dl.dropboxusercontent.com)|162.125.6.15|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", - "Length: 57812924 (55M) [application/zip]\n", + "Length: 57364410 (55M) [application/zip]\n", "Saving to: ‘data.zip’\n", "\n", - "data.zip 100%[===================>] 55.13M 1.39MB/s in 31s \n", + "data.zip 100%[===================>] 54.71M 7.62MB/s in 6.7s \n", "\n", - "2020-06-19 10:46:15 (1.76 MB/s) - ‘data.zip’ saved [57812924/57812924]\n", + "2020-06-29 11:52:50 (8.13 MB/s) - ‘data.zip’ saved [57364410/57364410]\n", "\n" ] } @@ -86,16 +88,7 @@ "metadata": { "scrolled": true }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: fits\n", - "Auto-detected type: fits\n" - ] - } - ], + "outputs": [], "source": [ "import h5py\n", "\n", @@ -122,17 +115,14 @@ " create_filenames,\n", ")\n", "\n", - "from beast.physicsmodel.grid import FileSEDGrid\n", + "from beast.physicsmodel.grid import SEDGrid\n", "from beast.fitting import trim_grid\n", "import beast.observationmodel.noisemodel.generic_noisemodel as noisemodel\n", + "from beast.observationmodel.observations import Observations\n", "\n", - "\n", - "from beast.tools.run import (\n", - " run_fitting,\n", - " merge_files,\n", - ") \n", " \n", "from beast.tools import (\n", + " beast_settings,\n", " create_background_density_map,\n", " split_ast_input_file,\n", " split_catalog_using_map,\n", @@ -204,8 +194,8 @@ { "data": { "text/html": [ - "Table length=50625\n", - "
\n", + "Table length=50507\n", + "
\n", "\n", "\n", "\n", @@ -232,7 +222,7 @@ "
F814W_STF814W_GSTF475W_STF475W_GSTF275W_STF275W_GSTF160W_STF160W_GSTF336W_STF336W_GSTF110W_STF110W_GSTXYRADECCHI_GLSNR_GLSHARP_GLROUND_GLCROWD_GLF475W_COUNTF475W_SKYF475W_RATEF475W_RATERRF475W_VEGAF475W_TRANSF475W_ERRF475W_CHIF475W_SNRF475W_SHARPF475W_ROUNDF475W_CROWDF814W_COUNTF814W_SKYF814W_RATEF814W_RATERRF814W_VEGAF814W_TRANSF814W_ERRF814W_CHIF814W_SNRF814W_SHARPF814W_ROUNDF814W_CROWDF275W_COUNTF275W_SKYF275W_RATEF275W_RATERRF275W_VEGAF275W_TRANSF275W_ERRF275W_CHIF275W_SNRF275W_SHARPF275W_ROUNDF275W_CROWDF336W_COUNTF336W_SKYF336W_RATEF336W_RATERRF336W_VEGAF336W_TRANSF336W_ERRF336W_CHIF336W_SNRF336W_SHARPF336W_ROUNDF336W_CROWDF110W_COUNTF110W_SKYF110W_RATEF110W_RATERRF110W_VEGAF110W_TRANSF110W_ERRF110W_CHIF110W_SNRF110W_SHARPF110W_ROUNDF110W_CROWDF160W_COUNTF160W_SKYF160W_RATEF160W_RATERRF160W_VEGAF160W_TRANSF160W_ERRF160W_CHIF160W_SNRF160W_SHARPF160W_ROUNDF160W_CROWDEXTCHIPMAJAX_GLOBJTYPE_GLF475W_FLAGF814W_FLAGF275W_FLAGF336W_FLAGF110W_FLAGF160W_FLAG
boolboolboolboolboolboolboolboolboolboolboolboolfloat64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64int64int64int64int64int64int64int64int64int64int64
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue869.890000004669244.4099999948323311.13183257065668641.6034194385187354.032917.0-0.030.020.251233000000.087358.199.039999999999999e-081.3800000000000002e-0917.6117.7210.0172.4865.40.0050.0380.175198000000.0102360.61.59e-071.27e-0916.99616.9860.0090000000000000011.77124.80.010.0490.226999999999999985970000.02256.981.25e-071.16e-0917.255nan0.012.92107.7-0.0380.0180000000000000020.08623800000.07534.451.69e-076.92e-1016.932000000000002nan0.0042.63243.9-0.0310.0590000000000000040.08479700000.088039.231.6e-072.58e-1016.992nan0.0022.23619.1-0.0040.10.3556000000.093657.591.8e-072.53e-1016.864nan0.0021.51708.8-0.0180000000000000020.0270000000000000030.396011651220000
" ], "text/plain": [ - "\n", + "
\n", "F814W_ST F814W_GST F475W_ST F475W_GST ... F336W_FLAG F110W_FLAG F160W_FLAG\n", " bool bool bool bool ... int64 int64 int64 \n", "-------- --------- -------- --------- ... ---------- ---------- ----------\n", @@ -347,7 +337,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Next we'll be creating source density maps. These are maps of our data field colored such that they show how many stars/sources there are in each degree field. The standard size is 5 arc seconds squared. The size can easily be changed by modifying the **pixsize** variable below." + "Next we'll be creating source density maps. These are maps of our data field colored such that they show how many stars/sources there are in each degree field. The standard size is 5 arc seconds squared but because we are working with a smaller subset of data, we run the risk of not having enough stars in each source density bin later on when we calculate the noisemodel, so in order to avoid this, we have set our pixel size for this example to 15 arc seconds, thereby giving us fewer source density bins but more stars in each source density bin. The size can easily be changed by modifying the **pixsize** variable below." ] }, { @@ -373,7 +363,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "# of x & y pixels = 12 12\n", + "# of x & y pixels = 4 4\n", "working on converting ra, dec to pix x,y\n" ] }, @@ -393,13 +383,13 @@ "if not os.path.isfile(gst_file.replace(\".fits\", \"_source_den_image.fits\")):\n", " # if not, run all this other code\n", " \n", - " # - pixel size of 5 arcsec\n", + " # - pixel size of 15 arcsec\n", " # - use ref_filter[b] between vega mags of 15 and peak_mags[ref_filter[b]]-0.5\n", " # since we're only working with one field, our index b is set to 0\n", " sourceden_args = types.SimpleNamespace(\n", " subcommand=\"sourceden\",\n", " catfile=gst_file,\n", - " pixsize=5,\n", + " pixsize=15,\n", " npix=None,\n", " mag_name=ref_filter[0]+ \"_VEGA\",\n", " mag_cut=[17, peak_mags[ref_filter[0]] - 0.5],\n", @@ -450,9 +440,9 @@ "text": [ "Filename: ./M31-B09-EAST_chunk.st_source_den_image.fits\n", "No. Name Ver Type Cards Dimensions Format\n", - " 0 PRIMARY 1 PrimaryHDU 19 (12, 12) float64 \n", + " 0 PRIMARY 1 PrimaryHDU 19 (4, 4) float64 \n", "\n", - "(12, 12)\n" + "(4, 4)\n" ] } ], @@ -489,7 +479,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAIzCAYAAAAakPP8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3debhkVX3v//eHppvuRiZFFAEFI2gMKmprgpo8Kg5oVLw3iULUiBqJuY5RY9RrQjS/5OYmjjcOSQsqDtEo4hS9ImoUvSpKozKjyCAIyDyP3ef7+6P2SY7nnDqnTnNq76pT79fz1HOqdq3a+1u7Gupb37X2WqkqJEmSxtE2XQcgSZK0tUxkJEnS2DKRkSRJY8tERpIkjS0TGUmSNLa27ToASZLUrSc/bvu66uotrRxr06m3HV9VBy/X/kxkJEmacFddvYXvH3/vVo61avef7rpYmyR/BvwxUMBpwAuq6tb52tq1JEmSRkaSPYBXABuqan9gFXBov/ZWZCRJmnAFTDHVdRgzbQusS3IHsB64pF9DKzKSJKlNuyY5ecbtiJlPVtUvgLcCPwcuBa6rqq/025kVGUmSJl6xpVqryFxZVRv6PZlkF+AQYB/gWuBTSZ5bVR+dr70VGUmSNEqeAJxfVVdU1R3AccCj+jW2IiNJ0oTrjZEZmUWkfw78VpL1wC3AQcDJ/RpbkZEkSSOjqk4CjgVOoXfp9TbAxn7trchIkqSRumqpqo4EjhykrRUZSZI0tqzISJI04YpiS43MGJklsSIjSZLGlhUZSZI0SlctLYkVGUmSNLZMZCRJ0tiya0mSpAlXwBa7liRJktplRUaSJDnYV5IkqW1WZCRJmnAFTognSZLUNisykiRphJaMXBorMpIkaWxZkZEkacIV5TwykiRJbbMiI0nSpCvYMp4FGSsykiRpfFmRkSRpwhVetSRJktQ6KzKSJE28sIV0HcRWsSIjSZLGlomMJEkaW3YtSZI04QqY8vJrabwk+e0k57R0rPsn+WGSG5K8oo1jarwk+b0kf57EH5jSEpjIqHNJLkhyS/Mlf22S7yR5SZKh/vusqm9V1f1nxfGEIR3udcA3qmqHqvo/s59M8htJvpLkmuYcbEry1CHFMtaSPDbJVJIbZ9ye33Vcd0aSZwNHAc8BPpAks55/a5KfNv+NnJ3kjzoJVCvalmbA77Bvy81ERqPi6VW1A3Af4O+BvwCO7jakZXUf4IwFnv8CcAJwD2A34BXA9csdxLj92l8g3kuq6i4zbscM+XhD0yTP7wSeCPwOcF/gH2Y1uwl4OrAT8HzgXUke1Wac0qgykdFIqarrqurzwLOB5yfZHyDJds2v0p8n+WWSf06yrnnusUkuTvKaJJcnuTTJC6b3meSpSc5sfs3+IslrZ76uuf8R4N7AF5pf+K9L8sUkL58ZX5JTkzxzvtiTPCPJGU1F5RtJfr3Z/nXgccC7m33vN+t1uwL7AO+vqtub2/+rqm/PaPPiJOcmuTrJ55Pcq9m+d5Ka+QXcHPuPm/uHJ/l/Sd6R5Grgr2fs76zmnJyZ5GHN9nsl+XSSK5KcP7MbLMkjk5yc5PrmM3h7n/Mw/Xm8McmVTaXrOTOeH+Sz/IsklwEfnO8YS5HkXUkuauLelOS3Zzz310mOTfLRJNcDhydZ1cT+s+b8bEqyV3re0fwbu675t7Dov8/m+UOS/KiJ4WdJDm62bwD+BXhyVZ1cVdcDTwYeNv3vFKCqjqyqs6tqqqpOAr4FHHhnz400rbAiIy2rqvo+cDEw/aXzv4H9gAOA+wF7AH814yX3pPdrdQ/gRcB7kuzSPHc08CdNxWd/4OvzHO95wM/pVYbuUlX/ABwDPHe6TZKHNPv/0uzXN8nJx4FXAXdv2nwhyZqqejy9L56XNfv+yayXXwWcC3w0yTOT3GPWvh8P/C/gWcDuwIXAJ+Y7b338JnAevUrP3yb5A3oJzR8BOwLPAK5KryvvC8CPm/d5EPCqJE9u9vMu4F1VtSPwa8AnFzjmPYFdm/08H9iYZLobb5DP8q70qlhH9Nn/bk3CcH6TXGy/QCw/aI51V+BfgU8lWTvj+UOAY4GdgY8BrwYOA55K7/y8ELgZeBK9isl+Tdtn0/vsFnxPSR4JfBj48+Z1vwNcANAkL79WVadOB1NVN1XVQVX11vneTJMgPYKFK3zSxDCR0Si7BLhrkgAvBv6sqq6uqhuAvwMOndH2DuAtVXVHVX0JuBG4/4znHphkx6q6pqpOGfD4nwP2TbJv8/h5wL9V1e3ztH028MWqOqGq7gDeCqwDFi3/V1XRq9hcALwNuDTJiTOO+xzgA1V1SlXdBrwBODDJ3gO+j0uq6p+qanNV3QL8MfAPVfWD6jm3qi6k9+V496p6S1MVOg94P/91nu8A7pdk16q6saq+t8hx/7KqbquqbwJfBJ414Gc5BRzZvPaWefZ7Nr2EYXfg8cDDgXmrQwBV9dGquqp5/28DtuO//m0AfLeqPttUO6bPz5uq6pzm/Py4qq5q3v8OwAOAVNVZVXXpAO/pRfQ+vxOaY/yiqs5e5Nwt5J/pJZvH34l9SHNMVVq5LTcTGY2yPYCr6VU41gObmm6ba4EvN9unXVVVm2c8vhm4S3P/9+j9ur4wyTeTDFSSb5KGTwLPbaoVhwEf6dP8XvQqJdOvnQIuat7DIMe6uKpeVlW/Rq8ScRO9X/Hz7ftGepWAgfbdxDHTXsDP5ml3H+Be0+e4Oc9vpDduB3pfyPsBZyf5QZKnLXDMa6rqphmPL2zexyCf5RVVdWu/HVfVZVV1ZpMUnE9vIPXv92ufXpfjWU130LX0Kne7zmgy0Pmpqq8D7wbeA/wyycYkOw7wnvqd7yVL8o/0qorPahJgaeKZyGgkJXkEvS/qbwNXArcAv1FVOze3narqLgvupNFUHg6h17XyWfp3icz3xXAMvYrIQcDNVfXdPq+9hF4iMB1/6H2B/WKQGGfFexG9L8v9++x7e+Buzb6nk4X1M3Zxz9m7nPX4InpdQ7NdBJw/4xzv3Fxl9dQmrp9W1WH0zuP/Bo5doEtnl1nP3bt5H4N8lkv9gi6Yv+O9GQ/zF/S65Xapqp2B62a1H/T8UFX/p6oeDvwGvaTuzwd4T333txRJ3gw8BXhSM5ZGWjaOkZGWSZIdm1/6nwA+WlWnNdWN9wPvSLJb026PGWM3FtrfmiTPSbJT0+VzPbClT/Nf0rti5D81icsUvS6fftUY6CVHv5vkoCSrgdcAtwHfGSDGXZK8Ocn9kmyT3uDfFwLTXTf/CrwgyQFJtqPXbXFSVV1QVVfQS2ie2wxSfSGLf2keBbw2ycObAaz3S3If4PvA9c1A23XN/vZvkkqSPDfJ3ZvP49pmX/3OJcCbm/P/28DTgE/dmc9yxvl6bJJ7N7HvRe8qt8/1ab4DsBm4Atg2yV/RG/eykKOAv0myb3OMBye5W5JHJPnN5vO9CbgV2DLAezqa3ud3UPP57pHkAYO+32Z/bwD+EHhi080lqWEio1HxhSQ30Pv1+j/pjXl4wYzn/4LegNjvpXd1yVf51XEOC3kecEHzupcwYwDvLP8LeFPTPfDaGds/DDwI+Gi/A1TVOc1+/4neL/Sn0xs4PN94mtluB/am956uB06nlwQd3uz7a8BfAp8GLqWXqMwcU/JiepWBq+hVChZMnqrqU8Df0kuQbqBXpbprVW1p4j4AOL95H0fR64oBOBg4I8mN9Ab+HrpAF9BlwDX0qjAfA14yY1zInfksAR4GfJdeMvEdeuer3ySDxwP/F/gJve6tW5nblTTb2+klpl+h93kcTW+80470EpZrmn1dRW8s1ILvqXoD118AvINeNeibzKiwDejv6FW1fpr/mjvnjUvch9RXEbawTSu35Ra7WaWFpTf52BFV9ZiuYxkHSR5Lr5q2Z9exSBrMrz94u/rwv+/eyrEeeZ8LN1XVhuXa31hNjiW1Lcl64H8A7+06FkkapmFcUdQGu5akPpoxDlfQGzvzrx2HI0mahxUZqY+qOh5YaKI1zaOqvgHYrSSNkemrlsaRFRlJkjS2xqIisybb1Vp/GEut2+/BN3cdwrxOu+ruizdq2TYLXYjekdWX3bR4I42kW7mJ2+u28SyRtGwsEpm1bM9v5qCuw5AmzvHH/6jrEOa170f+tOsQ5lhz3eh95+z5d4tOY6QRdVJ9reUjhi01np004xm1JEkSY1KRkSRJw1PA1JjWNsYzakmSJKzISJIkvPxakiSpdVZkJEmacFVetSRJktQ6KzKSJIkpx8hIkiS1y4qMJEkTrrdo5HjWNsYzakmSJKzISJIk11qSJElqnxUZSZImnGstSZIkdcBERpIkjS27liRJElvKCfEkSZJaZUVGkqQJV2RkJsRLcn/g32Zsui/wV1X1zvnam8hIkqSRUVXnAAcAJFkF/AL4TL/2JjKSJImp0ZwQ7yDgZ1V1Yb8GJjKSJKlNuyY5ecbjjVW1sU/bQ4GPL7QzExlJkiZcy4tGXllVGxZrlGQN8AzgDQu1G8k6kiRJmnhPAU6pql8u1MiKjCRJE67IKM4jcxiLdCuBFRlJkjRikqwHnggct1hbKzKSJGmkFo2sqpuBuw3SdnSiliRJWiIrMpIkTbgq2DKa88gsajyjliRJwoqMJEkiTDFyVy0NxIqMJEkaWyYykiRpbNm1JEnShCvGd7CviYwm0pV/cmDXIcxx/X27jmCu+33jgK5DmNc2W7qOYK51v6yuQ5AmkomMJElqc9HIZTWeUUuSJGFFRpKkiVeEqdFbNHIgVmQkSdLYsiIjSZIcIyNJktQ2KzKSJE24AqbGdB6Z8YxakiQJKzKSJImwxUUjJUmS2mVFRpKkCecYGUmSpA5YkZEkSY6RkSRJapsVGUmSJlxVHCMjSZLUtqElMkk+kOTyJKfP2HbXJCck+Wnzd5dhHV+SJK18w6zIfAg4eNa21wNfq6p9ga81jyVJUse21Dat3Jbb0BKZqjoRuHrW5kOAY5r7xwDPHNbxJUnSytf2YN97VNWlAFV1aZLd+jVMcgRwBMBa1rcUniRJk6eAKS+/Xl5VtbGqNlTVhtVs13U4kiRpBLVdkfllkt2baszuwOUtH1+SJM2RoYxfaUPbUX8eeH5z//nA51o+viRJWkGGVpFJ8nHgscCuSS4GjgT+HvhkkhcBPwf+YFjHlyRJg+ktGjmeY2SGlshU1WF9njpoWMeUJEmTxSUKJEkSW0b3+p8FjWfUkiRJWJGRJGniFRnbMTJWZCRJ0tiyIiNJkpga09rGeEYtSZKEFRlJkiZeFWxxjIwkSVK7TGQkSdLYsmtJkiR5+bUkSVLbrMhIkjThehPijWdtw0RmK53/8Yd0HcIc607avusQ5nXLPavrEOaa6jqAuba9efTKunf8Yl3XIcwrW7qOYK6p1V1HMNdlr3xU1yHMcc93fafrELTCmMhIkiS2MHo/pgYxnnUkSZIkrMhIkjTxCq9akiRJap0VGUmSJt74XrU0nlFLkiRhRUaSJAFTXrUkSZLULisykiRNuCrY4lVLkiRJ7bIiI0mSvGpJkiSpbSYykiRppCTZOcmxSc5OclaSA/u1tWtJkqQJV2TUlih4F/Dlqvr9JGuA9f0amshIkqSRkWRH4HeAwwGq6nbg9n7tTWQkSVKbE+LtmuTkGY83VtXGGY/vC1wBfDDJQ4BNwCur6qb5duYYGUmS1KYrq2rDjNvGWc9vCzwMeF9VPRS4CXh9v51ZkZEkacIVjNIYmYuBi6vqpObxsSyQyFiRkSRJI6OqLgMuSnL/ZtNBwJn92luRkSRJozYh3suBjzVXLJ0HvKBfQxMZSZI0UqrqR8CGQdqayEiSNOlq5OaRGdhI1ZEkSZKWwoqMJEkTrmh1HpllZUVGkiSNLSsykiTJMTKSJEltsyIjSdKEG7GZfZfEiowkSRpbJjKSJGls2bUkSZLsWpIkSWqbFRlJkiZc4RIFkiRJrbMiI0mSXKJAkiSpbeNRkdlvNfmXPbqO4les+sb2XYcwxy27VdchzGu7q0cvy79t59E7V1Pbjl5M6y8dvc8OoFZ1HcFcm9d3HcFcmeo6Ao2N8qolSZKk1o1HRUaSJA2NSxRIkiR1wIqMJEmyIiNJktQ2KzKSJE04Z/aVJEnqgBUZSZJEWZGRJElql4mMJEkaW3YtSZIkF42UJElqmxUZSZImXLlopCRJUvusyEiSJC+/Xookf5bkjCSnJ/l4krVdxCFJksZb64lMkj2AVwAbqmp/YBVwaNtxSJKkab0lCtq4LbeuxshsC6xLsi2wHrikozgkSdIYa32MTFX9IslbgZ8DtwBfqaqvzG6X5AjgCIC199ih3SAlSZowjpEZUJJdgEOAfYB7Adsnee7sdlW1sao2VNWG1TutaztMSZI0Brq4aukJwPlVdQVAkuOARwEf7SAWSZImXuE8Mkvxc+C3kqxPEuAg4KwO4pAkSWOuizEyJyU5FjgF2Az8ENjYdhySJKlRvdl9x1EnE+JV1ZHAkV0cW5IkrRzO7CtJklz9WpIkqW0mMpIkaWzZtSRJ0oQrnBBPkiSpdVZkJEmaeMNZ0LENVmQkSdLYsiIjSZLGdkI8KzKSJGlsWZGRJEletSRJktQ2KzKSJE24qvGtyIxFInPbzWs495S9ug7jV0zttqXrEOa426bRLLBddcBU1yHMsfby0TtXW9aO3ki7zdt3HcH81l45eufqjh1G70vgjnVdRzDXLc98ZNchzGvdZ7/fdQjaSmORyEiSpOFyHhlJkqSWWZGRJEnOIyNJktQ2KzKSJGlsr1qyIiNJksaWFRlJkjRSklwA3ABsATZX1YZ+bU1kJEmacEVGsWvpcVV15WKN7FqSJEljy0RGkiRRLd2AXZOcPON2RJ9wvpJkU5/n/5NdS5IkqU1XLjTmpfHoqrokyW7ACUnOrqoT52toIiNJ0qQbsUUjq+qS5u/lST4DPBKYN5Gxa0mSJI2MJNsn2WH6PvAk4PR+7a3ISJKk/xzAMgLuAXwmCfTylH+tqi/3a2wiI0mSRkZVnQc8ZND2JjKSJGmkxsgshWNkJEnS2LIiI0mSqNEZI7MkVmQkSdLYsiIjSdKEKxwjI0mS1DorMpIkTboCrMhIkiS1y0RGkiSNrYG6lpLsAtwLuAW4oKqmhhqVJElq1bheft03kUmyE/BS4DBgDXAFsBa4R5LvAe+tqv9oJUpJkqR5LFSRORb4MPDbVXXtzCeSPBx4XpL7VtXRwwxQkiS1YKVVZKrqiQs8twnYNJSIJEmSBrRQ19KTgR2q6thZ258DXF5VJww7OEmS1IasyAnx3gx8c57tXwPeMpxwJEmSBrfQGJn1VXXF7I1VdVmS7YcYkyRJatuYjpFZqCKzNsmcRCfJamDd8EKSJEkazEKJzHHA+2dWX5r7/9w8J0mSVoLqLRrZxm25LZTIvAn4JXBhkk1JNgEX0JtP5k3LHokkSdISLXT59Wbg9UneDNyv2XxuVd3SSmSSJKk9K22MTJLXATSJywOq6rTpJCbJ37UUnyRJUl8LXbV0KPAPzf03AJ+a8dzBwBuHFdRsq26DHc4bsfUtRywcgG22jGY6vea60ZuboAZaZaxd210zeucpW7qOYH633N1zNYhtb+46grmu22cE/+PDK1h6Ru+/q0Es9HWcPvfneyxJktS6hVLj6nN/vseSJGmcjek3+0KJzEOSXE+v+rKuuU/zeO3QI5MkSVrEQlctrWozEEmSpKVadNRVkgcBD2genllVZww3JEmS1LqV1rWUZCfgc8C9gR/T61J6UJKfA4dU1fX9XitJktSGhSoyfwOcDDy+qqYAkmwD/D3wt8DLhx+eJEkaugKGsHxAGxZKZJ4APHg6iQGoqqkkbwROG3pkkiRJi1gokbm9WabgV1TV5iS3DTEmSZLUslppY2SAtUkeyvyT4W03vJAkSZIGs1Aicynw9j7PXTaEWCRJUldWWkWmqh7XZiCSJElLNZqrd0mSpHaN6VVLI7iGsyRJ0mCsyEiSJDKmY2QWrcgk+XSS320mw1sWSXZOcmySs5OcleTA5dq3JEmaHIMkJ+8D/hD4aZK/T/KAxV4wgHcBX66qBwAPAc5ahn1KkqStUS3eltmiiUxVfbWqngM8DLgAOCHJd5K8IMnqpR4wyY7A7wBHN/u/vaquXep+JEmSBuouSnI34HDgj4Ef0quoPAw4YSuOeV/gCuCDSX6Y5Kgk289zzCOSnJzk5M233LQVh5EkSYNJ76qlNm7LbJAxMscB3wLWA0+vqmdU1b9V1cuBu2zFMbellwS9r6oeCtwEvH52o6raWFUbqmrDtuvm5DmSJEkDXbX07qr6+nxPVNWGrTjmxcDFVXVS8/hY5klkJEmSFtM3kUny3+e7P62qjtuaA1bVZUkuSnL/qjoHOAg4c2v2JUmSlsmYXn69UEXm6Qs8V8BWJTKNlwMfS7IGOA94wZ3YlyRJmlALrbU0tOSiqn4EbE23lCRJGoaVVpFJ8uqFXlhV/VbGliRJasVCXUs7tBaFJEnq1kqryFTVm9sMRJIkaakWvfw6yVrgRcBvAGunt1fVC4cYlyRJaksxlMnq2jDIzL4fAe4JPBn4JrAncMMwg5IkSRrEIInM/arqL4GbquoY4HeBBw03LEmS1KZUO7flNkgic0fz99ok+wM7AXsvfyiSJElLM8gSBRuT7AL8JfB5eusr/dVQo5IkSe1aaVctTauqo5q736S3crUkSdJIGOSqpe2A36PXnfSf7avqLcMLS5IkaXGDdC19DrgO2ATcNtxwJEmSBjdIIrNnVR089EgkSVJnhnFFURsGuWrpO0m83FqSJLUmyaokP0zy7wu1G6Qi8xjg8CTn0+taClBV9eBliHMgU6vh1t3aOtpgdj5nqusQ5rhxj0Hy0vaturXrCObasl3XEcy1zR2Lt2nbHXfpOoL5rbti9H463rH96M2KOrWm6wjmMXqnSdNGb2bfVwJnATsu1GiQROYpyxKOJEnSAJLsSW8C3r8FXr1Q276JTJIdq+p6XI5AkiQtn12TnDzj8caq2jirzTuB1wE7LLazhSoy/wo8jd7VSsWvFgQL55SRJGllKNqcEO/KqtrQ78kkTwMur6pNSR672M76JjJV9bTm7z5bE6UkSdJWeDTwjCRPBdYCOyb5aFU9d77Gg0yI97B5Nl8HXFhVm+9UqJIkaTSMyBj6qnoD8AaApiLz2n5JDAw22Pe9wMOAU+l1Lz0I+DFwtyQvqaqv3NmgJUmStsYg1+teADy0qjZU1cOBA4DTgScA/zDE2CRJUktS7dyWoqq+MT3UpZ9BEpkHVNUZM3Z6Jr3E5rylhSNJkrS8BulaOifJ+4BPNI+fDfykWUxyBKfwkiRJSzYiY2SWapCKzOHAucCrgD8Dzmu23QE8bliBSZIkLWbRikxV3QK8rbnNduOyRyRJkto3phWZhWb2/WRVPSvJaczz9tpca0mSJGk+C1VkXtn8XXC0sCRJGm9bc0XRqFhoZt9Lk6wCjq6qJ7QYkyRJ0kAWHCNTVVuS3Jxkp6q6rq2gJElSyyqLtxlBg1x+fStwWpITgJumN1bVK4YWlSRJ0gAGSWS+2NwkSdJKtdLGyEyrqmOSrAH2azadU1VOhCdJkjo3yOrXjwWOobfmUoC9kjy/qk4cbmiSJEkLG6Rr6W3Ak6rqHIAk+wEfBx4+zMAkSVJ7xvXy60GWKFg9ncQAVNVPgNXDC0mSJGkwg1RkTk5yNPCR5vFzgE3DC0mSJLVuTCsygyQyfwq8FHgFvTEyJwLvHWZQkiRJgxjkqqXbgLc3N0mStNKM8RIFfcfIJPlCkqcnmTMeJsl9k7wlyQuHG54kSVJ/C1VkXgy8GnhnkquBK4C1wD7AucC7q+pzww9RkiQN3ZhWZBZaNPIy4HXA65LsDewO3AL8pKpubiU6SZKkBQwy2JequoDehHiSJGklGtOKzCDzyEiSJI2kgSoykiRpZVtxVy1JkiSNur4VmSSnMX+PWYCqqgcPLSpJkqQBLNS19LTWopAkSdoKC11+feH0/ST3Afatqq8mWbfQ6yRJ0hhaqWNkkrwYOBb4l2bTnsBnhxmUJEnSIAYZ7PtS4NHA9QBV9VNgt2EGJUmSNIhBuohuq6rbkwCQZFtaLkCtueQm7v3X32nzkIu6+A2P6jqEsbHm+q4jmGvLmq4jmGvL2q4jmGvbW7qOYH61Kl2HMMetu41eXX6H87uOYK5rHrq56xDmdeWfHNh1CL9i86e/1+4BV+KikTN8M8kbgXVJngh8CvjCcMOSJEla3CCJzOvpLRh5GvAnwJeANw0zKEmS1LJq6bbMBula2rWq3g+8f3pDkvsD5yx/OJIkSYMbpCLzrSTPmn6Q5DXAZ4YXkiRJat0Krsg8FtiY5A+AewBnAY9c/lAkSZKWZtGKTFVdCnwZOBDYG/hwVd045LgkSVJLQu+qpTZuy23RikySE4BLgf3pTYb3gSQnVtVrlz8cSZKkwQ0yRuY9VfVHVXVtVZ0OPAq4bshxSZKkNq3UMTJV9dlZjzcDf7P8oUiSJC1N30Qmyber6jFJbuBXc6gAVVU7Dj06SZI0fGM8s+9Cq18/pvm7Q3vhSJIkDW6hisxa4CXA/YBTgQ803UqSJGmlGdOKzEKDfY8BNtBbmuCpwNtaiUiSJGlACw32fWBVPQggydHA99sJSZIktW4FVmTumL5jl5IkSRpFC1VkHpLk+uZ+gHXN42W5ainJKuBk4BdV9bQ7sy9JkjSZFrpqadWQj/1Keus2eRm3JEkdG9fLrweZ2XfZJdkT+F3gqC6OL0mSVoZBVr8ehncCrwP6zlGT5AjgCIC1rG8pLEmSJpQVmcEkeRpweVVtWqhdVW2sqg1VtWE127UUnSRJGiddVGQeDTwjyVOBtcCOST5aVc/tIBZJkjSkBR3b0HpFpqreUFV7VtXewKHA101iJEnS1uhqjIwkSRoh43rVUqeJTFV9A/hGlzFIkqTxZUVGkiQ5RkaSJKltVmQkSdLYjpGxIiNJksaWFRlJkjQyY2SSrAVOBLajl6ccW1VH9mtvIiNJkkbJbcDjq+rGJKuBbyf5v1X1vfkam8hIkjTpRmhm36oq4Mbm4erm1jc6x8hIkqQ27Zrk5Bm3I2Y3SLIqyY+Ay4ETquqkfnXpKDwAABBrSURBVDuzIiNJktp0ZVVtWKhBVW0BDkiyM/CZJPtX1enztbUiI0nShEuLt6WoqmvprQBwcL82JjKSJGlkJLl7U4khyTrgCcDZ/drbtSRJkkZmsC+wO3BMklX0Ci6frKp/79fYRGYrbVnbdQRz7XLOVNchzGtq1VKLicN3w96jFxMj+PGtvXJ0/s820+07jt7nt81tXUcw14337jqCudZfsLrrEOZ17QNG6z/AUfyOaUtVnQo8dND2JjKSJMklCiRJktpmRUaSJI3SGJklsSIjSZLGlhUZSZJkRUaSJKltVmQkSZp05VVLkiRJrbMiI0mSHCMjSZLUNisykiTJMTKSJEltM5GRJEljy64lSZLkYF9JkqS2WZGRJEkO9pUkSWqbFRlJkiZd4RgZSZKktlmRkSRJVmQkSZLaZkVGkqQJF7xqSZIkqXVWZCRJkmNkJEmS2mZFRpIkkRrPkowVGUmSNLasyEiSNOmc2VeSJKl9JjKSJGls2bUkSZKcEE+SJKltVmQkSZKDfSVJktpmRUaSJDlGRpIkqW1WZLbSfY78TtchzHH1Cw/sOoR5bV6XrkOYI5u7jmCu7a4dvZ9DN+8+ep8dwG27jN652vbm0TtXNYKDHra7ZvRiAtjz777XdQi/4qq6qf2DjuZHsygrMpIkaWxZkZEkadKVY2QkSZJaZ0VGkiQ5RkaSJKltVmQkSZpwwTEykiRJrbMiI0mSoMazJGNFRpIkjS0TGUmSNLbsWpIkSQ72lSRJapsVGUmSJl3hhHiSJEltsyIjSZLIVNcRbJ3WKzJJ9kryH0nOSnJGkle2HYMkSVoZuqjIbAZeU1WnJNkB2JTkhKo6s4NYJEkSOEZmUFV1aVWd0ty/ATgL2KPtOCRJ0vjrdIxMkr2BhwInzfPcEcARAGtZ32pckiRNGueRWaIkdwE+Dbyqqq6f/XxVbayqDVW1YTXbtR+gJEkaeZ1UZJKsppfEfKyqjusiBkmS1ChcNHJQSQIcDZxVVW9v+/iSJGnl6KJr6dHA84DHJ/lRc3tqB3FIkqRGqp3bonEscZqW1ruWqurbQNo+riRJGgtLmqbFmX0lSdLIzCNTVZcClzb3b0gyPU2LiYwkSercrklOnvF4Y1VtnK/hQtO0TDORkSRJbbqyqjYs1mixaVqmmchIkjThwmhNiLeUaVo6mxBPkiRptqVO02IiI0nSpKtq77a4JU3TYteSJEkaGUudpsVERpIkjdQYmaWwa0mSJI0tKzKSJGlkJsRbKisykiRpbFmRkSRJjpGRJElqmxWZFeTGe4/mouJrru06gnmM4KnavH70gtrm9q4jmN/aq0bvXN3rmzd1HcIc+e6Puw5B46KAqfEsyViRkSRJY8uKjCRJ8qolSZKktlmRkSRJXrUkSZLUNhMZSZI0tuxakiRJUOPZt2RFRpIkjS0rMpIkycG+kiRJbbMiI0nSpCucEE+SJKltVmQkSZpwAeJVS5IkSe2yIiNJkmCq6wC2jhUZSZI0tqzISJIkx8hIkiS1zYqMJEmTznlkJEmS2mdFRpKkiVeufi1JktQ2KzKSJMnVryVJktpmIiNJksaWXUuSJMnBvpIkSW2zIiNJ0qQriItGSpIktcuKjCRJcoyMJElS26zISJIkF42UJElqmxUZSZJEHCMjSZLULisykiRpbK9aMpFZQdZc23UE81t12wj+x1HpOoI5bjnwxq5DmGOfQ0/tOgRJWpCJjCRJk64AZ/aVJElqlxUZSZImXCivWpIkSWqbiYwkSRpbdi1JkqSxvfzaiowkSRpbVmQkSZIVGUmSpLZZkZEkadI5IZ4kSVL7rMhIkiQnxJMkSWqbFRlJkuRVS5IkSXdWkg8kuTzJ6YO07ySRSXJwknOSnJvk9V3EIEmSplWvItPGbXEfAg4eNPLWE5kkq4D3AE8BHggcluSBbcchSZJGT1WdCFw9aPsuxsg8Eji3qs4DSPIJ4BDgzA5ikSRJRZtjZHZNcvKMxxurauPW7qyLRGYP4KIZjy8GfnN2oyRHAEcArGV9O5FJkqRhu7KqNizXzrpIZDLPtjlpYJOdbQTYMXcdz6HUkiSNC2f2HdjFwF4zHu8JXNJBHJIkacx1kcj8ANg3yT5J1gCHAp/vIA5JkjRiknwc+C5w/yQXJ3nRQu1b71qqqs1JXgYcD6wCPlBVZ7QdhyRJ+i+jskRBVR22lPadzOxbVV8CvtTFsSVJ0srhEgWSJMklCiRJktpmRUaSpElXwJQVGUmSpFZZkZEkaeINvKDjyLEiI0mSxpYVGUmSZEVGkiSpbVZkJEmSFRlJkqS2WZGRJGnSOY+MJElS+8aiInMD11z51Tr2wmXY1a7Alcuwn9H0jmOXc28r+1wtn+U7T+9clr0sq58t7+78NzUYz9NgVvp5uk+7hyuoqXYPuUzGIpGpqrsvx36SnFxVG5ZjXyud52ownqfBea4G43kajOdJ0+xakiRJY2ssKjKSJGnIvPx6LGzsOoAx4rkajOdpcJ6rwXieBuN5EgCpMc3AJEnS8thpzT3qUfc8rJVjffmid21azvFNk1aRkSRJK4hjZCRJkmNkRl2Sg5Ock+TcJK/vOp5RlGSvJP+R5KwkZyR5Zdcxjbokq5L8MMm/dx3LqEqyc5Jjk5zd/Ns6sOuYRlWSP2v+2zs9yceTrO06plGQ5ANJLk9y+oxtd01yQpKfNn936TJGdWciEpkkq4D3AE8BHggcluSB3UY1kjYDr6mqXwd+C3ip52lRrwTO6jqIEfcu4MtV9QDgIXi+5pVkD+AVwIaq2h9YBRzabVQj40PAwbO2vR74WlXtC3yteaw7o6qd2zKbiEQGeCRwblWdV1W3A58ADuk4ppFTVZdW1SnN/RvofeHs0W1UoyvJnsDvAkd1HcuoSrIj8DvA0QBVdXtVXdttVCNtW2Bdkm2B9cAlHcczEqrqRODqWZsPAY5p7h8DPLPVoDQyJiWR2QO4aMbji/ELekFJ9gYeCpzUbSQj7Z3A64DxnNe7HfcFrgA+2HTBHZVk+66DGkVV9QvgrcDPgUuB66rqK91GNdLuUVWXQu9HGLBbx/GMuZaqMVZktlrm2Taeo5pakOQuwKeBV1XV9V3HM4qSPA24vKo2dR3LiNsWeBjwvqp6KHATdgHMqxnjcQiwD3AvYPskz+02Kmn0TUoiczGw14zHe2LJdl5JVtNLYj5WVcd1Hc8IezTwjCQX0OuqfHySj3Yb0ki6GLi4qqYre8fSS2w01xOA86vqiqq6AzgOeFTHMY2yXybZHaD5e3nH8Yy3Aqam2rkts0lJZH4A7JtknyRr6A2g+3zHMY2cJKE3luGsqnp71/GMsqp6Q1XtWVV70/v39PWq8tfzLFV1GXBRkvs3mw4CzuwwpFH2c+C3kqxv/ls8CAdGL+TzwPOb+88HPtdhLOrQRMwjU1Wbk7wMOJ7elQAfqKozOg5rFD0aeB5wWpIfNdveWFVf6jAmjb+XAx9rfkScB7yg43hGUlWdlORY4BR6VxD+EKfhByDJx4HHArsmuRg4Evh74JNJXkQvCfyD7iJcIcZ0HhmXKJAkacLttHq3etTdfr+VY335l+9b1iUKJqIiI0mSFjGmhY1JGSMjSZJWIBMZSZI0tuxakiRp4hVM2bUkSZLUKhMZaYiSbEnyo2Y1408lWd9s/85W7m/vmSsAz3pu96Wuwp3kXs0lv4u1+1KSnZey7xmv/eskr23ufyjJwJdGJPlGs2r9j5P8IMkBs55/aJJK8uQZ29YkObFZr0jSIAqqplq5LTcTGWm4bqmqA5rVjG8HXgJQVcOYsfXVwPsHbZxk26q6pKoWTSyq6qkdLvb4nKp6CPBe4B9nPXcY8O3mL9BbmJLeasjPbi1CSZ0xkZHa8y3gfgBJbmz+/rckX03P7kl+kuSeSVYl+cemCnFqkj8ZYP+/B3y52e/aJB9MclqzWOPjmu2HN5WhLwBfmVnhaWaU/WRzvH9LclKSDc1zFyTZtWl/VpL3JzkjyVeSrGvavLiJ98dJPj1dfZpPkoOSfGbG4ycmWWxJjO8yY7HXZvbb3wcOB56UZO2Mtp8FnjPAOZM0barauS0zExmpBU03x1OA02Zur6rPAJcBL6VXTTmymdb/RfRWP34E8AjgxUn2WWD/+wDXVNVtzaaXNvt/EL1qxTEzvugPBJ5fVY+ftZv/0ezjwcDfAA/vc7h9gfdU1W8A19JLoACOq6pHNNWTs5r30M/XgV9Pcvfm8QuADy7QHuBgegnKtEfTW5voZ8A3gKfOeO50eudN0gpnH7I0XOtmLPfwLXprWc32cnpfvN+rqo83254EPHjGeJKd6CUQP+lznN2BK2Y8fgzwTwBVdXaSC4H9mudOqKqr59nHY4B3Na85PcmpfY51flVNv6dNwN7N/f2T/H/AzsBd6C0JMq+qqiQfAZ6b5IP0kqs/6tP8Y0m2p7e8yMwFJw+jt2Anzd/n0VtokarakuT2JDtU1Q394pA0w5hOiGciIw3XLVV1wCJt9gCmgHsk2aZ6o+ECvLyqfiUZSLJ3v+MAM7tWssDxbuqzfaHXzHTbjPtbgHXN/Q8Bz6yqHyc5nN7aOAv5IPAF4FbgU1W1uU+75wA/pre2znuA/55kFb1K0DOS/M8m9rvNSly2a/YtaQWza0nqUNPl9EHgD+l1x7y6eep44E+TrG7a7ddUJfr5Cf9VGQE4kWaMSJL9gHsD5ywSzreBZzWveSDwoKW8F2AH4NIm5kXHp1TVJcAlwJvoJUELtb2jafdbSX4deALw46raq6r2rqr7AJ8GntnEfzfgiuZ1khZTBVNT7dyWmRUZqVtvBL5VVd9quqB+kOSLwFH0EpNTmkGtV9B8Sc+nqm5K8rMk96uqc+ld4fPPSU6jt5Ly4VV1W29Xfb2X3liaU+mtvHwqcN0S3stfAicBF9IbC7TDAK/5GHD3qjpzsYZVdUuStwGvpdfN9JlZTT4N/CnwEeBxgKu2SxPA1a+lFSLJfwMeXlVv2srXrwJWV9WtSX6N3iXM+zWXMw9FkncDP6yq+cYO3Zn9Hge8oaoWq0JJAnZatWsduP3TWznW8Td8yNWvJc1VVZ9pulS21nrgP5quoQB/OuQkZhO98TqvWeb9rgE+axIjTQYTGWkFqaqj7sRrbwCW7VfSAMfrd3n3nd3v7cCHh7FvaSWrIYxfaYODfSVJ0tiyIiNJ0sSrsZ1HxoqMJEkaWyYykiRpbNm1JEnSpCuGsqBjG6zISJKksWVFRpIkQXn5tSRJUqusyEiSNOEKKMfISJIktcuKjCRJk67KMTKSJEltsyIjSZIcIyNJkrQckhyc5Jwk5yZ5/UJtrchIkqSRGSOTZBXwHuCJwMXAD5J8vqrOnK+9FRlJkjRKHgmcW1XnVdXtwCeAQ/o1tiIjSdKEu4Frjv9qHbtrS4dbm+TkGY83VtXGGY/3AC6a8fhi4Df77cxERpKkCVdVB3cdwwyZZ1vfkch2LUmSpFFyMbDXjMd7Apf0a2wiI0mSRskPgH2T7JNkDXAo8Pl+je1akiRJI6OqNid5GXA8sAr4QFWd0a99qsZzAhxJkiS7liRJ0tgykZEkSWPLREaSJI0tExlJkjS2TGQkSdLYMpGRJEljy0RGkiSNrf8fCXC/ecjTNwwAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAIuCAYAAABEs/foAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3debhkVXnv8e/PphmUSW0UZLBNwBEVtMUx9yKiolEwV1QIDiBKNBr1qhkkBgPe5KpJNCYYDYqKxjjhBAY1GEUhhqFBZkRbBeGCMg+tCHT3e//Y+2ilPKdOVXdX1TlV38/z7OdU1V6197ur4Jy337X2WqkqJEmS9Gv3GHcAkiRJC40JkiRJUhcTJEmSpC4mSJIkSV1MkCRJkrqYIEmSJHXZZNwBSJKkxeWZT71X3XjT2pGc69wL7/xaVe03kpN1MEGSJEkDufGmtZz9tV1Gcq4lO/xg2UhO1MUuNkmSpC5WkCRJ0kAKWMe6cYcxVFaQJEmSulhBkiRJAyrWlhUkSZKkqWIFSZIkDaQZg1TjDmOorCBJkiR1sYIkSZIG5l1skiRJU8YKkiRJGkhRrC3HIEmSJE0VK0iSJGlg3sUmSZI0ZUyQJEmSutjFJkmSBlLAWrvYJEmSposVJEmSNDAHaUuSJE0ZK0iSJGkgBU4UKUmSNG2sIEmSpIFN9lK1VpAkSdIilmTzJGcnuSDJJUmOnqPdC5Nc2rb51/mOawVJkiQNpKiFNA/SncA+VbU6yVLgjCRfqaozZxok2Q14C/Dkqro5yf3mO6gJkiRJWrSqqoDV7dOl7dadvb0SeF9V3dy+57r5jmuCJEmSBlOwdsEUkCDJEuBcYFeaROisriYPbtv9J7AE+Muq+mqvYzoGSZIkLWTLkqzs2I7oblBVa6tqD2AnYK8ku3c12QTYDdgbOBj4UJJte53UCpIkSRpIMdK72G6oqhX9NKyqW5KcBuwHXNyx62rgzKq6G/hxkstpEqZz5jqWFSRJkrRoJdluphqUZAtgX+B7Xc2+CDy1bbOMpsvtR72OawVJkiQNKKwl4w5ixg7ACe04pHsAn6mqLyc5BlhZVScBXwOekeRSYC3wx1V1Y6+DmiBJkqRFq6ouBPac5fWjOh4X8MZ264tdbJIkSV1MkKQ+JPmddlDfKM71kCTfTXJ7kteN4pxaXJI8P8kfJ7EXQGNRwLoazTYuJkhaVJJckeSONnm4Jcl3krwqyVD/W66q06vqIV1x7Duk0/0JcFpVbVVV/9C9M8kjkvx7kpvbz+DcJM8eUiyLWpK9k6xLsrpje9m449oQSV4EfAg4BPhwknTt/9skP2j/H/lekpeOJVBpkfNfH1qMnltVX0+yDfA/gfcCjwcOG29YG80DgU/12H8y8H7gOe3zx8HGHy2ZZJOqWrOxjzssPeK9pqp2GuH5hqZNyv8eeDrwfeAU4F3AH3c0+znw3Hb/44CvJllVVd8ZZayafAtokPZQWEHSolVVt7Z3J7wIeNnMxGBJNmv/Ff2TJD9L8oH21s+ZisLVSd6U5Lok1yb5VWKV5NntYoa3J/l/Sd7c+b728ceBXYCT24rEnyT5tyR/1BlfkguTPG+22JPs3y6YeEuS05I8rH39GzS3oh7bHvvBXe9bBjwI+GBV3dVu/1lVZ3S0eWWSVUluSnJSkge0ry9PUp3dMu25X9E+PjTJfyZ5T5KbgL/sON5l7WdyaZLHtK8/IMnnklyf5Med3YFJ9mondLut/Q7ePcfnMPN9HJnkhrYyd0jH/n6+yz9N8lPgI7OdYxBJ3pvkqjbuc5P8Tse+v0xyYpJ/SXIbcGiSJW3sP2w/n3OT7JzGe9r/xm5t/1uY97/Pdv8BSc5vY/hhkv3a11cA/ww8s6pWVtVtwDOBx8z8dwpQVW+rqu9V1bp2NuHTgSdu6GcjTRsTJC16VXU2zSRgM3/M3kkzx8UeNNPO7wgc1fGW7YFt2tcPB96X5N7tvuOBP6iqrYDdgW/Mcr6XAD+hqWRtWVXvAk4AXjzTJsmj2+Of0v3+Nun5JPAGYLu2zclJNq2qfWj+oL22Pfb3u95+I7AK+Jckz0ty/65j7wP8X+CFNLe+XknvalS3x9PMDXI/4K+SvIAmUXopsDWwP3Bjmi7Nk4EL2ut8GvCGJM9sj/Ne4L1VtTXw28Bnepxze2BZe5yXAcclmenO7Oe7vA9N1e03Ztdt3a9NRH7cJi336hHLOe257gP8K/DZJJt37D8AOBHYFvgEzR0xBwPPpvl8Xg78AngG8D/a2LelSeJnbime85qS7AV8jKYitG17jCsA2qTot9s7dmhf+3lVPa2q/na2i2kTr8cBl/S4ZmlgRVNBGsU2LiZImhTXAPdJEppFCf93Vd1UVbcDfw0c1NH2buCYqrq7qk6hWeTwIR37Hp5k66q6uarO6/P8XwJ2S7NiNMBLgE9X1V2ztH0R8G9VdWo7q+vfAlsAT5rvJO2tqk+l+aP5d8C1Sb7dcd5DgA9X1XlVdSfN6tVPTLK8z+u4pqr+sarWVNUdwCuAd1XVOdVYVVVX0vzR3a6qjmmrWD8CPsivP+e7gV2TLKuq1Z2ras/hL6rqzqr6FvBvwAv7/C7XAW9r33vHLMf9Hk0isgOwD/BYYNZqFkBV/UtV3dhe/98Bm/Hr/zYA/quqvthWZ2Y+n7dW1eXt53NBO7fK3cBWwEOBVNVlVXVtH9d0OM33d2p7jv9XVd0T3g3iAzRJ7Nc24BjSVDJB0qTYEbiJpiJzT+DctvvqFuCr7eszbuwaO/ILYMv28fNpqgFXJvlWkr66Jtpk5DPAi9vqysHAx+do/gCays7Me9cBV7XX0M+5rq6q11bVb9NUTn5OU3WY7diraSoXfR27jaPTzsAPZ2n3QOABM59x+zkfCcxUtA6nqZJ8L8k5SZ4zyzFm3FxVP+94fmV7Hf18l9dX1S/nOnBV/bSqLm2TjR/TDIA/cK72abpeL2u7xW6hqTQu62jS1+dTVd8AjgXeB/wsyXFJtu7jmub6vAeW5G9oqqAvbBNraaNaVxnJNi4mSFr0kjyOJgE4A7gBuAN4RFVt227bVNWWPQ/SaislB9B0MX2RubuGZvuDcwJNBedpwC+q6r/meO81NAnGTPyh+cP4//qJsSveq2j+CM8szNh97HsB922PPZOE3LPjENt3H7Lr+VU0XWTdrgJ+3PEZb9vedffsNq4fVNXBNJ/jO4ETe3Rt3btr3y7tdfTzXQ76h7+YY0B7O97oT2m6J+9dVdsCt3a17/fzoar+oaoeCzyCJln84z6uac7jDSLJ0cCzgGe0Y5UkDcgESYtWkq3bysSngH+pqovaaswHgfckuV/bbseOsTG9jrdpkkOSbNN2fd1GMyX9bH4G/FbnC21CtI6m62uu6hE0SdfvJnlakqXAm4A7gXnvMkpy7yRHJ9k1yT3SDNp+OTDThfWvwGFJ9kiyGU33zVlVdUVVXU+TKL24HVz8cub/Y/wh4M1JHtsOPN41yQOBs4Hb2gHSW7TH271NVkny4iTbtd/HLe2x5vosAY5uP//fobk777Mb8l12fF57J9mljX1n4B003aGz2QpYA1wPbJLkKJpxRb18CHh7kt3aczwqyX2TPC7J49vv9+fAL4G1fVzT8TTf39Pa73fHJA/t93rb470F+H3g6TXPUgrS+nIMkrQwnZzkdpp/bf85zZiSzlv8/5RmIPOZae42+jr/fRxJLy8Brmjf9yo6Bl53+b/AW9tukjd3vP4x4JHAv8x1gqq6vD3uP9JUFJ5LM+B7tvFK3e4CltNc0200q1XfCRzaHvs/gL8APgdcS5MAdY7ZeSVNJeNGmspGz6Ssqj4L/BVN4nU7TVXtPlW1to17D+DH7XV8iKZLCpqVtC9JsppmwPZBPbrCfgrcTFM1+gTwqo5xNxvyXQI8BvgvmiTlOzSf11yTb34N+ArN7fFX0iQ13V1q3d5Nk/D+O833cTzNeLKtaRKhm9tj3Ugz1qznNVVzw8FhwHtoqlffoqMi2Ke/pqnC/SC/nvvpyAGPIU292DUtbTxpJuU7oqqeMu5YFoMke9NU/zb6PEWShudhj9qsPvblHUZyrr0eeOW5VbViJCfrYAVJ2kiS3BP4Q+C4ccciSdowY0uQkmye5OwkF6SZMO/oWdocmmYSuvPb7RXjiFWaTzuG5HqasUn/OuZwJGnoJv0utnEuNXInsE9VrW4HMp6R5CuzzJfy6ap67Rjik/pWVV8Dek1AqFlU1WmA3WuSFpyxJUjtvByr26dL280BUZIkLXAzd7FNsrGOQWpvDT4fuA44tZp1g7o9P806Rie2t+lKkiQN1Ti72GhvFd4jybbAF5LsXlUXdzQ5GfhkVd2Z5FU0E/Ht032cJEfQrsN0j82XPnaLne8zgug1DA/d4pb5G2lBuqt6TXOkhe6Ki7YadwjaALdz8w1Vtd38LdWvsSZIM6rqliSn0cydcnHH652TnH2QZkbe2d5/HO2dQ1s+ePva430vHV6wGqpvP/IL4w5B6+nqNavnb6QF6/BdnJliMft6nXjl/K02prC2JvtG+HHexbZdWzmaWXF6X5qFJTvbdE6ysD9w2egilCRJ02qcFaQdgBOSLKFJ1D5TVV9OcgywsqpOAl6XZH+a6f9vop0tWJIkjU8B6yZ8KsVx3sV2IbDnLK8f1fH4LcBbRhmXJEnSghiDJEmSFhdv85ckSZoyVpAkSdJAqryLTZIkaepYQZIkSQNb5xgkSZKk6WIFSZIkDaRZrHayayyTfXWSJEnrwQqSJEkakHexSZIkTR0rSJIkaSDTsBbbZF+dJEnSejBBkiRJ6mIXmyRJGtjacqJISZKkqWIFSZIkDaSIE0VKkiRNGytIkiRpYOucKFKSJGm6WEGSJEkDcbFaSZKkKWQFSZIkDaSI8yBJkiRNGytIkiRpYC5WK0mSNGWsIEmSpIFUwVrnQZIkSZouVpAkSdKAwjq8i02SJGmqmCBJkiR1sYtNkiQNpHCQtiRJ0tSxgiRJkgbmYrWSJElTxgqSJEkaSBHWuVitJEnSdLGCJEmSBuYYJEmSpCljBUmSJA2kgHXOgyRJkjRdrCBJkqQBhbUuVitJkjRdrCBJkqSBOAZJkiRpCllBkiRJA3MMkiRJ0pSxgiRJkgZSFccgDUuSzZOcneSCJJckOXqWNpsl+XSSVUnOSrJ89JFKkqRpM870705gn6p6NLAHsF+SJ3S1ORy4uap2Bd4DvHPEMUqSpCk0ti62qipgdft0abtVV7MDgL9sH58IHJsk7XslSdKYrLWLbXiSLElyPnAdcGpVndXVZEfgKoCqWgPcCtx3tFFKkqRpM9ZB2lW1FtgjybbAF5LsXlUXdzSZ7R7C36geJTkCOAJgs/ttPZRYJUlSo4B13uY/fFV1C3AasF/XrquBnQGSbAJsA9w0y/uPq6oVVbVik222GHK0kiRp0o2tgpRkO+DuqrolyRbAvvzmIOyTgJcB/wUcCHzD8UeSJI1bJn4M0ji72HYATkiyhKaS9Zmq+nKSY4CVVXUScDzw8SSraCpHB40vXEmSNC3GeRfbhcCes7x+VMfjXwIvGGVckiSpt2axWscgSZIkTRWXGpEkSQNbO+E1lsm+OkmSpPVgBUmSJA2kiGOQJEmSpo0VJEmSNLB1E15jmeyrkyRJWg9WkCRJ0kCqYK1jkCRJkqaLCZIkSVIXu9gkSdLAvM1fkiRpylhBkiRJA2kmipzsGstkX50kSdJ6sIIkSZIGthbHIEmSJE0VK0iSJGkghXexSZIkTR0rSJIkaUDexSZJkrRgJdk8ydlJLkhySZKje7Q9MEklWTHfca0gSZKkga1bOHex3QnsU1WrkywFzkjylao6s7NRkq2A1wFn9XNQK0iSJGnRqsbq9unSdqtZmr4deBfwy36Oa4IkSZIGUgVrKyPZ+pFkSZLzgeuAU6vqrK79ewI7V9WX+71GEyRJkrSQLUuysmM7ortBVa2tqj2AnYC9kuw+sy/JPYD3AG8a5KSOQZIkSQMb4V1sN1TVvIOqAarqliSnAfsBF7cvbwXsDpyWBGB74KQk+1fVyrmOZQVJkiQtWkm2S7Jt+3gLYF/gezP7q+rWqlpWVcurajlwJtAzOQITJEmStLjtAHwzyYXAOTRjkL6c5Jgk+6/vQe1ikyRJAymyYJYaqaoLgT1nef2oOdrv3c9xrSBJkiR1sYIkSZIGtoAmihwKK0iSJEldrCBJkqSBFCyYMUjDYgVJkiSpixUkSZI0sBFOFDkWk311kiRJ68EKkiRJGkwtnHmQhsUKkiRJUhcrSJIkaSCF8yBJkiRNHStIkiRpYI5BkiRJmjJWkCRJ0kCcSVuSJGkKmSBJkiR1sYtNkiQNzC42SZKkKTO2BCnJzkm+meSyJJckef0sbfZOcmuS89vtqHHEKkmSfq1olhoZxTYu4+xiWwO8qarOS7IVcG6SU6vq0q52p1fVc8YQnyRJmlJjS5Cq6lrg2vbx7UkuA3YEuhMkSZK0wLjUyAgkWQ7sCZw1y+4nJrkgyVeSPGKkgUmSpKk09rvYkmwJfA54Q1Xd1rX7POCBVbU6ybOBLwK7zXKMI4AjALbeYQueuv33hxy1huW0OxZEzq71cNipbxx3CNoQH1o37gi0IQ4/cbTnK+9iG6okS2mSo09U1ee791fVbVW1un18CrA0ybJZ2h1XVSuqasW97r3p0OOWJEmTbWwVpCQBjgcuq6p3z9Fme+BnVVVJ9qJJ6G4cYZiSJKnLNCw1Ms4uticDLwEuSnJ++9qRwC4AVfUB4EDg1UnWAHcAB1VVjSNYSZI0PcZ5F9sZ0HsIfFUdCxw7mogkSVK/Jr2C5IhYSZKkLmO/i02SJC0uMzNpTzIrSJIkSV2sIEmSpIGVFSRJkqTpYoIkSZLUxS42SZI0MBerlSRJmjJWkCRJ0kDKxWolSZKmjxUkSZI0MG/zlyRJmjJWkCRJ0oBcakSSJGnqWEGSJEkDcwySJEnSlLGCJEmSBlI4D5IkSdLUsYIkSZIGU81s2pPMCpIkSVIXK0iSJGlg63AMkiRJ0lQxQZIkSepiF5skSRpI4USRkiRJU8cKkiRJGpCL1UqSJE0dK0iSJGlgThQpSZI0ZawgSZKkgXkXmyRJ0pSxgiRJkgZSZQVJkiRp6lhBkiRJA3MeJEmSpCljBUmSJA3MeZAkSZKmjBUkSZI0MO9ikyRJmjImSJIkSV3sYpMkSQMpYhebJEnStLGCJEmSBjbhd/lbQZIkSepmBUmSJA3GxWolSZKmjxUkSZI0uAkfhDS2ClKSnZN8M8llSS5J8vpZ2iTJPyRZleTCJI8ZR6ySJGm6jLOCtAZ4U1Wdl2Qr4Nwkp1bVpR1tngXs1m6PB97f/pQkSWPkGKQhqaprq+q89vHtwGXAjl3NDgA+Vo0zgW2T7DDiUCVJ0pRZEGOQkiwH9gTO6tq1I3BVx/Or29euHUlgkiRpVuUYpOFKsiXwOeANVXVb9+5Z3vIbX0mSI5KsTLLy5zffNYwwJUnSFBlrBSnJUprk6BNV9flZmlwN7NzxfCfgmu5GVXUccBzAAx6x7YTntJIkjVfhGKShSRLgeOCyqnr3HM1OAl7a3s32BODWqrJ7TZIkDdU4K0hPBl4CXJTk/Pa1I4FdAKrqA8ApwLOBVcAvgMPGEKckSepUwIRXkMaWIFXVGcw+xqizTQGvGU1EkiRJjb4SpCT3Bh4A3AFcUVXrhhqVJEnSGM2ZICXZhqZ6czCwKXA9sDlw/yRnAv9UVd8cSZSSJGlBmfTb/HtVkE4EPgb8TlXd0rkjyWOBlyT5rao6fpgBSpIkjdqcCVJVPb3HvnOBc4cSkSRJWvgmvII0523+SZ6Z5MBZXj8kyZzJkyRJ0mLXq4vtaOC5s7z+H8AXgFOHEpEkSVrgMtUTRd6zqq7vfrGqfgrca3ghSZIkjVevCtLmSTapqjWdL7bLg2wx3LAkSdKCNq1jkIDPAx9M8qtqUfv4A+0+SZKkidQrQXor8DPgyiTnJjkXuIJmPqS3jiA2SZK0EFWzWO0otnHpdZv/GuDPkhwN7Nq+vKqq7hhJZJIkSWPS6zb/PwFoE6KHVtVFM8lRkr8eUXySJGkhqhFtY9Kri+2gjsdv6dq33xBikSRJWhB63cWWOR7P9lySJE2VyU4FelWQao7Hsz2XJEmaGL0qSI9OchtNirhF+5j2+eZDj0ySJC1cC6RUkmRz4NvAZjR5zYlV9bauNm8EXgGsobkb/+VVdWWv4/a6i23JhgYtSZI0ZHcC+1TV6nYy6zOSfKWqzuxo811gRVX9IsmrgXcBL+p10F4VJACSPBJ4aPv00qq6ZP3ilyRJ2riqqoDV7dOl7VZdbb7Z8fRM4MXzHXfOBCnJNsCXgF2AC2i61h6Z5CfAAVV121zvlSRJE26BdLEBJFkCnEszb+P7quqsHs0PB74y3zF7DdJ+O7AS2LWqfq+qngfsBpwD/FXfUUuSJK2/ZUlWdmxHdDeoqrVVtQewE7BXkt1nO1CSFwMrgL+Z76S9utj2BR5VVes6AliX5EjgovkOLEmSJlQBo1sG5IaqWtFPw6q6JclpNPM1Xty5L8m+wJ8D/7Oq7pzvWL0qSHe1y410n3wNzYAoSZKksUqyXZJt28db0BR4vtfVZk/gn4H9q+q6fo7bq4K0eXvA2SaJ3KzfwCVJ0uSphTMGaQfghHYc0j2Az1TVl5McA6ysqpNoutS2BD6bBOAnVbV/r4P2SpCuBd49x76fDhq9JEnSxlZVFwJ7zvL6UR2P9x30uL3mQXrqoAeTJElTYuFUkIai1xgkSZKkqTTvRJGSJEm/YXR3sY2FFSRJkqQu8yZIST6X5HeTmExJkiQAUqPZxqWfpOf9wO8DP0jyjiQPne8NkiRJi9m8CVJVfb2qDgEeA1wBnJrkO0kOa1fNlSRJ06RGuI1JX91mSe4LHAq8Avgu8F6ahOnUoUUmSZI0JvPexZbk88BDgY8Dz62qa9tdn06ycpjBSZKkhSgTfxdbP7f5H1tV35htR7+Lx0mSJC0mcyZISf7XbI9nVNXnhxWUJEnSOPWqID23x74CTJAkSZpWE77USK+12A4bZSCSJEkLRa8utjf2emNVvXvjhyNJkhaFaa0gAVuNLApJkqQFpFcX29GjDESSJC0iU1xBAiDJ5sDhwCOAzWder6qXDzEuSZKkselnJu2PA9sDzwS+BewE3D7MoCRJ0gJWNBNFjmIbk34SpF2r6i+An1fVCcDvAo8cbliSJEnj089M2ne3P29JsjvwU2D50CKSJEkLXqZ9DBJwXJJ7A38BnARsCRw11KgkSZLGaN4Eqao+1D78FvBbww1HkiQtCtNeQUqyGfB8mm61X7WvqmOGF5YkSdL49DNI+0vAAcAa4Ocd2wZL8uEk1yW5eI79eye5Ncn57WbXniRJGrp+xiDtVFX7Den8HwWOBT7Wo83pVfWcIZ1fkiTpN/RTQfpOkqHc1l9V3wZuGsaxJUnS8KRGs41LPwnSU4Bzk1ye5MIkFyW5cNiBdXhikguSfCXJI0Z4XkmSNKX66WJ71tCjmNt5wAOranWSZwNfBHbrbpTkCOAIgM222JZvHfmk0UapjeYT+/zOuEPQetpk7fhmvNWGe/sBnx13CNoAh4zjpGOc5XoU5qwgJdm6fXj7HNvQVdVtVbW6fXwKsDTJslnaHVdVK6pqxdJN7zWK0CRJ0gTrVUH6V+A5wLk0sx10porFCOZESrI98LOqqiR70SR0Nw77vJIkabrNmSDN3DlWVQ8a1smTfBLYG1iW5GrgbcDS9rwfAA4EXp1kDXAHcFBVTfjUVJIkLXCFE0UmecwsL98KXFlVazbk5FV18Dz7j6WZBkCSJGlk+hmk/U/AY4ALabrZHglcANw3yauq6t+HGJ8kSVqIJryC1M9t/lcAe7aDoB8L7AFcDOwLvGuIsUmSJI1FPxWkh1bVJTNPqurSJHtW1Y+Syb7FT5IkzW6ckziOQj8J0uVJ3g98qn3+IuD77SK2dw8tMkmSpDHpJ0E6FPhD4A00Y5DOAN5Mkxw9dWiRSZKkhWvaK0hVdQfwd+3WbfVGj0iSJGnM5kyQknymql6Y5CJmyROr6lFDjUySJC1cU1xBen378zmjCESSJGmh6DWT9rVJlgDHV9W+I4xJkiQtYKnJv4ut5zxIVbUW+EWSbUYUjyRJ0tj1cxfbL4GLkpwK/Hzmxap63dCikiRJC1tN9lyI/SRI/9ZukiRJU6Gf2/xPSLIp8OD2pcurygkiJUmaZhM+BmneBCnJ3sAJNGuyBdg5ycuq6tvDDU2SJGk8+uli+zvgGVV1OUCSBwOfBB47zMAkSZLGpZ8EaelMcgRQVd9PsnSIMUmSpAVu0m/z7ydBWpnkeODj7fNDgHOHF5IkSdJ49ZMgvRp4DfA6mjFI3wb+aZhBSZKkBW7aK0hVdSfw7naTJEmaeHPOpJ3k5CTPnW28UZLfSnJMkpcPNzxJkrTg1K+XGxn2Ni69KkivBN4I/H2Sm4Drgc2BBwGrgGOr6kvDD1GSJGm0ei1W+1PgT4A/SbIc2AG4A/h+Vf1iJNFJkqSFadrHIAFU1RU0E0VKkiRNvL4SJEmSpP9mwitIcw7SliRJmlZWkCRJ0sCmdibtJBcxewEtQFXVo4YWlSRJ0hj1qiA9Z2RRSJIkLSC9bvO/cuZxkgcCu1XV15Ns0et9kiRJi928g7STvBI4Efjn9qWdgC8OMyhJkrTA1Yi2MennLrbXAE8GbgOoqh8A9xtmUJIkSePUT4J0Z1XdNfMkySZM/OwHkiRpmvUzluhbSY4EtkjydOAPgZOHG5YkSVqwxryQ7Cj0U0H6M5qFai8C/gA4BXjrMIOSJEkap34qSMuq6oPAB2deSPIQ4PKhRSVJkhY2K0icnuSFM0+SvAn4wvBCkiRJGq9+Kkh7A8cleQFwf+AyYK9hBiVJkha4aa8gVdW1wFeBJwLLgY9V1eohxyVJkjQ281aQkpwKXAvsTjNJ5IeTfLuq3jzs4CRJ0sITvIsN4H1V9dKquqWqLgaeBNw65LgkSZLGZt4KUlV9sev5GuDtQ4tIkiQtfBNeQZozQUpyRlU9Jcnt/PePIUBV1dZDj06SJGkM5kyQquop7c+tRheOJEla8KZgJu1eFaTNgf9U03sAABUwSURBVFcBuwIXAh9uu9ckSZImWq8xSCcAdwOnA88GHgG8fhRBSZKkBW5aK0jAw6vqkQBJjgfOHk1IkiRJ49UrQbp75kFVrUkygnAkSdKiMOEVpF7zID06yW3tdjvwqJnHSW7bGCdP8uEk1yW5eI79SfIPSVYluTDJYzbGeSVJknqZM0GqqiVVtXW7bVVVm3Q83li3+H8U2K/H/mcBu7XbEcD7N9J5JUmS5tTPYrVDU1XfTrK8R5MDaNZ+K+DMJNsm2aFdH06SJI3JpN/m389SI+O0I3BVx/Or29ckSZKGZqwVpD7MNjL8N3LWJEfQdMGx2RbbDjsmSZJkBWmsrgZ27ni+E3BNd6OqOq6qVlTViqWb3mtkwUmSpMm00BOkk4CXtnezPQG41fFHkiSNWY1wG5OxdrEl+SSwN7AsydXA24ClAFX1AeAUmlm8VwG/AA4bT6SSJGmajPsutoPn2V/Aa0YUjiRJ6pN3sUmSJE2ZhX4XmyRJWoisIEmSJE0XK0iSJGlgjkGSJEmaMlaQJEnS4KwgSZIkTRcrSJIkaTBjnuV6FKwgSZIkdTFBkiRJi1aSzZOcneSCJJckOXqWNpsl+XSSVUnOSrJ8vuOaIEmSpIFkhFsf7gT2qapHA3sA+7UL3Hc6HLi5qnYF3gO8c76DmiBJkqRFqxqr26dL2617hNQBwAnt4xOBpyXpmX+ZIEmSpMHViLY+JFmS5HzgOuDUqjqrq8mOwFUAVbUGuBW4b69jmiBJkqSFbFmSlR3bEd0NqmptVe0B7ATslWT3riazVYt6pl/e5i9JkgY2wqVGbqiqFf00rKpbkpwG7Adc3LHramBn4OokmwDbADf1OpYVJEmStGgl2S7Jtu3jLYB9ge91NTsJeFn7+EDgG1VlBUmSJG1kC2eiyB2AE5IsoSn8fKaqvpzkGGBlVZ0EHA98PMkqmsrRQfMd1ARJkiQtWlV1IbDnLK8f1fH4l8ALBjmuCZIkSRrcwqkgDYVjkCRJkrpYQZIkSYOpkd7FNhZWkCRJkrpYQZIkSYOzgiRJkjRdrCBJkqSBOQZJkiRpypggSZIkdbGLTZIkDc4uNkmSpOliBUmSJA3MQdqSJElTxgqSJEkaTOEYJEmSpGljBUmSJA3OCpIkSdJ0sYIkSZIGEryLTZIkaepYQZIkSYOzgiRJkjRdrCBJkqSBpSa7hGQFSZIkqYsVJEmSNBhn0pYkSZo+JkiSJEld7GKTJEkDc6JISZKkKWMFSZIkDc4K0vAk2S/J5UlWJfmzWfYfmuT6JOe32yvGEackSZouY6sgJVkCvA94OnA1cE6Sk6rq0q6mn66q1448QEmSNCfHIA3PXsCqqvpRVd0FfAo4YIzxSJIkAeMdg7QjcFXH86uBx8/S7vlJ/gfwfeB/V9VVs7T5lUpYu5ljzxerTW/yu1usXnPIyeMOQRtg2yW/GHcIWmysIA1NZnmt++M+GVheVY8Cvg6cMOuBkiOSrEyy8u47V2/kMCVJ0rQZZ4J0NbBzx/OdgGs6G1TVjVV1Z/v0g8BjZztQVR1XVSuqasXSzbYcSrCSJKlVzRikUWzjMs4E6RxgtyQPSrIpcBBwUmeDJDt0PN0fuGyE8UmSpCk1tjFIVbUmyWuBrwFLgA9X1SVJjgFWVtVJwOuS7A+sAW4CDh1XvJIkqcOEj0Ea60SRVXUKcErXa0d1PH4L8JZRxyVJkqabM2lLkqSBBOdBkiRJmjpWkCRJ0uBqsktIVpAkSZK6mCBJkiR1sYtNkiQNzEHakiRJU8YKkiRJGkwx8RNFWkGSJEnqYgVJkiQNLOvGHcFwWUGSJEnqYgVJkiQNzjFIkiRJ08UKkiRJGpjzIEmSJE0ZK0iSJGkwhYvVSpIkTRsrSJIkaWCOQZIkSZoyVpAkSdLgrCBJkiRNFxMkSZKkLnaxSZKkgQQHaUuSJE0dK0iSJGkwVU4UKUmSNG2sIEmSpIE5BkmSJGnKWEGSJEmDs4IkSZI0XawgSZKkgTkGSZIkacpYQZIkSYMpYN1kl5CsIEmSJHWxgiRJkgY32QUkK0iSJEndrCBJkqSBeRebJEnSlDFBkiRJ6mIXmyRJGlxNdh+bFSRJkqQuVpAkSdLAHKQtSZI0ZawgSZKkwRROFClJkjRtrCBJkqSBBIh3sQ1Pkv2SXJ5kVZI/m2X/Zkk+3e4/K8ny0UcpSZKmzdgSpCRLgPcBzwIeDhyc5OFdzQ4Hbq6qXYH3AO8cbZSSJGlW60a0jck4K0h7Aauq6kdVdRfwKeCArjYHACe0j08EnpYkI4xRkiRNoXGOQdoRuKrj+dXA4+dqU1VrktwK3Be4YSQRSpKkWU36GKRxJkizVYK6P+1+2pDkCOAIgE232HbDI5MkSVNtnF1sVwM7dzzfCbhmrjZJNgG2AW7qPlBVHVdVK6pqxdLNthxSuJIkCfj1PEij2MZknAnSOcBuSR6UZFPgIOCkrjYnAS9rHx8IfKNqwmt6kiRp7MbWxdaOKXot8DVgCfDhqrokyTHAyqo6CTge+HiSVTSVo4PGFa8kSZpRMOH1irFOFFlVpwCndL12VMfjXwIvGHVckiRpujmTtiRJGlgmu4DkWmySJEndTJAkSZK62MUmSZIGN+GDtK0gSZIkdTFBkiRJgynIutFs80myc5JvJrksySVJXj9Lm22SnJzkgrbNYfMd1y42SZK0mK0B3lRV5yXZCjg3yalVdWlHm9cAl1bVc5NsB1ye5BNVdddcBzVBkiRJg1sgY5Cq6lrg2vbx7Ukuo1nsvjNBKmCrJAG2pJl8ek2v45ogSZKkiZBkObAncFbXrmNpli+7BtgKeFFV9ezAcwySJEka3OgWq12WZGXHdsRs4STZEvgc8Iaquq1r9zOB84EHAHsAxybZutflWUGSJEkL2Q1VtaJXgyRLaZKjT1TV52dpchjwjnbB+1VJfgw8FDh7rmOaIEmSpIFlgYxBascVHQ9cVlXvnqPZT4CnAacnuT/wEOBHvY5rgiRJkhazJwMvAS5Kcn772pHALgBV9QHg7cBHk1wEBPjTqrqh10FNkCRJ0uAWSAWpqs6gSXp6tbkGeMYgx3WQtiRJUhcrSJIkaTAF9DHL9WJmBUmSJKmLFSRJkjSQUAvmLrZhsYIkSZLUxQRJkiSpi11skiRpcHaxSZIkTRcrSJIkaXBWkCRJkqaLFSRJkjQYJ4qUJEmaPlaQJEnSwJwoUpIkacpYQZIkSYOzgiRJkjRdrCBJkqQBlRUkSZKkaWMFSZIkDaawgiRJkjRtrCBJkqTBOZO2JEnSdDFBkiRJ6mIXmyRJGphLjUiSJE0ZK0iSJGlwVpAkSZKmixUkSZI0mALWWUGSJEmaKlaQJEnSgFysVpIkaepYQZIkSYOzgiRJkjRdxlJBSnIf4NPAcuAK4IVVdfMs7dYCF7VPf1JV+48qRkmS1IMVpKH4M+A/qmo34D/a57O5o6r2aDeTI0mSNBLjGoN0ALB3+/gE4DTgT8cUiyRJGoTzIA3N/avqWoD25/3maLd5kpVJzkzyvNGFJ0mSptnQKkhJvg5sP8uuPx/gMLtU1TVJfgv4RpKLquqHs5zrCOCI9umd3/ncH188eMSLxjLghnEHMURe3yL1uv8DTPD1MdnXBl7fYveQ0Z6uoNaN9pQjNrQEqar2nWtfkp8l2aGqrk2yA3DdHMe4pv35oySnAXsCv5EgVdVxwHHtsVdW1YqNcAkLkte3uHl9i9ckXxt4fYtdkpXjjmHSjKuL7STgZe3jlwFf6m6Q5N5JNmsfLwOeDFw6sgglSdLUGleC9A7g6Ul+ADy9fU6SFUk+1LZ5GLAyyQXAN4F3VJUJkiRJC0HVaLYxGctdbFV1I/C0WV5fCbyiffwd4JHrcfjjNiy6Bc/rW9y8vsVrkq8NvL7FbtKvb+RSEz7RkyRJ2ri22fT+9aTtDx7Jub561XvPHcf4MZcakSRJ6rLoE6Qk90lyapIftD/vPUe7tUnOb7eTRh3noJLsl+TyJKuS/MZM40k2S/Lpdv9ZSZaPPsr118f1HZrk+o7v7BXjiHN9JPlwkuuSzDrdRBr/0F77hUkeM+oYN0Qf17d3kls7vrujRh3j+kqyc5JvJrksySVJXj9Lm0X7/fV5fYv5+9s8ydlJLmiv7+hZ2iza3519Xt/ofndO+BikRZ8gMYHLliRZArwPeBbwcODgJA/vanY4cHNV7Qq8B3jnaKNcf31eH8CnO76zD82yf6H6KLBfj/3PAnZrtyOA948gpo3po/S+PoDTO767Y0YQ08ayBnhTVT0MeALwmln+21zM318/1weL9/u7E9inqh4N7AHsl+QJXW0W7e9O+rs+WLy/OxeUSUiQDqBZroT25yTMuL0XsKqqflRVdwGfornOTp3XfSLwtCQZYYwbop/rW7Sq6tvATT2aHAB8rBpnAtu284EtCn1c36JVVddW1Xnt49uBy4Adu5ot2u+vz+tbtNrvZHX7dGm7dZcgFu3vzj6vb5QBWUFa4CZx2ZIdgas6nl/Nb/4S+1WbqloD3ArcdyTRbbh+rg/g+W0XxolJdh5NaCPR7/UvZk9suwG+kuQR4w5mfbRdL3sCZ3Xtmojvr8f1wSL+/pIsSXI+zQTEp1bVnN/fIvzd2c/1weT+7hypRZEgJfl6kotn2QapOuzSjoL/feDvk/z2kMLdGGb710x3Gt1Pm4Wqn9hPBpZX1aOAr/Prf/FNgsX83fXjPOCBbTfAPwJfHHM8A0uyJfA54A1VdVv37lnesqi+v3mub1F/f1W1tqr2AHYC9kqye1eTRf399XF9I/rdOaLqkRWk3qpq36rafZbtS8DPZsrb6XPZEuA0mn85LVRXA51Z/07ANXO1SbIJsA2Lp9tj3uurqhur6s726QeBx44otlHo5/tdtKrqtplugKo6BViaZjb8RSHJUprk4RNV9flZmizq72++61vs39+MqrqF5nd993i5xfy781fmur4J/905UosiQZrHJC5bcg6wW5IHJdkUOIjmOjt1XveBwDdq8UxqNe/1dY3p2J9mrMSkOAl4aXs31BOAW2e6iSdBku1nxnQk2Yvm98yN442qP23cxwOXVdW752i2aL+/fq5vkX9/2yXZtn28BbAv8L2uZov2d2c/1zey350FrFs3mm1MxjKT9kb2DuAzSQ4HfgK8AJplS4BXVdUraJYt+eck62j+Z1/Qy5ZU1ZokrwW+BiwBPlxVlyQ5BlhZVSfR/JL7eJJVNP/6OWh8EQ+mz+t7XZL9ae66uQk4dGwBDyjJJ4G9gWVJrgbeRjOYkqr6AHAK8GxgFfAL4LDxRLp++ri+A4FXJ1kD3AEctFj+ANH84+klwEXtOA+AI4FdYCK+v36ubzF/fzsAJ7R3yt4D+ExVfXlSfnfS3/Ut2t+dC40zaUuSpIFss/R+9aT7HjiSc331Z+93Jm1JkqSFYBK62CRJ0qhNeA+UFSRJkqQuJkiSJEld7GKTJEkDKlhnF5ukEUmytl2B++Ikn01yz/b176zn8ZYnuXiOfTsk+fKAx3tAkhP7aHfKzHwtg0ryl0ne3D7+aJK+b5VJclqSy9tlMs5JskfX/j2TVJJndry2aZJvt5MGShJggiQtNHe0K3DvDtwFvAqgqp40hHO9kWam3b4k2aSqrqmqeROWqnp2O9PvOBzSLpPxT8DfdO07GDij/QlAu2DyfwAvGlmE0mJXULVuJNu4mCBJC9fpwK4ASVa3P3+vXZswbQXo++3Mx0uS/E1bNbkwyR/0cfznA19tj7t5ko8kuSjJd5M8tX390LaSdTLw750VqST3TPKZ9nyfTnJWO0ErSa5Isqxtf1mSDya5JMm/tzMAk+SVbbwXJPncTLVsNkmeluQLHc+fnmS2ZUA6/Rcdi8i2s0MfSDNx3jOSbN7R9ovAIX18ZpKmhAmStAC13T3PAi7qfL2qvgD8FHgNTfXnbVX1U+BwmiUvHgc8Dnhlkgf1OP6DgJs71mx6TXv8R9JUV07oSCCeCLysqvbpOswftsd4FPB25l7zaTfgfVX1COAWmsQM4PNV9bi22nNZew1z+QbwsCTbtc8PAz7Soz00a1R1LrT6ZODHVfVDmjWsnt2x72Kaz01Sv9bVaLYxsc9dWli26FgC4nSaZRG6/RHNH/Qzq+qT7WvPAB7VMV5nG5rE5PtznGcH4PqO50+hWbmdqvpekiuBB7f7Tq2q2RbzfArw3vY9Fye5cI5z/biqZq7pXGB5+3j3JP8H2BbYkmbpmVlVVSX5OPDiJB+hSdpeOkfzTyS5F80yNo/peP1g4FPt40/RLLnx+fb4a5PclWSrqrp9rjgkTQ8TJGlhuaOq9pinzY7AOuD+Se5RTSd9gD+qqv+WZCRZPtd5gM4upvQ438/neL3Xezrd2fF4LbBF+/ijwPOq6oIkh9Ks79bLR4CTgV8Cn62qNXO0OwS4gGadxvcB/6tdu+r5wP5J/ryN/b5dCdFm7bEl9cOJIiUtFG3X20eA36fplnpju+trNAuMLm3bPbitoszl+/y6kgPwbdoxOEkeTLN46eXzhHMG8ML2PQ8HHjnItQBbAde2Mc87/qeqrgGuAd5Kk1z1ant32+4JSR5Gs+r5BVW1c1Utr6oHAp8DntfGf1/g+vZ9kmQFSVpkjgROr6rT2664c5L8G/AhmoTnvHYw8vW0f/xnU1U/T/LDJLtW1SqaO74+kOQimlXAD62qO5tDzemfaMYqXQh8F7gQuHWAa/kL4CzgSpqxVlv18Z5PANtV1aXzNayqO5L8HfBmmu62L3Q1+RzwauDjwFOBU/oPXZpyVbBufHeYjUJqwktkkmaX5PeAx1bVW9fz/UuApVX1yyS/TXOr/IPb2+aHIsmxwHeraraxWRty3M8Db6mq+apmkoBtliyrJ265/0jO9bXbPnJuVa0Yyck6WEGSplRVfaHtWlpf9wS+2XaRBXj1kJOjc2nGQ71pIx93U+CLJkfSgCa8wGKCJE2xqvrQBrz3dmBk/6qrqrmmEdjQ494FfGwYx5a0eJkgSZKkgdWEj0HyLjZJkqQuVpAkSdKAauLHIFlBkiRJ6mKCJEmS1MUuNkmSNJhirAvJjoIVJEmSpC5WkCRJ0uDK2/wlSZKmihUkSZI0kALKMUiSJEnTxQqSJEkaTJVjkCRJkqaNFSRJkjQwxyBJkiRNGStIkiRpcI5BkiRJmi6pmuw+REmStHEl+SqwbESnu6Gq9hvRuX7FBEmSJKmLXWySJEldTJAkSZK6mCBJkiR1MUGSJEnqYoIkSZLU5f8Dq5+vTGAVxVcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -507,20 +497,20 @@ "plt.colorbar(im)\n", "plt.xlabel(\"Pixel (originally RA)\")\n", "plt.ylabel(\"Pixel (originally DEC)\")\n", - "plt.title(\"Density of Sources per 5 arcsec^2\")" + "plt.title(\"Density of Sources per 15 arcsec^2\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# Step 1c. Set up datamodel file\n", + "# Step 1c. Set up BEAST settings\n", "\n", - "At this point, we have a basic understanding of the information we are working with, so it's about time we set up our datamodel file. \n", + "At this point, we have a basic understanding of the information we are working with, so it's about time we set up our settings class. \n", "\n", - "The datamodel file is a sort of catch-all file used to store any sort of infomation we might need to run the BEAST code on our data. We'll go through and talk about what all the different variables mean, and which ones would need to be changed for any future projects.\n", + "The settings class is a sort of catch-all file used to store any sort of infomation we might need to run the BEAST code on our data. We'll go through and talk about what all the different variables mean.\n", "\n", - "Go ahead and open the datamodel.py file in a text editor now and ensure that the following variables match:\n", + "Go ahead and open the beast_settings.txt file in a text editor and ensure that the following variables match:\n", "\n", "* **project** : the same as the field_name variable we noted earlier\n", " * *project = \"M31-B09-EAST_chunk\" *\n", @@ -572,40 +562,9 @@ "metadata": { "scrolled": false }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: fits\n", - "Auto-detected type: fits\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import datamodel\n", - "\n", - "importlib.reload(datamodel)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, + "outputs": [], "source": [ - "Our goal after this would normally be to eventually run a bunch of **ASTs** (Artificial Star Tests), but before we can do that, we need to generate the fake stars to use.\n", - "\n", - "Since the ASTs would normally need to be analyzed by a specialist after being created and that's a little overkill for a small example, these next couple of steps are just to illustrate how the ASTs are actually generated. A finished file of the analyzed ASTs already exists so we will end up using that in step 4 and beyond.\n", - "\n" + "settings = beast_settings.beast_settings(\"beast_settings.txt\")" ] }, { @@ -614,13 +573,13 @@ "source": [ "# Step 2. Create physics model\n", "\n", - "In order to generate a diverse and representative sample of fake stars to use for our ASTs, we need to set up a N-dimensional model of possible stellar parameters, so that we can easily and randomly select stars from the model.\n", + "We need to set up a model of possible stellar parameter combinations, and from that, calculate what the expected SED is for each point. These simulated SEDs will later be compared to our actual source SED to figure out which parameters best fit each source.\n", "\n", - "This model is called a **physics model**, and we will be using the parameters set in the datamodel.py file to create this N-dimensional grid.\n", + "This model is called a **physics model**, and we will be using the parameters set in the settings to create this N-dimensional grid.\n", "\n", "*As a quick note, the resolution on the stellar parameters (the step size, often specified as the third input e.g. logt = [6.0, 10.13, 1.0], where 1.0 is the step size) is the main factor driving how long this physics grid will take to set up. If things take a very long time to run, consider making the step size larger for testing's sake.*\n", "\n", - "Sometimes we are able to have access to high-performance computing resources, meaning we can split the physics model into subgrids and run them in parallel, cutting a lot of the computation time. While we're like not running this notebook in parallel here, we've still specified a number of subgrids in the datamodel.py file. \n", + "Sometimes we are able to have access to high-performance computing resources, meaning we can split the physics model into subgrids and run them in parallel, cutting a lot of the computation time. While we're like not running this notebook in parallel here, we've still specified a number of subgrids in the settings. \n", "\n", "We can check how many subgrids are set up." ] @@ -642,14 +601,14 @@ } ], "source": [ - "datamodel.n_subgrid" + "settings.n_subgrid" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "So we can now see that we've asked for 1 grid in the datamodel.py file.\n", + "So we can now see that we've asked for 1 grid in the settings file.\n", "\n", "If we've already generated a physics model, we certainly don't want to run it again, so the following code checks to make sure all the subgrids for the physics model are present." ] @@ -664,7 +623,7 @@ "gs_str = \"\"\n", "\n", "# this is only relevant if we run with multiple subgrids\n", - "if datamodel.n_subgrid > 1:\n", + "if settings.n_subgrid > 1:\n", " gs_str = \"sub*\"\n", "\n", "# collects any physics models that have already been created\n", @@ -683,16 +642,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Auto-detected type: fits\n", - "Auto-detected type: fits\n", "Interrogating http://stev.oapd.inaf.it...\n", - "Downloading data...http://stev.oapd.inaf.it/tmp/output541466209179.dat\n", + "Downloading data...http://stev.oapd.inaf.it/tmp/output811629177144.dat\n", "Interrogating http://stev.oapd.inaf.it...\n", - "Downloading data...http://stev.oapd.inaf.it/tmp/output919828231985.dat\n", + "Downloading data...http://stev.oapd.inaf.it/tmp/output419376870923.dat\n", "Interrogating http://stev.oapd.inaf.it...\n", - "Downloading data...http://stev.oapd.inaf.it/tmp/output971688225007.dat\n", + "Downloading data...http://stev.oapd.inaf.it/tmp/output1858548567.dat\n", "Interrogating http://stev.oapd.inaf.it...\n", - "Downloading data...http://stev.oapd.inaf.it/tmp/output591832563587.dat\n" + "Downloading data...http://stev.oapd.inaf.it/tmp/output692968232630.dat\n" ] }, { @@ -708,7 +665,6 @@ "output_type": "stream", "text": [ "M31-B09-EAST_chunk/M31-B09-EAST_chunk Isochrones\n", - "Auto-detected type: csv\n", "Make spectra\n", "applying 1 distances\n", "Adding spectral properties: True\n" @@ -718,43 +674,21 @@ "name": "stderr", "output_type": "stream", "text": [ - "Spectral grid: 100%|██████████| 809/809 [00:00<00:00, 2781.53it/s]\n", - "Spectral grid: 100%|██████████| 4343/4343 [00:01<00:00, 2471.24it/s]\n", - "Distance grid: 100%|██████████| 1/1 [00:00<00:00, 27.31it/s]\n" + "Spectral grid: 100%|██████████| 809/809 [00:00<00:00, 1700.06it/s]\n", + "Spectral grid: 100%|██████████| 4343/4343 [00:02<00:00, 1654.24it/s]\n", + "Distance grid: 100%|██████████| 1/1 [00:00<00:00, 28.69it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Auto-detected type: hd5\n", - "Warning: Table does not exists. New table will be created\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_spec_grid.hd5 (File) ''\n", - "Last modif.: 'Fri Jun 19 10:46:57 2020'\n", - "Object Tree: \n", - "/ (RootGroup) ''\n", - "/grid (Table(5152,)) 'grid'\n", - "/lamb (EArray(823,)) 'lamb'\n", - "/seds (EArray(5152, 823)) 'seds'\n", - "\n", - "Auto-detected type: hd5\n", "Make Prior Weights\n", "computing the distance plus weights for dist = 907820.5301781861\n", "computing the age-mass-metallicity grid weight for Z = 0.004\n", "computing the age-mass-metallicity grid weight for Z = 0.008\n", "computing the age-mass-metallicity grid weight for Z = 0.019\n", - "computing the age-mass-metallicity grid weight for Z = 0.03\n", - "Auto-detected type: hd5\n", - "Warning: Table does not exists. New table will be created\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_spec_w_priors.grid.hd5 (File) ''\n", - "Last modif.: 'Fri Jun 19 10:46:59 2020'\n", - "Object Tree: \n", - "/ (RootGroup) ''\n", - "/grid (Table(5152,)) 'grid'\n", - "/lamb (EArray(823,)) 'lamb'\n", - "/seds (EArray(5152, 823)) 'seds'\n", - "\n", - "Auto-detected type: hd5\n" + "computing the age-mass-metallicity grid weight for Z = 0.03\n" ] }, { @@ -796,31 +730,15 @@ " Starting with v4.0 classes must define a class attribute ``n_inputs``.\n", " Please consult the documentation for details.\n", " [astropy.modeling.core]\n", - "SED grid: 100%|██████████| 99/99 [00:46<00:00, 2.13it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: hd5\n", - "Warning: Table does not exists. New table will be created\n", - "M31-B09-EAST_chunk/M31-B09-EAST_chunk_seds.grid.hd5 (File) ''\n", - "Last modif.: 'Fri Jun 19 10:47:54 2020'\n", - "Object Tree: \n", - "/ (RootGroup) ''\n", - "/grid (Table(510048,)) 'grid'\n", - "/lamb (EArray(6,)) 'lamb'\n", - "/seds (EArray(510048, 6)) 'seds'\n", - "\n" + "SED grid: 100%|██████████| 99/99 [00:44<00:00, 2.25it/s]\n" ] } ], "source": [ "# only make the physics model they don't already exist\n", - "if len(sed_files) < datamodel.n_subgrid:\n", + "if len(sed_files) < settings.n_subgrid:\n", " # directly create physics model grids\n", - " create_physicsmodel.create_physicsmodel(nprocs=1, nsubs=datamodel.n_subgrid)" + " create_physicsmodel.create_physicsmodel(settings, nprocs=1, nsubs=settings.n_subgrid)" ] }, { @@ -842,7 +760,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Hopefully a spectral grid and an SED grid should have started generating. In the end you should have a new folder with the same name as your project, with a one SED and spectral grid if you have only 1 subgrid." + "Hopefully a spectral grid and an SED grid should have started generating. In the end you should have a new folder with the same name as your project, with a one SED and spectral grid if you have only 1 subgrid.\n", + "\n", + "Our goal after this would normally be to eventually run a bunch of **ASTs** (Artificial Star Tests), but before we can do that, we need to generate the fake stars to use.\n", + "\n", + "Since the ASTs would normally need to be analyzed by a specialist after being created and that's a little overkill for a small example, these next couple of steps are just to illustrate how AST inputs are actually generated. A finished file of the analyzed ASTs already exists so we will end up using that in step 4 and beyond." ] }, { @@ -902,27 +824,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Auto-detected type: fits\n", - "Auto-detected type: fits\n", - "Auto-detected type: fits\n", "Selecting SEDs for ASTs\n", - "Auto-detected type: hd5\n", - "Assigning positions to artifical stars\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING: FITSFixedWarning: 'datfix' made the change 'Invalid parameter values: MJD-OBS and DATE-OBS are inconsistent'. [astropy.wcs.wcs]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: fits\n", - "Auto-detected type: fits\n", + "Assigning positions to artifical stars\n", "removing 177 stars from ./M31-B09-EAST_chunk.st_with_sourceden.fits\n", "1 repeats of each model in each map bin\n" ] @@ -931,28 +834,28 @@ "name": "stderr", "output_type": "stream", "text": [ - "\r", - "3075.00 models per map bin: 0%| | 0/11 [00:00Table length=33825\n", - "
\n", + "Table length=33968\n", + "
\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "
zerosonesXYHST_WFC3_F475WHST_WFC3_F275WHST_WFC3_F336WHST_WFC3_F814WHST_WFC3_F110WHST_WFC3_F160W
int64int64float64float64float64float64float64float64float64float64
01422.19437894.4623226.3957131.1200330.9765721.6522819.8625718.31785
01417.57042892.8075826.3957131.1200330.9765721.6522819.8625718.31785
01418.7245896.1976326.3957131.1200330.9765721.6522819.8625718.31785
01422.33296895.9955626.3957131.1200330.9765721.6522819.8625718.31785
01409.34888892.520626.3957131.1200330.9765721.6522819.8625718.31785
01427.68404896.7625226.3957131.1200330.9765721.6522819.8625718.31785
01409.52606890.4834926.3957131.1200330.9765721.6522819.8625718.31785
01412.00146897.8364526.3957131.1200330.9765721.6522819.8625718.31785
01409.69032895.5370926.3957131.1200330.9765721.6522819.8625718.31785
01428.91532898.9548626.3957131.1200330.9765721.6522819.8625718.31785
01663.14762894.9895836.6106839.2402941.3219629.8613127.9373627.04435
01675.9487890.476336.6106839.2402941.3219629.8613127.9373627.04435
01642.28707879.2176736.6106839.2402941.3219629.8613127.9373627.04435
01655.02475896.6846136.6106839.2402941.3219629.8613127.9373627.04435
01645.63688874.8138236.6106839.2402941.3219629.8613127.9373627.04435
01652.1251886.0333436.6106839.2402941.3219629.8613127.9373627.04435
01658.93547880.4626636.6106839.2402941.3219629.8613127.9373627.04435
01683.34413890.2141636.6106839.2402941.3219629.8613127.9373627.04435
01649.58683884.9416136.6106839.2402941.3219629.8613127.9373627.04435
01707.4655897.4222736.6106839.2402941.3219629.8613127.9373627.04435
..............................
01873.51251102.0521649.4869650.7053352.3932141.8189238.3772436.20236
01842.2297382.0818549.4869650.7053352.3932141.8189238.3772436.20236
01857.0259889.5295149.4869650.7053352.3932141.8189238.3772436.20236
01875.0866491.692949.4869650.7053352.3932141.8189238.3772436.20236
01863.1341372.5125549.4869650.7053352.3932141.8189238.3772436.20236
01873.0635360.6496749.4869650.7053352.3932141.8189238.3772436.20236
01868.1823744.812649.4869650.7053352.3932141.8189238.3772436.20236
01845.5524753.9611549.4869650.7053352.3932141.8189238.3772436.20236
01861.3672260.4491949.4869650.7053352.3932141.8189238.3772436.20236
01885.3613660.2135149.4869650.7053352.3932141.8189238.3772436.20236
01799.57084605.5483349.6972751.0966352.8078242.1812338.7650936.56966
01877.04096455.25649.6972751.0966352.8078242.1812338.7650936.56966
01761.19982576.6923949.6972751.0966352.8078242.1812338.7650936.56966
01875.24854432.810849.6972751.0966352.8078242.1812338.7650936.56966
01751.82087587.5889349.6972751.0966352.8078242.1812338.7650936.56966
01896.56195408.1435149.6972751.0966352.8078242.1812338.7650936.56966
01864.99763575.6968649.6972751.0966352.8078242.1812338.7650936.56966
01885.36288567.1046849.6972751.0966352.8078242.1812338.7650936.56966
01868.10955534.2148249.6972751.0966352.8078242.1812338.7650936.56966
01898.05332340.2285249.6972751.0966352.8078242.1812338.7650936.56966
" ], "text/plain": [ - "\n", + "
\n", "zeros ones X Y ... HST_WFC3_F814W HST_WFC3_F110W HST_WFC3_F160W\n", "int64 int64 float64 float64 ... float64 float64 float64 \n", "----- ----- --------- --------- ... -------------- -------------- --------------\n", - " 0 1 422.19437 894.46232 ... 21.65228 19.86257 18.31785\n", - " 0 1 417.57042 892.80758 ... 21.65228 19.86257 18.31785\n", - " 0 1 418.7245 896.19763 ... 21.65228 19.86257 18.31785\n", - " 0 1 422.33296 895.99556 ... 21.65228 19.86257 18.31785\n", - " 0 1 409.34888 892.5206 ... 21.65228 19.86257 18.31785\n", - " 0 1 427.68404 896.76252 ... 21.65228 19.86257 18.31785\n", - " 0 1 409.52606 890.48349 ... 21.65228 19.86257 18.31785\n", - " 0 1 412.00146 897.83645 ... 21.65228 19.86257 18.31785\n", - " 0 1 409.69032 895.53709 ... 21.65228 19.86257 18.31785\n", - " 0 1 428.91532 898.95486 ... 21.65228 19.86257 18.31785\n", + " 0 1 663.14762 894.98958 ... 29.86131 27.93736 27.04435\n", + " 0 1 675.9487 890.4763 ... 29.86131 27.93736 27.04435\n", + " 0 1 642.28707 879.21767 ... 29.86131 27.93736 27.04435\n", + " 0 1 655.02475 896.68461 ... 29.86131 27.93736 27.04435\n", + " 0 1 645.63688 874.81382 ... 29.86131 27.93736 27.04435\n", + " 0 1 652.1251 886.03334 ... 29.86131 27.93736 27.04435\n", + " 0 1 658.93547 880.46266 ... 29.86131 27.93736 27.04435\n", + " 0 1 683.34413 890.21416 ... 29.86131 27.93736 27.04435\n", + " 0 1 649.58683 884.94161 ... 29.86131 27.93736 27.04435\n", + " 0 1 707.4655 897.42227 ... 29.86131 27.93736 27.04435\n", " ... ... ... ... ... ... ... ...\n", - " 0 1 873.51251 102.05216 ... 41.81892 38.37724 36.20236\n", - " 0 1 842.22973 82.08185 ... 41.81892 38.37724 36.20236\n", - " 0 1 857.02598 89.52951 ... 41.81892 38.37724 36.20236\n", - " 0 1 875.08664 91.6929 ... 41.81892 38.37724 36.20236\n", - " 0 1 863.13413 72.51255 ... 41.81892 38.37724 36.20236\n", - " 0 1 873.06353 60.64967 ... 41.81892 38.37724 36.20236\n", - " 0 1 868.18237 44.8126 ... 41.81892 38.37724 36.20236\n", - " 0 1 845.55247 53.96115 ... 41.81892 38.37724 36.20236\n", - " 0 1 861.36722 60.44919 ... 41.81892 38.37724 36.20236\n", - " 0 1 885.36136 60.21351 ... 41.81892 38.37724 36.20236" + " 0 1 799.57084 605.54833 ... 42.18123 38.76509 36.56966\n", + " 0 1 877.04096 455.256 ... 42.18123 38.76509 36.56966\n", + " 0 1 761.19982 576.69239 ... 42.18123 38.76509 36.56966\n", + " 0 1 875.24854 432.8108 ... 42.18123 38.76509 36.56966\n", + " 0 1 751.82087 587.58893 ... 42.18123 38.76509 36.56966\n", + " 0 1 896.56195 408.14351 ... 42.18123 38.76509 36.56966\n", + " 0 1 864.99763 575.69686 ... 42.18123 38.76509 36.56966\n", + " 0 1 885.36288 567.10468 ... 42.18123 38.76509 36.56966\n", + " 0 1 868.10955 534.21482 ... 42.18123 38.76509 36.56966\n", + " 0 1 898.05332 340.22852 ... 42.18123 38.76509 36.56966" ] }, "execution_count": 20, @@ -1039,17 +942,9 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: hd5\n" - ] - } - ], + "outputs": [], "source": [ "plot_ast_histogram.plot_ast(ast_file = ast_input_file, sed_grid_file = model_grid_files[0])" ] @@ -1070,9 +965,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "removing 177 stars from ./M31-B09-EAST_chunk.st_with_sourceden.fits\n" + ] + } + ], "source": [ "gst_file_cut = gst_file.replace(\".fits\", \"_with_sourceden_cut.fits\")\n", "\n", @@ -1089,6 +992,16 @@ " )" ] }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# update the obsfile\n", + "settings.obsfile = gst_file_cut" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1109,21 +1022,28 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ - "ast_file = \"./\" + field_names[0] + \".gst.fake.fits\"\n", - "ast_file " + "ast_file = \"./\" + field_names[0] + \".gst.fake.fits\"" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "removing 12631 stars from ./M31-B09-EAST_chunk.gst.fake.fits\n" + ] + } + ], "source": [ "# - ASTs\n", "ast_file_cut = ast_file.replace(\".fits\", \"_cut.fits\")\n", @@ -1142,92 +1062,35 @@ "# so now we've generated the cut ast file" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can plot the AST magnitudes against our original source magnitudes again, just to check that we are within a reasonable range." - ] - }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ - "# check to see if the plotted AST file already exists\n", - "if not os.path.isfile(ast_file_cut.replace(\".fits\", \"_maghist.pdf\")):\n", - " \n", - " test = plot_mag_hist.plot_mag_hist(ast_file_cut, stars_per_bin=200, max_bins=30)\n", - "\n", - " # and so this should plot a histogram of the different asts that remain after cutting" + "# update the AST file\n", + "settings.astfile = ast_file_cut" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# Step 5.5 Update Datamodel\n", - "\n", - "**With these cuts to the astfile and and gstfile, we now have to update the corresponding variables in datamodel.py with these new trimmed files. We can do this by rewriting the datamodel.py file with the following function.**" + "We can plot the AST magnitudes against our original source magnitudes again, just to check that we are within a reasonable range." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ - "def update_datamodel(file_key, update_value):\n", - " \"\"\"\n", - " Update a single parameter in the datamodel.py file\n", - " Parameters\n", - " ----------\n", - " file_key : string\n", - " the key to update\n", - " update_value: string\n", - " the updated value\n", - " Returns\n", - " -------\n", - " nothing\n", - " \"\"\"\n", - " \n", - " # read in the template datamodel file\n", - " orig_file = open(\"datamodel.py\", \"r\")\n", - " datamodel_lines = np.array(orig_file.readlines())\n", - " orig_file.close()\n", - "\n", - " # write out an edited datamodel\n", - " new_file = open(\"datamodel.py\", \"w\")\n", - "\n", - " for i in range(len(datamodel_lines)):\n", - "\n", - " # replace project name with the field ID\n", - " if datamodel_lines[i][0:len(file_key)] == file_key:\n", - " new_file.write(file_key + ' = \"'+ update_value + '\"\\n')\n", - " else:\n", - " new_file.write(datamodel_lines[i])\n", + "# check to see if the plotted AST file already exists\n", + "if not os.path.isfile(ast_file_cut.replace(\".fits\", \"_maghist.pdf\")):\n", + " \n", + " test = plot_mag_hist.plot_mag_hist(ast_file_cut, stars_per_bin=200, max_bins=30)\n", "\n", - " new_file.close()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "update_datamodel(\"obsfile\", gst_file_cut)\n", - "update_datamodel(\"astfile\", ast_file_cut)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "importlib.reload(datamodel)" + " # and so this should plot a histogram of the different asts that remain after cutting" ] }, { @@ -1250,9 +1113,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "bin edges: [2.62838322 3.62838322 4.62838322]\n", + "Splitting catalog\n", + "bin 1: 48145 sources\n", + "dividing into 8 subfiles for later fitting speed\n", + "bin 2: 2185 sources\n", + "dividing into 1 subfiles for later fitting speed\n", + "\n", + "Splitting ASTs\n", + "bin 1: 37364 sources\n", + "bin 2: 1554 sources\n" + ] + } + ], "source": [ "# check to see if any sub files exist yet\n", "if len(glob.glob(gst_file_cut.replace('.fits','*sub*fits') )) == 0:\n", @@ -1289,13 +1169,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "# generate file name lists\n", "file_dict = create_filenames.create_filenames(\n", - " use_sd=True, nsubs=datamodel.n_subgrid\n", + " settings, use_sd=True, nsubs=settings.n_subgrid\n", ")" ] }, @@ -1308,9 +1188,28 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "[['1', '0'],\n", + " ['1', '1'],\n", + " ['1', '2'],\n", + " ['1', '3'],\n", + " ['1', '4'],\n", + " ['1', '5'],\n", + " ['1', '6'],\n", + " ['1', '7'],\n", + " ['2', '0']]" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "sd_sub_info = file_dict[\"sd_sub_info\"]\n", "sd_sub_info" @@ -1318,9 +1217,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "** total SD bins: 2\n", + "** total SD subfiles: 9\n" + ] + } + ], "source": [ "# - number of SD bins\n", "temp = set([i[0] for i in sd_sub_info])\n", @@ -1360,7 +1268,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ @@ -1370,26 +1278,82 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 33, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "['./M31-B09-EAST_chunk.gst.fake_cut_bin1.fits',\n", + " './M31-B09-EAST_chunk.gst.fake_cut_bin2.fits']" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# gather up the split AST files\n", - "ast_file_list = sorted(glob.glob(datamodel.astfile.replace(\".fits\", \"*_bin*\")))\n", + "ast_file_list = sorted(glob.glob(settings.astfile.replace(\".fits\", \"*_bin*\")))\n", "ast_file_list" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 34, "metadata": { "scrolled": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "sd list: ['1', '2']\n", + "\n", + "creating M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin1.grid.hd5\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Fitting model: 100%|██████████| 6/6 [00:00<00:00, 28.12it/s]\n", + "Evaluating model: 100%|██████████| 6/6 [00:00<00:00, 32.95it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Writing to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin1.grid.hd5\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin1.grid.hd5\n", + "\n", + "creating M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin2.grid.hd5\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Fitting model: 100%|██████████| 6/6 [00:00<00:00, 125.87it/s]\n", + "Evaluating model: 100%|██████████| 6/6 [00:00<00:00, 37.40it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Writing to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin2.grid.hd5\n", + "M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin2.grid.hd5\n" + ] + } + ], "source": [ "# create the noise model with our ASTs \n", "create_obsmodel.create_obsmodel(\n", - " use_sd=True, nsubs=datamodel.n_subgrid, nprocs=1\n", + " settings, use_sd=True, nsubs=settings.n_subgrid, nprocs=1\n", " )" ] }, @@ -1413,7 +1377,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ @@ -1432,9 +1396,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(510048, 6)" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# set some basic plotting stuff\n", "samp=100 # makes it so we plot every 100th point from the SED files\n", @@ -1442,7 +1417,7 @@ "label=None\n", "\n", "# load in the physics model as an object\n", - "sed_object = FileSEDGrid(sed_files[0])\n", + "sed_object = SEDGrid(sed_files[0])\n", "\n", "# read the flux values for all the sources\n", "if hasattr(sed_object.seds, \"read\"):\n", @@ -1457,12 +1432,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "So this sed_grid comes from back in Step 2, where the physics model created ~500,000 points based off of the original parameters we specified in the datamodel, and for each point, the expected flux for each filter is calculated. We can now use the noise models we created with the ASTs to see how the bias and uncertainty is expected to scale with the flux from a specific filter. We'll plot the log10 of the flux on the x-axis and then the flux-normalized uncertainty and bias on the y-axis. We can also color our results based on what source density bin the ASTs came from, as well as compare how different filters compare to one another\n" + "So this sed_grid comes from back in Step 2, where the physics model created ~500,000 points based off of the original parameters we specified in the settings, and for each point, the expected flux for each filter is calculated. We can now use the noise models we created with the ASTs to see how the bias and uncertainty is expected to scale with the flux from a specific filter. We'll plot the log10 of the flux on the x-axis and then the flux-normalized uncertainty and bias on the y-axis. We can also color our results based on what source density bin the ASTs came from, as well as compare how different filters compare to one another\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": {}, "outputs": [], "source": [ @@ -1477,11 +1452,39 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": { "scrolled": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "* reading M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin1.grid.hd5\n", + "* reading M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin1.grid.hd5\n", + "* reading M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin1.grid.hd5\n", + "* reading M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin1.grid.hd5\n", + "* reading M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin1.grid.hd5\n", + "* reading M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin1.grid.hd5\n", + "* reading M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin1.grid.hd5\n", + "* reading M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin1.grid.hd5\n", + "* reading M31-B09-EAST_chunk/M31-B09-EAST_chunk_noisemodel_bin2.grid.hd5\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAI4CAYAAAB3OR9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeXyU1fU/8M+ZLGSBBKKASFBBLUIRERCNXyVCAVlasIhC3EiJpGpRwa1gtYJRQ9EqVCwaDQaxjQhSpSUJiaIBK8oiKELMrxSqDLKELYEsZDu/PybLTPZJ5plnZvJ5v155JXPzzPMcuxxP7tx7rqgqiIiIiIjIxmJ2AEREREREnoQFMhERERGRHRbIRERERER2WCATEREREdlhgUxEREREZIcFMhERERGRHRbIRERERER2WCATEREREdnxugJZRPqLyPsiskxEppgdDxERERH5FvGEk/REZDmAXwI4pqoD7MbHAlgCwA/AW6q6UEQeBbBVVTeLyDpVndjc/c8//3y95JJLDIqeiMh5O3bsOK6qXc2Ow12Yh4nIEzWWi/3NCKYBKQCWAninekBE/AC8BmA0ACuAbSKyDsBKAM+IyEQA57Xk5pdccgm2b9/u6piJiFpNRH4wOwZ3Yh4mIk/UWC72iCUWqroJwMk6w8MA7FPV/apaCuA9AJNU9Ziq/g7AXADHG7uniMSLyHYR2Z6Xl2dY7ERERETkWzyiQG5ETwAH7V5bAfQUkUtEJAm22eYXG3uzqiap6lBVHdq1a7v5FJOIiIiI2shTllg0RBoYU1X9H4B4N8dCRERERO2EJxfIVgC97F5HAvjJpFiIyAOVlZXBarWipKTE7FAaFRQUhMjISAQEBJgdChGRy3lDHgacz8WeXCBvA3C5iPQGcAjANAB3mBsSEXkSq9WKTp064ZJLLoFIQx86mUtVceLECVitVvTu3dvscIiIXM7T8zDQulzsEWuQRSQVwBYAfUXEKiJxqloOYBaADQByALyvqnvMjJOIPEtJSQnOO+88j03KIoLzzjvP42dWiIhay9PzMNC6XOwRM8iqGtPIeBqANDeHQ0RexJOTMuD58RERtZU35DlnY/SIGWQiIiIiIk/BArmVViVtxPj+87AqaaPZoRCRiWbMmIFu3bphwIABzV9MTmGeJaKWMCIPs0BupZRXsqBq+05E7VdsbCwyMjLMDsMnrVhsy7MrFjPPElHjjMjDLJBdgDMcRN6j4FQh1iRvQsGpQpfcb/jw4YiIiHDJvcjR9NmjIWL7TkS+wxvyMAvkVoqdY0vcADjDQeRFMtfuQPJL6chcu8PsULyaiPQXkfdFZJmITDHiGWOnReHuZ29BSWk5xvWbh3H9OBlB5Au8IQ97RBcLbzQ1fiSmxo/EqqSNWLE4izMcRF5izOQhDt+plogsB/BLAMdUdYDd+FgASwD4AXhLVRcCGAfgVVXdLCLrAKxxdTxpmd/i9eXZCDhZhOrW/isWZ2Fq/EhXP4qI3Mgb8jAL5DaqLpQBIHb0Qhy15qN7ZDhSsuaaHBkRNSSsSyimxA03OwxPlQJgKYB3qgdExA/AawBGw3bC6baqgnglgGdEZCKA84wIZvyYgQCAgh9PYPX7W+F/phSxD48y4lFE5EbekIe5xMKFjlrza77zY0Ai8jaqugnAyTrDwwDsU9X9qloK4D0Ak1T1mKr+DsBcAMcbup+IxIvIdhHZnpeX53Q84WHBiJlyLcIuOg9lESG4aspgbPviPxjXbx7mzXjT6fsREbUUC2QX6h4ZXvNzyitZ3LxH1A7ExMQgKioKubm5iIyMRHJystkhuVpPAAftXlsB9BSRS0QkCbbZ5hcbeqOqJqnqUFUd2rVr11YHMH7MQFx3TR98uW0/duYeQVl4B+z86kCr70dEvsWIPMwlFi6UkjW3Zk2yKmrawO368r9IXD7T7PCIyACpqalmh2C0ho6fUlX9H4B4dwQQHhaMJx+dgLTMb/HRqi9xuPAcQsKDML7/PEyfPZprkonaOSPyMGeQXWxq/Eik7U1E7JzaTXu7tuzn7msi8lZWAL3sXkcC+MndQVQvt7j5lqEAgMIz51Aa1gFvL/kYsaMXujscIvJxLJANMjV+JAZF9XEYYys4IvJC2wBcLiK9RSQQwDQA68wKZvKvBuO+GdEYdG0flEWEoLhnJ/x07KxZ4RCRj2KB3Ab5BcVIXfMV8guKG/x94vKZsNgtYgkODcS4fvM420FEHklEUgFsAdBXRKwiEqeq5QBmAdgAIAfA+6q6x6wYq2eS/7hgCiyVlYC/H8p6dGw0DxMRtQYL5Dao7tGZlvlto9es352I9BzbV9HZUgC2LhfcgU1EnkZVY1S1h6oGqGqkqiZXjaep6s9U9VJVfd7sOAFbofzaknvQOTwYlRYLEuZ/gFHXzceKpZlmh0ZEPoAFchuMHzMQsXdcj5Jz5S2avbDvclG9LpmFMhFR6/TveyHeeeNe3DcjGju37ENZRAhWvvsF93sQUZuxQG6D8LBgBAUFIOVv/25yFrlaStbceuuSd23Zz2RORNRK1Usu7rnzevifKkaFH/D637dg9j3LzA6NiLwYC+Q2Gj9mIO6bEY3xYwbi4KGT+P0za3DwUN0++7USl8+sVySnvMLNe0TeasaMGejWrRsGDBjQ/MVkmOmzxuCaGy5HZXgIKkMCsPPIaRbJRO2EEXmYBXIbVc9ehIcFY2nSRny5bT9mPfa3Zotk+zZwADiLTOSlYmNjkZGRYXYYBGDe079Gj9AOQLlt8x6LZKL2wYg8zALZhWbFj0Tn8GCczi/G0mYK3qnxIx2KZLaAI3KPglOFWJO8CQWnCl1yv+HDhyMiIsIl96K2CQ8LxnurH8bVF4TXFsnH8vFiwj/MDo2I7HhDHmaB7EK9ekZg6Ut34rpr+mD6Hdc32QIOcCySVTmLTOQOmWt3IPmldGSu3WF2KGSQxe/cD7+zJbYXFgv+9e9c/GlJOlvBEXkIb8jDPGraxXr1jMCfFkxB6pqv8PrybHy+5f/hdH4x/vD4L9G/74X1rp8aP7LmaOrqtcg8NpXIOGMmD3H4Tr5p+h3X4+33voB2DAIsFqRt2I0f/98RvPbab8wOjajd84Y8zBlkg4wfMxDXXdMH3+UchvWn03jij6sbnb2YPptLLYjcJaxLKKbEDUdYl1CzQyEDTZ81BpcEByHwaCFQWQkA+O6/R/G7373NmWQik3lDHmaBbJDwsGA8+egEXNCtEwDgzJlzWLuu4Y8SqpdaiDgWy0RE1HopWXMR5m9Bh8NnbUWyxYLvDuTh7rikJjdSExF5XYEsIjeKyOsi8paIfGF2PE0JDwvGS89PReSFnQEAX27fjzvikrA396d6106NH4m0vYnY9eV/eYAIkReJiYlBVFQUcnNzERkZieTkZLNDIjsfbFuAC7t1tBXJ5RUAgPzCc7grLgnP/3GNydERkSsYkYc9okAWkeUickxEvqszPlZEckVkn4jMBQBV3ayq9wH4F4AVZsTrjF49I/DXl+/Gddf0wff/7wgOHT6N2XNTG5292LVlf813btoj8nypqak4fPgwysrKYLVaERcXZ3ZIVEdK1lwMGXIxgg+dAUrLbYMWCzK37sNtoxeaGxwRtZkRedgjCmQAKQDG2g+IiB+A1wCMA9AfQIyI9Le75A4Aqe4KsC2ql1v8vJ9tk965cxWY8cDyBmeS7Q8R4QEiRESukbh8Jn7z8CgEHS0ESspqllwc8wOmskgmojo8okBW1U0A6k6pDgOwT1X3q2opgPcATAIAEbkIQL6qFjR2TxGJF5HtIrI9Ly/PqNBbLDwsGInP3IpOHYMAAKVllZgz7716M8mJy2eaER4Rkc+bGj8SG3Y/j5DDZ2E5e842aLHgiAUYef18rFiaaW6AROQxPKJAbkRPAAftXlurxgAgDsDbTb1ZVZNUdaiqDu3atatBITonPCwYixKmoHvXTggIsKCkpBwPPPpuk5tFuMyCiMi10nMSMeSyC+CXXwxUVAJ+FlR0DsHyf32N0Vc/bXZ4ROQBPLlAlgbGFABU9RlV9egNeo3p3/dCvL/iftw60db7r6CgBE8uWOvQdojLLIiIjPVSym+x8d/P4Oru4TVt4GCxoLR7KEZcwyKZqL3z5ALZCqCX3etIAPUX7XqpO267DtOmDEPPCzvjR+tJrF23o+bkvbrLLGK5Po6IyBCL37kfHfOLHYrkyvNCOZNM1M55coG8DcDlItJbRAIBTAOwzuSYXCY8LBj3z7gJy16+G/fNiEZJaTleX56Ntf/8ut61R635GNdvHsb1m8clF0RELrZ+ywIEny2uN5M86dpnzA2MiEzjEQWyiKQC2AKgr4hYRSROVcsBzAKwAUAOgPdVdY+ZcRohPCwYMVOuRVCg7dTvnd/8gLff/RzTfjeiwetTXslin2QiDzJjxgx069YNAwYMMDsUaoOMzxegX0QnhyL5dJdgRF/HmWQiT2dEHvaIAllVY1S1h6oGqGqkqiZXjaep6s9U9VJVfd7sOI00eeIQXHdNH3zznRUpf/8ClV1CkZ6TiPScRIR0DKx3/a4t+zGu3zzceg1nOIjMFBsbi4yMDLPDIBd4/e+/w7Il9zgUyegciuj/e5pL3Yg8mBF52CMKZKrtlTx00MUAgNQ1X+JPi9ORX1CMD7YtQPfI8AbfV3S2tGb5BRE1r+BUIdYkb0LBqUKX3G/48OGIiIhwyb3IfP37Xoh3k+MdDhRBp1AcqKjA7HuWmRsckY/whjzMAtmDhIcF449zJyIoyB/nzlUgLXM3nn7+Q+QXFCMlay7ScxIdOlzUNeFKFslEzclcuwPJL6Ujc+0Os0MhD9WrZwTWrZ0DnCmpOVAEQQHYeTQfv7qOn9oRtZU35GEWyB4mPCwYCU/9Gn5+tv9qvtl9sKZIBmwHiVQvvag7q1xZDs4kEzVjzOQhiHtsHMZMHmJ2KF5NRG4UkddF5C0R8cq2m00JDwtG9uY/Qk4W1i658LOgoHMwT94jaiNvyMMskD3QsMG9seL1GQjrZDt175vdB3HLHUuxPvNbh+uqZ5Xr4lo5osaFdQnFlLjhCOsSanYoHkdElovIMRH5rs74WBHJFZF9IjIXAFR1s6reB+BfAFaYEa87fLY1AVd3c+yVfMQP7JVM1AbekIdZIHuoXj0j8NeX78KQqy+GCFBZqVi0OAN7c+u3go6dM9rh9VFrPtvBEVFrpAAYaz8gIn4AXgMwDkB/ADEi0t/ukjsApLorQDMsfud++OcV1uuVHH0ji2QiX8UC2YP16hmBl5+fit4Xn18z9rtH/4atXx9wuG5q/Mh6a5N5Ah+Re8TExCAqKgq5ubmIjIxEcnKy2SG1mqpuAnCyzvAwAPtUdb+qlgJ4D8AkABCRiwDkq2pBQ/cTkXgR2S4i2/Py8owM3XCf7EiA33HHIhmhoYi+nkUykdmMyMMskL3As3+4BT/vdyEEtpnkx59aXW+5ReLymfXawXGpBZHxUlNTcfjwYZSVlcFqtSIuLs7skFytJ4CDdq+tVWMAEAfg7cbeqKpJqjpUVYd27drVwBDdY+P2BAQfO+tYJIfZ2sARkXmMyMMskL1Ar54R+Ouf78Ki526rGXtpyQa8/e7nNZv3AOCDbQsciuSj1nz2SSaitpIGxhQAVPUZVfW5DXpNyfj6OQQcqzOT3CkU0WMX1pu4ICLvxQLZiwwb3BtPzB4Li0VQqYqUv3+Bx59eXa9Itu9uUXS21IxQich3WAH0snsdCaD+Zoh25OOvExBxshg4a9cGzmLBopfTsOaj7WaHR0QuwALZy0wYMxAf/n0WgjrYjqbO/c8RPP3cPxyK5JSsuQ7vYes3ImqDbQAuF5HeIhIIYBqAdSbHZLp/bF2A6y/rAZxxnE1+ddnHeObJVeYGR0RtxgLZC4WHBSPh6V/Dz8/2yec331kx/b5kHDxUu7fG4u/4nnkz3nRniETkhUQkFcAWAH1FxCoicapaDmAWgA0AcgC8r6p7zIzTUyQun4nsfycA+Y5F8mdfH8C0WxebGxwRtQkLZC9l65Vcuwj91OkizJm3qmYmef1ux/7Iu7bsd2t8ROR9VDVGVXuoaoCqRqpqctV4mqr+TFUvVdXnzY7T02RvSQAKHIvkw4UlbANH5MVYIHuxXj0j8MTs2palecfPYPJdr9W0gavbH5m9kYmIjJH9RUK9XskIDcVv4t4wNzAiahUWyF5uwpiBeNGuu0V5eSWeeHo1Dh46ianxIx2uTXkli63fiFxsxowZ6NatGwYMGGB2KGSyT3YkoMNhxzZw+w+dQvTIZx32iRCRaxmRh1kg+4Bhg3tj/pMTa16rAr95IBl7c39y6GgB2Fq/jes3r+ZrwpXcwEfUFrGxscjIyDA7DPIQmd88V/9AkaAgTLx9CT79/HtzgyPyUUbkYRbIPmLEDVc4FMllZYr757yLX9wbXW/Dnr3KcjgUzOP6zeMsM/m0glOFWJO8CQWnCl1yv+HDhyMiIsIl9yLfsHF71UxyeYVDoTz/uQ/ZBo4I3pGHWSD7kBE3XIEXn7sNHUM71Iy9tWIzpj01sYl31XfUms/1yuSzMtfuQPJL6chcu8PsUMiHZX7zHEIOFgCF9dvA/XnpBnODIzKZN+ThJuYWyRsNG9wb61c/jJWrtuCtFZsB2IrkBxfeiimThtZc11xv5JRXspC+emu9nspE3m7M5CEO34mMkp6TiHH95qGorBDoHFpzoMi6f+0EADw662aTIyQyhzfkYRbIPuruqVEAUFMkv/rGRuTkHsZD941CeFgw0nMS672nbtF81JpvfKBEbhbWJRRT4oabHQa1E+k5iZhw5Tyc1UKgi2OR/MOPx/GXRXeaHSKR23lDHuYSCx9299QoPPjb2k4WH3+Wg0f/8F6j17ekaCYiIues352IkIJy4JTjcotvvj2IKTGvmhscETWIBbKPmzJpqMPmvf/8Nw/xD69wOHXPHotkIufExMQgKioKubm5iIyMRHJystkhkQdKz0lE77BQWE44Fsl5pwoRPXYhO1wQtYEReZgFcjsw4oYrMHbUz2te5/7nKO6Of6vmQJG6WCQTtVxqaioOHz6MsrIyWK1WxMXFNf8mapdSsubiuisvcuxwUbXkgh0uiFrPiDzMArmdmPfIBIcDRVSBx59azSKZiMiNEpfPbLLDxdKkT8wNkIgAeGGBLCI3ichmEXldRG4yOx5vUvdAEQB4csHaRk94YpFMRGSM9JxEhBwvr1ckr167Db//42pzgyMizyiQRWS5iBwTke/qjI8VkVwR2Sci1f3GFMBZAEEArO6O1duNuOEK3Dv9xprXZWUViIl7A3tzf2rwehbJRETGaKxI/nLrfxF949PmBkfUznlEgQwgBcBY+wER8QPwGoBxAPoDiBGR/gA2q+o4AL8HsMDNcfqEu6dG4cXnboOIAAAKC0tx/5x38eaKTQ1eX/e4agCYN+NNQ2MkImoPaork03WOpw4NZZFMZCKPKJBVdROAum0VhgHYp6r7VbUUwHsAJqlqVQbBKQAd0AgRiReR7SKyPS8vz5C4vdmwwb3x15fvhJ9FasbeXfVlg2uSGzosZNeW/TySmojIBdJzEnF9/4uAfBbJRJ7CIwrkRvQEcNDutRVATxGZLCJvAFgJYGljb1bVJFUdqqpDu3btanCo3ql/3wux9M+ORfLjT61ucJNIQ0stjlrzWSQTEblA4vKZyN6SADnZQJE8diFGDWahTOROnlwgSwNjqqprVfW3qjpVVT9zd1C+pn/fC7HijThY7Irk1R/uwJ+Xbqh3bXpOYr3lFket+VyTTO3ajBkz0K1bNwwYMMDsUMgHfLY1AUGHzgDnyhzawJV1C8XIoSySiRpiRB725ALZCqCX3etIAA3vJKM26dUzAn96dgo6BPjVjK1L+wZPJaytd21Dyy0AYFXSRsPiI/JksbGxyMjIMDsM8iEbdj+PB6ZG1du8V3G+bcnFhCs5KUFkz4g87MkF8jYAl4tIbxEJBDANwDqTY/JZwwb3RuZHj2Li+KtqxjZv2dfi5RYpr2Rx4x55hYJThViTvAkFpwpdcr/hw4cjIiLCJfciqjY1fiSyNyfUK5IRGoqznf35yR15NW/Iwx5RIItIKoAtAPqKiFVE4lS1HMAsABsA5AB4X1X3mBlne/DorJtxY9RlNa9Xf7gDz734r3q9khsqkndt2c8imTxe5todSH4pHZlrd5gdClGzGiuSi85jkUzeyxvysEcUyKoao6o9VDVAVSNVNblqPE1Vf6aql6rq82bH2V489/Rk3HbLkJrXWZ/uxaSYV/Hp5987XNdYkUzkycZMHoK4x8ZhzOQhzV9M5AGyNyfgqoG9HIvkjqEoOt9WJLNQJm/jDXnYIwpk8jyz4n/hcOqeKjD/hXX1DhThQSLkbcK6hGJK3HCEdQk1OxSvxlNN3esvi+7EbZOvqT+THNkRlf4W5l3yKt6Qh1kgU6NG3HAFnpjtcH4L7p/zLtZ8tN1hjEUykW/gqaaebVb8L/Dg/aMci+SAAJT07ISiMM4mE7kSC2Rq0oQxAx2OpgaAV9/Y2KLlFkzU1B7ExMQgKioKubm5iIyMRHJystkhtUUKeKqpR5syaSiWLbnH9sK+UO4SiqIwfwDMvdT+GJGHWSBTs+6eGoW7pl7nMDb/hXVYuWqLw1hIx8B672U7IvJ1qampOHz4MMrKymC1WhEXF2d2SK1mxKmm5Hr9+16I7LQn0DEsqH6RfD6LZGp/jMjDLJCpRWZOH15vucVbKzY7FMkfbFuAQVF9HK6pLAdP2yPybq0+1VRE4kVku4hsz8vLc0Oo7cv692cjLDy4dqB6XTKLZKI2Y4FMLTZhzECHjXuArUi2P3UvcfnMeu87as03PDYiMkyrTzVV1SRVHaqqQ7t27WpslO3UP1c9jN4X2/V/ZZFM5BIskMkpI264AsteucthbF3aNw5FMtcjE/kUnmrq4VKW3csimcjFWCCT0/r3vbDeTPK6tG+wYOFHNa9ZJBP5DJ5q6gVSlt3ruKGaRTJRm7BAplYZccMVePG52yB2H75u3JSLaTNerzl1j0UykXfhqaberd6G6uoi+eLwmjZwRNQyLJCp1YYN7o2VSfeiS+eQmrHDRwowcVrtqXsWf7OiIyJn8VRT7zdz+nCse+/B2gGLpbbDRQSLZKKWYoFMbdKrZwQ+/PssDBl0kcN4dRu49bs5i0y+bcaMGejWrRsGDBhgdihEAIDwsGBkpz2BsE523fcsFqBTKIo6s0gm32NEHmaBTC7x8gvTcN3Q3g5jb63YjK1fH+BSC/JpsbGxyMjIMDsMonr+uephXBTZuXbAYgHCbeuSmYPJlxiRh1kgk8v86dnb8PMrLnAYe/yp1Via9EmDRTKRGQpOFWJN8iYUnCp0yf2GDx+OiIiI5i8kMsHKpHhbkWx/oEgoi2QylzfkYRbI5FJ/ffkejB31c4ex1R/ucGgDV43JmcyQuXYHkl9KR+baHWaHQuQWK5PicUGPMBbJ5DG8IQ+zQCaXm/fIBNwYdZnD2Lq0b3DH/ImNvIPIfcZMHoK4x8ZhzOQhZodC5Dar3n4Al13WrX6RfFEYxlz1lLnBUbvjDXmYBTIZ4rmnJzd46p7fZV0cxjh7Qe4W1iUUU+KGI6xLqNmhELlV8tIZuCvmesci2c8P53p0xE3DnjY3OGpXvCEPs0Amw4y44QrcdovjX4dnKlDTuJ6IiNxr5vThWPf+w8CZIodCWSNCEX0ji2SiaiyQyVCz4n/h2LgeADp1ciiSOYtM3iwmJgZRUVHIzc1FZGQkkpOTzQ6JqEnhYcHI3jwfKCyst+SCRTJ5IyPysNNTeSISCqBEVSva/HRqF2ZOH46xowbgrplv1Q6GhqIIhQg5Xg7AViSz0wV5o9TUVFOey1xMbZW9OcFWEIeG1h4oUlUk9w4KRUrWXLNDJGoRI/JwszPIImIRkTtEZL2IHAPwPYDDIrJHRF4UkctdHhX5nF49I/Dic7fVDtTsog6GWmznVY/rNw+rkjaaFCGRZ2MuJiNkb05AYAXqzSQfKCnkp3vUrrVkicWnAC4FMA/ABaraS1W7AbgRwJcAForIXQbGSD5i2ODeWPfeg/D3sxXEtpOdglDcPbSmSE55JcvECIk8GnMxGSIray769r2AbeCI7LSkQB6lqgmq+q2qVlYPqupJVf1AVW8FsMq4EMmXhIcFY+3fZiEoyK92MCgAxb3CUBZsW/HDmWSiBjEXk2GSlsTi3t9E1y+SLw7HzUO4Lpnan5YUyD2au0BVy1wQC7UT4WHB2LD2UYR16lA7aLGgrFtoTZHMmWSiepiLyVB3T43Ciy9MBSoqbYVy1brkkq6hiI5ikUztS0sK5A+rfxCRDwyMpUVEpJ+IvC4ia0TkfrPjodb756qH0Tk8qHagqkguOq92JpmIanhULibfNGxwb2RvmFu/w0U4O1xQ+9KSAlnsfu5jRBAislxEjonId3XGx4pIrojsE5G5AKCqOap6H4DbAQw1Ih5yn49SH8LI4X1rBywWoGMoijqzSCaqw/BcTFQte3MC28BRu9aSAlkb+dmVUgCMtR8QET8ArwEYB6A/gBgR6V/1u4kAPgfwiUHxkBs9M3cS+l7erXagaraiKIJFMnm+GTNmoFu3bhgwYIDRj3JHLiaq0VSRPOFK5mXyHEbk4ZYUyFeJSIGInAEwsOrnAhE5IyIFrghCVTcBOFlneBiAfaq6X1VLAbwHYFLV9etU9XoAdzZ2TxGJF5HtIrI9Ly/PFWGSgZKWxNYvkjuF1hwowiKZPFVsbCwyMjLc8SjDczFRXY0VyWd7hiP6Ws4mk2cwIg83WyCrqp+qhqlqJ1X1r/q5+nWYS6Nx1BPAQbvXVgA9ReQmEfmLiLwBIK2JuJNUdaiqDu3atauBYZKrJC2JdTya2q7VEMAimVyj4FQh1iRvQsGpQpfcb/jw4YiIiHDJvZpiYi6mdi57cwJwtk6RbLEAXbjkglrHG/JwSw4KiRIRae46AzT0TFXVz1T1IVX9raq+5vaoyFCz4n+BZa/YtXJlkUwulrl2B5JfSkfm2h1mh+IUE3MxEbI/T8D8p26xFckNLLlgbiZneEMebskSi+kAvhaR90QkVkQuMDqoKlYAvexeRwL4yU3PJhP17wXUSSYAACAASURBVHshxo76ee0Ai2RyoTGThyDusXEYM3lI8xd7FrNyMREAYMQNVyA7o4EOFzxUhJzkDXm4JUss7lPVqwHMB9AFQIqIbBGRF0RkeNVmOiNsA3C5iPQWkUAA0wCsM+hZ5GHmPTIBE8dfVTtQnYR72I6mZiKm1grrEoopccMR1iXU7FCcYmIuJnLQ2LpkFsnUUt6Qh1sygwwAUNXvVfUVVR0LYCRsXSRuA/BVW4MQkVQAWwD0FRGriMSpajmAWQA2AMgB8L6q7mnrs8h7PDrrZjwx2665icUCBAXVnLrH0/aoPTIyFxO1VPbmBFw37NIGT94bNZjrksn7tbhAFpHdIvI3Efk9gJsAfAvgiKq2uRexqsaoag9VDVDVSFVNrhpPU9Wfqeqlqvp8W59D3mfCmIFY996DCAwQh0Rc1i0Uby371NzgiADExMQgKioKubm5iIyMRHJysqHPMzIXOxkHD21q5/707G24K+b62nXJVZv3yrqF4uYr/2B2eNSOGJGHW1wgA4gG8CaAYtiWO3wHYEKbIyBqRnhYMLI+ehwhHQMdiuTS7txBTeZLTU3F4cOHUVZWBqvViri4OKMfaVgu5qFN5KyZ04c3uC65pGcnjBzK/EzuYUQedmaJxcmqDhJ/UdXpAK4B8J82R0DUQulrHkFYeHD9HdTXMQlT+2FwLk4BD22iVmhoXXLF+aH4xRDmZ/JOziyxuNz+tar+B8BAl0dE1IR/rnq4/uaQzqF44JF3zA2MyE2MzMWuPrSJBza1Lw0VyeVdQ3mgCHklZ5ZYJInIj1W7pt8QkRUAvhOREKOCI2pIQ0l4z96fMCnmL+YGRuQe7s7FrT60iQc2tT8Ndrjowk/6yPs4s8RihKpeBGAqgPUA9gEIAfCNiHxvUHxEDWooCZ/OL0H8wymmxkVkNBNyMQ9tIqdkb06wFcZ1Pukbc9VT5gZG5ISWnKTnkBxV9ceqj9USVPVWVb0cto/giNyq4+lyxyIZQO5/juHu+CQToyIyhom5mIc2kdOy054ACosdiuRz3ULZJ5m8RktmkD8VkQdF5CL7QREJFJGRVR/vTTYmPKLGrd+diJDj9YvkH62nMebXL5oYGZEhzMrFPLSJWiV78wL4+9nNJPsJDxMhr9GSAnksgAoAqSLyk4jsFZEDsO2ajgHwiqqmGBgjUaPSc6qK5LOORfK54gqMm/KyiZFRezFjxgx069YNAwYMMPpRhudiHtpErvbJ+ids/6ut7pPME/fIAEbk4ZYcNV2iqn9V1f8DcDGAXwC4WlUvVtWZqrrLZdEQtVLIiXJYTjiuSS46W4ro8YvMDYx8XmxsLDIyMgx/jjtyMQ9tIiNkZ9n1SbY7ce8XQ55moUwuYUQedqaLBVS1TFUPq+ppl0ZB1AbpOYmw+ANBZ8vhd7zO7unKSkSPX4T8gmJzgySPUXCqEGuSN6HgVKFL7jd8+HBERES45F4txVxM3iZ7c0Lti6oT98q7cja5vfKGPOxUgUzkqdbvTkR6TiI6FJYj6NAZoKysdrYCwMRpr+LTz9lshYDMtTuQ/FI6MtfuMDsUonbl3t9E236oc9gTi+T2xxvyMAtk8inpOYmwlFcixHq23ua9+c99iAULPzIxOvIEYyYPQdxj4zBm8hCzQyFqV+6eGoXstCcaPBG16OJwRN/IXsnthTfkYWdO0rtNRDpV/fyUiKwVkcHGhUbUOuk5iQBQv8OFxYKNn+WwSG7nwrqEYkrccIR1CTU7lFZhLiZv989VD6Nv3wtsubn6k76qQplFcvvgDXnYmRnkp1X1jIjcAOBmACsALDMmLKK2Sc9JROyc0Y0WyXGzlpsbIFHrMReT10taEovsjLn1T90LDUX02IWIvf8tcwOkds+ZArmi6vsEAMtU9SMAga4Picg1psaPrG0DVycJ79t3DHfEvW5ugOQTYmJiEBUVhdzcXERGRiI5OdnoRzIXk89wOBXVbjb5wIHjiB6/CFu/PmB2iOQFjMjDzhTIh0TkDQC3A0gTkQ5Ovp/IFI0VyYcOF7BXMrVZamoqDh8+jLKyMlitVsTFxRn9SOZi8inZmxMQ8kN+/dlkAI8/uYpFMjXLiDzsTFK9HbZG8WOrWgtFAHi8zREQuUFNkXzGceNeUVE5fn3nqyZGRuQ05mLyOek5iegdFOo4mwwAFgsef3IVEl9eb26A1O60uEBW1SIAnwLoIiLDAVwOoMSowIhcLT0nESEn6x9NffJUMW6b/pqJkRG1HHMx+aqUrLmNziZnZO7m3hFyK2e6WNwLYBNsMxcLqr7PNyYsImM0NpN8LK8QN09+ycTIiFqGuZh8XVN7RziZQe7izBKLhwFcA+AHVR0B4GoAeYZERWSwkJPlQIFjkVxSUsmjqckbMBeTz2usSD529AweeOQdc4OjdsGZArlEVUsAQEQ6qOr3APoaExaRcWr6JJ+qXyQD4NHU5OmYi6ldaKxI3rP3J4y99c/mBkc+z5kC2SoinQF8CCBLRD4C8JMxYREZy75I9jtev0ieOO1V7pwmT8VcTO1GY0VycWEZokcvNDc48mnObNL7taqeVtX5AJ4GkAzgFqMCI3KXDoXl6HD4bL3xx59ajaVJn5gQEXmLgwcPYsSIEejXrx9+/vOfY8mSJYY/k7mY2pt6HS4AWxs4P/DkPQJgTC5uVe9MVc1W1XWqWtrmCJwkIn1EJFlE1rj72eRbqmeRAcCvtAIhB07Vu2b1hzu43o0a5e/vjz//+c/IycnBl19+iddeew179+512/PNzMVE7lTd4QL5DZy8xyK53TMiFzdbIIvI51Xfz4hIgd3XGREpaNPTa5+xXESOich3dcbHikiuiOwTkbkAoKr7VdXwTvzUPvUuq0RQkOP/LfZ8fwQPPfE3kyIiV8svKEbqmq9css68R48eGDx4MACgU6dO6NevHw4dOtTm+zbEHbmYyNNlb0mAnGz4eOpPP//e3OCoxVyZhwFjcnGzBbKq3lD1vZOqhtl9dVLVsDY9vVYKgLH2AyLiB+A1AOMA9AcQIyL9XfQ8IgCOs8gAcNSajw1rH0O3rqEO4998d4ht4HxEWua3eH15NtIyv3Xpff/3v/9h586duPbaa11632puysVEHu+zrQkIPFqnSLZYMP+5D7Fg4UfmBkctYlQeBlyXi1u1xEJEzhcRadOT7ajqJgAn6wwPA7Cvasa4FMB7ACY5EWO8iGwXke15eeyARM5ZveJ3uCiys8NYSUklRt/CNnDebvyYgbhvRjTGjxnosnuePXsWt956KxYvXoywMPfVqq7OxUTeImtnAvzz6p+6t/GzHPz+j6vNDY6aZUQeBlybi1uyxCJKRD4TkbUicnXVMojvABwVkbHNvb8NegI4aPfaCqCniJwnIq8DuFpE5jX2ZlVNUtWhqjq0a9euBoZJ3q7uLPKEK23/s1qZFI8hgy5y+F1pqa0N3MFDdf+eI28RHhaMmCnXIjws2CX3Kysrw6233oo777wTkydPdsk9G2JiLibySJ/saPjUvS+3/pfrkj2cq/Mw4Ppc3JIZ5FcBvAAgFcBGAPeq6gUAhgNIbOqNbdTQrIiq6glVvU9VL1VVI59P7VRlee3PL78wDbfdMqTeNXfNfIsf5RFUFXFxcejXrx8eeeQRox9nVi4m8liNtYHj5r32xYhc3JIC2V9VM1V1NYAjqvplVTBGr4a3Auhl9zoS7PVJJpgV/wu8+Nxt9cY3bsrFmys2mRAReYp///vfWLlyJTZu3IhBgwZh0KBBSEtLM+pxZuViIo+WnpNo63DBIrndMiIXt6RAtj9Boe52Q23T05u2DcDlItJbRAIBTAOwzsDnUTtWd5lFXcMG90Z22hOI6OL4cdC7q77kqXvt2A033ABVxbfffotdu3Zh165dGD9+vFGPMysXN4gtN8nTsEhuv4zIxS0pkK+qbiUEYKB9ayEAV7bp6VVEJBXAFgB9RcQqInGqWg5gFoANAHIAvK+qe1zxPKLW+sffHsT554U4jE2c9qpJ0VA7445czJab5NWyNycApxoqkudzMoOc0pI2b352rYT867QWCnBFEKoao6o9VDVAVSNVNblqPE1Vf1a13vh5VzyLqCXG9Wt0/yc+WDmrXq/kCbcvNjokaufckYvBlpvkA7K/SkDAsTpFcqcQTLx9CUZex9lkaplWtXkjag9iRy9s9Hcb1j7m8Prs2VJs/fqA0SFRA1TdvrrAKZ4enz1Xt9xku00yy8dfV/VKrnBsA1fRORTR/8ci2dW8Ic85GyMLZKIqDR0a0pS7pl7n8Prxp9h7092CgoJw4sQJj03OqooTJ04gKCjI7FDaotUtN9luk8yUtTMBvStRf11yp1BER7FIdhVPz8NA63Kxv4HxEHm9cf3mNbqBb+b04fjp8Cls3JRbM/bQE3/DXxbd6a7w2r3IyEhYrVZ48uxkUFAQIiMjzQ6jLRptuQngPncHQ+SMlKy5AGDbqBcaWnPqHsJtm/eyNyeYHKH384Y8DDifi1tcIIvIbQAyVPWMiDwFYDCA51T1a+fDJPJM6TmJTa4/ruuZuZOwcVPt6XrffHcI6zO/xQQXnw5EDQsICEDv3r3NDsOtTMjFbLlJXi97c0L9Irmqw0XI8fJmOxlR43w1DzuzxOLpqoR8A4CbAawAsMyYsIg8R3MFc90eyYsWZxgZDpG7czFbbpJPyN6cAL/j9TtcFF0cjmhu3qM6nCmQK6q+TwCwTFU/AhDo+pCIzOXsTMKwwb1xQfeODmPrM791ZUhE9gzLxWy5Sb5u4/YEPHj/KFuRXFlZO5vcmf2SyZEzBfIhEXkDwO0A0kSkg5PvJ/Iag6L6OLxubhZ51dsPOLzmLDIZyLBczJab1B5MmTQU2RlzGz1UxJllduS7nEmqt8M2gzBWVU8DiADwuCFREZkscflMp99z3VDHNVh7c7lMkwzBXEzkAo2dvFd0cTii/4+FcnvX4gJZVYtUda2q/qfq9WFVzTQuNCJzxc4Z7fC6uWT5p2cd1yLP/v3fXR4TEXMxketkb07A2DFXOhbJVa3gii4Ox8ihXHbRXrW4QBaRIBF5RETWisgHIjJHRLy6uSdRU6bGj3T6PVcN6Fnz87nSSleGQwSAuZjI1eY9MgHLltwDlFfUK5Qrzg9F9M0LMfpqFsrtjTNLLN4B8HMArwJYCqAfgJVGBEXkrer2QF6a9IlJkZAPYy4mcrH+fS9EduY89O17Qe0GPsBWKPtZUNo9FNFjFyL6WhbK7YUzBXJfVY1T1U+rvuIB/MyowIg8Qd2OFk0dP92Q1R/ucGU4RABzMZFhkpbEIjtjLjpUoH6hbLEAXaoKZXa88HnOFMg7RaTmbF0RuRbAv10fEpHnau74aQDAyTO1SbWykhs9yNWYi4kMlpk117HTRd1COTQU0dezSPZlzZ6kJyK7ASiAAAD3iMiPVb+6CMBeA2Mj8ggWf6CyvGXXjus3DyEAijrXHwec77FMVI25mMj9qo+ivmn0Qijs9pVYLEAYj6v2ZS05avqXDYwJbMeNPunacIg8z/rdLTt+urFrii4Or/k5euxCW2IFsOyVu9C/74WuCZLaA+ZiIpN8ljW35ufo658GwkJrZ5JveBrZn7NI9jXNFsiq+kP1zyIyCMAdsPXhPADgA+NCI/Ie9Yrj0gogyFJTDDfk/jnvOryeOP4qPDrrZiPCIx/AXEzkGbK/SED0yGeBoCBbju8YijE3PoPMzQvMDo1cqNk1yCLyMxH5o4jkwLZj+iAAUdURqrrU8AiJPExLZpOD8opqX1SvX7P/asC6tG+QX1DsqjDJxzAXE3mOiLMVQFnVqe8WC86FBmP2wyvMDYpcqiVLLL4HsBnAr1R1HwCIyBxDoyLyIg0VzBt2P9/oNUXn+wOhoY5vqJppnjjtVWSnPeH6IMkXMBcTeYh/bF2Am6/8A0p6dqrZuLcz9zDWfLQdUyYNNTs8coGWdLG4FcARAJ+KyJsi8gvY1r0RtRt1N9eN6zev0ZZvDW3ES89JrBkPOV6OkB/ya74cjjoFMG7Kyy6MnHwIczGRB9mw+3kEHnU8qvrVZR+bGxS5TLMFsqr+Q1WnArgCwGcA5gDoLiLLRGSMwfEReawWtXyrw75QrhZy3LFFRlFROR545J02xUa+h7mYyPNk7UyA33HHSY43V2wyMSJylRb3QVbVQlX9m6r+ErZd07sAzG3mbUQ+re7yipa2cUvPSUT3yNruFv55jgl2z/dHEP9wiktiJN/CXEzkWS7qEgo5WZXDLRa8m/oFPv38e7PDojZy5qCQGqp6UlXfUNWRrg6IqL1IsWsbFFhUXq9Izv3PMazP/NaM0MhLMBcTmS8lay6Cz5TbuhcBgMWC+S+s46ZrL9eqApmI6mvNISD27wksKq+3HnnR4gyXxEZERMaJnTPa1r3ILn//7tF3m3gHeTqvK5BFpI+IJIvIGrNjIXIF+yI55HhVkWznkSffc3dIRETkhKnxI9Hjgk7A6dpJjoOHTnEW2Yu5tUAWkeUickxEvqszPlZEckVkn4g0uZZOVferapyxkRKZJ+R4ucMsxI5dP3I9GxGRh0vJmouQ/HLYn0j929kppsVDbePuGeQUAGPtB0TED8BrAMYB6A8gRkT6i8iVIvKvOl/d3BwvkVvUXZ7hd9xxFnn+C+vcGQ4REbVSoN1+ksNHziDx5fUmR0St4dYCWVU3AThZZ3gYgH1VM8OlAN4DMElVd6vqL+t8HWvps0QkXkS2i8j2vLw8F/5TEBljUFSfmp87FJYDp884/J5LLYiIPNugqD7wLykHikprxjI+3oPo8Yvw56UbTIyMnOUJa5B7wnZkajVr1ViDROQ8EXkdwNUi0uiZv6qapKpDVXVo165dXRctUQNi54xu8z0Sl890eB1yyrE/8o5dP+KphLVtfg4RERmjOo8HnygBCksclsutS/sG0eMXYeWqLWaFR07whAK5oZOgtLGLVfWEqt6nqpeqqvNtA4hayX6Gt66p8a7psmWpc/h7v86OR1Jv3rKPh4iQR+CGaaKGdY8Mh1QqQo4VA2cK6/3+rRWbET1+EW6asAhbvz5gQoTUEp5QIFsB9LJ7HQngJ5NiIWpU3RleI6zf7fg33w87reh9cYTD2J7vjyD2/rcMj4V8FzdMExnHvsd9yMlydDhUAJRVOMwmA4Aq8PhTqxE9fhEmTnsVe3NZ+ngSTyiQtwG4XER6i0gggGkAuCOJqErKsnsRHOznMHbgh5Nck0xtkQJumCZyC7/SCoRYCxDyQz5QcMZWKNcplvMLinH/w+9gadInJkVJdbm7zVsqgC0A+oqIVUTiVLUcwCwAGwDkAHhfVfe4My4iT9LQgSMZHzyK0NAAh7Edu35E3Kzl7gqLfIi7NkxzszS1V3WXy1ULOVGOkB/yEXCssLZQri6WLRasXrsN8xasZf9kD+DuLhYxqtpDVQNUNVJVk6vG01T1Z1Xrip93Z0xEni529EIAQNrqObgosrPD7/btP45b715qRljke1y+YZqbpam9Wr87Eek5tV91BRTbCuWQH/JrDxeprAQsFnzx1T5MvH0J3lyxyYTIqVojf+MQkac4as2v+XllUjweeOQd7Pn+SM3Y8RNF+NXUJfjnqofNCI98h9MbpgHcZ1w4RL6joSK52rh+84D8fJwL9UfF+aGAxQJYLHg39Qu8m/IZ1n30OMLDgt0YLQGesQaZiOpoKpn+9eV7cFmf8x3GCs6cw23TXzM6LPJt3DBNZILqWeYOheW2Q6LsllwgOAgTb1+C6JsXsuOFm7FAJnJCdau3xtaXuUvy0hn1iuRjeYW4Oz7JpIjIB3DDNJGJ0nMScVGXUAQfLACKShwLZT8LHn9yFUbdvJDrk92EBTKRE3Zt2Q8AqCxv5kI3SF46A1cNcFwi+qP1NKLHL+JsMjWJG6aJPFNK1lxk7HkBIUeLbYXymWKHQrnMz4KJty3hbLIbsEAm8gLzZrzZ4PhfFt2Jnj3C6o0fyytE9PhFiB6/CKMmLTI6PPIy3DBN5NnScxKRsecFdDxd4tjxAqiZTR4xfhF7JxuIm/SInNA9MhxHrfmw+Lt3Frl65rohf0++D4kvr0fGxw1P9pWVAdHjHYvky/qcj+SlM1waIxERuVb14VHj+s1DSUd/VJ5Xu4mvEsD9D7+DPn2649k/TEKvnhFN34ycIqqNblL2GUOHDtXt27ebHQb5mHH9ajtbNbWprrVWJW1EyitZTj1j69cH8PhTq13y/PPPC8EHK2e55F5Un4jsUNWhZsfhLszDRG0TO3ohDh85g5KuIUCgn61QtnP1wF5Y8OQt7HjhpMZyMZdYEHmoqfEjnX7PsMG9kZ32RM2XNNS4q4WOnyjipj8iIg+RkjUXG3Y/j5DDZ+GfV1jvRL6d3x7ExGmvInr8IvZQdgEWyEQ+7LP1TzgUzPOfnOjU+3+0nuZpfUREHiQ9JxHxvx1R/0Q+O++u+hKffv69SRH6Bq5BJnLCqqSNWLE4C9NnjzY7lFYZccMVGJF2RbPX2a9Z3rf/OPbm/oT+fS80MjQiImqhqfEjMTV+JCZcOQ8BP+SjqIs/EBZq+2XV0ov5L6xD0exSTBgz0MRIvRdnkImcsGJxFlRt36t7Ild/9yV1Z5offOxdkyIhIqLGrN+diEFRfRByynZ0teVEocNs8qLFGfjTknT2Tm4FFshETpg+ezREbN+rO0s01WHCW4244QrcO/3GmtflFUDiy+tNjIiIiBqSuHwm0nMS0T0yHEFnyxF8sACWM7UHjaRt2I1b7/4reyc7iQUykROmxo9E2t7EVm2g8zZ3T41CaEhAzeuMj/dgfea3JkZERESNScmai/ScRPhZFEHHixF4tHY2uaysAo8/uYp9k53AApmIGvXGkukOrxctzjApEiIiaon1uxMR0jEQ/iXlDkUyLBbc//A7uGnsQhw8dNLcIL0AN+kRtdKgqD7YtWW/29Ygj+s3D4Oi+iBx+Uy3PA8AevWMwBOzxzoUxp9+/j1G3ND8Rr+nEtZi85Z9Df5u4vir8Oism10WJxER1fpg2wIAwIQr5wFHC1HavfaAEQVwV1wSli25h5uvm8CDQohayb6jhVFLLubNeLPRNc5GHE7SmF/fuRQnTxUBAPz9Lfhk3WMNXrc+89uWzTLXaUlUl39eIQKLyt3+B4E78aAQInKHW695BoVFZSiOCAJCA2sPGKmsxJXnh2Hpuw+YG6DJGsvFLJCJWml8/3lQBUSAtL3GFKv2p/U1xh2F8sFDJ3HXzLdqXt87/UbcPTXK4Zo1H23Hq29sbPgG9gWxpQUru6qvVwBVh51UF83dI8ORkjXXiehrHTx0EkuTNmJW/EjTj2VlgUxE7jThynkoCfRHeddQhyL58s4d8dZ77ffU1MZyMZdYELXS9NmjPaInsquOvG6qGA/pGIjz+nbFiZO2WeS3Vmx2KJBXrtqCt1Zsrn1DdYF7thAhJ8prhtUitbMYjan6GLCu8q6hKAfw4/FC3HrNMzUfIbbEwUMn8eJfNuC/B47h7Nlz2Pv9Txh/80DcMeVaHstKRO3C+t22fz+MueopnLugI+Bny7X/OX0W+QXFzIV1cAaZyIO1ZAa5rpCOgS0uHp25f0WgH8716GgrXisrEXCsEAHF5Sjq7A+EO85IIL8QIafLm74hgNg5jstTamahG5hBtr+/3/FC/DZ+RLNLW/ILirH2n18j69M9OPTTaQC2JSLl5bb73zcjGjFTrm3xfwauxBlkIjLLHaMX4hAUCPCzDVRWok9YKN5+/0FzAzMBZ5CJvFDsnNFIeSWr5nX1DHFThW3R2dIW3dvZ4tuvtMJWsAKAxYKybqEoyy+sVxxXL4VoSHPLI6ZMGoopk+rXjH9eugHr/rWz5tkV54fir6u/wpXRVzS4ySS/oBgvLc3A5n/vQ/UkwIXdw9GtayfcOS0K732wFZdf2h03RF2O1DVfYfyYgZw9IaJ24+9Zc/HrYc/gdEgAKkNs65L3FxS2eBO2sz79/HssfDkND903CgUFxV6RczmDTOTBViVtbLBAttdQodvUUotbr3mm2SK6sUK8PMi/djd0RaVtdre6OK6oRLC1AFJpyyl1Z4ddYdLohTjt5/jMd5fHO6wnzi8oxrwFH2BPjq3fp0UE98REwXK6CO+99ikA1Gz+S13zFV5fnm3KTDJnkInIbI/FvoFtP+QBwVXL3iorkZ3Ruj0e9vbm/oQnF/wDp/ML0aN7Z/x0xPYJnsA2z3LdNX3w5KMTAABpmd+aWjBzkx4TM3mh6o2AQPMFZ91itqEiecKV81DZyMqHlq5fjh6/qMHxF5+7DcMG927RPdpi5NCnUXF+7ay1BcDAKyPx2ENjEdYpGM8uXIftu36ouf6mQRdj6z92NXivab8bgcALwnFD1OX4fMt/3JqkWSATkScYf9WTKOzWEQjwByoqsewvrW//tvXrA3g64R8oKS6tv5ek6hPGyk4dUBkSiKifRwIAtuyxYtBl3eHfMQiXXdYdv7x5oFvzMZdYEHmh6bMdl1i0VUPFsbMb+3r26IxDh087jM1/cqJbimMA2Lg9AaOvfrpmJrsSwK7dVtw18y3073sB9uYesV1YUYEORwqx9UDDxTEArPrrp0jbm1gzkwzAtDXJRERmSPvmBdx85R9QcmEnwM92mMj8p25xaqnFwUMn8cfnP8T+/cccN1pXVgKlFYBF0CGvCH6lFdCSCpR3Ksc36d8BAAI6BuLbb62oDAnA9l0/IOOfX+P0uXKkrd+FpUvuMW1m2etO0hORfiLyuoisEZH7zY6HyEj2M8bNFcrNHVji7FKMxvzp2Sn1xoxYs9aUrJ0JCD5YAL/TxbalHlVqiuPKSgRbz9jWTdfRPTK85uerruuD8f3nofRIPu6bEY3xYwYaHjsRkacZfM0l6HDkrK2gtVgw/4V12Pr1gRa9d2/uT7grLgn7/3fcoTCWMyUIPliAkMNnEXLIlo9DOgZCKhUB+ecQ+9AoxD40CoEFSIASCQAAIABJREFU5xB4ogiWolL4nS5Gyb4TsBSV4sej+Zj18DvILyg28J+8cW5dYiEiywH8EsAxVR1gNz4WwBIAfgDeUtWFLbiXBcCbqhrX3LX8aI+8mTNt3BpbZuGq4ria/TKLkOBApH8wu9X3aq3q9dkVgX441y0U8JOa5CzFpQg+UlhzbWPLU9zRy7oxXGJBRJ4kdvRCWE8Uoqyb7dO5DgF+yPzo0Sbfc/DQSdwdlwS1nzGuUHQ4Vgi/0ooW/3vG/lCsQVF9sPOrAzjXNQSVIYGI7NoJo8YMxORfDTZkNrmxXOzuGeQUAGPtB0TED8BrAMYB6A8gRkT6i8iVIvKvOl/dqt4zEcDnAD5xb/hEviF2Ttt6N/v7Sc3PC/4wqa3htMrU+JFIz0m0zUpYCxBwrNA2m1xShg7Ha2ccmlq7PX32aIjUziSvSmrkoBMiIh+XkjUXAcXlsFRt4i47WYjUNV81OoM7+55luOs3b9iK48pKoLwCgUcLEWItQOY3zzk1CZO4fCbScxKRnpOIxOUz8ZuHR6FDnm1W2Zp3Bil/+zfufzDFrbPJbi2QVXUTgJN1hocB2Keq+1W1FMB7ACap6m5V/WWdr2NV91mnqtcDuLOxZ4lIvIhsF5HteXl5Rv0jEXmUhhLSrdc8U2+srd0lnvr9rxAU5O/WtceNqV5aElBcjpAf8xFy+CwsVX2Om9vYODV+JNL2JuKbL/dDFVix2HXrvX0dl7sR+Z7ukeHocKoEASeLoFqJ15dn4+13P6933Yqlmdj10ynA3w8or0DQoTPorYKsnQkuOd11avxIhyIZAA7lncGzz6xp871byhPWIPcEcNDutbVqrEEicpOI/EVE3gCQ1th1qpqkqkNVdWjXrl1dFy2Rm1UXgM2tMW5M3ZZurkheI264AhvWPuL2tccNSVw+s8Hx9JzEFv8hUD2TbPapiO4iIstF5JiIfFdnfKyI5IrIPhFpsteTquao6n0AbgfQbpaKEPmylKy5NWuENagDAODD9Tsd1iM/FvsGUtZshQb6Q0rLEXT4LAZfc0mTPe5bw7FILgMAfL3rRzw6Z6VbZpI9oYuFNDDW6MJoVf0MwGdGBUPkaRorAFuiNSfxeaP0nESHf1Zn/5iYGj/S5T2bPVwKgKUA3qkesFvuNhq2iYptIrIOtr0hdf+qmqGqx6qWu82tuhcR+YDYOaOxYnEWLggPxpHiUqgCz7/4L3yU+iBWJW3EztzDqOwSAikqxW+mDMP0WWMMi6U6L7+95OOaNcnbcw/j7ruXYeXK+w3tcOEJM8hWAL3sXkcC+MmkWIg8zqqkjU6tj7U08WevK2aPPZX9THtb/qhoD9y53I2IvEv10rP874/BUlACVFRi9u9sn669veRjVAYFALCdrmpkcWwfT93lFvll5UhM+Iehz/WEAnkbgMtFpLeIBAKYBmCdyTEReYwVi7OcWh+7frfvFsFNqd7kweK41Vy+3I17QYi8l1Qq/MorAT8LjhzJR+zohSgLC0RlsK1AHnRt65b9tcbU+JHI2PMChlzSFf6niuB/qrimj7JR3Fogi0gqgC0A+oqIVUTiVLUcwCwAGwDkAHhfVfe4My6i1nB2Zre1XLU+tqmZZSK0Yrmbqj6kqr9V1dcauYZ7QYi8mP+ZUgScLMKOf+3CUWt+TTu3wMpK/HFB/Z74Rnsp5beI/81wdMgvQexDo7BiaSZGXTcfK5ZmuvxZbv1XpqrGNDKehiY23BF5IvuZXSPXr7pqfWx7nVmmFuNyNyJyIJUKv8Iy7PhfHsLCAlEcYCuQrxzS27QT7uz/nTjquvkoiwjByne/cPlyD09YYkHkldpb5wPyeVzuRkQ1qvvll55v2xx3OjQQ6m+BFJdhzgOe8e+9u++6HgEni3Db7cOa7NncGiyQiVqpeiNDO+t+QD6Ay92IqDlT40diUFQfVFafuBzgBwT6I7xrJ/TqGWFucFWmzxqDj7+cjwOHT+P15dku3bjHApmIqJ1R1RhV7aGqAaoaqarJVeNpqvozVb1UVZ83O04iMlfi8pm46tpLAQBSVoEgPwsSE9y/9rg536R/h4CTRS7duMcCmYiIiIgadN+MaEhpOQJPFMOy7wT6973Q7JDqiX1oFAILziH2oVEuuycLZCIP565uGURERPb+P3v3H59zvf8P/PG8XK7WMNfWjEazjZDQsISk5SymiJ0jQ0d+hnMq0anQpzKfjpOl5Ffn4CiTfqCTH31E08IoksnvUH4MS0I2wzDOnt8/sO91ua6xsev9vnZdj/vt5sb1fL1tj3Or89qz1/v1fr3nzViBoX1mQG1WFN7qvUcheWLLIxtkIi+X+s6l0zJS3ynZOcjA/3+4goiI6EbNnvhV0VFv1vwLuKdTY0Ne8+wN2CAT+aCr/yu6tK9eJiIi6jPsYVhUEdPgdpwPuRXrdmRj6fKtZscyBBtkIi9XvVZVp99vBN8uR0REpXVl68LmXb+iMNAGS34BHmnfxOxYhmCDTOTlfss+6fQ7ERGRkR7v3gKW/AL0eKyZaS8IMRobZCIvd2V7BLdJEBGR0ebNWIFP53+PwkAbgiJuMzuOYbz3kUQiAsDtEUREZJ7ZE7+CVQQA/GZ7BcAVZCIiIiIqxj0toyGFinsb1vSb7RUAG2QiIiIiKsaW7/Y5/e4v2CAT+ai+wx+GCM9EJiKiG9dn2KWfJX2G+dfPEu5BJvJRSYPalelbhYiIyP8kDWqHhB6tsHT5VpzMO+s32yy4gkxERERExVq6fCumvZ/hNy8JAdggE/mseTNW4JGGozBvxgqzoxARUTk1b8YKfJC8GK3ursVTLIio/Et95yuoXvqdiIjoRqS+8xXwX8WWJdv8ZnsFwAaZiIiIiMgJG2QiIiIiIgdskImIiIjILX89MpQNMpGP8tdJjYiIyk7SoHZY+uMbfndsKM9BJvJRPAeZiIjoxpS7FWQRiRORNSIyTUTizM5D5K14zBsREd0sf/1ZYmiDLCLvi8hREdl+VT1BRHaLyB4RGXmdL6MATgMIAJDtqaxE5d3siZeOeZs9kce8ERHRjfHXnyVGryCnAkhwLIhIBQDvAugIoCGAniLSUEQai8iSq36FAVijqh0BjAAwxuD8ROVGn2GX9iD3GcY9yFT2eDePyD/4688SQ/cgq+pqEYm8qtwCwB5V3QcAIjIXQBdVfQNAp2t8uRwAtxQ3KCKDAAwCgIiIiJtITVQ+cQ8yFUdE3sel+fWoqjZyqCcAmASgAoCZqjruGl+Gd/OI/IC//izxhj3INQEccvicfbnmloj8UUSmA5gDYGpx16nqDFWNVdXYatWqlVlYIiIfkArezSOiEjqZdxaf/Gc9TuadNTuKYbzhFAtxU9PiLlbVBQAWeC4OEZFvM+puHu/kEfmGpcu3Ytr7GQCAnt3uMzmNMbyhQc4GcIfD51oADpuUhYjIX7m7m1fsT0IR+SOADgDsKOZunqrOADADAGJjY4td+CAi7/ZI+yZOv/sDb2iQNwC4U0SiAPwCoAeAXuZGIiLyO7ybR0RuVQ261W9Wjq8w+pi3TwCsA1BfRLJFZICqXgTwDIA0ADsBzFfVHUbmIvJF/np2Jd0w3s0jIrrM6FMsehZTXwpgqZFZiHyd49mV/vgEMpUa7+YREV3mDadYEJEH3NMy2ul3oit4N4+ISspf70Z6wx5kIvKALd/tc/qd6ArezSOikvLXu5FcQSbyUf769iMiIio7/vqzRFR9/+Sd2NhYzczMNDsGEVEREdmoqrFm5zAK52Ei8kbFzcVcQSYiIiIicsAGmYiIiIjIARtkIiIiIiIHbJCJiIiIiBywQSYiIiIicsAGmYiIiIjIARtkIiIiIiIHbJCJiIiIiBywQSYiIiIicuAXb9ITkWMADnjoy4cCOO6hr11a3pQFYJ7rYZ5r8/U8tVW1Whl+Pa/mR/MwwDzXwzzXxjzF80QWt3OxXzTIniQimd7yulhvygIwz/Uwz7UxD5WUt/2zYZ5rY55rY57iGZmFWyyIiIiIiBywQSYiIiIicsAG+ebNMDuAA2/KAjDP9TDPtTEPlZS3/bNhnmtjnmtjnuIZloV7kImIiIiIHHAFmYiIiIjIARtkIiIiIiIHbJCJiIiIiBywQSYiIiIicsAGmYiIiIjIARtkIiIiIiIHbJCJiIiIiBywQSYiIiIicmA1O4ARQkNDNTIy0uwYRERFNm7ceFxVq5mdwyich4nIGxU3F/tFgxwZGYnMzEyzYxARFRGRA2ZnMBLnYSLyRsXNxdxiQURERETkgA0yEREREZEDNshERERERA7YIBMREREROWCDTERERETkgA0yEREREZEDNshERERERA7YIBMREREROWCDTEREpSYiDUVkvoj8S0S6mZ2HiKgslbsG2Vsm5aysLDz//PPIysoyKwIRUZkSkfdF5KiIbL+qniAiu0Vkj4iMvFzuCGCKqv4FwJOeyJObm4v//Oc/yM3N9cSXJyIqllc0yN42KZfE5MmTkZaWhsmTJ5sVgYiorKUCSHAsiEgFAO/i0tzbEEBPEWkIYA6AHiIyHsBtngiTnp6OFStWID093RNfnoioWFazA1yWCmAqgA+uFBwm5YcBZAPYICKf49KkPFpEHoOHJuWSGDp0qNPvRETlnaquFpHIq8otAOxR1X0AICJzAXRR1TcAPH15rl7g7uuJyCAAgwAgIiKi1Hni4+OdficiMopXrCCr6moAJ64qF03KqloA4MqkfFRVnwYwEsDx4r6miAwSkUwRyTx27FiZZ46MjMSECRNgt9t5C5CIfFlNAIccPmcDqCkikSIyA5cWNsa7+4uqOkNVY1U1tlq1aqX+xkFBQUhISEBhYSHnWSIylFc0yMW44UkZuPmJuaR4C5CIfJy4qamqZqnqIFV9QlW/8cQ3zs/PR15eHr744gssWbIE//u//8smmYgM4S1bLNwpdlLG5Vt23oC3AInIx2UDuMPhcy0Ah434xoGBgQCARx99FJs2bUJOTg7S09PRrRsPzSAiz/LmBtm0Sbk07HY7J2si8mUbANwpIlEAfgHQA0AvI76xxWJB5cqVUVhYiOeffx5r167lYgQRGcKbt1gUTcoiYsOlSflzkzMREfksEfkEwDoA9UUkW0QGqOpFAM8ASAOwE8B8Vd1hZK78/HwAQNu2bbkfmYgM4RUryJcn5TgAoSKSDWC0qr4nIlcm5QoA3jd6UiYi8ieq2rOY+lIASw2OUyQwMBCnT5/GxYsXsWDBAixatAh5eXno37+/WZGIyMd5xQqyqvZU1dtVtaKq1lLV9y7Xl6pqPVWto6pjzc55PXx5CBFR2bNYLAgLC4PdbkfFihVx8eJFqKrZsYjIh3nFCrKveOONN7BkyRKcOXMG06dPNzsOEZHPuLIfuUOHDjh79iwefvhhsyMRkQ/zihVkX3HXXXchODgYd911l9lRiIh8kt1uR8eOHQGAe5GJyGO4glyG+vbti6CgIIgIcnNzYbfbzY5ERORTKleuDIvFgiVLluDrr79GYWEhunfvbnYsIvIxXEEuQ3a7HUFBQdiwYQNfHEJE5AFXtlq0adMGVapUwdtvv43vv//e7FhE5GO4glzG+OIQIiLPCw8Px/r167FlyxYMHz4ca9asgcXCNR8iKhucTcqY44tDuD+OiMgzLBYL3nnnHTRv3hwvv/xy0VnJRERlgQ3yTSgsLMTp06dRWFjoMpaeno4VK1ZwqwURkYe0aNECa9aswYMPPohz585hzpw5OHHihNmxiMgHsEG+Cfn5+cjLy3O7chEfH4969erhq6++4rnIREQecmVP8rJly7BkyRK89tprvHNHRDeNDfJNCAwMROXKlVFYWOiyimy323Hw4EF88cUXeOCBB7B582aTUhIR+b5HH30UoaGhyMrKwuOPP459+/aZHYmIyjE2yDfBYrHAYrHg9OnTbleRhw4divPnzyM7OxvPPvusCQmJiPxDSEgIRo0ahZMnT2LLli3o3Lkz794R0Q1jg3yTAgMDERQUhMDAQJexyMhItGvXDhUrVsSFCxd424+IyIPCw8Px1ltvoWrVqjhy5AibZCK6YWyQb9KV/W8Wi8XtQ3spKSmIj49HVFQUH9gjIvIgi8WCe++9FzNnzkSlSpWwf/9+9O/fn4sTRFRqbJDL0OnTp3Ho0CHs3bsXFy9eBHBpFfnjjz/Gn/70J56NTETkYRaLBffffz+6d++OCxcuYOXKlRg4cCCbZCIqFTbIZSwnJwe//vorjh8/XlS7cjYyXz1NROR5VqsVzzzzDEJCQgAAn332GQYNGsQmmYhKjA1yGapcuTIaNmyIunXrIiQkpNgzkomIyLMiIiLw3nvvwWq99MLYTz/9FJMnTzY5FRGVF2yQy5DFYoHdbkd4eDgKCgpczkjOzc3l2/WIiAxgsViQkJCA+fPno0KFCgCAKVOm8KE9IioRNsge4u6M5NTUVCQnJyM1NdXccEREfsBisaBz585FD+3l5uaid+/efNseEV0XG2QPuXJG8tGjR7Fq1Srk5+dj586dyMnJwc6dO82OR0TkF6xWK3r16oXevXvDZrNhx44dSExM5EoyEV2T1ewAviwwMBAHDx7Eli1bcPbsWbz44ouoVKkShg4danY0IiK/YbPZMGbMGPz222/4/PPPsXr1ajz44IPIyMhAZGSk2fGIyAtxBdmDLBYLWrZsiXr16iEoKAgigldeeQWZmZnch0xEZKCwsDDMnDkT4eHhAICDBw+iffv2nIuJyC02yB4WGBiIDh06IDw8HIWFhXjrrbfwz3/+EwsXLjQ7GhGRXwkJCcGMGTOKPv/888+YMGGCiYmIyFuxQTaA1WpFVFQUfv/9dxw5cgS5ubm4cOGC2bGIiPxOfHw8pk6dWvR57Nix+P77701MRETeiA2yQSwWC2JiYtCxY0e0bdsWTZo04RnJREQGs1qtePrppzFixAgAQGFhIZ544gmebEFETtggGyggIABNmjRBVFQU5s2bh8zMzKJXUhMRkXFeeukljBw5EjVr1kRhYSGGDh3KJpmIivAUC4NFRUXh119/xVdffYXz588jODgYderUgcXC/1YhIjJKSEgI3njjDdSsWRNjxozB/PnzUbNmTaSkpJgdjYi8ALsyg9lsNtSpUwdWqxXr1q3Dzp07cfr0abNjERH5pV69esFms+HChQt48803i7ZeEJF/Y4Nsgscffxy33XYbsrKy8I9//AO//PIL9yMTEZkgJCQE/fv3L/r85ptvQkT4xlMiP8cG2QR2ux2dO3fGrbfeigsXLiAjIwP5+flmxyIi8kt/+9vfEBQU5FTr168fRAQ9evQwKRURmYkNskn69u2LESNG4O6770ZeXh7y8/Nx5MgRPrRHRGQwu92OjRs3ujTJADBv3jyICMLCwrB582YT0hGRGdggm8Rut6NmzZo4cuQI0tPTsXjxYmRnZ+PAgQPcbkFEZLC6devi2LFjmD9/Ph588EGX8WPHjqFp06YQEYgIkpOTjQ9JRIbhKRYmio+PR15eHkQEnTt3xsmTJyEi2L9/P2rXrg2rlf94iIiMYrPZ0KVLFwQGBqJx48aYN28ejh075vbaMWPGIDc3FxMnTjQ4JREZodytIIvIAyIyTURmishas/PcDLvdjv79+yMxMRGrVq1CcHAwVBU5OTk4fvy42fGIiIrlS3OxI5vNhj/84Q+oW7cumjdvjk6dOmH16tXo0KGDy7WTJk1Cbm6uCSmJyNO8okEWkfdF5KiIbL+qniAiu0Vkj4iMBABVXaOqQwAsATDbjLxlLT09HStWrMCKFStQu3ZthIaG4vDhwzh37pzZ0YjIj/j7XHxFQEAABgwYgFq1auHXX3/Fv/71L8ydOxeqipUrVzpdO2TIEJNSEpEneUWDDCAVQIJjQUQqAHgXQEcADQH0FJGGDpf0AvCJUQE9KT4+Hvfeey/y8vJw+vRp5OXlYdu2bfj6669RUFBgdjwi8h+p8OO52FHlypXx+uuvo379+igoKMC8efNw8eJFxMXFOZ2VPG/ePB4JR+SDvKJBVtXVAK5+x2cLAHtUdZ+qFgCYC6ALAIhIBICTqppX3NcUkUEikikimcXtIfMWdrsdVapUQWZmJtLT01GvXj2EhoYiPz8f33zzDZtkIjJEWc/F5WkedqdGjRpISUlBbGwsbDYbVqxYgXPnzmHcuHFO1/Xr18+khETkKV7RIBejJoBDDp+zL9cAYACAWdf6y6o6Q1VjVTW2WrVqHopYduLj49GuXTvEx8cjICAADz/8MG677TacPn0au3bt4skWRGSWG56Ly9s87E54eDgSExORm5uLJUuW4IsvvkBBQQEWLlzodB3PSybyLd7cIIubmgKAqo5WVZ95KAS4tIrcrVs32O12AJceFGnTpg0iIyMhIliwYAHy8opdMCci8hS/mouvZrFYUKdOHURERCA3NxefffYZPv74Y7Rv3x6jR48uuo5bLYh8izc3yNkA7nD4XAvAYZOyGCYrKwvPP/88srKyYLPZ0KhRI+zcuROrV6/GokWL+CIRIjKaX87FjqxWKzp27Ii77roLx48fx4cffogZM2bgpZdeQmhoaNF13GpB5Du8uUHeAOBOEYkSERuAHgA+NzmTx02ePBlpaWmYPHkygEurF23atEF0dDQCAgKwfft2NslEZCS/nIuvFhgYiKeffhotWrTAmTNn8K9//Quff/45NmzY4HTdsGHDTEpIRGXJKxpkEfkEwDoA9UUkW0QGqOpFAM8ASAOwE8B8Vd1hZk4jDB06FG3atCm6nQdcelCkW7duqFy5Mn7++Wds3bqVTTIRlTnOxdcWFBSEkSNHIjg4GCdOnMDbb7+NgIAA9OnTp+gano1M5Bu8okFW1Z6qeruqVlTVWqr63uX6UlWtp6p1VHWs2TmNEBkZifvuuw9Lly7FggULAFxaRQ4PD0edOnVw5swZrFu3DtnZ2SYnJSJfw7n4+ipXroypU6ciOjoap06dwlNPPYU333zT6ZqhQ4ealI6IyopXNMjk7PDhw/jxxx9x+PD/3+Z35UGR8PBwXLhwAQcPHkReXh5PtyAiMlh0dDRmzJiB0NBQ7N27F/3798eAAQOKxufMmYNVq1aZF5CIbhobZC906NAhqCoOHTrkVLdarWjbti1atmyJwMBAZGRk4MSJq48sJSIiT7v77rsxYsQIBAYG4ueff8aFCxecxh9//HGTkhFRWWCD7IVGjRqFTp064a677nLZyxYQEIAWLVqgoKAAa9euRWxsLCIiIrhaQURkIKvVig4dOuCVV15BeHg4fvjhBzzyyCNF48ePH8fmzZtNTEhEN4MNsheKjIzEww8/jJ9++gnp6elF9UWLFiEoKAhVq1bFM888g3HjxuHAgQM4dOgQOnXqxAdDiIgMZLPZ0KlTJ7Rq1QonTpzApk2bEBQUVDR+//33m5iOiG4GG2QvFRsbi4CAAMTGxmLVqlWoWbMmEhMTcerUKZw+fRqbNm1yuv7MmTNo1aoVsrKyzAlMROSHrFYrhg0bhgYNGgAAIiIiisby8/PNikVEN4kNspdauXIlVq9ejUceeQT9+vVzemAPAO69917UrVsXr776alFt165dGDhwoNFRiYj8WlhYGObMmYPmzZsjICDAaSw5OdmcUER0U9gge6mTJ09ix44d2L17N+x2O8LDw1G9enWMGDECOTk5+P777/Hzzz8jOTkZEyZMKPp7X3/9Nb788ksTkxMR+Z/w8HDMmjUL0dHRCAwMLKqPGTMGffv2NS8YEd0QNsheqmrVqmjYsCHq16+PWbNm4ZdffsGRI0cwbtw42O32oussFgueffZZJCUlFdU6duyIffv2mRGbiMhvhYaGYsqUKahXr55Tffbs2Xxgj6icYYPspRITEzFq1CisXbsWMTEx17zWarVi6tSpqFKlSlGtS5cuPAKOiMhgYWFh6NevH2w2m1O9adOmJiUiohvBBtlL2e12dOvWzWm1+FpCQ0OdtlZs374dzZo1ww8//OCpiERE5Ebfvn3x17/+FRaLxaVOROUDG2Qf0rp1a3z77bdFxwwdOHAAzZs3x6JFi0xORkTkP4KCgjBmzBg88cQTTvXZs2dj4sSJJqUiotJgg+xjWrdujY0bNzrVevXqZVIaIiL/FBQUhAkTJqBt27ZO9eHDh/PFTkTlABtkH1S3bl1MmjSp6PPZs2cxd+5cExMREfmf0NBQzJ49u+iM5CseeughkxIRUUmxQfZRQ4cOxcqVK4s+9+zZk00yEZHBIiMjkZGRgdtvv92pPnLkSJMSEVFJsEH2YXFxcWjVqlXR5549e0JEuCeZiMhAYWFh+Pe//+1US0lJ4dFvRF6MDbKPS01NdXr1KXDpCDkRQdeuXU1KRUTkXx566CEMGzbMqcaj34i8FxtkH1evXj1s2rQJjRs3dhlbvHgxRAQigieffBK5ubkmJCQi8n2BgYFISUlB8+bNneqOL3kiIu/BBtkPhISE4JtvvsGMGTOKfenInDlzEBwczC0YREQeYrPZsHz5cqfa/Pnz8fHHH5uUiIiKwwbZTwQFBWHAgAFISUnB4MGDXbZdOEpMTDQwGRGR/wgJCXF6gBoAnnjiCeTn55uUiIjcYYPsRywWC9q0aYOQkBA0aNAAgwcPRk5ODmbNmuVyLVeRiYg8Iy4uDi+99JJT7e677zYpDRG5wwbZzwQGBuKFF17AnXfeiVOnTmHmzJno0aMHVBWjR48uuq5fv34mpiQi8m0pKSlOn7OysiAiJqUhoquxQfZDISEh+Pvf/46mTZsiMDAQX3/9NQoKCpCcnFy0ipGbm8tzOomIPOjqrRYAICKce4m8gKiq2Rk8LjY2VjMzM82O4XXOnTuHZcuWYffu3VBVDB48GAcPHnQ6eignJwd2u93ElES+SUQ2qmqs2TmMwnnYvQ4dOrg8uHeFP/x8JjJbcXMxV5D9WEBAABo0aICffvoJ6enpmDJlissrUYcOHWpSOiIi35eWloazkUHYAAAgAElEQVT169e7HRMRtGzZ0uBERASwQfZ7derUweOPP47IyEgcPnwYU6dOxZgxY4rG58yZw/ORiYg8qEWLFjhz5ozbsfXr10NEXF4yQkSexQbZz9lsNjz88MPo1q0b8vLysHr1atStWxeVK1cuumbKlCkmJiQi8n2BgYE4dOgQgoKC3I5PmjQJIoK+ffsaG4zIT7FBJlitVjz00ENITExErVq1sHbtWkyYMKFofOLEiVxFJiLysFq1amHbtm2oV69esdfMnj0bmzdvNjAVkX9ig0wALu1H7tq1K8LDw7F9+3YsXLgQFSpUAACcOHECCxcuNDkhEZHvi4iIwBdffIEaNWoUe43jg9RE5BlskKmIzWbDkCFDEBwcjF9++QX33Xdf0diqVavMC0ZE5Efq1q2LZcuWoVKlSgDg9iShrl27Gh2LyK+wQSYnoaGhGD9+PKKiohASEgKL5dK/Ih988AHfrkdEZJCYmBhMmzYNt956K3Jzc9G4cWOn8cWLF/OECyIPKncNsojEicgaEZkmInFm5/FF0dHRePXVV3HXXXehW7duRfXevXubmIqIyL90794dI0aMQOXKlbFt2zY0adLEaXz9+vXo0aOHSemIfJtXNMgi8r6IHBWR7VfVE0Rkt4jsEZErrxZSAKcBBADINjqrP7BYLLjnnnvw2GOPISYmpqh+7tw5E1MRkTfhYoXn2Ww2/O1vfytaKd66dSsiIiKcrpk3bx5PtiDyAK9okAGkAkhwLIhIBQDvAugIoCGAniLSEMAaVe0IYASAMSCPsFqtaNGiBRo0aFB05Fu1atVQUFBgcjIi8hQuVnifypUrY/r06UWNcXZ2NqKiopyumT17NoYMGWJGPCKf5RUNsqquBnDiqnILAHtUdZ+qFgCYC6CLqhZeHs8BcIuBMf2OzWZDx44dERISAgD49ddfkZKSwpVkIt+VCi5WeJ3o6Gh8/fXXqF27NgoLC3HmzBnUr1/f6Zrp06cjKyvLnIBEPsgrGuRi1ARwyOFzNoCaIvJHEZkOYA6AqcX9ZREZJCKZIpJ57NgxD0f1XQEBAZg3b17R5+TkZCxbtgwXL140MRUReQIXK7xX3bp1sXz5ctSuXRvHjh3Db7/9VnQU5xVXrywT0Y3z5gZZ3NRUVReo6mBVTVLVVcX9ZVWdoaqxqhpbrVo1z6X0A45PShcWFmLOnDnYs2ePiYmIyEA3vFjBhYqyVa9ePSxYsABBQUHIzc1FcHCwyzUi7n50ElFpeXODnA3gDofPtQAcNimL3wsICCj685kzZ/D222/j+PHjJiYiIoPc8GIFFyrKXkxMDMaPH49bb70Vx48fR2RkpMs1jvM1Ed0Yb26QNwC4U0SiRMQGoAeAz03O5Lc++eQT2Gw2AMDRo0exd+9evPzyy3wFNZHv42KFF7FYLOjTpw+6d+8OAMjKykLNmjWdrjl//jyPfyO6SV7RIIvIJwDWAagvItkiMkBVLwJ4BkAagJ0A5qvqDjNz+rOuXbuiYcOGAIBTp06hWrVq2LVrF55//nmuJBP5Ni5WeBmbzYZ//OMfaN68OQDgl19+wS23OG8DnzdvHiZOnGhGPCKf4BUNsqr2VNXbVbWiqtZS1fcu15eqaj1VraOqY83O6e9+++03AJe2WPTs2RNnz57F2rVr8dZbb/FkCyIfwMWK8iM8PByff/457rjj0uL++fPni/58xfDhw82IRuQTbqhBFpFKl4/+IT9yZaX4999/R/v27ZGUlISwsDB89913GDt2LLdbEBmsrOdiLlaUL+Hh4Vi6dGnRUZyHDh1yuYYP7RHdmBI1yCJiEZFeIvKFiBwFsAvAryKyQ0TGi8idno1J3uDKwyCRkZEIDAzEX//6V9x///04evQoFi9ejJkzZ/JFIkQexLmYrtaoUSNkZGQUPZjnriGOi4szOBVR+VfSFeSVAOoAGAWghqreoaphAB4A8B2AcSLyZw9lJC/Ru3dvhIWFoWnTpsjNzUVgYCBefPHFopeJLFmyBKtWrUJhYeH1vxgR3QjOxeSiUaNG+OijjwAAqorAwECn8YyMDL5pj6iUStogx6vq66q61eFweKjqCVX9TFX/BGDeNf4++YBnn30WCQkJ2LJlC1JTUwEAISEheP311xEdHY1ff/0VI0eOxMaNG9kkE3kG52Jy67HHHsOUKVMAAPn5+S7j06dPL5q3iej6Stog3369C1T1wk1mIS9nt9tx7tw57N69G8OHD0eVKlWwefNmBAYG4u9//ztCQ0Nx8OBBdO/eHZmZmWbHJfJFnIvJLavVikGDBhUd/+ZOv379DExEVL6VtEFedOUPIvKZh7JQOeB4AP3p06fRtGlTiAh++uknfPLJJwgODsaRI0eQlJSEffv2mZiUyCdxLqZi2Ww2vPPOO2jTpk2x1/Tt29e4QETlWEkbZMdd/9GeCELlw5gxY9y+uemhhx5C7dq1cfHiRYSGhuLYsWPo3r07Dh/m+wSIyhDnYrqm8PBwfPbZZ4iKinI7Pnv2bO5HJiqBkjbIWsyfyc9ERkZi//79SEpKcjuelZWF7OxsnDlzBhs3bsTAgQP5IhGissO5mK4rLCwMn3/+edHxb1ebPn26wYmIyp+SNshNRCRPRE45/DlPRE6JSJ4nA5J3mjt3LlQVI0aMuOZ1mZmZePrpp9kkE5UNzsVUIleOf6tatarbccftckTkqqQNclsAdlWtoqpWVQ26/KuKqgZ5MiB5t3HjxkFVoaro0KGDy/ixY8eQlpaGlJQUnpFMdPM4F1OJNWrUCCtWrIDVanUZO3/+PIYNG2ZCKqLyoaQN8pMAMkVkroj0FZEangxF5dOXX34JVcXKlSud6idPnsSCBQvwwQcf8JXURDeHczGVSrNmzTBz5ky3Y5MmTTI4DVH5UaIGWVWHqGozAMkAggGkisg6EfmHiLTla6fJUVxcHAYPHuxU27dvH8aNG4eMjAyTUhGVf5yL6Ub07NkTnTt3djvGV1ETuVfSFWQAgKruUtV3VDUBQDsA3wB4HMB6T4Sj8mvatGku+5P37t2LgQMH8oxkopvEuZhKw2azYfLkyQgNDXU73qBBA4MTEXm/UjXIIjL6yp9V9ayqLlXVZ1U1tuyjUXk3btw4l1p2djbat2+PH3/80YRERL6BczGVVmRkJNasWePyGmoA2L17N5tkoquUqkEGMFpEUkTk3yLyFxEJ9kgq8hkLFy50qeXk5KBTp07IysoyPhCRb+BcTKXWoEEDrFy5EhaL64/+3bt3o2XLliakIvJOpW2QFcA5AGkA7gCwVkRiyjwV+YyuXbti9OjRLvX9+/cjISGBTTLRjeFcTDekRYsWWLNmjdu9x+vXr0dycrLxoYi8kKiW/Kx5Edmhqnc7fK4HYJqqtvNEuLISGxur3PdqrpEjRyIlJcWl3qhRIyxbtgy1atUyIRWReURk441uiSiPczHnYe+ydu1axMfH4+zZsy5jOTk5sNvtJqQiMl5xc3FpV5CPi0jzKx9U9ScA1W42HPm+cePGoXr16i717du3o0uXLnwlNVHpcC6mm9K6dWu89dZbbseCg7ljh6i0DfJQAB+KyIciMkJEPgKw3wO5yAcdOXLEbf2HH37Ac889h/z8fIMTEZVbnIvppj355JO4//773Y7x+Dfyd6U95m0LgBgAn1wurQTQs6xDke+aNWuWS81qtWLVqlWYPn06XyRCVAKci6ksVK5cGR9++CGaNm3qdrxGDb6HhvxXiRpkcfhPSVU9r6pfqGqKqs5U1TNXX0NUnL59+6J+/fpOtYsXL+Ls2bN48803sXTpUpOSEXk/zsVU1iIjI7F8+XLceeedLmO//fYb4uLijA9F5AVKuoK8UkSeFZEIx6KI2ESknYjMBtCn7OORL9q1a5dL7cyZMzh69Ch69+6NFStWmJCKqFzgXExlLjQ0FIsWLXK79zgjIwOLFi0yIRWRuUraICcA+C+AT0TksIj8KCL7AfyMS7f13lHVVA9lJB+0f7/rdsnCwkLk5+fjT3/6Ew4ePGhCKiKvx7mYPKJhw4ZYvXo1bDaby1hiYqIJiYjMVaIGWVXPqeo/VfV+ALUB/AFAU1WtrapPqepmj6YknxMZGYlNmza5HSsoKMAf//hHZGdnG5yKyLtxLiZPunLspjvcuUP+prSnWEBVL6jqr6qa64lA5D9iYmLcvmkvPz8fW7ZsQYcOHfDTTz+ZkIzI+3EuJk9o164dZs6c6XaMTTL5k1I3yERlqWvXrlBV3HLLLU71ixcv4scff0SvXr2Qm8uf/0RERunTpw/Gjh3rdoxNMvmLEjfIcskdngxD/qu44902btyInj17FnuGMpG/4VxMnma1WvH888/jscceczvOJpn8QYkbZL30Tmo+ykoeU9xrz7/88kuMGjUKBQUFBici8j6ci8kIAQEBePfdd9G9e3e34yKCl19+mXf4yGeVdovFdyJyr0eSEOFSk/zggw+61FNTU/HPf/6TTTLRJZyLyeNq1aqFefPmFfvg3htvvIHg4GCICESk2L3LROVRaRvkhwCsE5G9IrJVRLaJyFZPBCP/tWrVKlStWtWlPnz4cKSlpZmQiMjrcC4mwyQkJEBVMXTo0Gte99RTT2H58uUGpSLyrNI2yB0B1AHQDkBnAJ0u/05UpnJzc9Gnj+v7Dh577DF88803JiQi8iqci8lwkyZNQlJS0jWvSUpK4jMj5BNK1SCr6gEAdlyaiDsDsF+uGUZE7hKRaSLyHxH5i5Hfm4yVmpqKLl26uNQfeOAB/PDDDyYkIvIO3jAXk3+aO3cuRo8eXex4bm7uNceJyotSNcgi8hyAjwCEXf71oYg8e7MhROR9ETkqItuvqieIyG4R2SMiIwFAVXeq6hAA3QHE3uz3Ju+2aNEitysWzZs3x48//mhCIiLzeWouJiqJ5ORk3HfffcWOz5gxg1stqNwr7RaLAQDuU9XXVPU1AC0BPFUGOVJx6RWqRUSkAoB3celWYkMAPUWk4eWxxwB8A+DrMvje5OXmzp3rck4yADRu3JhNMvkrT83FJca7ef7tu+++u+Z2i86dOyMrK8u4QERlrLQNsgD4r8Pn/16u3RRVXQ3gxFXlFgD2qOo+VS0AMBdAl8vXf66qrQE8UWxQkUEikikimceOHbvZiGSyc+fOuTy4V1hYiLvvvhtHjx41KRWRaTwyF/NuHpXG3Llz3Z46BAAFBQV46aWXDE5EVHZK2yDPArBeRJJFJBnAdwDeK/NUl9QEcMjhczaAmiISJyKTRWQ6gKXF/WVVnaGqsaoaW61aNQ9FJCPl5uaifv36LvWGDRvyLE7yN56ai1PBu3lUCsWdOgQAX331FX766SeDExGVjVK9SQ/ApwD64dJqbw6Afqo60UPZ3K2GqKquUtWhqjpYVd/10PcmL7Vr1y6X7Ra///477r33Xly8eNGkVETG8eRcXNZ383gnzz/k5uZixIgRbut//vOfkZeXZ0IqoptT6jfpqeoPqjpZVSep6iYPZssG4Pg61VoADnvw+1E54e611Hv27LnmQyNEvsKEufiG7+bxTp7/GDdunNt6ZmYm/vnPfxqchujmefOb9DYAuFNEokTEBqAHgM8N+t7k5VQV1atXd6r98MMPeOopQ59TIjKLkXMx7+ZRiVz6bzfX2vjx43Hw4EETEhHdOK94k56IfAJgHYD6IpItIgNU9SKAZwCkAdgJYL6q7rjZ70W+48iRIy7bLWbOnIn+/fublIjIMEa+SY9386jE3DXJJ06cwKuvvmpCGqIbJ+7+ZXZ74aV9bw8AcDmM3tsPqI+NjdXMzEyzY5CHXPpX01m9evWwe/duE9IQlYyIbFTVUp/+4Om5WEQiASxR1UaXP1sB/ATgDwB+waW7e71Ku2DBedh/JCcnY8yYMS71nJwc2O12ExIRFa+4ubi0e5DfUdUDV/8q06REpeTuP/J++uknDBs2zIQ0RJ7lybmYd/OoLCQnJ2Pw4MEu9UGDBpmQhujGePMeZKISU1WXI+AmTZqE1q1bm5SIyKM8Mherak9VvV1VK6pqLVV973J9qarWU9U6qjq2rL8v+Z5p06bhnnvucap9+umnPG2Iyo0b2YP8nUH73ohKZdeuXbDZbE61devWoU+fPiYlIvIYzsXk9TZv3uxSq1ixoglJiErPWsrrO3okBVEZOX/+vMue5A8++ACFhYWYM2eOSamIyhznYioXVNVlThYRt1vjiLxJiVaQReQloOgBkBZX7Xlz3WhEZCJ3E++HH36I2rVrm5CGqOxwLqbyyN2c7O7haiJvUtItFj0c/jzqqrEEEHkZdxPywYMHOSlTece5mMqlf/3rXy61vn37Gh+EqIRK2iBLMX9295nIKxR3C49NMpVjnIupXBoyZIhLbfbs2ejatasJaYiur6QNshbzZ3efibyGqro9d5NNMpVTnIup3EpKSnKpLV68GKmpqcaHIbqOkjbI94hInoicAtDk8p+vfG7swXxEN+23335DSEiIS50rF1QOcS6mcusf//gHoqOjXer9+vVDbm6uCYmIileiBllVK6hqkKpWUVXr5T9f+cwzW8ir2Ww27N69G6GhoU71xYsXY+TIkSalIio9zsVUnkVHR+Prr7/G7bff7jIWHBxsQiKi4pX2HGSicik0NBR79+512VqRkpJiUiIiIv8TGRmJ5cuXuz0PmVvfyJuwQSa/ERQUhKNHj7rUOSkTERmnUaNG+Oabb2C1ur6KgfMxeQs2yORXQkNDsXLlSpd6lSpVTEhDROSfWrRogW+//dbtWExMjMFpiFyxQSa/ExcX5zIxnz59GgEBASYlIiLyPy1atMDChQtd6lu2bEFycrLxgYgcsEEmv9S6dWuMHj3aqXb+/HnExcWZE4iIyA917doVa9ascamPGTOG2y3IVGyQyW8lJye7PDmdkZHh9kB7IiLyjDZt2mDbtm1ux7iSTGZhg0x+7ciRI7BYnP9vMH36dJPSEBH5p0aNGmHdunUu9TFjxpiQhogNMvk5m82GY8eOudR5a4+IyFgtW7ZERkaGS53zMZmBDTL5vZCQEBw4cMClzkmZiMhYbdu2dbuSzJMtyGhskIkAREREuH1QhE0yEZGx3K0kb9myBXa73aRE5I/YIBNd1qZNG4wfP96lziaZiMhYbdu2xahRo5xqJ0+e5ElDZBg2yEQOXnjhBTz33HMu9Ro1apiQhojIf7k7wcLdHmUiT2CDTHSViRMn4pVXXnGq/fbbb1xJJiIykM1mw5YtW1zqnIvJCGyQidx4/fXXMXz4cJc6J2YiIuM0adIEGzZscKlzLiZPY4NMVIwJEyagbt26LnVOzERExomNjcXEiRNd6jzZgjyJDTLRNWzcuBHh4eEudTbJRETG+ctf/oJatWo51bZs2YJhw4aZlIh8HRtkomsICgrCjh073I6xSSYiMobNZsPKlStd6pMmTUJqaqrxgcjnsUEmug673c4mmYjIZHXr1nXbJPfr18+ENOTr2CATlUDDhg2xbds2BAUFuYyxSSYiMkZcXByGDh3qUuc8TGWNDTJRCTVq1Ag7duxAlSpVXMY4ORMRGeN//ud/cMcdd7jUOQ9TWWKDTFQKtWrVwurVq92OLVq0yOA0RET+JywsrNj5lk0ylZVy1yCLSLSIvCci/zE7C/mnmJgYLFu2zKWemJiIrKws4wMREfmZZs2aYeDAgW7H2CRTWfCKBllE3heRoyKy/ap6gojsFpE9IjISAFR1n6oOMCcp0SUJCQl48cUXXepRUVEmpCEi8j9jx47FAw884HYsMjLS2DDkc7yiQQaQCiDBsSAiFQC8C6AjgIYAeopIQ+OjEbmXnJyMxMRElzpXL4iIPO/KVovWrVu7jB04cABdu3Y1IRX5Cq9okFV1NYATV5VbANhzecW4AMBcAF1K+jVFZJCIZIpI5rFjx8owLdElgYGBmDFjBho1auQyxiaZfB23u5E3CAkJwcKFC9G8eXOXscWLF/NFInTDvKJBLkZNAIccPmcDqCkit4nINABNRWRUcX9ZVWeoaqyqxlarVs3TWclPhYaG4rPPPnPbEHP1gsobbnej8igsLAxffvklkpKSXMYmTZqEhIQEN3+L6Nq8uUF2twSnqvq7qg5R1Tqq+obhqYiuUq9ePXzzzTcu9cWLF2PkyJEmJCK6Yangdjcqh0JDQ5GamornnnvOZSwtLY2nDFGpeXODnA3A8aDDWgAOm5SF6Jpat26NmTNnutRTUlJMSEN0Y8p6uxu3upGRAgICMG7cOEydOtVljKcMUWl5c4O8AcCdIhIlIjYAPQB8bnImomL17t0bnTp1cqlzPzKVcze83Y1b3choAQEBePrpp90exclThqg0vKJBFpFPAKwDUF9EskVkgKpeBPAMgDQAOwHMV9UdZuYkuhabzYZ3330Xt9xyi8sYm2Qqx7jdjcqdhIQEfPrppy716tWrm5CGyiOvaJBVtaeq3q6qFVW1lqq+d7m+VFXrXZ6Ax5qdk+h6IiIisGDBArdjbJKpnOJ2NyqXunXrhg0bNjjVjh49ilatWpmUiMoTr2iQiXzJI488gg8//NDtWEBAgMFpiG4at7tRuRUbG+vSJH/33XduH+YjcsQGmcgDkpKSMHToUJf6+fPnuZJMXovb3cgXxcbG4rXXXnOqTZ48GZs3bzYpEZUHoqpmZ/C42NhYzczMNDsG+Znc3Fz88Y9/xMqVK92O+8P/96h4IrJRVWPNzmEUzsNktoiICBw6dMipxnmYipuLuYJM5CF2ux1z585FgwYN3I5zJZmIyDgHDx5Ev379nGru3oRKBLBBJvKosLAwpKWlFXu8UGRkpLGBiIj82NXn1e/YsQP33XefSWnIm7FBJvKwiIgILF++HJUqVXIZO3DgQLErzEREVLYsFguufmnN999/jz59+piUiLwVG2QiA9StWxfp6elux3bv3o24uDhjAxER+anQ0FD8+9//dqp98MEH2LNnj0mJyBuxQSYySMuWLbFx40a3YxkZGejbt6+xgYiI/NTAgQPx+OOPO9XuvPNOk9KQN2KDTGSgZs2aISMjw+0DerNnz0aPHj1MSEVE5H/mz5/vUqtbt64JScgbsUEmMljbtm2RmZmJKlWquIzNmzcPqampxociIvJDVx/ztnfvXrRv396kNORN2CATmaBZs2b4/vvvERwc7DLWr18/ZGVlGR+KiMgPffrpp06fv/rqKwwePNikNOQt2CATmaRBgwZYtWqV27GoqCiuJBMRGaBbt254+eWXnWozZsxAUlKSSYnIG7BBJjJRkyZN8H//939ux7iSTERkjLFjxyI6OtqpNn/+fEyePNmkRGQ2NshEJuvUqRMWLlzodiwqKgq5ubkGJyIi8j979+51qT333HM4ePCgCWnIbGyQibxA165dMXXqVLdjwcHBbJKJiAygqi6vn65duzaOHz9uUiIyCxtkIi8xYMAAJCQkuB0LDg7GokWLDE5EROR/tm3bhlatWjnVqlWrhsLCQpMSkRnYIBN5iYCAAEyfPh333HOP2/HExERs3rzZ4FRERP5n7dq1LrX69eubkITMwgaZyItERERg+fLlCAsLczvetGlTgxMREfmnq89I3rNnj9uXPJFvYoNM5GXCwsKwePFiVKpUye04J2giImPk5OSgYsWKTrVq1aqZlIaMxAaZyAu1bNkSq1evhtVqdTvOJpmIyPPsdjsKCgqcasePH0fDhg1NSkRGYYNM5KWaNWt2zZeFsEkmIjLGunXrnD7v3LkTIoKYmBiTEpGnsUEm8mJJSUl44YUXih1nk0xE5HktW7bEsmXLXOpbtmyBiEBE+BC1j2GDTOTFrFYrXn31VTz88MPFXsMmmYjI8xISEnD+/Hm0bdvW7XjTpk0hIhg2bJjBycgT2CATebmgoCB8/PHH6NatW7HXsEkmIvI8m82GjIwMZGRkFHvNpEmTilaVW7ZsaWA6KktskInKgdDQUHzyySfFvm0PYJNMRGSUNm3aYOvWrS4vFLna+vXr0bdvX2NCUZlig0xUTlitVjz99NPXXLlgk0xE5HkWiwWNGzfGokWLkJiYiNtvvx3h4eFur509ezZGjhxpcEK6WWyQicqZtm3bIi0trdhxNslERMYICwvDjBkz0KFDBwQGBqJ+/fpo1aoVXnzxRTRp0qToupSUFCxatMjEpFRabJCJyqH27dtjw4YNfJkIEZHJQkNDMWnSJLz00ksICgrCtm3bMHXqVFSoUMHpusTERGRlZZkTkkqNDTJRORUbG4vt27fj3nvvdTvOJpmIyBhBQUEYMGAAZs2ahZiYGIgIfv75Z0RHRztdV6dOHZMSUmmxQSYqxyIjI7F69WpMmTLF7biIYOLEiQanIiLyPxaLBXfffTcWL16MUaNGITo6GgEBAU57kwsLC6/5AijyHmyQicq5gIAAPPPMM/jqq6/cjg8fPpxNMhGRQUJCQvDKK68gLS0N1atXR1BQECpXrlw03q9fPwwZMsTEhFQS5a5BFpFoEXlPRP5jdhYibxIfH48NGzbglltucRkbPnw4EhISTEhFROSfatSogQ8++AA1atRAeHg4AgICisamT5/OlWQvZ2iDLCLvi8hREdl+VT1BRHaLyB4RueZZKKq6T1UHeDYpUfkUGxuLtWvXum2S09LSEBkZaXwoIiI/VatWLUycOBFWq9VlXu7Xrx8f2vNiRq8gpwJwWsYSkQoA3gXQEUBDAD1FpKGINBaRJVf9CjM4L1G506xZM6Snp8Nms7mMHThwgA/vEREZ6O6778akSZPQrFkz3H///U5jvXr1MikVXY+hDbKqrgZw4qpyCwB7Lq8MFwCYC6CLqm5T1U5X/Tpa0u8lIoNEJFNEMo8dO1aG/yuIvF+bNm2wfv16l2OGrhARbN682eBURET+x2q1ol27dnjnnXdQqVIlp5XkdevW8SUiXsob9iDXBHDI4XP25ZpbInKbiEwD0FRERhV3narOUNVYVY2tVq1a2aUlKrX8MbQAABF8SURBVCdiYmLw5ZdfomLFim7HmzZtyoPr6YbxeRCikrtywsUrr7yCRo0aoWrVqkVjfImId/KGBtnd/V4t7mJV/V1Vh6hqHVV9w4O5iMq9+Ph4bN26Fbfddpvb8cTERMTFxRkbikzH50GIjGe1WnH//fdj7NixaNasmdNYYmIievToYVIycscbGuRsAHc4fK4F4LBJWYh8ToMGDbBq1SrUrOn+xkxGRgZEBM2bN0dCQgJ27dplcEIyQSr4PAiR4SwWCx566CEMHz4cbdu2dRqbN28eOnTogNzcXJPSkSNvaJA3ALhTRKJExAagB4DPTc5E5FMaNWqEzMxMPP3006hfv77ba3744QekpaUhNjYWjRs3xnvvvYf8/HyDk5IRjHoehM+CELmy2Wzo0KEDxo0bh0ceecRpbPny5WjRogVPt/ACRh/z9gmAdQDqi0i2iAxQ1YsAngGQBmAngPmqusPIXET+oEaNGpg6dSp27dqF/fv3IyQkxO11Z86cwfbt2/Hss89iwYIFBqckE5X58yB8FoTIPZvNhlatWuGjjz5C9+7dnR6o/vnnnxEVFcWH90xm9CkWPVX1dlWtqKq1VPW9y/Wlqlrv8r7isUZmIvJHkZGR+P3336Gq6NChg9trzp49i+HDh2Pr1q0GpyOT8HkQIoPZ7XZMmTIFycnJaNmypdNYSkoKGjRowC0XJvGGLRZEZKIvv/wSffr0cTt2/Phx9OrVCydOXH03nnwQnwchMkFYWFjRq6mffPJJp7Hdu3cjODgYf/nLX1BYWGhSQv/EBpmIkJqaClVF9erVXcZ27NiBsWPH4ty5cyYkIwPxeRAiEwUFBeG9997Dt99+i8qVKzuNTZs2DRUqVMDf//53NsoGYYNMREWOHDmC5557zqU+adIkrFmzxoRE5Al8HoTIO1mtVrRu3RrHjh3DqlWr0Lp1a6fxV199Fa+99houXrxoUkL/wQaZiJxMnDgRgwcPdqr997//RVJSEg4f5h13X8DnQYi8W0BAAB588EF8++23LosWY8eOxRNPPMGtbx7GBpmIXEybNg2zZs1yquXk5CAyMpJHvxERGWjixIlYuXKlU23+/Plo0aIFH+DzIDbIRORW3759MWLECKfahQsX0L59e5MSERH5p7i4OGzatAlRUVFFtb179yIkJASLFy/mlgsPYINMRMUaN24cFi5c6FT79ttvISJYtGiRSamIiPxPTEwM9u3bhz//+c9FNVVF165d8eyzz/LuXhljg0xE19S1a1fs37/f5anqxMRExMXFmROKiMhPzZkzBy+99JJTbdq0aahUqRJee+01nnJRRtggE9F1RUZG4tSpUy71jIwM9OjRw4RERET+KyUlBZs2bXJZuHj99ddRoUIFl+1xVHpskImoxM6cOYMaNWo41ebNmwcRwapVq8wJRUTkh2JiYnDo0CE88sgjLmNvvvkm3nrrLa4m3wQ2yERUYoGBgdi0aRNuu+02l7GHHnoIEyZMMCEVEZF/stvt+OKLLzB69GiXsRdffBFVqlTB8uXLTUhW/rFBJqJSqVGjBtLT01GrVi2Xsb/97W8QEdjtdvTv3x8ZGRkoKCgwISURkf9ITk6GqrqcmZyfn48OHTpARNCtWzceC1cKbJCJqNSaNGmCZcuWoXfv3ggKCnIZP3nyJGbNmoX4+HiMHz8eAwcORHp6OptlIiIPmjhxIlQV7777rsvYZ599huDgYIgIRASpqanGByxHRFXNzuBxsbGxmpmZaXYMIp+1efNmNG3a9LrXNWzYEJ07d8bAgQMRHR0Ni8V//xtdRDaqaqzZOYzCeZjIWIWFhUhNTcWAAQOueV1oaCh+//13TJgwAcOGDTMonfcobi72359ORFRmYmJioKoub9+72o8//oiUlBTceeedqFChQtFKRtWqVfHqq6+W+NWpqampuOWWW1CtWjU0aNCg6Otc+XX77bejevXqeOGFF3hLkYj8ksViQf/+/XHq1ClMnjwZFStWdHvd8ePHoaoYPny40zw6aNAgp89vvvmmX90F5AoyEXlE165dsXjxYrNj4L777kNcXBx27NiBs2fPAgBuvfVWtGrVCt27d8e6devQqlUrrFu3Do8++ihCQkIMycUVZCIyUn5+PtasWYPdu3djzZo1+M9//gMAsFqtpXoTX4UKFXDHHXcgPj4eR44cQU5ODrZt24a8vDy31185JvTMmTMYP348RASqil69egEAvvjiC9SvXx+TJ0/GXXfdhaSkJKSlpSE3Nxcigry8POzYsQOFhYWoW7cusrOz0bx5cwwZMqTo79/MHF7cXMwGmYg8LjU1Ff369fPI146Ojsa+ffucajVq1MCRI0eKPoeGhiInJwf//e9/AVxaWYmKikK7du1w/vx53HLLLTh//jzi4+PRu3dvj+S8GhtkIjJDYWEhjh8/jq1bt+LMmTOIiIjA22+/jY8++sjpuqeeegr//ve/i/06FosFIlI0r5ZEYGAgYmJiAKCowU1PT8f+/fuxY8cOVK1aFfHx8dixYweOHDkCEcHJkyeRk5MDVUVAQABUFeHh4UUnd6Snp9/UHM4GmRMzkVfKyspCly5dsHXr1lL9vVatWmHSpElo2rQprFary/iHH36IZ555Bo8++ijuuOMOriCbjPMwUfmUlZWF5557DitXrsSpU6e4guxLODETkbdhg0xEZD4+pEdEREREVAJskImIiIiIHLBBJiIiIiJywAaZiIiIiMgBG2QiIiIiIgdskImIiIiIHLBBJiIiIiJywAaZiIiIiMgBG2QiIiIiIgd+8SY9ETkG4ICHvnwogOMe+tql5U1ZAOa5Hua5Nl/PU1tVq5Xh1/NqfjQPA8xzPcxzbcxTPE9kcTsX+0WD7Ekikuktr4v1piwA81wP81wb81BJeds/G+a5Nua5NuYpnpFZuMWCiIiIiMgBG2QiIiIiIgdskG/eDLMDOPCmLADzXA/zXBvzUEl52z8b5rk25rk25imeYVm4B5mIiIj+X3v3HiNXWYdx/PvQSsvF0EaLWioWghCpVJSLtoAhAl6iBCwgoIkkxiiJomIQgkQjwh9oQQhBBGKCRg2gEJBwlTtCC2pv0JZSaCHSlDsIVqDQ9vGPc4aene7strs7c4ad55NsuvO+Z06fnf7y67vvntkTERXZQY6IiIiIqMgCOSIiIiKiIgvkIZA0W9IySQ9JulbShHL8XZJ+L+lhSY9IOr3OPOXcdElzJS0pc42vM085v7OkNZJOaXeWgfJIOkzSvPJ1mSfpM3XmKedOl/S4pEclfa5DeY4p62ODpH0r4x2v51ZZyrk6arllnnK+o7UcfaUXDz1POd+x+k0fHjRP1/ThgfKUcz3Ri7NAHprbgI/ang4sBxoFewwwzvZewD7AtyVNrSuPpLHAH4ETbU8DDgbeqitPxfnAzR3IMVieF4DDy3+vE4A/1JlH0p7AccA04PPAxZLGdCDPYmAWcG/TeB313G+WGmu51WvT0Olajr7Si4eQp6KT9Zs+PLBu6sMt8/RSL84CeQhs/832uvLhA8CUxhSwXVlA2wBvAq/WmOezwEO2F5XHvWh7fY15kHQksBJY0u4cg+WxvcD26nJ8CTBe0ri68gBHAFfaXmv7CeBxYP8O5HnE9qP9TdHheh4gS1213CpPLbUcfaUXDzlPx+s3fXjQPF3ThwfJ0zO9OAvk4fsGG79ruRr4H/A08G/gXNsv1Zhnd8CSbpU0X9KpHc7SJ4+k7YDTgDNryLFJniZHAQtsr60xz07AU5W5VeVYXbqhnhu6oZbf1iW1HH2lF29mni6o3/ThzdcNtVzVDbX8tnbW8tiRPuFoIel24P39TJ1h+6/lMWcA64A/lXP7A+uBycBE4O+Sbre9sqY8Y4EDgf2A14A7JM2zfUdNec4Ezre9RtJwI4xEnsZzpwG/oPjOuM48/b0oI/J7GDcnTz/aUs9DzFJrLfejbbUcfaUXtyVPW+o3fXj4efpRay33o2d6cRbILdg+dKB5SScAXwIO8cZfJv1V4BbbbwHPSbof2Jdi67+OPKuAe2y/UB5zE/AJYNiFPMQ8nwSOlvRLYAKwQdIbti+qKQ+SpgDXAl+3vWK4OYaZZxXwwcphU4DVzc9tR54W2lLPQ8xSWy230LZajr7Si9uSpy31mz48vDwt1FbLLfROL7adjy38oLhwfykwqWn8NOByiu9AtyuPmV5jnonAfGBbim+Gbge+WFeepmN+BpxS87/XBGARcFSX1M+0Ms84YBeKBjimg7nuBvatPK6lnltkqaWWW+VpmutYLedjk9c+vXgIeZqO6Uj9pg9vdq6u6cMt8vRML841yENzEfBu4DZJCyVdUo7/Gtie4t2W/wQut/1QXXlsvwz8qsyyEJhv+8a68tSoVZ7vArsBPynHF0rasa48tpcAf6ZogLcA33EH3vwg6cuSVgEzgBsl3VpOdbyeW2Wpq5YHeG2iO6QXDyFPTdKHB9BNfXigPL3Ui3Or6YiIiIiIiuwgR0RERERUZIEcEREREVGRBXJEREREREUWyBERERERFVkgR0RERERUZIEco4KkNSN0nt9JeqLy64a+1zR/vaTFlcdXVY59UtLCcnyqpNcrc5eU49+XdEHl+ZeWdw9qPD5J0oUj8bVERHRaO3uxpG0l3ShpmaQlks6pHH9+5djlkv5TmVtfmbu+HDtC0nWVY06X9Hjl8eGNY6M35U56EZv6ke2rmwclzQL6NH/bx1bmzwNeqUyvsL1302nmAF+rPN4b2ErSmPJ3bc4EriMiIvr0YknbAufavkvS1hS3Of6C7Zttn1w57iTg45XzvN6iF19WeTwDeFXSjrafo+jF94/0FxTvHNlBjlFFhdmSFkt6WNKx5fhWki4udx1ukHSTpKO34LzbAz8Ezm719wJfAa4Y5FQLgN0lbSNpB4p72S8E9irnZ1I07oiId6x29GLbr9m+q/z8TYo7uk3p59DjGaQX234eeEXSbuXQTsA1FD0Y0ot7XhbIMdrMotiV/RhwKDBb0gfK8akUC9FvUuwWtDK78uO4xsL1LOA8igVtfw4CnrX9WGVsF0kLJN0j6SAA2+soFsT7AZ8CHgQeAGZKmkxx856ntvSLjojoMu3qxQBImgAcDtzRNP4hiltE31kZHi/pX5IekHRkZXwORe/dA3iMjb14LDCd4m5x0aNyiUWMNgcCV5SXKzwr6R6KxeiBwF9sbwCekXTXAOdo/rHe3sButk+WNLXFc5p3LJ4Gdrb9oqR9gOskTbP9KsWP7WYC2wBzKRrzj4HnyY5FRIwOI96LG8oF7BXAhbZXNk0fB1zddHvonW2vlrQrcKekh22vYGMvHkPRi/8B/JTi8oxHbb8xhK87RonsIMdooy0c3xwzgH0kPQncR3GJxN1vn7ho1rOAqxpjttfafrH8fB6wAti9nJ5D0ZRnUDTlR4A9yTVvETF6tKMXN1wGPGb7gn7mjqPp8grbq8s/VwJ3s/H65EYvngnMtf1fYDxwMOnFPS8L5Bht7gWOlTRG0iTg0xS7AvcBR5XXv72PogFuFtu/sT3Z9lSK3Y/ltqvPPxRYZntVY0DSJEljys93BT4MNHY65lBcXjHJ9nO2TbF7fATZQY6I0WHEezGApLOBHYAf9DO3BzCRYuOhMTZR0rjy8/cCBwBLy+mlwGSKS+QWlGMLgRNJL+55ucQiRptrKXZmFwEGTrX9jKRrgEOAxcByimt/X2l5li2zyY4FxX8GP5e0DlgPnGj7JQDbL0t6HlhSOX4uReNeNEKZIiLqNOK9WNIU4AxgGTC/eG80F9n+bXnI8cCV5aZDw0eASyVtoNgUPMf2UgDblvQgsIPtt8rj5wLfIgvknqe+dRQxekna3vYaSe+h2Mk4wPYzdeeKiOgl6cXxTpAd5OglN5TvfN4aOCsNOSKiFunF0fWygxwRERERUZE36UVEREREVGSBHBERERFRkQVyRERERERFFsgRERERERVZIEdEREREVPwfaHTIIHdbjWoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "# set up the figure frame work\n", "# have it scale with the number of filters we're plotting\n", @@ -1496,8 +1499,8 @@ " noisemodel_vals = noisemodel.get_noisemodelcat(nfile)\n", "\n", " # extract error and bias\n", - " noise_err = noisemodel_vals.root.error[:]\n", - " noise_bias = noisemodel_vals.root.bias[:]\n", + " noise_err = noisemodel_vals['error']\n", + " noise_bias = noisemodel_vals['bias']\n", " \n", " cmaps = plt.get_cmap('viridis')\n", "\n", @@ -1583,22 +1586,131 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 39, "metadata": { "scrolled": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510048\n", + "number of trimmed models = 479563\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub0_seds_trim.grid.hd5\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub0_noisemodel_trim.grid.hd5\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510048\n", + "number of trimmed models = 479563\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub1_seds_trim.grid.hd5\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub1_noisemodel_trim.grid.hd5\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510048\n", + "number of trimmed models = 479563\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub2_seds_trim.grid.hd5\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub2_noisemodel_trim.grid.hd5\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510048\n", + "number of trimmed models = 479563\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub3_seds_trim.grid.hd5\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub3_noisemodel_trim.grid.hd5\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510048\n", + "number of trimmed models = 479563\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub4_seds_trim.grid.hd5\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub4_noisemodel_trim.grid.hd5\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510048\n", + "number of trimmed models = 479563\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub5_seds_trim.grid.hd5\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub5_noisemodel_trim.grid.hd5\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510048\n", + "number of trimmed models = 479563\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub6_seds_trim.grid.hd5\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub6_noisemodel_trim.grid.hd5\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510048\n", + "number of trimmed models = 479563\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub7_seds_trim.grid.hd5\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub7_noisemodel_trim.grid.hd5\n", + "working on filter # = 0\n", + "working on filter # = 1\n", + "working on filter # = 2\n", + "working on filter # = 3\n", + "working on filter # = 4\n", + "working on filter # = 5\n", + "number of original models = 510048\n", + "number of ast trimmed models = 510027\n", + "number of trimmed models = 479522\n", + "Writing trimmed sedgrid to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin2_sub0_seds_trim.grid.hd5\n", + "Writing trimmed noisemodel to disk into M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin2_sub0_noisemodel_trim.grid.hd5\n" + ] + } + ], "source": [ "# check to see if any sub files exist yet\n", "if len(glob.glob(file_dict[\"noise_trim_files\"][0].replace('bin2_sub0','bin*_sub*'))) == 0:\n", " \n", " for i, sub_files in enumerate(file_dict[\"noise_trim_files\"]):\n", " # pull out physics grid\n", - " modelsedgrid = FileSEDGrid(model_grid_files[0])\n", + " modelsedgrid = SEDGrid(model_grid_files[0])\n", " # trim for each noise file separately \n", " noisemodel_vals = noisemodel.get_noisemodelcat(noise_files[i])\n", - " obsdata = datamodel.get_obscat(gst_file_cut, modelsedgrid.filters)\n", - "\n", + " # read in the photometry catalog\n", + " obsdata = Observations(\n", + " settings.obsfile, settings.filters, obs_colnames=settings.obs_colnames\n", + " )\n", + " \n", " # need to iterate over all the sub-bins\n", " trim_grid.trim_models(modelsedgrid, noisemodel_vals, obsdata, file_dict[\"modelsedgrid_trim_files\"][i], file_dict[\"noise_trim_files\"][i])\n" ] @@ -1625,12 +1737,165 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [30:59<00:00, 3.36it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub0_seds_trim.grid.hd5\n", + "None\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [31:30<00:00, 3.31it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub1_seds_trim.grid.hd5\n", + "None\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [30:36<00:00, 3.40it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub2_seds_trim.grid.hd5\n", + "None\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [37:50<00:00, 2.75it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub3_seds_trim.grid.hd5\n", + "None\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [32:46<00:00, 3.18it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub4_seds_trim.grid.hd5\n", + "None\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [33:11<00:00, 3.14it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub5_seds_trim.grid.hd5\n", + "None\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 6250/6250 [37:01<00:00, 2.81it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub6_seds_trim.grid.hd5\n", + "None\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 4395/4395 [16:24<00:00, 4.46it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin1_sub7_seds_trim.grid.hd5\n", + "None\n", + "not using full covariance matrix\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Calculating Lnp/Stats: 100%|██████████| 2185/2185 [08:52<00:00, 4.10it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done fitting on grid M31-B09-EAST_chunk/M31-B09-EAST_chunk_bin2_sub0_seds_trim.grid.hd5\n", + "None\n", + "time to fit: 256.77380966666664 min\n" + ] + } + ], "source": [ "#if len(glob.glob(file_dict[\"modelsedgrid_trim_files\"][0].replace('bin2_sub0','bin*_sub*'))) == 0:\n", "run_fitting.run_fitting(\n", + " settings,\n", " use_sd = True,\n", " nsubs = 1,\n", " nprocs = 1,\n", @@ -1661,11 +1926,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 43, "metadata": {}, "outputs": [], "source": [ - "merge_files.merge_files(use_sd=True, nsubs=datamodel.n_subgrid)" + "merge_files.merge_files(settings, use_sd=True, nsubs=settings.n_subgrid)" ] }, { @@ -1677,9 +1942,72 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 44, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "Table length=50330\n", + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
NameRADECHST_WFC3_F475WHST_WFC3_F275WHST_WFC3_F336WHST_WFC3_F814WHST_WFC3_F110WHST_WFC3_F160WAv_BestAv_ExpAv_p16Av_p50Av_p84Rv_BestRv_ExpRv_p16Rv_p50Rv_p84Rv_A_BestRv_A_ExpRv_A_p16Rv_A_p50Rv_A_p84f_A_Bestf_A_Expf_A_p16f_A_p50f_A_p84distance_Bestdistance_Expdistance_p16distance_p50distance_p84radius_Bestradius_Expradius_p16radius_p50radius_p84logL_BestlogL_ExplogL_p16logL_p50logL_p84logg_Bestlogg_Explogg_p16logg_p50logg_p84mbolmag_Bestmbolmag_Expmbolmag_p16mbolmag_p50mbolmag_p84logA_BestlogA_ExplogA_p16logA_p50logA_p84logT_BestlogT_ExplogT_p16logT_p50logT_p84M_ini_BestM_ini_ExpM_ini_p16M_ini_p50M_ini_p84M_act_BestM_act_ExpM_act_p16M_act_p50M_act_p84Z_BestZ_ExpZ_p16Z_p50Z_p84logHST_WFC3_F475W_nd_BestlogHST_WFC3_F475W_nd_ExplogHST_WFC3_F475W_nd_p16logHST_WFC3_F475W_nd_p50logHST_WFC3_F475W_nd_p84logHST_WFC3_F275W_nd_BestlogHST_WFC3_F275W_nd_ExplogHST_WFC3_F275W_nd_p16logHST_WFC3_F275W_nd_p50logHST_WFC3_F275W_nd_p84logHST_WFC3_F336W_nd_BestlogHST_WFC3_F336W_nd_ExplogHST_WFC3_F336W_nd_p16logHST_WFC3_F336W_nd_p50logHST_WFC3_F336W_nd_p84logHST_WFC3_F814W_nd_BestlogHST_WFC3_F814W_nd_ExplogHST_WFC3_F814W_nd_p16logHST_WFC3_F814W_nd_p50logHST_WFC3_F814W_nd_p84logHST_WFC3_F110W_nd_BestlogHST_WFC3_F110W_nd_ExplogHST_WFC3_F110W_nd_p16logHST_WFC3_F110W_nd_p50logHST_WFC3_F110W_nd_p84logHST_WFC3_F160W_nd_BestlogHST_WFC3_F160W_nd_ExplogHST_WFC3_F160W_nd_p16logHST_WFC3_F160W_nd_p50logHST_WFC3_F160W_nd_p84logHST_WFC3_F475W_wd_BestlogHST_WFC3_F475W_wd_ExplogHST_WFC3_F475W_wd_p16logHST_WFC3_F475W_wd_p50logHST_WFC3_F475W_wd_p84logHST_WFC3_F275W_wd_BestlogHST_WFC3_F275W_wd_ExplogHST_WFC3_F275W_wd_p16logHST_WFC3_F275W_wd_p50logHST_WFC3_F275W_wd_p84logHST_WFC3_F336W_wd_BestlogHST_WFC3_F336W_wd_ExplogHST_WFC3_F336W_wd_p16logHST_WFC3_F336W_wd_p50logHST_WFC3_F336W_wd_p84logHST_WFC3_F814W_wd_BestlogHST_WFC3_F814W_wd_ExplogHST_WFC3_F814W_wd_p16logHST_WFC3_F814W_wd_p50logHST_WFC3_F814W_wd_p84logHST_WFC3_F110W_wd_BestlogHST_WFC3_F110W_wd_ExplogHST_WFC3_F110W_wd_p16logHST_WFC3_F110W_wd_p50logHST_WFC3_F110W_wd_p84logHST_WFC3_F160W_wd_BestlogHST_WFC3_F160W_wd_ExplogHST_WFC3_F160W_wd_p16logHST_WFC3_F160W_wd_p50logHST_WFC3_F160W_wd_p84symlogHST_WFC3_F475W_wd_bias_BestsymlogHST_WFC3_F475W_wd_bias_ExpsymlogHST_WFC3_F475W_wd_bias_p16symlogHST_WFC3_F475W_wd_bias_p50symlogHST_WFC3_F475W_wd_bias_p84symlogHST_WFC3_F275W_wd_bias_BestsymlogHST_WFC3_F275W_wd_bias_ExpsymlogHST_WFC3_F275W_wd_bias_p16symlogHST_WFC3_F275W_wd_bias_p50symlogHST_WFC3_F275W_wd_bias_p84symlogHST_WFC3_F336W_wd_bias_BestsymlogHST_WFC3_F336W_wd_bias_ExpsymlogHST_WFC3_F336W_wd_bias_p16symlogHST_WFC3_F336W_wd_bias_p50symlogHST_WFC3_F336W_wd_bias_p84symlogHST_WFC3_F814W_wd_bias_BestsymlogHST_WFC3_F814W_wd_bias_ExpsymlogHST_WFC3_F814W_wd_bias_p16symlogHST_WFC3_F814W_wd_bias_p50symlogHST_WFC3_F814W_wd_bias_p84symlogHST_WFC3_F110W_wd_bias_BestsymlogHST_WFC3_F110W_wd_bias_ExpsymlogHST_WFC3_F110W_wd_bias_p16symlogHST_WFC3_F110W_wd_bias_p50symlogHST_WFC3_F110W_wd_bias_p84symlogHST_WFC3_F160W_wd_bias_BestsymlogHST_WFC3_F160W_wd_bias_ExpsymlogHST_WFC3_F160W_wd_bias_p16symlogHST_WFC3_F160W_wd_bias_p50symlogHST_WFC3_F160W_wd_bias_p84chi2minchi2min_indxPmaxPmax_indxspecgrid_indxtotal_log_normreorder_tag
str29float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64int64float64int64int64float64str9
PHAT-M31 J004434.89+413625.1211.14537345836157641.606976807232215-4.965085488981442e-20-1.1580466157434235e-203.0067137017991655e-22-2.1986753982029354e-201.2985999674533866e-191.1350672160211563e-1910.019.61470283657468.8039718769570859.63334587505987510.015.04.156108159000232.94705632873006263.996319336343315.5189115632005045.04.4001314270224443.27295580749512554.2925916131353615.4925962544928061.00.83863946570043660.56247715855167910.87860020020622361.0907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818610.234667615744427070.200886241025767080.1649788742247770.1968685477821030.23991052484145398-2.5-2.5324073131920644-2.7395886068757656-2.5505911854452923-2.35114535576735634.9965.0751826013884025.0060270258578345.0892342268365285.14924279840819211.02111.10130428492918110.64689123517991811.14549580004876911.61797986865950910.09.929795131393879.2500478833416999.93073593247845710.03.45113.4797147275910353.44784790145721233.47179892704362963.51037085470827660.2000000030.174642178874756720.137061926642938370.17016836252919590.21511380893162480.20.174651869505879520.136632897963089580.16936160358728620.21372032695588490.030.0120002189549298990.00421859553960987450.0112185718872721550.02086285721502063-23.13774595506965-23.25669397757423-23.426177728552616-23.24239306043068-23.10187340671592-25.545443154181353-25.68398611494468-25.834568245806093-25.669692850826-25.523598937950755-24.06236610673095-24.241413851766414-24.39528403252697-24.221681313227254-24.07927341863134-22.620593928818764-22.7653418305239-22.920470113405358-22.765048238395092-22.616815708033755-22.695360677390212-22.856903085594222-23.016451418597224-22.867399380104544-22.695202608140765-22.911719242848285-23.068969791564648-23.22000837264263-23.08086372987864-22.905460918919303-27.834943161572397-27.810388364185215-28.085749095641162-27.822433632174732-27.526224199860913-28.32346989371389-28.228437021192022-28.38771171845263-28.229518437675306-28.077717947737643-29.130206062775017-29.053370805913936-29.18136050547936-29.055307829066408-28.91678747626044-25.321932791794268-25.20936553651759-25.369792920823315-25.213605755724537-25.066315042744566-24.367775608152236-24.33182668648592-24.44660096325723-24.329558863372238-24.218964445595475-23.97796360199281-24.009821970659175-24.09967766795035-24.00684394451492-23.9218689068966382.620652624711636e-202.6603358843773592e-208.046763201577162e-228.046763201577162e-223.3627885294562747e-18-5.57879831736645e-20-5.2867285157920657e-20-6.163796558180469e-20-6.163796558180469e-203.2660043340192805e-18-2.933874368211007e-21-2.5818859204511595e-21-9.272995742758861e-21-9.272995742758861e-213.290303327229136e-182.1065405761576962e-201.9770581396192653e-206.554719376325041e-216.554719376325041e-219.537230712447546e-191.8528095409103405e-201.7683149909195976e-204.003441960824768e-214.003441960824768e-214.640117069537074e-197.226853195230868e-217.15148035963646e-212.3426634336850777e-212.3426634336850777e-212.217820155445873e-198.761253454972268472638248.98253869663034708911632252.55330449639095bin1_sub0
PHAT-M31 J004433.96+413539.2411.14148129458489841.59423421636288-4.965085488981442e-20-1.5316100401767856e-20-1.91987130309687e-20-3.3503625115473305e-207.023874037798191e-201.8749521992725582e-1910.019.650740833992918.9035277206723089.68103875482472810.015.04.0991720312436152.89950940513527743.93761567966334445.4332128978310515.04.3543305023660163.2514373198652994.2450457606339885.4026965946220491.00.83029520667815460.54817246573049760.8720751110573341.0907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818610.234667615744427070.49368270750079950.175242341959623740.201086072867662470.23828161126494077-2.5-2.4789499486728768-2.6951391788266252-2.525209782021483-2.34886832336635364.9965.0469975891880065.0080742655687925.0826724687674885.13906305585712411.02110.9677007468155510.64119876845184911.08204356527241611.50685852926174510.09.9313969369265949.2516682193709889.93240200739737810.03.45113.48268073281634253.44839443077469453.4756477542878193.51475534058508640.2000000030.182216167665613330.150462371598726470.174415438007235550.213814773106577650.20.1820483693258510.149886814852215940.17355739248193440.212439370909916740.030.012069225821554980.0041401074443322160.0111885720841190440.021123585254160922-23.13774595506965-23.21364641733056-23.384631235312145-23.22793684814076-23.105911427598517-25.545443154181353-25.642707861787056-25.796398683384083-25.65311331242676-25.52345114126135-24.06236610673095-24.201127460004287-24.34559145258611-24.20787438591329-24.084326680363006-22.620593928818764-22.72332432307127-22.864451195165042-22.749901055010888-22.625304460116553-22.695360677390212-22.814976197049752-22.974669970992892-22.84421765165837-22.700138128566234-22.911719242848285-23.02622033318514-23.177267846225256-23.066246585183404-22.91341856459116-27.834943161572397-27.786541461645083-28.099174513855196-27.840835619872593-27.5273362930316-28.32346989371389-28.18400417554321-28.36514296659155-28.21818905528256-28.072103225158386-29.130206062775017-29.011885810751576-29.17407650138473-29.051181010045493-28.91354467970892-25.321932791794268-25.16647871790306-25.349614776564877-25.20233543320164-25.065132193940308-24.367775608152236-24.286493128910692-24.423252242160462-24.31790496383768-24.216252560419193-23.97796360199281-23.96543015163345-24.057125372550775-23.992928845983393-23.9270265790713632.620652624711636e-202.6385240907098633e-208.046763201577162e-228.046763201577162e-223.3627885294562747e-18-5.57879831736645e-20-5.245150210692747e-20-6.163796558180469e-20-6.163796558180469e-203.2660043340192805e-18-2.933874368211007e-21-2.583813510628068e-21-9.272995742758861e-21-9.272995742758861e-213.290303327229136e-182.1065405761576962e-201.970361002929998e-206.554719376325041e-216.554719376325041e-219.537230712447546e-191.8528095409103405e-201.775729042083625e-204.003441960824768e-214.003441960824768e-214.640117069537074e-197.226853195230868e-218.139838822846828e-212.3426634336850777e-213.4983470025695704e-212.2293769911347185e-1916.595588178267224472638244.881484125603784708911632247.9312819816648bin1_sub0
PHAT-M31 J004435.09+413600.6611.14619958180752241.600184616487915-4.648165138620924e-208.106326310203964e-20-9.436655557594785e-21-2.617470712146352e-21-8.984024932067453e-217.557499633990927e-204.017.18022268329489064.2166876950670768.0335997676239019.6446616406811872.03.344340492369832.207548200657223.22260277877409654.5303229773098632.03.60977455785533332.3791292875944493.53967249407571854.6256855294198661.00.79519291996118980.461349690725330.84824015566564861.0907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818610.277621541208602160.58129557531446420.28147927109625890.66711525263115060.818179675406598-2.29-1.131246046988748-2.1530923281062457-0.7810333258636273-0.34289070958057294.9464.7110438870330144.5326400436125744.6302164488729784.94903859053387110.4957.59816206337877455.6263554053521346.72168995757155110.15176860545440510.09.9203309200349059.2411025411932029.92327946716845610.03.46713.6195845864194713.48767596386742173.64969974397527073.7239823350408550.250.58003869839807260.261586364006357650.68391781339139980.81756538636310830.250.57993593556266470.259513848833681840.68353502407506160.81891838243198440.030.017344783486982190.00620041308028013850.01589538325258450.03-22.994105360921573-21.709847437176098-22.92457466290922-21.31351161390677-20.693041789029383-25.40476273437022-23.489096775453508-25.389706046340137-23.149628882166287-21.67849920084436-23.918124896226335-22.422688575492508-23.919980815348133-22.0529320929071-21.094735655431187-22.47594724284258-21.568429912053684-22.444556205285863-21.281856949967153-20.86727558803338-22.549157314168248-21.743128182889816-22.51721542336525-21.467630285005693-21.12153073425611-22.76369497093206-21.955371398039595-22.75627564852092-21.653839607995796-21.366249648120284-25.070399516268967-25.211875426931712-25.42854295190622-25.143327219485233-24.903401107736084-26.463238477954285-26.43904461959542-26.590482746081168-26.38792722775293-26.203420924636717-27.08423333753454-26.9680129450038-27.244272607182033-27.017526358351844-26.65053738009879-23.243662786773594-23.325555287018553-23.412243052611323-23.255514892441198-23.097200337743804-22.948192787589907-22.77127745237733-23.016523372912385-22.620705000949712-22.474406773821734-23.005826832483894-22.604887298545478-23.026186507325516-22.35431640769347-22.24012535783343.0915226121103575e-202.570101089860922e-208.046763201577162e-228.046763201577162e-223.3627885294562747e-18-4.115235422386563e-20-4.187642803527415e-20-6.163796558180469e-20-6.163796558180469e-203.2660043340192805e-18-3.2019626642716306e-21-3.8261309634170766e-21-9.272995742758861e-21-9.272995742758861e-213.290303327229136e-181.5915104262407292e-201.6678775731315382e-206.554719376325041e-216.554719376325041e-219.537230712447546e-198.601483131085202e-211.857067400238444e-204.003441960824768e-214.003441960824768e-214.640117069537074e-199.231014730545583e-211.0719872389564896e-202.3426634336850777e-212.3426634336850777e-212.217820155445873e-1915.940855966105172474218246.759614047745661678561633249.85215999537076bin1_sub0
PHAT-M31 J004436.17+413547.2511.15072309653282941.596457019317526-4.648165138620924e-20-2.577587628590201e-20-2.3754339851876524e-204.271712202222846e-209.678245040454483e-195.033525519585559e-198.018.4963723568540467.5013236015914388.4203221156083689.487551476452.02.02.02.02.67999999999999972.02.02.02.02.341.01.00.831.01.0907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.530178186148.26731724274879646.83788827299730443.20771156180247648.5276961865260453.9672305313067263.4583.66817243963422263.36952854542952633.4615239694803753.59619114418313361.7821.90204643269054151.68609953032764161.76290539061378171.8604648349968838-3.874-4.400581538669366-4.2211515435279825-3.884490365135769-3.6545064218622098.07.8542715768672187.1767508490570767.8664248596984578.6314631470288923.7843.8481757002114893.7569175020302133.7819602192657843.8148052768500745.16427469257.6896387797049124.8287794531552415.2180527561900995.7861780372173725.1657.5742704460951614.8872694821686585.2124793149711085.63699542046633350.0080.0082878803674696560.0040537804293615410.0089588936314313610.015188568835115084-16.742760412840802-16.634919302233648-16.840031171044526-16.741111689090616-16.600672900420143-17.720944292230094-17.387777399721642-17.909669773759266-17.674384232560502-17.31570990924511-17.220213975057113-16.99954032787213-17.33720381407228-17.198457119081677-17.022249935165807-17.086284288894845-17.029781332099986-17.1417921521343-17.073234467075746-17.00478323464288-17.397421990894514-17.35881361364646-17.463692284699885-17.38916132478732-17.286991719387494-17.723132078606497-17.69704311706421-17.767548228310936-17.69818873063844-17.627078743679025-20.875091600007284-21.01296952202417-21.31423638346821-20.937323793217033-20.80075646200836-21.818337376235018-21.84446419899676-21.947909149215995-21.82707160405804-21.71105425460922-22.7412687693725-22.769224414484533-22.846880195678104-22.736497496443-22.611525411102228-18.64231868579795-18.678125335200086-18.778099591194557-18.685255882879094-18.59493032110891-18.195785126003035-18.20576421555475-18.26616844381691-18.20112731989163-18.137356573289775-18.20936410316507-18.212870389013084-18.26642019512139-18.210861697737876-18.1429968720182481.2957260801669564e-211.3321155738448449e-218.046763201577162e-228.046763201577162e-223.3627885294562747e-18-4.114605583230734e-20-4.1148135776157756e-20-6.163796558180469e-20-6.163796558180469e-203.2660043340192805e-18-7.275608471698026e-21-7.34975812241604e-21-9.272995742758861e-21-9.272995742758861e-213.290303327229136e-182.324453060441504e-192.1697998516601025e-196.554719376325041e-216.554719376325041e-219.537230712447546e-196.487885027666971e-196.356335015133772e-192.2047791960453426e-196.804861845974169e-191.1404944495902996e-186.22234014643561e-196.183586613954195e-194.2831317047249536e-196.477525225833976e-198.6719187469429985e-1980.32684746141537433949195.562387880168363466203574197.20931432983073bin1_sub0
PHAT-M31 J004434.01+413539.9611.14172673203796641.59443196746765-4.4368849050472454e-203.343392648678593e-205.6945335261347834e-21-1.9892777412312273e-209.310716747778997e-201.3759264600815542e-1910.019.6123683597735468.8925540028538479.69095365767407610.016.04.5873052511236183.2603088786366254.5937841815863175.9011551834679196.04.7524747489640593.62457706077602374.7111351682693845.9062178960533811.00.90213558257123130.71517690751500960.92662928148758161.0907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818610.234667615744427071.40526921615855650.17686594402717840.212681611044839570.24904029157875407-2.5-2.327449488715946-2.6821556499385952-2.4947255555370154-2.28820720374806054.9964.941516211064974.9857168438906275.0658534205242815.13347316106684511.02110.58887209859550510.4895490137260811.00583452893309711.47440035862898710.09.928946342245189.2492456383528489.9300631693572310.03.45113.48566998439961663.4485781357368243.47521781354612623.52320632467289750.2000000030.212189577652829860.151489737218779170.194240233787846130.221687510924691220.20.211215267412077830.150902405894536380.193129178877983480.220202537184464030.030.0131516184021750420.0044161150147665440.0120788476570996140.023053277885508067-23.13774595506965-23.063287494602484-23.366587025249455-23.194411382532934-23.07473518062119-25.545443154181353-25.49662958341477-25.782551585092254-25.62795654683489-25.491632518492747-24.06236610673095-24.054846077062873-24.328981047470478-24.180312103792712-24.045749698921533-22.620593928818764-22.579182113025105-22.856033558567272-22.71305822402989-22.58690925520656-22.695360677390212-22.671044231509487-22.966690313761294-22.79185268760745-22.66244609503331-22.911719242848285-22.879612566972117-23.16916804769295-23.027930422360154-22.87179950311335-27.794816889953587-27.593675736268082-28.0119442245183-27.792211056589494-27.504696095400906-28.417147821037332-28.115806882829006-28.432932621333737-28.282492712876007-28.10980720552724-29.151003196156786-28.9116855531817-29.234822580735074-29.088382179805503-28.925193319035685-25.417495918451078-25.09451555141018-25.42474819148572-25.280551426527524-25.108198529850252-24.446414207995932-24.204932715832427-24.4773619983218-24.37334192139886-24.245821619302262-24.02854155963452-23.857613800511494-24.10260054311694-24.0116669878451-23.9240133576806542.6456471513760418e-202.593775690144172e-208.046763201577162e-228.046763201577162e-223.3627885294562747e-18-5.791772597931472e-20-5.4187947974622195e-20-6.163796558180469e-20-6.163796558180469e-203.2660043340192805e-18-3.0067868742210288e-21-2.9085681215846313e-21-9.272995742758861e-21-9.272995742758861e-213.290303327229136e-182.1810058339302108e-202.0466292046648592e-206.554719376325041e-216.554719376325041e-219.537230712447546e-192.02364026164042e-202.038323505896345e-204.003441960824768e-214.003441960824768e-214.640117069537074e-197.14750279036335e-211.1079808416591622e-202.3426634336850777e-213.0648704659492577e-212.2250422257685153e-1915.970969054382998477791245.407012583699274760431632248.25908233042696bin1_sub0
PHAT-M31 J004432.23+413612.2911.13429510100170641.60341478197758-4.119964554686728e-20-1.6810354099501307e-19-1.7897105367852176e-205.0988329472610935e-215.472087913168357e-204.571998824380007e-204.016.529271437200193.33299438809911847.5360689298546389.6935665388963382.03.554212372104842.301144670320543.3889171687943014.9152155797176832.03.8104994100241182.59034249608940573.70838747859891844.9353230017360711.00.80314548344432350.476593666433329570.85553310397173231.0907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818610.277621541208602160.54439023522743910.24713932397835410.52690709684350060.7769048336393031-2.29-1.3338872604462535-2.349328188527362-1.3084538341916874-0.433429598740411764.9464.7560084830002014.5504724108877684.7250451579861625.01621451137982710.4958.1047949692626125.8527590331543568.04021475943113210.6423484082757210.09.9200799656885679.2408466786546719.92297057309980210.03.46713.5958701600400113.4815867634987213.5903101353480113.70877363569148160.250.52138366689073910.224342486584380250.541209073035320.78375718067311530.250.52126446089880950.222820561304817640.53421901799377270.78985709181298510.030.0152787057508130580.0048353566971284230.0137453719923754520.028321894377381845-22.994105360921573-21.971643997374-23.091292815019738-22.101119014091196-20.79921335211832-25.40476273437022-23.92166018873113-25.538341782190535-24.464282800510514-21.902805621928184-23.918124896226335-22.754099094006136-24.0742058477795-23.02999592214699-21.264517937929995-22.47594724284258-21.755905247183374-22.599030342058192-21.78435547725837-20.945164510225442-22.549157314168248-21.912208365618515-22.66773432394739-21.914664849258767-21.1887529757374-22.76369497093206-22.11896561592334-22.87852570964608-22.096508609359102-21.429841391750482-25.070399516268967-25.138637699961457-25.75077538257512-25.134310170247613-24.73255954163211-26.463238477954285-26.432248065782787-26.75239895425299-26.388978970388223-26.06713358438854-27.08423333753454-26.76470987772279-27.435219673228378-27.008436950471943-26.269393150197818-23.243662786773594-23.374171436979697-23.523687918773387-23.253600458301726-22.962010760819247-22.948192787589907-22.86737811642337-23.1691033735318-22.645653528450666-22.36495528520699-23.005826832483894-22.722588357106364-23.18420656564725-22.39646699615206-22.2096230929565873.0915226121103575e-202.3122832233570953e-208.046763201577162e-228.046763201577162e-223.3627885294562747e-18-4.115235422386563e-20-4.446894466414935e-20-6.163796558180469e-20-6.163796558180469e-203.2660043340192805e-18-3.2019626642716306e-21-4.304086882388079e-21-9.272995742758861e-21-9.272995742758861e-213.290303327229136e-181.5915104262407292e-201.709565627258714e-206.554719376325041e-216.554719376325041e-219.537230712447546e-198.601483131085202e-211.9125734218764082e-204.003441960824768e-214.003441960824768e-214.640117069537074e-199.231014730545583e-219.607479714306738e-212.3426634336850777e-212.3426634336850777e-212.217820155445873e-1910.573654840265831478882249.004308605808631678561633253.20975642333576bin1_sub0
PHAT-M31 J004434.12+413556.8311.14216680706168841.59911895022069-4.0671444962933085e-20-8.591958761967334e-20-3.579421073570435e-20-1.5704824272878112e-202.2950100053735948e-201.3268892487159643e-1910.019.512102075101548.607044498715859.5490481175155110.015.04.0342883297881172.73310977048671243.8581754843652485.4592313127601485.04.2834480099664033.13301848455344354.1809240834610535.4531030467204381.00.82587383344395140.53336991781668120.87108902414778521.0907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818610.234667615744427070.29199903141675940.163994323238574440.195871635886968680.23757732739569098-2.5-2.5298011562555662-2.7479657955963384-2.556287979808336-2.35942304116836084.9965.0696701029761225.0118601003003845.09108180102255.1500553539996211.02111.09477990390239910.66758503326110311.1597375000588411.6389224200459710.09.9302677778610639.2505116802303559.9311743848443310.03.45113.47957156600301073.4476718489065053.47135710313772573.51047436303780640.2000000030.174673326003829040.136015911876862070.169288782158724280.21320430567050110.20.174627705519917520.135597849808462930.168492644801538670.211837399864906820.030.011812149553332840.0042289112375874160.0111422823112047670.020372253832376078-23.13774595506965-23.25278816583737-23.430618362177967-23.24731186580484-23.108801315623754-25.545443154181353-25.680744436351162-25.840406310772167-25.673097302247037-25.52983640281954-24.06236610673095-24.238512943209653-24.397335614239207-24.225525341657367-24.08852029080427-22.620593928818764-22.761941951583893-22.9258215251968-22.76914661754738-22.626520802233458-22.695360677390212-22.85359866476925-23.01882548981312-22.872280332305788-22.702840722719245-22.911719242848285-23.06541420651609-23.222387472163998-23.08484735602558-22.916747799744254-27.834943161572397-27.766974188375723-28.06329336523064-27.783955991215002-27.478589740267076-28.32346989371389-28.174281507515985-28.36660157415402-28.19457005612314-27.999276480085925-29.130206062775017-29.001975605786683-29.167199423191914-29.01735029851868-28.849347870571762-25.321932791794268-25.151310121748047-25.349160656078954-25.17692334191256-24.97088545382576-24.367775608152236-24.288668159547203-24.431480298091255-24.301923856606145-24.169718094403613-23.97796360199281-23.980602175092937-24.070084007231408-23.988110992388876-23.9050379850917662.620652624711636e-202.6763065733453112e-208.046763201577162e-228.046763201577162e-223.3627885294562747e-18-5.57879831736645e-20-5.181120458992231e-20-6.163796558180469e-20-6.163796558180469e-203.2660043340192805e-18-2.933874368211007e-21-2.4650747335533e-21-9.272995742758861e-21-9.272995742758861e-213.290303327229136e-182.1065405761576962e-201.9341085304807968e-206.554719376325041e-216.554719376325041e-219.537230712447546e-191.8528095409103405e-201.6897446818726072e-204.003441960824768e-214.003441960824768e-214.640117069537074e-197.226853195230868e-217.393943518367311e-212.3426634336850777e-212.343221060407266e-212.2178257317130958e-1910.183078530792898472638248.252605809100944708911632251.93226671341878bin1_sub0
PHAT-M31 J004435.17+413547.1211.14652635498382941.596420911040575-3.486123853965693e-203.810346929220296e-20-8.135047894478264e-21-2.30337422668879e-202.2092534037493143e-198.321903222925122e-2010.019.6820590808427259.0059067015848229.69947817718518310.016.04.7256764553741293.43088875867392144.75237009588557955.9538420386301276.04.8687827329046553.8067494991828594.82730862593479155.9557321356740261.00.92370398555672270.76008162165278110.93945205425195171.0907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818610.234667615744427070.205825640650394630.16634638580013960.20427235785465020.24633652996726527-2.5-2.5077096352360897-2.7301985362889747-2.527672823672902-2.30767613507757964.9965.0672655331567914.9948746349850445.0773771091565435.14278424119633611.02111.03952125305821310.53822036498818311.08820104579152511.59450516343967610.09.9284348753141359.2487165426564949.92948750443294210.03.45113.48078079214712143.44802773088801563.47244520365680883.5151872947572630.2000000030.18013728895820570.138550003408598830.18190710277030240.220668101447771130.20.180145868031789060.138104835404809280.180954666309320830.219197315690491280.030.0124902066468460930.00424003987959195150.011544922877870290.021837568965023132-23.13774595506965-23.236208502079496-23.4202578387161-23.21476082937647-23.082205975919074-25.545443154181353-25.663551296726972-25.829453334419647-25.649925346174385-25.503239231660714-24.06236610673095-24.22101202067921-24.38590703626952-24.200107904405318-24.056332221545947-22.620593928818764-22.744910367828986-22.912703420379295-22.739831262693258-22.59438199396802-22.695360677390212-22.836487872625046-23.011397203267123-22.828080020789603-22.672083599695043-22.911719242848285-23.048527307659665-23.21478567251096-23.056565524210736-22.882259646250535-27.794816889953587-27.791446014666086-28.047666213790947-27.789456657928117-27.527539431310746-28.417147821037332-28.3190382212256-28.441257202929556-28.319609112617478-28.200217246264963-29.151003196156786-29.112435027098794-29.25582538256838-29.113796879904783-28.96726696086683-25.417495918451078-25.299947499272157-25.429878301019787-25.31221851816217-25.188227948301293-24.446414207995932-24.400673853761926-24.501642695764268-24.40759870855031-24.309552155073654-24.02854155963452-24.04530240752171-24.140120718933915-24.0425622208245-23.9452179458512972.6456471513760418e-202.6694095911515427e-208.046763201577162e-228.046763201577162e-223.3627885294562747e-18-5.791772597931472e-20-5.549111451853164e-20-6.163796558180469e-20-6.163796558180469e-203.2660043340192805e-18-3.0067868742210288e-21-2.845661507787597e-21-9.272995742758861e-21-9.272995742758861e-213.290303327229136e-182.1810058339302108e-202.0741380564588302e-206.554719376325041e-216.554719376325041e-219.537230712447546e-192.02364026164042e-201.9268555160712393e-204.003441960824768e-214.003441960824768e-214.640117069537074e-197.14750279036335e-217.09057915386428e-212.3426634336850777e-212.3426634336850777e-212.217820155445873e-1915.437377190233313472638245.62205649990164760431632248.65270403855982bin1_sub0
PHAT-M31 J004435.53+413610.3011.14802717766162141.602861118681616-3.486123853965693e-20-4.109197668766986e-20-1.6270095788956527e-20-1.151687113344395e-201.1025848780264601e-191.2677561408927527e-199.019.34927728114948.4039659459121369.41742013493197710.014.03.91790013500569372.70172343842666333.73430344980309765.2067978334086324.7241379310344834.1992062918169533.1220065058283444.0723722188054045.19376365520715750.750.79868382348815950.494358649649674130.84646196775443951.0907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818610.194425471513974770.8700883681715660.157038113475384960.191611210736788550.23624946701854538-2.675-2.4681829616748834-2.7650715060627005-2.5740222001981623-2.36694919081204125.0625.0154014556204125.0160478207320915.09741309081682655.15704772671852311.45910.94072112287464510.68640002966531311.20407216102937111.68168583775004310.09.930782282888869.2510016802624519.93159657960032610.03.44823.4808390008661483.44763.47161375046462833.51007036353828330.15999999640.186222674886009050.13115348231238680.1653258390188670.211972305029111740.160.18565102442491650.13078516385077810.164577557136553140.210622546017310290.0190.0113862484206755260.0041009861414047890.0107598421391300640.01964184232085381-23.25861830973603-23.188386719557645-23.453820053960346-23.269877286970036-23.11392504064357-25.695046113429015-25.619159658769345-25.8712269292717-25.6892145705717-25.535371048442983-24.266891015939997-24.17826570423158-24.417412496486232-24.24455179831818-24.095166196947172-22.77997149289437-22.702263376685597-22.96318794090238-22.785430851011455-22.633099938881916-22.879078567083837-22.794530718526087-23.04247997516741-22.894061138213054-22.707080064886384-23.091814461069564-23.004438208948145-23.24614935077943-23.10053045005713-22.923503611642772-27.52965927358051-27.632465763927804-28.045505494487493-27.74431720196012-27.414530690324085-28.130921174467318-28.0680604394514-28.317210435909118-28.16368834063278-27.994124432868148-28.97795755088905-28.896647580860307-29.145738854534937-28.996507491939703-28.843663984481797-25.089573193211734-25.039792082513788-25.307266714529423-25.140263205177344-24.970591124875533-24.279072174235797-24.195855165563895-24.403677523725264-24.283235465891345-24.177842461031446-23.981246010043908-23.897712500633176-24.066469656267856-23.988958876583002-23.912335449424442.8252651941088795e-202.6580036621721943e-208.046763201577162e-228.046763201577162e-223.3627885294562747e-18-4.9663725694923434e-20-5.112549523829375e-20-6.163796558180469e-20-6.163796558180469e-203.2660043340192805e-18-2.2791559864348244e-21-2.4648200250384646e-21-9.272995742758861e-21-9.272995742758861e-213.290303327229136e-181.839807319707479e-201.9175810093643923e-206.554719376325041e-216.554719376325041e-219.537230712447546e-191.6618780401598755e-201.7928065917034063e-204.003441960824768e-214.003441960824768e-214.640117069537074e-197.225495346655978e-219.445375056793279e-212.3426634336850777e-212.647365687566383e-212.2208671779846864e-197.466636497077046467971249.997477398302924160852770253.68056233936596bin1_sub0
PHAT-M31 J004434.59+413626.1411.14414081689767341.60725978983544-3.3276636787854345e-20-6.724141639800522e-20-1.496848812584e-204.8894352902893846e-212.1234968021250342e-193.504718341717166e-209.019.1566629232200658.2951316830797919.40796579908702110.015.04.1551869121172122.9207225718451554.0290276487068535.5299763562123725.04.3881803626403043.2472793006214994.3100686316913015.4966662627197591.00.84986312522092640.58400570908294440.88689030967911921.0907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818610.194425471513974770.203535501685858040.149589710751932360.191785515181605640.25283575366371713-2.675-2.533645666880823-2.8039491912527534-2.5711834498100026-2.27958069415772445.0625.0770081735045644.9872020181338615.0960475877682135.16569799864928511.45911.10427553545239110.46798317267754911.19697542752361111.77887809962183510.09.929708690999239.2499559809820129.93062939442076410.03.44823.4799727598096453.44801212241164073.47232930890852833.51043110036546050.15999999640.178791676936402740.122184478155357250.16548519247920450.225114649603794180.160.178794904820538360.121906862995363730.16473498628577950.22358197747912170.0190.0115336779264561750.0040019809359465270.0106009394441306870.020475669576514588-23.25861830973603-23.257409062544323-23.48706790263624-23.26811580132508-23.066722830090868-25.695046113429015-25.68383910353229-25.915266707404044-25.690257472724838-25.492126699436255-24.266891015939997-24.240905041646574-24.454934596816543-24.2443549472002-24.039528775824234-22.77997149289437-22.766838993813515-23.008426566902216-22.785012296612333-22.57688881373224-22.879078567083837-22.85831886449142-23.078486837273207-22.893074708494453-22.64692653286278-23.091814461069564-23.069973007534994-23.28250970875648-23.100124889193168-22.8596725204465-27.483498288464-27.598814871946637-28.048367152140244-27.72588357870675-27.38548411276559-28.27964833231166-28.132150466333577-28.378513328450865-28.226039066794108-28.05949091170089-29.036882080938458-28.909719506973826-29.176082682977775-29.035690713885312-28.860311903753807-25.228890105632598-25.09578709586289-25.348032360450997-25.201640397201455-25.027464014971446-24.397879832151634-24.26536247810059-24.452528901704117-24.336714753734675-24.207557600111933-24.052957820478635-23.96530749590479-24.134000932874706-24.020766484752706-23.884197416788652.864350222104931e-202.6789649046560326e-208.046763201577162e-228.046763201577162e-223.3627885294562747e-18-5.462259638078805e-20-5.2284131592382313e-20-6.163796558180469e-20-6.163796558180469e-203.2660043340192805e-18-2.560068482862491e-21-2.7643247988416314e-21-9.272995742758861e-21-9.272995742758861e-213.290303327229136e-182.0164658560331052e-201.9707609282519504e-206.554719376325041e-216.554719376325041e-219.537230712447546e-191.911430327850164e-201.832085907235938e-204.003441960824768e-214.003441960824768e-214.640117069537074e-197.092345726758225e-217.165302142896062e-212.3426634336850777e-212.3426634336850777e-212.217820155445873e-194.075939005194076463434251.56673377955194262382770255.54394447136863bin1_sub0
................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
PHAT-M31 J004433.11+413617.6711.13794988516391641.604909664296891.4895256466944324e-185.192531599623736e-198.525530193413219e-193.0781455574841095e-191.1475050026867975e-194.355658186002404e-200.010.0133915752566248420.010.0133915752566248140.69339157525662496.03.67831881943566242.38254692291867043.51054307197569855.0828323877945016.03.93446101751027082.72813375062683643.8407593071991665.0829893548392961.00.80764659913138460.490703426448749260.85873060823526471.0907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818616.1581910876833986.1603222659716075.7213308117550386.1209095607378236.5121353723319582.2982.30685358602277462.2565345527841862.3252001646470882.39538120666416843.463.46195692903831853.43351840578569733.4719221748305343.514627887584613-0.976-0.9979363679277605-1.2191869632022911-1.043737880243401-0.87207729661705216.06.00678315051324856.06.0034031171846636.6857172368702353.94113.94335282699606543.93639791344565733.94604435717015673.9567552427193864.01469230654.0322327382419183.69249000078820983.97225327857033244.234259205198764.0164.0332364087588173.84341572624768454.06796082257381554.3115523373895360.0190.019991853590714720.0127113506582428120.0176674588170307770.022701056515449736-17.815567872361715-17.808500633617925-17.89089750175855-17.824762656894652-17.75926065146058-18.10982585001747-18.099673138857717-18.188091603585654-18.101293114840143-18.00686574465409-18.098079885584035-18.086956747020842-18.152579088447634-18.077659055614713-18.002490435403303-18.486592543876863-18.48171936402911-18.530628504707494-18.47491093975664-18.41830853942246-18.883679436849363-18.87985823999332-18.97118966961166-18.912267702450592-18.857933733127027-19.32732543701085-19.324315105954717-19.347287682451487-19.292015418514136-19.236638033669045-17.820416697447328-17.815551802073113-17.916960741614396-17.826940071666574-17.73661457878884-18.115937780286213-18.111361993019383-18.226454662440858-18.114864588780804-18.023079937975137-18.103818931312436-18.096532621816078-18.145971902349984-18.04873506949687-17.943823866231643-18.489570873433916-18.48520370016165-18.586417284542417-18.50119224232012-18.42681947286112-18.88570022831793-18.8820312496035-18.91805888849506-18.85810447437429-18.798320026303237-19.328475573006415-19.325545187843986-19.41065296285724-19.350915033966626-19.2958286383117931.5334032951996813e-181.5510993571192066e-185.568236162948299e-215.568236162948299e-213.3652922223000045e-186.84002022444021e-196.937473573916604e-19-4.680466365266143e-20-4.680466365266143e-203.2817204524465094e-187.5243382437108e-197.662653401568444e-19-1.5459207662868333e-20-1.5459207662868333e-203.285857242319966e-183.286914914673174e-193.32158604605312e-19-9.013322236632383e-22-9.013322236632383e-229.461362678470826e-191.3924528238196582e-191.4051353870826584e-191.063361511649631e-201.063361511649631e-204.716327151946377e-194.49416785232952e-204.530267316984782e-205.5365268543121086e-215.5365268543121086e-212.246326101004151e-1914.82505556592796135898225.29460714840218358981981227.9209983989424bin2_sub0
PHAT-M31 J004433.87+413616.6511.14111359422845641.6046244586986661.4895256466944324e-187.658050200883929e-197.386623488186262e-193.4341215743360136e-191.4782804660947356e-195.36524783176455e-200.010.0263773781539018560.010.0263773781539019470.70637737815390196.03.66448092646931832.3806383986616163.49570146214095.0506438434422376.03.9322062920671892.7405818835875253.8381658672024165.0507181432715081.00.79902182548618970.46686833123064120.85244737320941241.0907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818616.1581910876833986.15652596405868655.7237268249733786.0911475350518646.4761946203532232.2982.31387927708945762.25600064900067962.32557278546119542.39737542215886773.463.46249501582088253.4366771764573733.47451476487413753.5142947457406053-0.976-1.0155315937321967-1.2241724018579645-1.0446694135784378-0.8707425639526156.06.0327547563078036.06.0166500625241466.7079721050405653.94113.94515057055397963.93722542406768873.9468314895021493.9569529429297744.01469230654.0362921448042113.67431950646036533.93343150462008854.165495599859884.0164.0375218862798193.8535428958981854.0779121625452594.321163572154340.0190.0194123957713842470.0126606846244516050.0172532191430540.02184608677524685-17.815567872361715-17.805229494083104-17.88987779556621-17.82384000032541-17.75820211243819-18.10982585001747-18.087806439344146-18.181870892570977-18.094027276620608-18.001981216498706-18.098079885584035-18.07957324012527-18.152840916794208-18.076924423404698-18.000253909150473-18.486592543876863-18.479452176333297-18.528988462154878-18.47253521128057-18.416077821721235-18.883679436849363-18.87803969391782-18.97176337271526-18.916374224638908-18.86219528194308-19.32732543701085-19.322736312330075-19.344701223284723-19.289585694976886-19.23442879326743-17.820416697447328-17.819220178073216-17.91867664193839-17.828655971990564-17.7371746951872-18.115937780286213-18.111507455846716-18.231117745234673-18.123630647170607-18.031860702913065-18.103818931312436-18.09892916178862-18.1406936768248-18.043456843971686-17.941895409361134-18.489570873433916-18.486204876505475-18.594695431303272-18.513933940847465-18.446536739416544-18.88570022831793-18.882186717427658-18.91534410711036-18.855561351188214-18.796724359609197-19.328475573006415-19.32509726862403-19.411234610701978-19.35507842399403-19.300149201802851.5334032951996813e-181.5383310269989365e-185.568236162948299e-215.568236162948299e-213.3652922223000045e-186.84002022444021e-196.927504079287115e-19-4.680466365266143e-20-4.680466365266143e-203.2817204524465094e-187.5243382437108e-197.618674191347347e-19-1.5459207662868333e-20-1.5459207662868333e-203.285857242319966e-183.286914914673174e-193.3129682501840244e-19-9.013322236632383e-22-9.013322236632383e-229.461362678470826e-191.3924528238196582e-191.404449123894945e-191.063361511649631e-201.063361511649631e-204.716327151946377e-194.49416785232952e-204.535948560322281e-205.5365268543121086e-215.5365268543121086e-212.246326101004151e-192.619259707076148335898231.3975050778281358981981233.86169321993196bin2_sub0
PHAT-M31 J004433.88+413617.6611.14116450488884241.6049053942171.7008058802681106e-181.2066098609197606e-189.892218239685567e-194.491579742043141e-192.4706068563185493e-191.2605447862801662e-191.011.010.331.011.693.03.19616744356656352.39809285831843333.19616744356656353.87616744356656364.1938775510204093.85280002195284473.14405590722562333.7968140487936484.36502437563517450.250.52875485494375330.250.50666053180941330.861226368556173907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.53017818617.10809397424351457.1718306922882726.7881107532621897.2131599819526217.7037811007497173.1493.11648574164265833.04384060230381433.11230706196508283.1927315334957553.4393.4288063229798413.38475970990255133.4256375053052093.464037107287611-3.102-3.020914133652859-3.212522764707292-3.01146562203797-2.84030290892111568.08.07.328.08.684.12274.1126818523887374.1021887694786974.1160415639825294.12860225422828455.08981895455.0630220118591754.68211214446207354.951839923708665.2450552012670745.0915.0637740120426624.8586944325307775.1410736455126135.4935635482889730.0190.0213178033613654440.0131327259486048260.0187375361525397330.02665292389882778-17.282765147135095-17.290498794565877-17.339816210201665-17.275258147958354-17.199365028027024-17.029302225458725-17.063375509741704-17.160242344995634-17.072995037738952-16.98665639426547-17.18302030317558-17.20677413927091-17.28078965679542-17.206120933155283-17.126924786671147-18.058907769692894-18.063469730601938-18.120919903712593-18.064863624672768-18.009299733346747-18.51542665971079-18.5179488544453-18.580615554679866-18.526505594332775-18.473184091025477-18.99144787511733-18.993199717994155-19.03238250450142-18.97817464804419-18.91991966151942-17.822526248844824-17.825016525341535-17.916511753560307-17.826491083612485-17.736470413664662-17.964576278817677-17.96566317007904-18.093735713535562-17.983962335256006-17.892203323755012-17.94596928653938-17.945815504689598-18.007935082927226-17.91069825007411-17.802787064753556-18.312914487671108-18.32287952578516-18.405469807243872-18.336968286728837-18.269568969934653-18.668478017338494-18.6774142748628-18.74792392623861-18.688226003024276-18.625626320485424-19.07937350322391-19.08414973067672-19.116942854998722-19.062916723457455-18.996445710440721.5261105352430308e-181.5177140162661094e-185.568236162948299e-215.568236162948299e-213.3652922223000045e-189.961806543685352e-199.968277548935294e-19-4.680466365266143e-20-4.680466365266143e-203.2817204524465094e-181.0962275968988966e-181.0975292939421456e-18-1.5459207662868333e-20-1.5459207662868333e-203.285857242319966e-184.886215504294376e-194.783881110267587e-19-9.013322236632383e-22-9.013322236632383e-229.461362678470826e-192.245933050255211e-192.2048788765243115e-191.063361511649631e-201.063361511649631e-204.716327151946377e-198.10910280230487e-208.02470711660825e-205.5365268543121086e-215.5365268543121086e-212.246326101004151e-1922.45689836208195845383228.94141803921016453832391230.8450023375151bin2_sub0
PHAT-M31 J004433.29+413620.7811.1386971605195841.6057715839159242.0916743123794157e-182.2002885699125046e-182.1541606824578437e-184.3031218507686024e-191.5926226015937758e-196.302723931400831e-201.010.195902305896672040.010.195902305896672120.87590230589667216.04.0410932182413862.46387458996434243.78712546277159625.8277819243185526.04.2531930037351172.81573582267333224.1203001274929865.8824099891202291.00.83988460134653420.53969109483539450.88861869844754181.0907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818617.20863707031503155.445378644284874.8099018753490385.1786550241761356.7326330545217263.222.74229326448532572.56792109561808962.6519806965338023.16111903763364043.4163.62548364475289063.46871802294963373.65122954773185933.697617150445358-3.279-2.086166881177152-3.1334931115468296-1.8606728102546815-1.65052802655422578.06.3656475728452896.06.2266070021257457.24559187501726054.13744.0810640516718834.05282697873614154.0663378582359514.13130159791164.96337270744.5182193129490724.3337159369663644.62937026035515054.9007638970363084.9634.5164473313715494.2103779974630264.4962191078388834.7606857243056240.0080.0262343079862215330.016236884347710610.0286742305080957170.03-17.22904743791046-17.5883029190554-17.693759312615143-17.614459171230493-17.323397769373717-16.93939422505323-17.453727033310404-17.65925901427631-17.55318290816264-17.037751348969028-17.094961435834776-17.567379406809223-17.705102795063677-17.61338616389113-17.167606925193752-18.014013334578284-18.353131823617197-18.44669573667884-18.377608755922008-18.053215402659415-18.475930601220913-18.79996960291233-18.89339780351111-18.827098961133384-18.515879033712576-18.954407537767423-19.27282938458575-19.418946353495596-19.352358986307653-19.033017148390908-17.719477298466334-17.684186940256808-17.7853453482194-17.69532467827158-17.604480106946237-17.557717087426234-17.578384962129338-17.701741824035118-17.609961763633933-17.518147523680412-17.675357877096513-17.68250336668209-17.812739608150725-17.688530992996263-17.569780069675872-18.31534308814581-18.410919239180288-18.497869888803837-18.419113856799992-18.351053438972162-18.679781485902172-18.838814006823515-18.90946684000585-18.837550276798275-18.75235413188488-19.07054997299273-19.294946499360808-19.406460798249906-19.34009828680844-19.1078577515696361.9271923594519126e-182.0900297327495577e-185.568236162948299e-215.568236162948299e-213.3652922223000045e-182.6472278490546346e-182.522883181779885e-181.234075955590898e-184.56260107169007e-188.07959732472944e-182.071453894963607e-182.0382031830695946e-18-1.5459207662868333e-20-1.5459207662868333e-203.285857242319966e-184.858166089201698e-193.940101096754961e-19-9.013322236632383e-22-9.013322236632383e-229.461362678470826e-192.1904432026969943e-191.56847171023999e-191.063361511649631e-201.063361511649631e-204.716327151946377e-198.282730257216729e-205.049995640390844e-205.5365268543121086e-215.5365268543121086e-212.246326101004151e-1919.96954847259873654222.6434667440507786553477224.55457045232814bin2_sub0
PHAT-M31 J004433.85+413617.5011.14104982093229341.6048599632171162.2501344875596745e-182.8353463914492203e-182.3851960426610268e-184.460170093497384e-191.3026836151497805e-195.4085159594400715e-201.010.33176673113446310.010.3317667311344631.01549072033716443.03.5063496841168722.3742217264351543.3329830772495414.7077323610047914.1938775510204093.9200290723536992.97025840722194533.80842639188162974.7817812331720340.250.68465408571377560.29457060746123430.73952181441811571.0907820.5301781861907820.5301781861907820.5301781861907820.5301781861907820.53017818614.7364522226390064.7568274788601224.3755511459591344.64651843483414154.9416060162078933.7463.01823884739386642.60298297956495442.7133434056771333.73796766228839154.0493.8279337572409593.6847883391367373.74583524986596974.033867710410044-4.595-2.775930092573786-4.575585723639159-2.014076503583291-1.7381809768166527.06.3233203176986556.06.3222674014394167.0103190211335624.36014.1773010548086694.0824696357169454.0978011674699774.3640654630234949.22247600565.9517664904612664.3624543752931164.742933670312038.8988075544691949.2145.948153619415214.2380819964011484.6048439010217439.3267903799990820.030.0298990734339666870.0254963578679061020.029950213016610770.03-17.2036019545691-17.523242671565864-17.686283787687046-17.59109815583018-17.18453438783237-16.561108486869415-17.204238719759704-17.522919152335707-17.39533089882836-16.566379176762446-16.83781176769705-17.374713984080604-17.696454694778822-17.586365873398858-16.869765743604983-18.070120924744373-18.323825726119207-18.516988549126026-18.435080621821182-18.064781491513138-18.573292267636333-18.790891846787243-18.960853813915236-18.882251439019406-18.60522423815049-19.06829357691101-19.271681732663154-19.412669943616375-19.332744851549013-19.05090250414086-17.74570185718472-17.701039596375658-17.7841469611142-17.694126291166373-17.604093010965588-17.502870041737967-17.51216365795825-17.567394534848166-17.47563552334717-17.38342621594936-17.60227737640115-17.62365285762787-17.705202019361863-17.60796518650875-17.51072835365563-18.325687580182688-18.408144677752286-18.4900622056549-18.405772812545084-18.337579236943057-18.72720207783541-18.842007400052022-18.9341195231081-18.84831291103509-18.76954070152175-19.156285092383673-19.300744442695578-19.40020488747964-19.320548565651354-19.1389217120484221.8159276483868584e-182.0150601993139923e-185.568236162948299e-215.568236162948299e-213.3652922223000045e-183.015421856880924e-182.951140432406718e-181.5195600968645958e-184.848085212963767e-188.176610329062937e-182.456857547385053e-182.3394218128802116e-18-1.5459207662868333e-201.4195389308813359e-184.72085538086417e-184.741721903475319e-193.9729239985341e-19-9.013322236632383e-22-9.013322236632383e-229.461362678470826e-191.9727673744044356e-191.5547850682206438e-191.063361511649631e-201.063361511649631e-204.716327151946377e-196.736135616209425e-204.9451515573819067e-205.5365268543121086e-215.5365268543121086e-212.246326101004151e-1924.1121996518977534939220.407866907516543366140222.34498720466135bin2_sub0
PHAT-M31 J004433.71+413621.2511.14045575978861541.605903493053972.461414721133353e-184.706899147860366e-183.254019157791305e-185.329170369929972e-191.9928200758404172e-199.648792471641086e-201.010.85914376411890780.179143764118907840.85914376411890771.63314979686385623.03.05575714457131082.307846780202473.02390765477599643.73976925729615854.1938775510204093.97532538740313253.50341625686533843.8906217276170474.3257320755148550.250.3751413267420150.250.330701775782231870.6226181903532262907820.5301781861907820.5301781859907820.5301781861907820.5301781861907820.53017818614.6660905330300734.8021615137878314.2982233160054834.7704255856151585.22905509665413254.0193.8121921769868493.84238309428047753.98207588822406544.077656790336134.1344.0466237821192353.92491773012123974.100846201077234.192502940983499-5.279-4.761240375848287-5.424791496226234-5.185844037739314-4.8366190634591827.07.1489872222393976.37464914635321647.14926620280869157.8305395119171374.43164.3742085698450054.3646075978299854.422235151057444.44533298924507610.88781738289.7228456193010479.67737756367245310.42541035375302111.16049297244680410.8929.7239191166246149.3726231675070510.52306503015661211.3869315845198890.0080.017305903474722010.00484909589046223550.0155679500549772730.03-17.10118178266259-17.17218885271334-17.249680125730944-17.11232467461281-17.02304364136878-16.384064058334438-16.534035686492377-16.563729026434462-16.462043763926403-16.360364699869308-16.684019733913807-16.807470758546156-16.75843487956655-16.670504066970217-16.58209942989559-17.984063466922585-18.038116570340105-18.063831670170178-17.99843803839355-17.933044406616926-18.496920565293824-18.541637049129505-18.603356795897692-18.51257878435731-18.44982423873713-18.998033346216502-19.038463163564955-19.125650354267343-19.009893297851608-18.93505238684011-17.64377819743691-17.63357277733874-17.74726891499503-17.632514080551108-17.520391202943415-17.32704936584866-17.335649875027606-17.431791068216974-17.340032056715977-17.248273045214983-17.44876375365095-17.45667599912918-17.562206676930813-17.464969844077693-17.36773301122458-18.23992399639022-18.255906759538473-18.321837936714655-18.254442366263135-18.177729751395837-18.651009391082123-18.673008844105638-18.767478908200527-18.667254702189805-18.59797003290017-19.086049735236212-19.113387658433663-19.19662500308857-19.10458988173211-19.040966300164082.2887565948169025e-182.3475817217186253e-185.568236162948299e-217.509142863806765e-194.110638272517733e-184.564240216812152e-184.475751413183636e-181.5195600968645958e-184.848085212963767e-188.176610329062937e-183.513459795930873e-183.44973011646617e-181.5381014746819951e-184.83941792466483e-188.140734374647664e-185.806779567670004e-195.631750884205926e-19-9.013322236632383e-22-9.013322236632383e-229.461362678470826e-192.334579963878e-192.247774504051371e-191.063361511649631e-201.063361511649631e-204.716327151946377e-197.980053884229094e-207.609565908909859e-205.5365268543121086e-215.5365268543121086e-212.246326101004151e-1920.2536534671935843674226.7303840353897643674488228.09972668939702bin2_sub0
PHAT-M31 J004433.07+413616.9611.13777309175280241.604710729791642.5987468729562435e-182.1479896904918335e-181.9231253222546613e-181.5809523101363965e-189.759917994382369e-197.514231506315405e-193.013.01000000000000072.32999999999999963.013.68999999999999954.04.03.324.04.684.7241379310344834.7009622630004144.1439977530240954.4839977530240954.8347099764407020.750.75800112348795230.5826450117796490.75800112348795220.9280011234879523907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.530178186117.4804722326312417.2517860204279416.3868370332928117.413950339600518.6991577594414024.8814.8875804499236244.7824026904038784.8626939703358914.931126697608623.1853.1987600557398953.1606314522153033.20736240107594433.2639545979628246-7.431-7.447921292969931-7.55841033205883-7.3872602840861-7.1864899027717647.07.06.327.07.684.36034.3649603626768344.3530581400976924.3659850578305444.38200860528959717.510051727317.57762685659552616.34061501093689717.4689942281158218.5811530254734817.16217.237225271879215.84180520859839816.89700758223038717.8762171089058870.0190.018071488677906540.0115932394507400290.0164029575279698580.022137560887126286-16.067687930891616-16.070739567641642-16.10449842969928-16.03994036745597-15.96461679796438-15.408337588414545-15.406385869805456-15.510084994684604-15.423746351211118-15.337407707737633-15.686998833800098-15.686609122600366-15.737277154869995-15.662611253679907-15.587536258814442-16.927002216332806-16.931618675982694-16.977892122260936-16.922363527624725-16.86682883321558-17.428714943414594-17.434087032617388-17.483870592315228-17.430582961231735-17.377289476543407-17.923056907042607-17.928918875607348-17.98986708209274-17.935659225635515-17.88144541448741-17.594723500533625-17.59782851517496-17.65174507724318-17.561724407295358-17.471703737347532-17.72406334804432-17.72202638807866-17.83661023660372-17.74485122510272-17.653092213601727-17.67839871690966-17.677365547110252-17.715169365102746-17.61793253224963-17.514156886723097-17.75201400825945-17.756804134487403-17.811341627012926-17.743946056561406-17.676543082758883-17.95631393859149-17.961896874831805-18.04858574142427-17.98589441237698-17.927061767500646-18.227118560614894-18.233017367331787-18.299984050412327-18.245958482872922-18.191926980666942.5590487530963874e-182.5414086934135688e-187.353248883586612e-194.095048874495718e-187.976942994228709e-181.781060739328145e-181.790280113642714e-18-4.680466365266143e-20-4.680466365266143e-203.2817204524465094e-182.05678032475464e-182.0619725546939154e-18-1.5459207662868333e-20-1.5459207662868333e-203.285857242319966e-181.7923079634158468e-181.7737063036390765e-184.447634207508054e-191.3918010208215513e-182.3388386208922973e-181.1317480553557585e-181.117795036314968e-189.054397461343495e-191.3664388462124911e-181.8274885866832887e-185.951470273108634e-195.876713578226212e-194.308406884496885e-196.499367716957915e-198.690328549418942e-1939.58506574852113147239214.83215957076965147239338215.18376375015436bin2_sub0
PHAT-M31 J004433.44+413620.9211.13934089751437541.605810374614292.6198748963136115e-181.905173464610148e-181.9524114946747828e-186.334279123394172e-192.8299678536012477e-191.191315781999333e-191.011.01000000000000020.331.011.695.05.0585142323084624.1988263251227375.07014132143106365.88526093748771655.05.0920175257131064.52646466459623655.0479662169306165.7866087095785031.00.98843338680077760.81843338680077770.98843338680077761.0907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818619.9004095601701229.8007605132957238.966120167581439.58919491235326210.1909264483306963.1883.203033638026063.16438177522951143.23281450250223833.301249731666763.1513.15804119721100963.11225661842120973.1594764159779253.1979252285982973-3.2-3.2377006221904825-3.4838128140744744-3.312728175632163-3.1416497917937798.08.07.328.08.684.06054.0665484088760494.0514003796436034.0641823782566694.0781775606950545.09094619755.0681306018254614.68211214446207354.951839923708665.2450552012670745.0925.0688339681357914.8699351880878675.1523144010697025.4993761212856560.030.023606755835635450.0126297186176534540.0256091225232978160.03-17.09879211850121-17.100712451982865-17.15224388311281-17.0876858208695-17.010672944530434-17.015626847373753-16.99680673436558-17.121274088090107-17.0118273237686-16.902926336938094-17.108073675438938-17.098762764554433-17.164110324941067-17.08944442375098-17.014778522560892-17.852740170238526-17.855699616266847-17.89962246917315-17.84409387453694-17.77563022207051-18.295504476086272-18.29954938202229-18.352963039116048-18.299642964760874-18.241740838524265-18.766148876021933-18.77041180180437-18.80995679350731-18.755748937050083-18.6889136809131-17.598617576937663-17.60078268345407-17.652425966490316-17.562405296542494-17.47192274834925-17.69581582494556-17.678717486406846-17.81406713871463-17.698567246467125-17.600864007966745-17.720356726320563-17.7121984133967-17.848167885147546-17.750868473723006-17.653631640869893-18.14459095518414-18.14732329588115-18.207859769006532-18.140422082658283-18.072955564421093-18.490008098571074-18.49375869960751-18.56862143832802-18.507589022854734-18.448754226948743-18.876782421683394-18.88089986704374-18.935381061707982-18.88069666512584-18.826586890816872.53645916882391e-182.525048882930829e-182.2291181243039963e-193.582635798567457e-187.703312649813593e-181.9051020350928955e-181.988778474408519e-18-4.680466365266143e-20-4.680466365266143e-203.2817204524465094e-181.8644597693517934e-181.9013003324201037e-18-1.5459207662868333e-20-1.5459207662868333e-203.285857242319966e-187.267454336232417e-197.2264724289812385e-193.024966995996893e-191.249534299670435e-182.2881336813327457e-183.34422254542141e-193.318820289338621e-191.063361511649631e-206.891498382927963e-205.299140839074211e-191.3232296031751557e-191.3106074195310487e-195.5365268543121086e-215.5365268543121086e-212.246326101004151e-199.42836455818203872103230.28635250024163721031267231.3879451214555bin2_sub0
PHAT-M31 J004432.96+413616.9211.13732199274600541.604701303228153.0001793167462328e-181.4643686237787805e-181.8905851306767478e-186.103941700725293e-192.5849489918175895e-198.769007208905502e-201.011.010.331.011.695.04.7530874421574514.0679897245874144.7517295034028975.57928986456846055.04.8304411891602464.3455864220569084.8545811218368285.2917796002553511.00.97329453972522570.80329453972522570.97329453972522561.0907820.5301781861907820.530178186907820.5301781861907820.5301781861907820.530178186111.09821568848299311.0288508737373510.55130260008874511.20955030285138312.0021167851783273.1923.2067091054292743.16438545454545533.23281818181818233.30125090909090923.0513.0542302781203422.99432841455143843.03724203106033833.0772981500486476-3.211-3.2473529273718755-3.4838157575757576-3.3127373737373738-3.141658989898998.08.07.328.08.684.03674.04181448551596744.0233521340150414.0366429682419624.0570564600034425.09137153635.05831047304678454.68211214446207354.951839923708665.2450552012670745.0925.05877509127273054.8342342428344845.116613455816325.4794607473131660.030.023953317692216830.0117698054144460640.0273115579150688330.03-17.049629601768743-17.04621068307529-17.130752566939623-17.065536811041625-17.000978748798314-17.04300418517167-17.02166067424207-17.146041307249327-17.040714171235145-16.954375527761663-17.116651244643094-17.10095540403583-17.164110324941067-17.08944442375098-17.014778522560892-17.793047435678194-17.791274704900697-17.8734822667978-17.81307299858818-17.757544403951968-18.22859182524915-18.228218564713202-18.27646363141839-18.2231760003349-18.164165713157317-18.696468918912164-18.696532493582374-18.777438148130482-18.711036732334087-18.656828875876858-17.549324614421295-17.54956672161866-17.65174507724318-17.561724407295358-17.471703737347532-17.722928176835158-17.724967188868142-17.836443820498936-17.744333171326254-17.65257415982526-17.72878466688021-17.725877651032253-17.848197361792916-17.7509605289398-17.653723696086686-18.084624642696497-18.07949543162718-18.11667753091509-18.04928196046357-17.97666284980376-18.423005166688856-18.419076477250897-18.48292103397815-18.42344527584211-18.364590930575048-18.807077824012726-18.805080097037052-18.855934969297262-18.801407643922833-18.747346317801622.837912280123902e-182.8370658861518982e-181.5866148178745042e-184.946338804011561e-188.306062790148617e-181.785891490707071e-181.7778560656646164e-18-4.680466365266143e-20-4.680466365266143e-203.2817204524465094e-181.8280198637272026e-181.8406994875514063e-18-1.5459207662868333e-20-1.5459207662868333e-203.285857242319966e-188.3647924045101425e-198.471167882402165e-194.447634207508054e-191.3918010208215513e-182.3388386208922973e-183.890706325597401e-193.927866006561867e-192.2743571483339996e-196.884348149115415e-191.149528190130915e-181.5787315764958882e-191.5876735203019828e-195.5365268543121086e-212.657076621643165e-202.4566684946253464e-1941.9189195483959972105213.92061844941742721051269214.45507960651636bin2_sub0
PHAT-M31 J004433.44+413617.3211.13934720762523741.6048113258453263.3012536495887243e-183.6758640964242854e-183.2019548512666434e-186.54367678036588e-192.478774151711338e-198.220944258348908e-201.011.010.331.011.692.02.02.02.02.67999999999999972.02.02.02.02.341.01.00.831.01.0907820.5301781861907820.5301781863907820.5301781861907820.5301781861907820.53017818615.93817730546476955.813617723277815.4328269789821825.851216843205916.3239534446203724.0844.096111857279263.99264366101419644.08001552484197654.1622136079394173.9373.960940341217523.8967087085471453.94507188114321133.991336646966741-5.441-5.470689835847333-5.636179296692464-5.430688214116139-5.2122629393637037.07.06.327.07.684.39554.4031852471777444.3853197057900594.401550216957574.42285479313793911.204412460311.34015880572945710.79257202810317311.41862061802507212.0944011389344811.20511.34219331066816510.61413773548353311.40586285376421212.2020412774239980.030.0253281247430430.0153732058768683050.025323899721897560.03-16.93434022986515-16.94557598620867-17.036128473824032-16.97157041158072-16.907012349337407-16.245353364951868-16.251057395255994-16.36766024146231-16.257371621693306-16.152120974770476-16.534519194551397-16.542600490728105-16.615096345602193-16.540430444412106-16.46576454322202-17.80976334750463-17.822305982240522-17.876139829481474-17.820611234845266-17.76508264020906-18.318963307295345-18.33207841507351-18.405461969433503-18.337397892481835-18.27279456024918-18.817964976765886-18.831383804964354-18.8672552841407-18.813047427683472-18.758497090777073-17.522376979540823-17.53368054610125-17.65174507724318-17.561724407295358-17.471703737347532-17.49045761138526-17.49635466763634-17.566730791012557-17.47497177951156-17.383212768010562-17.438631489174536-17.446744631970375-17.562206676930813-17.464969844077693-17.36773301122458-18.024697332094146-18.037262846631286-18.108664138219932-18.041268567768412-17.973872997316892-18.432873646836043-18.445995853483844-18.483744317350975-18.424911672474643-18.36570732814439-18.879606261835683-18.893025835628805-18.936071889934-18.882046322394594-18.827680649371353.017763082262247e-182.9417361952261205e-181.5866148178745042e-184.946338804011561e-188.306062790148617e-183.1053998390522702e-183.062660714488372e-181.5195600968645958e-184.848085212963767e-188.176610329062937e-183.597347290904912e-183.530509848883841e-181.5381014746819951e-184.83941792466483e-188.140734374647664e-189.623730145728689e-199.348456504326937e-194.447634207508054e-191.3918010208215513e-182.3388386208922973e-183.804828769053107e-193.6950226938340704e-192.232937542257028e-196.842928543038443e-191.1481940677539293e-181.313718225267868e-191.2699706758572679e-195.5365268543121086e-215.5365268543121086e-212.246326101004151e-1986.5307356851355738716192.5655547184666138716147193.41399127926908bin2_sub0
" + ], + "text/plain": [ + "\n", + " Name RA ... reorder_tag\n", + " str29 float64 ... str9 \n", + "----------------------------- ------------------ ... -----------\n", + "PHAT-M31 J004434.89+413625.12 11.145373458361576 ... bin1_sub0\n", + "PHAT-M31 J004433.96+413539.24 11.141481294584898 ... bin1_sub0\n", + "PHAT-M31 J004435.09+413600.66 11.146199581807522 ... bin1_sub0\n", + "PHAT-M31 J004436.17+413547.25 11.150723096532829 ... bin1_sub0\n", + "PHAT-M31 J004434.01+413539.96 11.141726732037966 ... bin1_sub0\n", + "PHAT-M31 J004432.23+413612.29 11.134295101001706 ... bin1_sub0\n", + "PHAT-M31 J004434.12+413556.83 11.142166807061688 ... bin1_sub0\n", + "PHAT-M31 J004435.17+413547.12 11.146526354983829 ... bin1_sub0\n", + "PHAT-M31 J004435.53+413610.30 11.148027177661621 ... bin1_sub0\n", + "PHAT-M31 J004434.59+413626.14 11.144140816897673 ... bin1_sub0\n", + " ... ... ... ...\n", + "PHAT-M31 J004433.11+413617.67 11.137949885163916 ... bin2_sub0\n", + "PHAT-M31 J004433.87+413616.65 11.141113594228456 ... bin2_sub0\n", + "PHAT-M31 J004433.88+413617.66 11.141164504888842 ... bin2_sub0\n", + "PHAT-M31 J004433.29+413620.78 11.13869716051958 ... bin2_sub0\n", + "PHAT-M31 J004433.85+413617.50 11.141049820932293 ... bin2_sub0\n", + "PHAT-M31 J004433.71+413621.25 11.140455759788615 ... bin2_sub0\n", + "PHAT-M31 J004433.07+413616.96 11.137773091752802 ... bin2_sub0\n", + "PHAT-M31 J004433.44+413620.92 11.139340897514375 ... bin2_sub0\n", + "PHAT-M31 J004432.96+413616.92 11.137321992746005 ... bin2_sub0\n", + "PHAT-M31 J004433.44+413617.32 11.139347207625237 ... bin2_sub0" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "hdul = fits.open(sed_files[0].replace('seds.grid.hd5', 'stats.fits'))\n", "Table(hdul[1].data)" @@ -1689,7 +2017,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "As you can hopefully see, for every source, there are now several parameters assigned to each one. These are all the parameters we originally had set up in our datamodel and specified in Step 9." + "As you can hopefully see, for every source, there are now several parameters assigned to each one. These are all the parameters we originally had set up in our settings and specified in Step 9." ] }, { @@ -1701,7 +2029,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 45, "metadata": {}, "outputs": [], "source": [ @@ -1725,7 +2053,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 46, "metadata": { "scrolled": false }, @@ -1747,9 +2075,41 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 47, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/christina/anaconda3/envs/astroconda/lib/python3.6/site-packages/beast/plotting/plot_cmd_with_fits.py:97: RuntimeWarning: invalid value encountered in greater\n", + " col[col > 99] = np.nan\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAF/CAYAAAAirDIZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeWxlWX7Y9++529s3Pj7uaxVZxVq6qqurunuW7ozGI2lGy2iiDVIkxY4RWDBswQ6SP6IocBw4ggEFcQAjNpJIkQVZsjYoljyWNSNNNBrNTPf0Ul1d+0qyuO9v3+928sdjs8haWWxWsbvf+QAPzXfvufcdvn6s3zvb7wgpJYqiKIqiPEg76AooiqIoykeVCpKKoiiK8ggqSCqKoijKI6ggqSiKoiiPoIKkoiiKojyCCpKKoiiK8ggqSCqKoij7TgjxJSHELSHEpBDilx9yPiCE+MPN828LIUY2j78ihLi4+bgkhPjx3d7zmfweap2koiiKsp+EEDpwG/gBYAF4F/gvpJTXt5X5B8ApKeXfF0L8LPDjUsqfEUKEAVtK6QoheoFLQB8gn3TPZ0G1JBVFUZT99gowKaWcllLawB8AX7mvzFeA3978+Y+BLwghhJSyJqV0N48HaQXH3d5z36kgqSiKouy3fmB+2/OFzWMPLbMZFItAGkAI8aoQ4hpwBfj7m+d3c899ZzzrF3heOjs75cjIyEFX42PFlxLX87EM/aCroijKY7z33nsbUsrMft2vU/RIG3vP15fJXwMa2w79upTy17c9Fw+57P6xvUeWkVK+DZwQQhwDflsI8bVd3nPffWKC5MjICOfPnz/oaiiKouw7IcTsft7PxuZV7Qf2fP3/5/9RQ0p57jFFFoDBbc8HgKVHlFkQQhhAAshtLyClvCGEqAInd3nPfae6W5UnqpZqB10FRVE+Xt4FxoUQo0IIC/hZ4Kv3lfkq8Hc2f/4p4JtSSrl5jQEghBgGjgIzu7znvvvEtCSVZ8OxHSbfv8uRs4cIRUMHXR1FUfaJ0B7We7lL/uNPb85M/SXgLwAd+DdSymtCiH8GnJdSfhX4TeB3hBCTtFqQP7t5+WvALwshnM1X+gdSyg2Ah91z77/E7nxiloCcO3dOqu7WZ8N1XAxTfZ9SlIMihHjvCd2bTyWupeWnjC/u+fpvOL+/r/X5KFP/8ilPpAKkonyyCD5kS7KNqDFJRVEURXkE1URQFEVpR0K1kXZDBUlFUZR2IwDV3borKkgqjyX9EkKLH3Q1FEXZVwKECpK7oYKk8khSNsG9iTRPIUTwoKujKMo+Eprqbt0NFSTbkJQe4COE+dhyQgSQ5llaCf0VRVHaj/oq0Y68RXAnHzgs/fIDx1SAVJRPKCH2/mgjqiXZjvQ+7k+ZIaUN7g2kcRKhhQ+mXoqiPB9CgOpu3RUVJNvQZlrE+45ZSPOlh55TFOUTqM1ahHul/kVUtqgAqShtRC0B2RXV3lYURVGUR1BNB0VRlHYjQKiMO7uigqSiKErbEaq7dZdUkFQURWlHauLOrqj2tqIoiqI8gmpJKoqitCPVktwVFSQVRVHajUAlE9glFSQVRVHaTvull9srFSQVRVHakQqSu6La28oT+b7PzXfuUCvXD7oqiqIoz5VqSSpPpGkanQNpAiHroKuiKMp+US3JXVFBUtmVzr6Og66Coij7RaCSCeySCpKKoijtSLUkd0UFSUVRlLYjQOVu3RX1LimKoijKI6iWpKIoSrtRY5K7poKk8gDXcdENHaHGLBTlk0v9fe+K6m5VHnD7/BS5lcJBV0NRlGdJiL0/2ogKkgoAtuuykC8ipeTQ6RFS3YmDrpKiKMqBU0FSAcD1JZWmjZQQDAcAWJ1dx/O8A66Zoij770O0IlVLUmlHYctkoieDtjmY77kexY0SnusfcM0URdl3H0zc2eujjaiJO8pDmZbJkbOHD7oaiqI8K23WItwrFSQV5Rmwmw7VQpVUd/Kgq6IoDyVVkNyV59rdKoT4NSHENSFESQixJIT4DSFEx7bzf1sI8aYQIi+E2BBCfE0I8cLzrKOi7IdGpcH6Qvagq6Eoyof0vMckPeAXgDRwGhgAfmvb+RjwTzeP9wMXgL8UQoSecz0V5UOJp2Oqu1r5aNM+xKONPNfuVinlr2x7ui6E+FfA7207/6+3lxdC/HPgV4AJ4P3nUklFUZRPOoEak9ylgx6T/AJw+Qnna8Dkw04KIX4R+EWAoaGhfa+coijKJ1P7LeXYqwNrOAshfhL4e8A/fsT5I8D/A/x3Usryw8pIKX9dSnlOSnkuk8k8u8oqiqJ80qh1krtyIEFSCPHTwG8APyalvPCQ88eBvwb+Nynl//W866coiqIocADdrUKIvwv8C+DLUso3HnL+JeDrwP8ipfw/nnf9FEVR2oFaArI7zzVICiH+Ea3Zq1+UUr77kPOfBf4M+O+llL/+POumKE/ieB6mrh90NRTlwxO03SzVvXreb9O/BOLAXwshKh88tp3/VSAB/O/bzwshXn/O9fxEczyPpUIJKeVBV+Ujr9Jo4ngenu/z/vwy5UbzoKukKPtDjUnuyvNeAvLYd1dK+fnnVZd25ng+uVqd7ngUvc0+8E/rbjZPVyxKdzzK8Z4MkYB10FVSFOU5OuglIMoBCFsmJ/u6D7oaHwsneru3kr5Hg4EDro2i7CP1BXlXVJBsc3M3F4mlIirH6CNobbbjgdIeJEJN3NklFSTblJQ++GtEEmECYdVCUpS2oibu7Jp6m9qWA94qHT0RNF3DsZ2DrpCiKM+TmrizKypItikhAgjrNEJYLE2usD6vdqxQFEW5n+puVRg5OYhos2+HitLu1Jjk7qiWpIKmaQ8EyXqlju/7B1QjRVGeOfEhHm1EBck2I/0q0r6IlO5jy01fnqO4XnpOtVIU5blTY5K7orpb240Igt6HEI//Xz/xyhi6oVKwPYqUHkKo90f5mBIgVRNpV9Tb1GaE0BF6FwDlfIW5mwtUSzVuvH0Hz/O2ym0PkNVSbce5dielD84FpF846KooivKMqSDZxnzPZ+riLI1qg8xgGv2+5N0bi1nuXj7P3St3KWUrj7hL+xFCA2MCRPygq6Ioe/eMu1uFEF8SQtwSQkwKIX75IecDQog/3Dz/thBiZPP4Dwgh3hNCXNn879/ads23Nu95cfPRtU/vxiOp7tY2JaVLPB3jtZ94BdMyH2gpun4TL5Ql2ekzeGwYw4weUE0/moQWe+x535dcWlxmLJMmptLZKR9Bj8+k/eGI1ljEvwZ+AFgA3hVCfFVKeX1bsf8ayEspx4QQPwv8GvAzwAatrRSXhBAngb8A+rdd9/NSyvPPrvY7qZZkm5HeOlJ64F4HfwXTMimsF7nxvds7yyExIwZSG6da3NssV9dvUrQX2nK3EU0TDKWShEzzoKuiKA/xIVqRu2tJvgJMSimnpZQ28AfAV+4r8xXgtzd//mPgC0IIIaV8X0q5tHn8GhAUQhzYN00VJNuIlB54CyDrYIyDlgEgno5x6PTIjrKmFqQjcAjXdnGae8vGI5F48vlm8inlylQK1ef6mo+SjoYxdPUnpnwidQohzm97/OJ95/uB+W3PF9jZGtxRRram2xeB9H1lfhJ4X0q5fY+639rsav0n4jks8FbdrW1ECB2sM1vPm/Umq7OrDByuE4r0PPSarqFWIJVSIqVE03b/j34r0I7uunw5X2FjMcfoyaFdX/PAPXIVDNMgmozs+R6K8on34dc7bkgpzz3hFe53f5fSY8sIIU7Q6oL9wW3nf15KuSiEiAH/L/BfAv92d1XeG/U1t03lVwvM3VjE8etkm7M7Pr0Py+O6NrfB1MWZZ1onM2ASSYQ/1D36x3rpHs48sVx+tYDnqhm7SvuSQuz5sQsLwOC25wPA0qPKiNaatASQ23w+APwJ8LellFNbdZZycfO/ZeD3aHXrPlMqSLapYCRAui/FyLERwoFTNGv61tjh+2+eZ2l5ekf5dF+KgaN9z7ZO4QBdg53P9DUAfN9neXqVRrXxzF9LUT6ytA/xeLJ3gXEhxKgQwgJ+FvjqfWW+CvydzZ9/CvimlFIKIZLAfwL+BynlGx8UFkIYQojOzZ9N4EeBq0/3Sz89FSTbVCgawrAMqvk6Qa2D2+9NUy3WABg/M0qiM87GYhbXaWXmMUyDUCS4r3VodeE2n1xwn2maxvFPHyWSUF2ySnuSPNuW5OYY4y/Rmpl6A/gjKeU1IcQ/E0L82Gax3wTSQohJ4L8FPlgm8kvAGPBP7lvqEQD+QghxGbgILAK/sX/vysOpMck29kFQjHfEOP7pI5hWayZmKtGD7/ssLE0TjocxzGf0MZF5cKfAevnZ3F9RlAMjpfxz4M/vO/Y/bfu5Afz0Q677VeBXH3Hbs/tZx91QQbKN9Y52UylU8TxvK0B+QAqPoy+P7TwmbcBHiH1qUYoUmC/sz732kXSnAYkwDh90VRTl2WjDROV7pbpb28j29Yqe67FwZ4mpSzNUC7Ud5daWVnn/6l/h+PeN2Xkr4M489jUaXpGmV95VfYQQWwH3w6yllNJupYrbZu7mImvzGwAsT6+SXyved41k6tIM9Ur9wRtqPaD17rk+ivJxIMXeH+1EBck2sZAvcmt1Y+u55yxRr1SQUqIb9z4GjVqT2StLpK1xTO2+FqM+2Fpf+RhNr4LtP/06xatLq6yV95b6Tto3WJ+9jLtttmoyE99aBmIGDAxzZ8o9IQSRRBj9IV3JQgsjtA83y1ZRPvLULiC7orpb20QmGiEZDgGtVpRplBg7PUxhw+PapfcZGO+jr/cQwXCA0993EivwYKaYqfUcpq4znE4+8nUS1v3rhXdnJJ0iuMexT1+Mk1/9GxKZNIaxOetctGbwAnT231ufXClUWZ/fYORkHz0jT077KL01QEfo969xVpSPt3ZrEe6Vakm2iYBpEA1YwGY3p3kCoUVJdSVwbI9m5d4s0w8CpN10KGXvdZ32JmLEIx6r9evst1gwgKnvbespwwozfu4MZrDV+vM8j5mr89QrDy7xMAMG4ZgG9oXNbtoG0lt5zN29zYeiKO1IBck2Va/Uya+2tnr61OdfY2Rs4oEy1UKV27cuUnWzAEQCFvFAgrj5bNdL7kbFnsezL7dS7QFCOghaQVHXdU6+NkEk/mCXaSAUoHtkEMwTCGGBbICfB6DplSk7qzvKC713a2ux/dLwim2Zz1b5iBEf4tFGVJBsMwt3lrn4zauUclVK2TLTl2fZWMhxfwrEjaUcvi858cpJTC20dVwXBiHj0d2tz4OUkrpXwiPIBx9hYQwi9FZXr3SuIrg3vuk6LoXlt3a0GIUW3fxvEmEea12Hj/8hc826nk+uWnvkeU+65JozuPIhE4YU5XkRgCb2/mgjakyyzeiGRiQVprM/hS8irObu4uQtPNfbsdGy43oELIOQkXriPV3HfXZrKR9CCEEmdOLRBbRO2LZMpVlrsrYQIN6deuyX4KCeIKgnPlTdqrbNbK5AKhx64IsHtL5k9IZOPfScojxPakxyd1RLso1IKekd7Wb8zCF0XUegEY5EKedLLBWvY/s1pJS4ns+cW8eNeKw3bj2xa/DmO5Oc/8tLO8YvD5LQe1pdqZsiiQhHXj6DEBbZxiSO/+iW3sM4fp1sY/KBZSYPkwgFOTPYhxACx/OwH5IfVgVIRfn4UEGyjdy5MM36QnbruaEF6AgN0Xe4l5nzqxRWsswX3sP1K6QqPvWlKvUNQTn/+KUZh08PM3pqiGB0f9PWPY6Ue9uGy9QiaBg0vTJVZ31X12jCQNcCrNSv4fi77yadzxe5u5F7cL3pY0i/hrQvIJ/zFmNKG1JjkruiulvbSP9YD1bIeuC4a7tUFgRz/hu4RgdiuETvYCeBcIDsUg7PefzszlA0RCgaemyZ/Vb38pTsRXrCrYw9Uvpkm1MkrMEH13duKtizWHoMXbOw3epWkJXSx8ejYUuWi2XGunYu99CFScIcwNLCGE+x9+twR5K6V2S9cWv3Xawi2FqPqv40lWdMdbfujvpLbCOPSuid7u3g1OeOM3PlNqvzJer5GYrrZb74X32e3tHu51zL3Qnpya0lHy0CS4uiiUcvIwnqCQytFeRCRooQrfHWirtGzckTYOSRy1CEEISNp1srqWsaUS1FSI/suotVCA30J2/1pSgfShsmBdgr1d3a5qSUbCxmiaSixDIZmlWHRCYBEq6/P830Rg5obdC8OLl8wLW9RwhtR4tRCEHc6kUXDyZB+EDISGFuy6Tj+A1W69cI6kmazS4WCqXHJkp4FCkdpJ975Hlde7D1rigHqbULiEpLtxuqJdlmPOlQc7PEzB4AfM9nYzFHKBYiu5gn2Z3gxc+d4OSnj1Is15gqlUiFQwSlwGm6SCkfaBVJbxn8PMI8fhC/0p41bQhqnRgiwEAigBd/cGLOXK5AyDTJxHa2wqW3CFpmc61lBdxZsDqeV9UVRXlOVEuyzfjSoemV7s3U1ATJoz10HsrAUIz0QKtL0QpaZDJJBjuSCAShSJCRE4MPBkgpKazrSG3w/pc6ENJdeOQelb70aHrlrQTsM7ki1XprqYamiYd2tUpq5Jsz9577RXz7LtK5DtIGQGgphHVm53XSR7rTmzunKMpHkJq4syuqJdlG1ubW8X1Jz8gR7IaNMDSWihWW1nJ0S4Navs6p105QLdaYvb7Aic8cpT8Zf+w9HdtlcSpHJHkIa29Z5R7gSRddPP1HU0oJskzDEQg9umPNY90tULTnCRkdCDQCeozjPV0PDMtILwtaqjU2CBjCZbnqQudmAb8I3k3QwiAet2mzBKnS2SkfXe3WbbpXz7UlKYT4NSHENSFESQixJIT4DSHEQ/uoNstKIcQvPM86fpIFo0FCm8s07lyaYXV+g7XKOtpigakLMxw+NUK2UCYYCTB4tO+hk00Wbi9R3ChtPbcCJic/O4EVtFicXKZaero1iPfzpcdq/equt9varpWT9hiu0HD9na3JgB6jI3CIoB4noEdxPZ9ry6s0HHerjJQOeHdhWzac3vAGL/X2bp7fXC8a+Dxa4HOPnYwjhI4wx3es19zOk+6u1l0qyjMhULuA7NLz7m71gF8A0sBpYAD4rfsLCSFeAX4I+OjMFPkEiHfEcB2Pm+9NUUxZmNEAcn2GzGiYnpFOchdmKd1a5Z2vvc/S5M6k3xuVKoVaAyNgcPfqPAsrWfK1p0+tJv0y0p175HlN6GSCR7A208bt+r7SbbUCgZjZS9TcmW9VEzqWHqHqtPa7dD2P5WIJf1uiBCFMhHUOod1rIQrrNJa17V6yhnhMwnMpJXW7tbTE9XyuLK5sPd8u15yk4u5unaaiKAfnuXa3Sil/ZdvTdSHEvwJ+b3sZIUQA+E3gF4Hff47VawuxVAQzYDAYCWBKqJhjiLrOsVf7WJxcYc6rkNAEnckETa9MQI9RK9epOw6WIekeyqBpGjWNB7LJ9I/tz0bF5lPu5SilD7KOdK8ixWto2sP7fUv1BpOrcHaoB00Izgz2E7YePRsWWi3Cez8LpDGKY6+BHsAyDOyms2NbsWK9yZ21Dc4O9aNrgs5oBOm1Woy+dKmW6th1m1A6TXXJo2nm6OxTE36U5091t+7OQY9JfgG4fN+x/xn4ppTye09aWyaE+EVawZShoaFnUb9PHCtoYQXvdQEePj2K49e5PXeVeDpN1MsTj2qEgoKCPUenOcGdC9McOj1INBZGCEHXYOdjXuHxhBYDLfbAcbvpsHh7iaFjAztyyD6J9Ivg3kYaLyBEGIQNPDyxQSwY4HhvF7rW6kC5f8bqQ+8vJcgCQtvMYSsd1kqL1GWI4USCG9+7zfi5Q7hNl3g6RjIc5PRAD9pmEujuWISr373JwJFeZDJHbqOCbocJxMo0AE1odKKCpHIAVJDclQOb3SqE+Eng7wH/eNuxc8BPA//jbu4hpfx1KeU5KeW5TEYtwH5arucyuTHLlfklvvU37/K98+9SqSbpCb7I+s06WrYb3dA58ZmjNIIrVNyd20i5fvOBsb+HubK4Qr76+K5ZTROYQevp/3BFDIwjaFoQzHMI8ejMP0KIrT017yfdSXxvA+kt7RwrlHVwJ7dmqQotSlQcZzAewwqYDJ8YYG12g5lr89hNh2qpRmEpj5R1pF9G0zTGzx5iaWoVey1EaQ66+voI+hmiXQEGuo885S/8aFJKmtvGWBXlcaS290c7OZCWpBDip4H/G/gxKeWFzWMWrfHJfyilfHyyUGVfNP06C6UFeoKjHH/5dc6MDBOyLCxDJ93XsZXCzjANUvrwjmw2vnQpO8sIoZO0Hr/8oy8RxxLigZ1GoPUPe6VQJZaKMjD+9N21QmggElv3kt48nkhh6jFK9hKetEkFRp54H+nXQDNAllu7iLC5QbUWRprnaNZKWMZ1EIKV6RDdI90Eg4GtVvkLrx+jVqrhNF3shgNethVgtRihSJCxM6N4GkyW6xTzVUqrDSZeOb6vyc43KjXm80VeGjr4/T6Vj7g2XMqxV889SAoh/i7wL4AvSynf2HaqDzgB/Ltt/3CkgP9TCPFDUsqff741/eTbmCwSnA6xEbxJot+lshInPJLElwHi6Z1dorowtsbnfOkxufQ2Mp/kyIlWAoGqs46Pjy47MDQNa1swTEfDTF68SzgWou9wz4771isN7l6Z4/inj3zo7bbKzhK1xjtkPZex+A8TMlI7WoVSytZzbwb8KsLoAq0bkCAsEDGEMbJZ1gfEVhC79uYdcOc59qkXOPry4a3j4ViIkROtLwkz1xboG+th4MiDQSoQslib2+DYQBcdsQiZ3tS+7wbSGQ0TD+4+t6yiKE/2XIOkEOIfAf8U+KKU8t37Ts8D9w8sfg/4X7lvco+yP5KZeKslF17HlXDz5g1mNY2RrhSZ4MRW2jfpl8C9hTTPIoTGlcU1OqxRIp2trs2NxSzBjIau6cxu5IkFAwykEuRXC+imTrwj1kpE8JDNWsOxEINnR8g1GnSZTzej9X4+Lpp5jB7LQtOMHZtFA0hvFuyL4M2BcQrEIfAWQZYQsgpi2yxW9yaIOA07g2u7DE0M885fFDAuN5l4xSYQagWj/GoBoQlc2+XoK4cxjIf/SdXKda6+cZNUd4LOL5xCN13yzRkS1uBWC72SXyUYcjCCA3v6/YUQBJ7jvp7Kx5uauLM7z/sv6l8CLvDX279FSymjUkoPWNheWAjhAXkpZRZl30WTEa5/7zZWbJHekZewumNEwnHSgSCmFsT3JbOTywQNQc/I0a0F9gPJBPFQAFPXadQaXPrWNV790bOEExGOdsutZVTNuo3htT5ij2slur7csV7xYaS3AVoUIR69HVfM7MXWqyxW38OVDdLBw0jpY/jrCOHT6pjwIPjzCCOJEDpSWCA7kH4B/DoIr9Vi1kdYvpvlb/7062ysFfm5/+bLvPh9J/A9n0a1sRUkm3Ub35esza0T7YiCvPe7Sr8ESISWQPqSkZODOLUF1heWSfV44OcQ274XLk/NkxkwSfbsLUgqylNps/WOe/Vch2CllEJKaW4Gxa3HY8qPSCl/93nW8eNEShvp72341vd9hCYYeWEQUz/DjTdLZLqTkG3iVlstm2y1xnQ+T9PMYW9+7Ww4LiHLJLeQo16pY1omR18eIxRpBS9Nu9dF2TPStavlDZlYhKGOJyQW9zdAPj5RgaEFCBsdZEITaMKi3JxmvvQnVH0PtG6EnkIEPgPkwJ0GQAgLoYVxmoKVyUtI507ruBYmmkpy6vMnGDk3yursOrqp0Xuom5mrC+RW8gB0DzTpHW1lJXrj37/NX/7bb1EtVjfrXAS/iO3XKFtTjJ7sp3soQihqoYsQSWto64sHwNjZsyR7Tj/x/VKUD0slON891TfzcebnWsFDO/lUl9UrdS5/9xpmpsrExFniCR+cAvVSFqdpoukaTa9MMmzSq1kgXcTm96nVUoV8vsTi5XmOvHSI8ZHeh47B3a9arD5yq67dEObEA8da44Y+4r4UdhG9k4gOhvCI+rPoegzxQXICvRe01kxV6W0gvQWEOYEwOvH1k6DfC9bxjhjHU1ECmk65kmeuch3PHqJrvJOF28skuxKt5Ob2KhOvjHHjbUnPcIZAzMT1mxhGa6zSlD5JawhNM4n3voAvXaYuL5PqTpLeMVfJ4YMJQ7vl+k08aRPQH1xWoyiP1WbBbq/abDLvJ4vQe8A48dTXSQmZvjTNks/737zB1397muJGgemLN3AaDlZYZ7bwLpfeOY8uBJaIcmelTLZUoSccYvWNKarZCrFIiEqhSr1Sp5Qrc/WNmw99vWa9yeTFGZr1Jy8XuZ/ruPj+w9O3Sfcu0rnd+tmvIO3zSOlStBeZLvwbmu4aZviH0Y3urSUcfuO7SPc2yCpocUDHrtwCoH9UA/s7+F6W5elVHNuh6Mzjh0uMjI8y0vciDbcAqRL9Z6KtDF3GBOhJTCOPaQmisXnW61eZr75D3S0ArRm4Tb+E7VWpOusU7Xm6BjuJpe59aZDSAecidqNAs7rYer4LDa9IxVl76vdVUZTdUS3Jj7m9zJAMx0IcOjVKb7UXx3FJZeJ09KYob1RI9SZYnVknvwwxrZNw2qDoztEsdLK4UGL0SB+BsU6GwwF6MknuXJjCbrhMvDLG0ET/jtepV+pYQYtAKMDJz07sOknA3Y08IdOgJxHj7pU5Yh1RekZ2pplrBT0HVzZx7QUMHHJ2jYwpSVoD2M4EupYCP4cvDLCvIEUG0MC+hjQ8hB4B4wRLt2awQhv0HYph6+O4jqRcKmHVPUKBJKNjmc1JQClSfhc1J0vWvUvM78TSw6B1kV++QTCcJtrRgemHKThLTJW+yZHkl7C0MJ5vY4saMbMHiY8WvP+9MKjITlanlwnr8/SOR7eWtjxO1Ox6IAWfojxRG3ab7pUKkm0sFAkSAiphg1QsQPHWMlOXbtF/pAc3G2Xg9X40TSMT7MEYMFidWWdlfplTR4cQm3013cNd5NeK6Ib+wLKRmWsLZAY66OxPP1UWnWQoiKm3OjmGjw+g6dqOfSx9v0Su8mcEA59mpT5JWC/THegnYI60Nl3WTXoir0D9d5DaMAReBi0Aza9D4CdAT9Gsd4I/RSAaZ/jECPVKnalLa2SOR/GokPPukM/nsGZOkDltEApHSQdG0YRJwfv6dnoAACAASURBVFmg5CxQsvvoDI0hCRPreolAzAYtTFAXePZd+sJnsTZT7JlaBMev0fRLFOx5ekL3usjnby3iijp+zwLpw4dJmN+P2MwKlG1MEjW7VXeqsv9UkNwV1d3aZoobJeyG3Zr0487h+z5usY7hQ2d/isLaDDff/g6262GYOjPX56nkahimwezUFEXukkxHSXW2JqvE0zGGjw3QqDW5e3VuR9fokXOHSD9lXlIpXVKRENHN9X5W0EJnurVsg800cc5lQloECw/Tu0OMBZpaioaXx5MO0s+BOwkkgBQ0z4NXB+0w1H4fmt9hfX6G9dnvUSr/No3qHd758/epNvOUnRXWqmtUtEWCVpiBU2ly8haeb1Nx1tio30ETBiE9Tdho/W65yh/guH+NY10ib8/Q8IrYXgUNQbY5hS89oiyRYB1ThEiY/dheBV+2ZvSm+zro7u1nKPQZUoHWnp3eZl7cgB5Hf8ROIk/ieB7zuQK+L59cWGk7auLO7qgg2WbW57NUClWWphdYXZrnze9cJje9RsgyKKwVcZ0MFbOHxmCNd772Pm9+6wpWKoxjO0y+tURzNroj884HqrZNrVRn6uLM1jFd1xFC3Jvt+RDVYnVrCyrp58C5+EAZV8vga63NoIUQlJoLCGMA0xqiJ/Il1u0iNTdHV/BYazKPiCCMQUTwVQiMA1Vwb4OWBGMURBcDhw26DyVZtdNkKwW6hjIcOj1MUE+QL0YYHn6J3tQxQrEAvhvm4vwsC5ULWHqY/vBLjEZfI2dPU3dqWMZp1hp3WaxeRidA2VkhGRgmanVjiACu12C5lmMqa7NWamD5RdZLf03NzQGtLy7ztxaZvtj6IpBdynHnQmv2bdTswtDuJQiwXZdsZXfbkXm+pGo7SFSQVJS9Ut2tbWbszCi+7/P2n1xnbnEDuzTHqZePMLWWxQtoNGoNBg910+XFSZ3sITSUwtB1GrUmwycGOPmZk0gpya8WIGox+/4sI8cHuDi3RPXWAgND3Tter1FrTdoZPNpHOB4mGL73D77ruExenGHszDDhWAREEoyds1il9Cg5WUwtTMwMgl/AtV7C0rso2EvkmrOkrG6SVh+rjRsU7Dn6w2eJW31AJ9Irg/ESGAb484jIV8DPU2vcZrqe4NqNC5zqPsHIK50E9QSl2ixW7CqaPkw6eJq6k6PqL6BbGkUHqqV1koEhAlqcxcptLud8ElaS/syLBGng+jYlZ4mkNYgnbaJGilz5L2ja61xePk0itIY+aHDj3RLHT5eIdncRDAcIRgIEI0Fqbo5EV5RI8t6knlKujBW0CIYDVBoFlvKrpKNPnrAVNA0melROY+UR2qxFuFcqSLaZarHK2twGA90dvPTKEVbvrnPk3CHe+M5VNm6vgABLD5GKeAyNniecfR2nXOfm23cwTINyrkowEmR5eg3ZFyPYHSOeiDCIhXN0gMGJfqSU3D4/xcCRXiKJCEfOHebCNy5z+MVhekbuBVHDNDj52Qk0eR38ToTeC+K+ZbPuNSw/zmrJItZZB28BjTia3MDyV2g4c9Ssw6SERYIslhHDooD0AkhvrdUy1UZAOODNI/1DCK0DoRkEnRhR2YfVU2O9fpP+0ASav46PS64xSVgPEhQemiYZSo5ScpdJBw5hiiBNv0R/dAJLLDMYHcGWBnhlau48cSOMpbda3LZXQ+pBeiNnWY42GcpkCJoWp8+9TjjWGq9MdiWouKvomslqY4qu4DFCkehWd+zGQo5AQhDpFaTCUVLBRydx30+e5zF/c4m+w907do5RPhnardt0r1SQbDNC09AMnaMvH8a0TDShsTy1Sqg3yfobt+jujJNfK5IZ7CGf7eGd/3QBw9JJZhJMvDpObjmPsXn9ysw63aO9TF+eJRAyyS7mMS0Dx/NY9G1yq+uM4tMRDDJ4NE3X0IOtGt3Qkf6hVu7UTdK+BHo/Qu8E/TC6r2HqTUCACJAKDCDdOaR5knRAkrAGEcIgGHgJWf0PuM1FrODnQYRb9/VXQOhgfo71SoB01CBkDdOXtsmfWEBoGnl7lrAWwRAWY/EfoGDPsd68iymrpKwRKu4qfaFT9EZOAVB2lnF9G6KSoKnzrek/ZTT6BY6mfSx/DdM4Q8XNA5KMlUHqI3zmSIq5jdssZKE/EyNsdFAqFLn6zhX6zkQxZYlALEpAb31RKNoLgODQqWFsv0bNySO0FL6I4fnNHd2wz+SzIgS6oT00naDyMacSnO+aCpJtJhwLUc5VmLo4Q+9oF9nlPL2HurDsIl65jh+L8PIPnWFjPsub/7HE2kaBo2cOkxnsRDc0xl86BIDdsHEaNhKfu3NXkOUI4UiUQDhA0/XQUyFMyyAWtNC1IgOHcuSWk6R6kuj6zjFNobW6FqWsAzoYI7C55ZXQIoQDMBwIIWVzc22jROCBFiFkdWLKOaQrQXQADTSvArXfBes1ROgnkNIFWcapfo3FlSZapoN4/HOYZhJNCDqCI4yYn2W++jZJ8zANt0ChMY0uQrhairjc4HD805hW63ffqJRZKXukQ3Hc+i2u1Uy8+svE0jFWaiaHUq+zVq6Rb9QZ7kgi9QmQGo4HcWOa3lgHZWkhkZTFHCvWd4jO/iBhw6Tv9Pjme+HjS29rdmzNKXFlvsSZgU6kXqDhFcgEj+L7kvVKlUw0srWH5V5IvwjeIsI8vnVM0zQGj/Y/5irl40yqtHS7ooJkGxo61k88EwMfApEAM9fmWavcQbccnIjB1/7gu3z/f/4qsVSUtHAZOzKAn68hfYnv+zRrTVzHw3U8DF3jxdc6CehHcRs6mqbh1eqc7cpwt1pBSrh9IU+qZ4D8So5YRxQ91AqSUvo70rLhziDREHoXQlhI6YFstrar8lZB68AmjvBdLPMoSIeYaFB1NcLeZYT1CiEhwDgNzrexPYNi9S2iukHFWaVTLjHWpVHy8zS8l0DU6Q+dQPoevlfE9daZakwzEDlLv6VT9S1qEpr1N6npBnGzF+nXkP4MumkQDWZYyg8wV8ySq2VxnWFydZ+hhCRimRhaBs8pgnwXpEHJO8Ld0mFOxrpJGynWFzaYn85xbOIs/lyA/vHerWUuueY0RXuJuDGO69SpiSWafoNCvUF/souw3sFadYmIkWKlVCYVDmJpH+LPWQRBU5s/K8r9VJBsM+sLWW5fmGJ9LstX/uGXaNQafON3/gbfE3z6h18jOdrBH/7z/0Cz7hCKWPQIg9VL80QSYSLxMKuzG2SXcvSeChPNWAghyCS7yW9I3vqz83zhF/4zihslNF3jhdHWtljDxwcIhCx6hls52KSXbQVDbxJpnkEI414eWq0L/CweEfKN86R0i4KfQtpvkgiMU9f6WatfJxkYJuZ0k10/Ty2S51Cg2RrT1AeACpjDGIZJSLoEaCKDL5OtzOMTIUwFu/FtInoS0bjGhcY6GWsIS2hU3DplZw1BAiGiOPkKq2aCWi3KCesOAp1sWdCfHmdy+X0MLcbx7sO8edfi7kaNhicoNRp0RiMU8g0mV5YYi5d4ZyXFoe5LjHcdxfU9isUqt25cputQklBxDLPbxAqY+NKj5CxRt22CWgdXFvJ0RzVGuw7xQq+LhgF+FuHOcmOtwrHOE5weaL2vS1MrGKb+0G7t7erVBq7tEkvdG/8VIgB6z2OuUj5xVENyV1SQbDOu49I9nKF3tBMhBEITvPylY2zML6IJqC+Xef2HznD30gye79OsNPn0V86R7k2xNrdBNBXl2KvjlP0l0CW1cpNIfIxExuPFz7+AFTDpH+vd8Xrh2H1bVrkzoB8C48hW3lXp18FbA/MUQgsgpIclIgig7i7Q8IPE9T6S5mBrZw8RbK3JdA4zFAugNb8DziRQARpAEs29gumssOgnSEZ78a0TFGtvEbeGabhZ5uvLhIxRBE1W7RxBLUUyMErevkvaSDBTfJO1250cOhZmclkQJoMvBXPFEppe5eZqlaVimSM9GhNdXfz51Vt8anSAatNmrVRlrrDAQnGRRDBNWGxgOjrZokUwaHH71gxWM0BXdx8zt6d5YexVdF3Hly4LpZssZF0+O/JpjnRpxMM2mjBAGlxZWuHFgQyp8BE+MxTG1HUcz8PUdaLJCJr+5FVd5WyZWrmxI0gq7eWDBOfKk6kg2SY2FrOYARNd1+ge1IhGNyjlynz7j98imZFIJ0d2KQkITn3hBdy6TbVY471vXOLy31zn1R95ie6RLorrJRzbZfVak8XJFTIDZV54/Ti6rtN7qAvXdrGCFs16Eyto8eZX3yXd10ElV2H4xAA9I92traiEA94aEnD8CLoWQwt9f6tFAyArROUs6J+lP5wBeRhfhJkpf4vO4DGCWgcV4wbJ4U4sfwV0A0QESIJ/A2SQpjdDsXoT1x5HmO+BjJAUTZYbi/THPsPdxtexKSCkTkzvpkERxyvh+HXyvkfDCzF0+EVMfZ5UsItvXHuTZGSExWIZz5M4fpJMTPAfL93gRF8X/ckEfakkhq6zkN+g4egsZuE9y+FE9yt0pfuZmcsRbjRIORDo7CQSTnL4hVF0XUdKidv0GU99isGojWXo9Cdj3Fy/zu2VMn/r6AQdiQKG3o/QgphAoVbi9mqes8ODD2Q8epQntTSVNqGC5K6oINkmfM/H93w810f6STA6CUUtTn/uOLVSHYjje5LYaJq3pucYsyKU1ktMvDLOnXffwfOOIv0QnuthWgZ20+bM958kkY4hvRUkOit3l7j5TomXf/gMt9+dYuLVMWKpGOm+JKuz63iuh2M7GMYREAFAgghxey1LMhSkJxFEw9tMVmCClmklBtBbiQSa9bdoOPPYZh+Xb3wPoS1zYngQSY5SvUDYeBPTPAZemVJ9klxjnrzzKm5lkpp3CRKv0mkdZygyjoZNWIQxhSCsBxFaA99xyduXSFnd1Pw4k7k1avkNYsYgiaCL42nMZovU5CoXF2ySoRjD6RRjXSk6oxEGUnHem12gP3mc0c4UF+ZqdAQzpINpgnoHNddnNbdMKjOMYxkMHh9E+AYWcTzPo7BWYuXuGum+FF6wiBudxbS66Y8dQbpFBBbluoHWca+1GDcWOd5lomsqL4jyFNTs1l1TQbJNfNB6KGXLBCMBqiUH16kxeLQfu1mjtH6BYr6Du2/nqXaGuF1ep7u3g86+FNEvHieQjNCo2cxeX0DTfQxxA0PvxGnU8ZozBOMjdPSkGD2VYmMhR7Irjm7odPan6OhJMX5mlHq1yZVv3+D4Z44SDOtIrYul6RXGhjoxdZ1s8xZhI03U7ELTwvjmGNjfxDfGQB/CMtIMRdJUmxdJRvpJ6ElE4wZZzyXXCNAdTODnvoeZDFFtdDJfbOKlb6NzGbcQQ4SWMMwxGpVrzFS/iyGCjMb66Q8NsVS7TMWZJaFrOK5NsdqNLA/TF6kztV5iamWaE70aKyWPjniMRDDKi4MDdEQMhnsKXL7r8fbMAmHT5OtXbxMNWgQDNl8+10W5GkUimc2uU4xW6D3UzXqgtV/n2tQ0t6ffpUNM8PKPnqAnEiG3tkyXOYpp5CjZc4S1Gt2xY0SsEC8PniDAFL6bJN+IEjKGiIQfvRH1dq7jcvOdSQ6/OLK1/yeAL10E+p6S5SvKJ536+tlG7l6Z5c6FaSqFKmvzG9x+r5X6zBDzDE0MUi3aeJZOZ0eM4dEOdOrcfHeSMhmWKhU0kUMLOfi6R9/4OcLxFDPXV7j+bpDL7xQIRAZJZuJ0DWfo6Ovg5juT9I31YAUswkMuTafcSv0WDrS2tMqWOf/1N/FKF9AEpI0AYT1JtnGLpn0H3PnNmaqXwb2D5s0TdG6SNgwmRsZJJG2WCpPE9FkSVoYbdzXuXNVw9C9SDFm46QAdsollhensDaP5S0wVv81c5S1sr4qGyWLlDteKXyduHMWuBWhUBsjXwwQCHp4fYXJdp1D3ScWH6Et1M7ORZXHD4/WxQxRrDQpFG3s+SjIYxfWbhMPrpCIB3pyepW776JqNFVgh17zNRM8gR9Mn8aRNXzJGVGg4RcmLRzMc+VQneXsGEfCweuqEkwLTGMUKvErF6+ed2RVmszlcr0jZjuP4Ib59Y5r35tbwdzm4pBs6/WM9BEI7EwOsN25Tczf2/fOmfLSp3K27o1qSbSTZnaT3cA/BcIBQNIgfydPwyqxUJ6n6Fqe/cIzvfePbmGsgO2ZJd25w51KEUDRMsOZgjMeI9a1TqxcYGPkRrr5xk6WpZaLJBsWOAS69cxsnX8WwTE597jjN7jDrlRqd4RBu1aXOFfyoifR1cK8TT03wgz+XJhAfBnyEexuEhSkLaDIE+gDSm6LueIT9GdBD4N0AuwDOHOHgOcbTSWw7z6XzFsMjMca+D9aXbjFzvU70hTqZWI4mKSqEWbGLaJqDhklIT6HjkTSSSNIsFQLYzX7eyudIBLrQZZOpjSXWij4nenvJxCJcX/MY6hjgcE8nf/zeVQr1Jj/z4jEuz+fIRzUatuTKXI3h1Bx9cZ2XB8fw3Cb5coFKI4jjuQi9ykp5me7QSb77Z++DEBw+/SKemeLW4gYne7voiA63lrzIVUzzFCFD8trQeYRhkS/P05ATpMIGzmqZke6uXXe1CiFIdScfON4RGN1zEnXlY6zNgt1eqSDZRlJdCZpemdX6FMHGAIXVMkMDBcK+oFzqoCiXGJ6o8sqna8xeW2TxboR6l0+ucANNG6bn0BDjh0f5q3/3HdZW/oTmeh0rNEg0LhnqiBOJJjEnoJyrkF8tYmYbxIZdrn73OiMnuuiN1QgLH+nXQD/GajGH5lYplxcZjDiY1ksIESUW3FwqIiWul6Xg/BX4aUJ+CiF6cf08Jd8mYVTQRQDLCjMY/DZ6qYOr02fo7Vylt3cZV/isMUzWqeOJGKa/QdGdoY5DnCMUGjlKJPDlUU72pCnXXyC/XmPREWSrJSJBh/FuA10vYfpXyYTPMpf3MTWBrul4ssnN9XkWdI+UHmQwFMV3TdLuKnoyxY2VVbKVNX709DmksUS2Mkm9UCJ/p4k4uUg8Had7pJNgJMmVxWW8gsuam2X42ABC70ZqrX0ihRBEIodBxFmeF8yX15kNbfCplwz6e/a2ttHzPDRNQwixuVem0m7arUW4V6q7tc2UVhvUlnTMmE/ncBzT7CGTep10ppvrF64gGl0slE8Qz4yj6SkOHRngzPd5vPDZEslMmEA4SiSV4O6FVTp70vQf6mf85c9TXGkQTYaJRPL0DFTo6EkyciqB8L/ByJFlhGaQ6X8JyxpC+AsgLDQ9Sd7ppVbxMPwVHN9lOTePY/sIoSOoYlIhHP4hCvYGU5NruPYddM1DCkGz8rvgr+HSTc9IEN1IMPt2kZmpMkXbw7R6KLglar7A9rLYQnIo2IWOwPdn0f0oJR/mCtO8PbtEyLrDSnmd2WweHY2IEUZbjuHnDL494/HuwjoLuSL//vwV3r42xcuDHQynYKFQpEsPMPtHFzjqWtTsAe5ey9IdXuTFzpsEzApJa5iU34kzkyUSzzJT/3Pi3Zdx6ksU5v+IePMSZ18aZ2iibzPzUCs42k2HW+9OsjJjszqb4+137uBUbfpTCaQRbM0Uvs/dq3MU1ouP/RzcvTzHyszaM/mMKconiWpJtolaqUowOIVpZWg286B3Ew4kmL42x/CxXjq7uvnyT/0kmrnGQiXJ9NsjmEGdSGCd+bkG18rX+cynzjFza4X80kVSsVFC0TEGjiRxa1fR9Bh3zr/PxCsjoCUQokkoHEH6r+EKn7mLS5iBEC+8HqNCB3rju2RinyFq2ZTqb6PpP44QCVZmp9C64vQM9rLeXEYjQTo0QsLspyxvYMRbe0QmfB1RKeB7Kyw7d0l2TDDQeZimdxNbj+CHj+BqRZyKTW+siw2vji095h2flDGOQYKlchdlZ46aLGBXLN681Umt2eB0r8HNxRwrXgd2yCBlBgj6cSzh8uroAAsrOfrzHgOpAf70q28xu7bO8XMvcfjnvo8r37lOoCfI4e4Yq3fzaLJKKrPEYNwmoMHhcRMtcoK33rlCIJ3nzLle8kse6XgI6fpglFjPXaTc9DjU/zouOomuBGXfwW7afPlHPkUkHtpM7dfH3M1FwvEQtVL9/2fvPYNsy87zvGftePbJOXTuvn1zvpMwAZgZAMMMkBJJkaJcolS2WcUq2S7bf2RXyVa59Ic/rZJsSyraLKqoIk2aAQJBghhgMMDkdHPsnLtPzmfn5R99Z+bOYIa4IDADYNBP1anuvffa6+7ba53znrXWt96PkQhJJCxiSQsz+l5fVylHIH2Esr9NZOLoGJp+/4mw/64s1Rpko1EysYPR6o8cByPJ++JAJH8CCPyAhYsrHD4TI5XLY6RNRo2Qi391A6O8RX6qiO9L2ms+pdkputUVqtt9zj9xEs0MCGOzOHWXtWuvoZTjPPVPPs+wFmdvrUGratLt1ZBaDEMP2V7YZHw+TuCZIIos123mi0WOPZLl5st3aFXbhAkP3+9T8K4T+lV6YZyg/XWKZoTpYxOoSg0ZWqjhHq4fstv+CogUGi0YZUCLogkNVAUnsFC0OA0vpOf9MZnpMn1/m6XlWczOkIFwwbhMQIR+qBAhxUhpUu/fojM8Qc8eEQZZOm2D4ajPVKLFtZ0CXk+hrEiEJch6glHdRMt3aHuCWsemMD/OpaVVxiId2tsDtpb2OP/AYbYXd6lvreKJPmEuz9HYBagayFidGy98k+lTpxj1bhObzDLsJOk2qixdrWLGZlHUO8yenuT1GwnEoMlMWePGzh5yq0u+kiVZyZBMxpEypOtuE9OLJHNxjIjBC3/6Km01pFzO8tCnjr4nehWAsAnhAO6KZCT60Zqjv03cNDG0j16MD/ge+QkMwPm7ciCSPybIsAlhH6FNfc/3qprKyceOoekaMuxjqQmM9BJHHsiyunCHjasd+vYdNOU4hvcq/f42qfE0vjvF2FQVmTIYZTNEFShljoOdZm9nlYsvvkV2McOFXzhEqTSFPxT0mgOGwxh7a3U07WXSpWkUkcWMWxiVFJdffY6Hn7nAgDkI27h+m0Fzka0aiLkjqLEhMS2P9JYxgxyNLY8gahMGy2S0HuhJXC+k60NWlQzlNgoFum6Papikp2ToDhfJj+8x6oSMF+ZpeS0cuYQky4g2wy3BLkmk7bDbTjIZO00l3uNwapWt3iS5ZJwgGqNf7SEbI9xCDm+nT/vNderJLInxPMNWn+Rym6Lpo5XKXL+2wuGjk0yfmMBxXJRQkgwSbN7cJRFdgpljxDITGKbk6jc72NoiqGnWS+MY00UOz0yiqhHa1Q7Dt6ogJCuT27z6e9/k9ONHaMdMerttSo8do9fu0/JqRPM50oUUAKefPE7gBXi2R+R9AjnwGxhKBl3/+M3KS8kDV58fWQ5E8r44EMkfG9T3pJP6XtkXyCH4N7DtKUztKpXZcxDNY4UKG1/b4MhjI1LRf8jRI9+iV26gRxTihcdoDy+hihu0pUncm6PfanCl9waHvzBOPIwRtBLU/D1Ebg/8CZavNDj2yDz9lsnq9ZdRH6hTiT3C5KEKlUkFQ8txbVfBLI7jmxHm8wFbPYXlpRyHzhfRtTkGzqt0eilu33iJzzwp6Ps+mjpGP5SMvNdQRJZ+oBOGfUYcYtN9nUlFYqkT5JOnaNgvopfKRNQInuvSCH3coUTTh9RHFkZMMFRbxPQYqzd3SRTGseMzeHaa1WoD3fY4EkkwfGkFf8whOfSIF2cwHI9fefpBdtbfQpvWSMYrdNZWMOsur/35a4RyxPSxQ0i5byS/m47QauyydA1qmy7lGZdkNsNEJsf0qSNsLDSJJWw61RZSRujUuySzceLzBdZxOPXYISrzFVZbbc6fnAVgZ6lKc9cj8dCIbGl/RHjo9AwLby2TG8sSS0bf0/a230YoIX1fkDBNtPuwrjvgJ4ADkbwvDkTyxwShpIDU91lHFFee5NLVlzh16vPEEgaZ2AQoIz79j57EU0p03AWCsI6ZfZyyKQjc67ScO+SMCgExvrb+B8wkxnn6iUdxwg4qHhnbQVOWUbxtLt6pUz5xgo3+BmmryOTsESKaycBZwDIreG6O9p7DhclxVAVq6yaqdhrf61A8KvBlwFr/VZrOFiVFMnEqYGicxNDidIbPM5QunjSYVGIEyhJa0MNUryI1l5HIsDBaI6efpuEcoWIdw1CWGdBD+ALdcBA9i0CqBJ5gdWsaP4ROAFfXNjlVjjNlN3m8UmZto0rb6ZBPgOyOWF/YJb1iMD4f5YX/66uolqC+0mLq7Di+0qO1ZBONJ3H7t4k8cAh7AHurNVRlm5f+4g1OPHaWs58eJ5ZKEAZ7WKkTRCJtpudqBMqjVDe61Lf26Lf6zJ6eonysyFJtm+M/qxGGeVKtOPn8fvtHoiZKrkXdu04qfAhVMZBSMn4iS8RIvtPeru3iOR4tv4Wq32S9c5zJTIVMzEIIsZ9lJVgFdRJxsAXkgAM+kAOR/AlDMyLMn53GH0mc3jq9vdsE8SmS0Xks50tY5lPokV8mVEAVGoG7inRdBsE0pYxJKTJPOaJRMHMsL8Cec4nJM2dRAxff2aZ45iieMaI36qBHQnZ8k8O+D+zSDYaIYRavfYlsfgK0CsYohpHeZOJMgs2Ww6g3YGDdYLMzpL1nIHMB7uoeIrxCoTBC9Q+h6dcIlKuMnCFbTo5UpI4qBEPPJS0WcZxdlCDDanWKRMbBJM1aUxD3kwSWR9dz6XSKzKTOU2/tsaMERCMhfRde3usz1lHxN7uMVaJUplRal7ZIxqIkLcnElIVfnGbhb27h9GqoMkO0MkVzvU7oq1hTc+g5jdf+6ipj80Xaew7tukUQJClOn0cL/5xHfvoJ3vhGDW8U0Kmn8NxFHv7584zPl2nutjELCa5VrzKXy2FGToGIEY3HsYMug1GL8cPjVJQsPW/vnXYd+HVWhs9zVP85DPZHku1qh06zy2ayRzRzlDMTc2y0OtQGQ46W8nfvlB9/JzzgR4KDNcn740Akf8IQ0iGvUkdNogAAIABJREFUt1hbdfDTJcZP/RpXN68z6qiMR8vEwjojBNujHtOJz7LtrjG0dVKxPr7+IFMZFU2JoDMkknTIhjFURtSHL9F3q0wWkzS9KinLJRd8FSP9JJnYKeAYoQwQlkRmrkOwiVRSTBypIP0O/cBgff1ZWtspPvP5Z3D722SmXBwJy6/XyOQnmS4ZPP9agyceOAHWHlJfpKK2WR9p+K7C8vqIo7OSDUUgNchYlwmlYChtYvqQxlYSGYkwGgS0RjpLm9vERJtgGKOEyWDkIPohwy9fwTdU8v/oUVp7AUKV6HYfPa7x1rNbxFOb5PM9qv0it15pkSuHpMspGjtNkkR5+f+9RugHqJrGycfm6LdrhCFc/tYCpx6OYaqrTB2bRsokpUNRDFNHVVXsgcOgMyReSRN6WYauQk3bRFciZMwZ7L7DxW9eo5gdcObTJ8ip+0mg27UOnqMwX34GQ313qrU4VaA4VWAqKGIoMYQQlBJxArkvjEKooM3/MLrhAT8KHIjkfXEgkj9hCCVKzVcoTr9GJPZLCEIUN8LmtW9RPD+HHbnDwL8Foxm2t/8zbjoNe49TfvgQXXeTjd5zTESfYLW3gdrKU6pEqXXXSVpPkTAbGOE6FetBkEO2Oh2uNRZ5PDKLGa7SbpoUJ+cR1s8gpcSzX6Vl79DtSqYyBj919gKL84vEDShEWniiQu3WFG19gBkXvHQLklqHMKyx2qlCP4WX3COuOGQjEm/SZ7EVY5QNsVd69Is6mqrR2PHoOjF8y2f3pkJNjkFSwzSG6B2XSl2yZYQkNwdQjhJ5cIJUxKSxdgt3qYPhRBFCod0MMM0UVnzE2Kwklq+wtzxi7OgYqiKob7U49ehprnzzOguX1jj84BzHH5lmfLrO3s4k/XaPavVR0vko5dksjdEyX/+918keGWdsusDh+QlKJ6KoYsgTh+dZ7j2PGyRIG1NIGZJOFfjUU0+h6RorvW+TMaZJm1O0qx3CQFKYmCbwA9R7okmDIEAj+k5ya1M/eMsfcDdV1g/7IX5MOFjB/4QiZYgMtvfXnYAgdHjj5eepbV1FEQla7hhte5nR6DVW1q5jJt4E/1n6gYqrncLRy5jx4+zxEtnDf4MKxLU8M9FDDN03WPe3aKuSLuMsd7/G7d4LtLAQxjkGfoNmewMx7HOheIaouILbe4PO7iphGCKlC7JPe7BGtbsA3mu0/RbXm2U2OgMub75I318la+/iJYf0dr5Nr/qX/OGzKnuROV68lsDrDGi6PW430qw1k7yyVeZ6v4ieCDEYkZhwUOQAue0zdCyEVUGoQ+xsHNVLoo8c2isDiqKDWtFRDAXhS1RLI36owIXpCQ4rkmxSwx7aNLZbaBGdWMbi6HmbwPMZdW3Of/4I44fKPPDMOc5++gjRmEIql+Q3/vnPce7JAqs3Guj6Oqc+pfKpn1aw9Dd54U9f4a1vXmT9+g7Txyqs3drkm3/4IltLu7Rr7XfacDr+GGOxszhhh53RFbxwSDwVQ4uAF9roIgaAbupU12tsr+xx67XF/fb2AzZu3WT9xgJv/M1lRgP7Y++DB/wII77P1/38E0L8jBDithBiUQjxzz/guimE+KO7118VQszcPf+MEOJNIcTVuz8/e889D9w9vyiE+NfiY3DlP/ha+YnFh7AOSh5Qwb9JrjIiZt1CylNcvyg5fuo6Stzkc49/gUGzTDQ+z7r718TVIpYVkEz0yPYTuKLA5uA6WeMI0jnGUDQ5lf0iO/HL+MJBtyrYQQ+1m8cRQ2z/LaotSdAbwHIb80iTUHmR6ZO/DcM/wpMhevw3qPrj9L0FYsmjaKJKbXCL29tdpvMTvPr6JdS1FU5/JoMR7XC7oXGocpPRlkG13aVzPUbp0JC45RGfDIiWfNKEbNRjxFI+CcNlM+yw5BmIjM/Cy32UlkE35mArAqsN7pstrpVjRMcttFaPYXdA6U0Xa2zAqxtD2rs9CodLqOYIETOw5rL0V9rceitOtmhQmNCIJ0fEMmUUNaTffIvZY08xd/I4uglGRJLKmSh+FNuvYRonsQdbnH7qGjeu29RfCDn2yDy/+k+fYenyKp16l8J4DktLU7cXiGl5LC1DVMvTdrYY+i3snQFmTmGjtUvRCOl5e8QmAw5FZolnYgjpIL0bBH4Jb7hCef4kvruHPXyZhcYYM4VpEqaPlHLf1UiJfteedMAB3yti3wrq3wLPAJvA60KIL0kpb9xT7L8EWlLKeSHErwO/A/waUAe+IKXcFkKcAr4KvL1/6f8Efgt4BfgK8DPAX32U/5cDkfyEIoSB1I69c6zoR8lUUrgoJIwxDj8oUJQHMMyQQVhnJ9ImoteYt34G3OssDa9w1X2KwBB02ot4NoRxycaNddoJj8NnJc32kEwsgnQdNG+GjZ1d6mMNZLBNX5gkpkqURgGxqGSvcRZH7JIxWqw6DnltkcOFc9xs7nKn1uLxsYeYSrzOih0QdDRm5+LcEJs834Z4J09otmheGWIrQzTTRc8KSlPg7A3pbUSJzoYYVoCRH1GTERY2TKIZn2i8TbeaRlWgox5GjmxmR2ssbmWZLKqo2pCNy+vIlInq+RiZKJG0Q6euEDoe04UM69UBmq6QtWyKT5TpNjUOn4tR3+qxcuVFcpV1Hvm5/x7LOsewuwZiQHHmJI6E9uiPKSa+wCBwsP0aSv4wheQp4kkV+3QDzZzAikYoTRZwhg6Fif3cmTEtj0Cl5+2R0EsYahRVGvRafbRklLR2DEvLgDJCKiHpiRSDzoBv/+lrzJyIEEt2mD87hRGvMHE6pOvcwfI91lsdTuY3AfBkiq5XIR/fH5E6no+hqbRHNsmI+ZHlqJRhF0T8nSngA35IfLRjsIeBRSnlMoAQ4g+BXwTuFclfBP7l3d//BPg3Qgghpbx4T5nrQETsZ2PPAkkp5ct36/x94Jf4iEXyoJd+kgnWkf46oXsD0IjpZWJ6EVXopKOHuF1v4wYjdOdl4uEqrr8LapK93SxZeYhsxCStTiCUGRQ3xo2150md6nB29hlS6hh0XDruEt0a7NwJWNx5hfWlKmOZLzKfeRpLy5IqH8c1nubSYpKhn0I1H2Y8/WvYIxdntMdM/BxldrlxaQmn+zCdnSi3r17kRKWGzGrcec6h67nYYQqr6bBXl3ihz63Lcb7+tTSXL+YgptLsBIxsnWFTRQsdko5N3g/Imj7JXpdIe8hURiIXQhTfZNYLqfQjDP66hrnWI7nRo1z1CJsOa284hLtdwqHD9W/dIJq0KFdyzEymeejpGoHb4fabyxDusbkAkWiM7s4fgbeMZSwggz0EDobsEGjHcImSN2cwg1U6keu0FI92u01rd8DeehUpJdGyJDWrcvuNJXrNLVTZp+vt4ARdQhkwdJfo298gexyiCZNz4+cwdQ1TTRBR97eGdBt9YqUcG0EcYyqCET8JwR4RYVOMP8NE7iilRBz0syjGAwyCcXa7/Xe6y7XtPZbrTd5Y3aLvuB9Jl5RSgn8bZPcjqf+A++f7TJWVF0K8cc/rt95X/Tiwcc/xJu+OBr+jjJTSBzpA7n1lfhm4KKV07pbf/C51/sA5GEl+klHnIOiC9yxSm0ILm4ALyjyBaJFOXyQIJ2n4Lpv2Eu0gSrP9Z9TrSYpTM9zpf5OS7lFJPcwyO+jeKRgU2PFeQ2Bh6jkUU2FsfIIv33qZydiDTGYm6QiPdCTNhPYYb774bfSKx8yRMfKJAlK2EaMkd77+Jsl4jUMP/CJz2S/y4s09+rkhnUSGmZkxVhbi9F+/DXuC4XaPVS9Cfy9JMuFwo59irGSTK3ZQm4KWM8ILLTrSY2gprD8XY/KcTTuh4FwxGNUsrFEXe2MBbSHHbitKV5GYN7dIFg1kZ8RIlUgZ0tocYE0UmZ2t0V0Lae/6OCOXfCXDm98IqW4M2V1ukC3vce7vw9SxC4wfeQSdP6BQDImmHyIW+RxSSSKcr1ISXVR5Cum8ghfWSevH0BULrewwVC2KxTYNZwlDiaIpJvGShm56bPZeYsvZ5VPF30bKAEmCqtembNj0wh0SVLC096a9CvyAx3/+QQaKy3Jzk7LtsHllxPTxKaJJBaH2SEYVhNh/22eiFpnou56qJ8dK9GybY+U8Kev+Ejnfi5QOSA+hfLDLjpQuoIP+wMEo8keB728kWZdSPvg91v7+WKG/tYwQ4iT7U7A/9T3U+QPnQCQ/oQShT92+TjZyGM36RYTQCWUAwQbIAFNNkNTStEcvYagXSOtZap0ewbCGkxBYCYNpEcfpjFhb89iLR/E3VBrRTXJWEZnXOD31DLfvXEIesvnNX3iUre5xMrrFv/7Klzl56AQnPQ09plJJjaGZK7yydJGzFYeIFSN3cpeUcpSB8SxKsMEjjzzE1cWLjK91eezBC7x5pU47TNEpx+itJxhs1KEYYXdRJSP6uAnJ3m0TfTqg3UqQMV2yhYDRyCA7FZABdrd03trJoxYVvI5OvtRl/DGN1oJC23MwjhgUPI9RJIOetfDXa+DYDFpdlqshmaKKM4zzyM9OcehMmSsv99ANl/NPG2SmJ+mNBJOfcigk/pw4ILQM68sxFP0SE/NxgmCdppwn7t5Ekx1U4yEsaaArFtnUDFpwm1QkQcevYSpJgtBHyw2pyT6KPse0Mc9uZ0QhkWQu9RRNZw0FQcqYxAuC72jzsfkygR+QNhJko0ksQ6c4VaC+3ULZ7ZCcAT+0ESjowsNx1zDN0wih0LMdOiObicz3YVgR1iHsgnL8g697l0E7hFD+bum9DvixYhOYvOd4Atj+kDKbYv+bWwpoAgghJoA/A/6xlHLpnvIT36XOHzgf69c5IcTvCCGuCyG6QohtIcR/EEJk31fmkBDiz4QQnbuvV4QQ+sf5nJ8ERFgnRgsVFeleJvS3EIoFcoD0V9EVi0r8c0Qjj1FtDhBLGr1AY6Ofx3cfYqGxhR1ESOXyHD4xzcmJkNKZDufPl/Cj2zRXGoy6LpVilKWqw++/MOLLz13jy196DuulGpOOgXG4ixU3qW/2GNoR5ouPYkZP8o3VFymPTTM5a5EwT9CQBTa4Rk3UKZ6qcnPn63jNbc7G2zw0NiC0BqhxQWS3idkZkZwPGNQFN143ySR8QhuGnmC7G6E70nEcnfpylIWdLGHWZLeRR43bbIs47ahNmNSZiLicLDuEsRjeTpfIWoPAl2iGwdGJIUFgYSUijB8tY6UnePHL+7M8DzxzisnD46Qzn2Vqbo7JVI360i0Gg0XwLzM+9gqp8hsM/JCOs0yKFpbSpU0Sn8i+S5HQ8UOHfGYKU88jhIKuWOyMLqMKjaQ2w7h1jpw5y8B18e8KoiZTLNcc1uttvvLsW7RrnfekxKptNFi+sg6AZey/ZXKVDJlKBiUVIWmM0bUD+l6TUELHr+NLG9/zcT2fIJT4QUgQhsDdqdHvpc+p4wj9QwQSQD8FIvM91XnAR8f3Od363XgdOCyEmBX7dk6/DnzpfWW+BPzm3d9/BfiGlFIKIdLAXwL/k5TyxXeeV8odoCeE+NTdqNZ/DPzF9/VHuA8+7pFkAPwXwDUgDfw+8P+wv4CLEKIAfBv498A/AfrA+bv3HfABSClBjr4jSlGoRWJWBhBIHBA6MnQBA0SE0H4OoYwTlVWSSYeuH5Dy2kjDwlhvMJXXWb2oYotrlM+eYGfjKnvtHhsDnUhEkslZbLfaDCO3GSxrLK4OOJROMnE4xZlDn+LylTW2Q4PH58ZYat5m8VKJo5k9dseGzBXH6NuTXF7bYqIc4UajjxQjjowN6W1t8PJzG1z4qUmqapxG6BF/2SViuoySArsdUL9q4FbimAO49NWA6UeHLHwtQeq4S+mzAQ07xZoXIaMHpNU60XEPewNGez67qQKRpM0jYw069Sia4ZM8USa8swotiM8WGG226G+5yF6ME2MKb371FVRliJE6xLA3ot4ZcvZwnLGJWzTan8JM/wJ6bAeMHVT9PKpsokfOEREeargC2tMI0ccLh6SNKQZ+A8ddxQuH5CNHKFunAIGlZRFC5crWCrOZOXTtFeYKT2Co+/6sMSNJKa5QjMcIDmfYbVZp1RweLaTYG75FvCDIlE+9px84QZ9QV1mu70C8SrObpGDlUVWDUvxz9GyH2sIWuqExfXScO3t1dFVFVQS253OklMf2fG7t1jhRKX5fGT2EOEiX9SPD97CV4++ClNIXQvwz9iNTVeD/llJeF0L8b8AbUsovAb8L/EchxCL7I8hfv3v7PwPmgX8hhPgXd8/9lJSyCvw28HuAxX7AzkcatAMfs0hKKf/new5rQoh/A/yne879D8C6lPJf3nPujY/j2X5skW3wF5H6g9y7ZWh/zWf/w1WYjwPQsm/R7vdxvDGO5LJU3T02+tt07lgsbYyIxgYkFI2KGeUbX1+hfvMNyjMpNkpLrC2UKE6qVLJDbq60yKQGNGp1Ds1UODVTwIjeorMTUipp1OyLWDkPuTHLQuQ1juaeZmFtlYubq7QWHE4de4i+6aEMBIQtxvUKVdshlpTsqnE66TVCb5Kbr1/BVpJMlHVu3fYIRxI/aeHbIaLv4eRS3Hldo7WrEpv1sRsRirt9zp/YY2RrDDZhZZTEG9rYxKntRohu7DJ9xGaPPOVjEfTtNoM3PGR5nL5TZdC3GQwF0QkQbp/m1jVGHUk0a5E7I5k6HkNUD6FoLXY296dIK4fT6OZJCK6BfpqovwmyAVRBO0LPu4NUygz9Ol13i5x5GDccUYgcQUXnduerTMUeIa1PEFFSzJcEKV0nopxHKAlk2Kc+uohLlErqHIpQiZU1Gg2byRP7s09xrYgpXDT93UkXKUMazhJZc5ZHZg4R4jE2laDWG+CHAbudPu2Rzdxkho7tEoaSmVwaIQT93oi4uf/xYKgqlVQC/UOM0YMwRCBQlAMLlx8rPuLmklJ+hf1tGvee+1/u+d0GfvUD7vtXwL/6kDrfAE590LWPih/2muTngCv3HD8NLAgh/gL4NPtz0L8jpfyDH8bD/TgglAxSP/segXyb/UAJyX70NCSMWdSIg6MPUYyzhM4GRSvN1HTI0RN3CIN5tt/0OHG+TXJjm9+9nCcTf4hD0RX6sxEiowT2okdMTVDfqRLPqqxf2+S1Roe5SYsv/r2/h6qY1L9eI5uOobox0ok4SnmAcjTEGOV5JDXNm40qZ3MKj8w/QlSt0VFHHC1+jsXmAs1IDCOd4c3nBUyeJ2t00To+DaI4OyH1riCyM8SpSVSD/e2ggUq/GiGRC2mOTKxlwboTw/c1essW/YaOvdjFmtbRpIWwHXqLOpd6NrphYSRDHpyZxUxG2V7exfcEg66J4ivUApXiRJZubZu5WINBU8EzdlFjKkmtTyJTh/B5cCpgfhqCNvbo62A8QDecImueJCYUYsKkGDlG19tBQUURCpa2v9KQM+fQFIvGaJGImsLSo9TdmwCUrBSGkETVBKE0CKWPHbTpD5Mo0mDk+QDEjH2xdNwRqD6mmkAIhbJ1CkW8PfrbD8bZadxC1XNYRpIHpsYIQslGp09jMKSQiNHsD7l8ZYnDlSLZdBxFEUQ0jVdXNnhkdvI7+tpSrYmhqczkDqZSf5w48G69P35oIWZCiF8G/mvgv7vndB74DeA/AkXgfwR+VwjxxIfU8VtvhyDXarWP+pF/ZPnQDA7BNvir7xyqQiUWGcMWdVaqb9HvVRGeTpi6RcJ6gI4vCQ/XicUd8uULxMbGiNkOvTsJBm/Z+NYEyfHzBGELM73M5rbCsFEiNp6hl5zj1o0brK4/x9q1Hm2vjZ9rseFe56uv/TW7W7eIpZu8dOk54qMGX/qj1/g/vvICm+0U33g1Qb09QAZZmg2V6X4emYLPf/Ec4VyC8sMnOXE0j9sX6LsjRFZiaZKi16Z4MsAzovRsnd6NgO2dKK9WU2zcNuivBGSDJp070NyLEm5LjFaXzSWFYa1Kul0jptjQ7XH529eJC5WkKtBDl89+PuDJXxkjV/TIFgRnHlWo74zo1xtUEodImDUSyQDUBBgPEUiXneElOkGMa47GXhBnSICqxNDUJJpi0vW2UYQgYZSYjj+KKjRUoVGwjmKoFuXoaUw1QdqYZDx6gaQxdnfDfxJHJOl5u/jhiOpggxeWVslELdwgoNrr861nL7G1uMPV1y7Rdje5s1enM7Kp9UbU+4P3dIu5YgI/9JnIpNBUFVPXGHouN3aqAGy2OphjaeLjGbba+1s1vCCg7+yPNt/PdDbNWCr5HecPOOCTwA9lJCmE+FXg3wFflFK+dc+lHvCylPJP7h5/TQjx18AXgRfeX4+U8t+zv37Jgw8+eGBF+H7UKd4TIe0vgdRRlSyuNDlcTtO1Va5sd8maX6I7PMlYMgdKlWisw5kLA5TYLnriJMKx8JwYdXkbPTvOAycSvLHns+Rc5shkjkbd5IVFn8hYh0bWZrIypNloUzDyzM141BcDWnu7PPbYFCuvVUlgMNxdoDUsM396knQ6weFkAXvtKsOIgSEsLFGgcStC9dV1SrkAqajY43HEZg8jDFBQ6a9I8qcHSO3uIsu6S/GEx2o7gV0yWe3nSZwUDG7oRHsDujtR/EMFtG6LIGeSWBlQHo/QnZT0B23ylQSlcZ3xeej6axx96CyJxBaaHiFdzHLywhIhPXqNPEmrh6adZoiJ6r5FVj/LQI5wpUVcq5AykihCZei18KW9bxV4tymklIT4qPfEpOmKhW7sr9spQidtvJtgO6JkKEYiRLQ0M6lzVB706dhVdvpNSsk4ldkCxck82XIay7II3R6GqmLfHWm+TRCG3KxGOVrKoykKI9fDMnQemZ0klB4AJ8dLCAQd20ZKiR10EEadzx+f5+ZOlUTEfE8U7IEf7I8pByPJ++JjH0kKIf4p+wL5BSnlc++7fIkP3vdyIIDfI1JKgvBupoe30WbxlBQofeaK4wglTnO5xrGYgynnyckZ5M6ApWs+lpljIj9No1VhLn6OZDRg7/o6zcs7iK2A5kaGVM5j7EEbURW02pucvjDO4/MnOZlOc7hYoOoKrm6PmCkfpVw5SkSP0WtdJVpM88VfO8uFJ4+y0fwz9jrP89Jz38Yd+Jw782ly8xpEi1Qdl3Q5y2rQY2zOZyI7TiqSJKqAk7HY8pN09kxWVnPsXRQocfDLJoNrEmdTobUkEJ0BESRaN2TQBoYe2laPQBFkrT7jpztAhEpUoThdo1sbYY8UvvaXDei2OfJIha5xhEiyRLdRpysfIUhOkCmfYm8rR8fO0/JtBmIaU5sjbY4zl/wMSSOKHq7hBkPa7ipO0EUi8UOHod9gGDTZG90gCD2klEgpubVbo287AFTtmwz9Bl44pOmsYGlpksbYO01pahqJSJTzk2O4fsD0dBnd0LHi+yJbSSWwDJ1SMk4+HmPketzeq6MIwWw+S0TXaI9G3Nip4ng+m60WNfsGbjBAVRQURZCJWkxkUqxc2sLvqfTbA3q39sjH3g3AsT2fket9HF36gB80H7F36yeFj/UroBDivwX+V+CnpZSvf0CRfwd8WwjxS+yHBz/J/kbS3/n4nvLHH+mvstvXqPVVjhay9JtDcpUMQhj4MiBjzDAMGsS0PLHEgFhExTPLdOubmOYtvvmnEs84x2grhqbY7K1XOZWd58Giwxt//hzdLUE1m6aZGXA8cRohC5jDgELmJt5oGykEQZDhgZJHc93k4quSXmKLoB6nb52hGoyYtwo8UTrCV/+8jZKKQTrDUIY0Apd1e42FVRVphDzxwARbYp4r9T5yzkV0bUZmBm42yZR8HEsQ0X1ST0q6uzpC0+hspRg5Jt4gJBzAsO9ixh2ECWnVxjRs3IFKMkwykctTT8DKsmSaGNFkk3QhjaUk2Fg/RX2qRimxSL/Z4vwTAru6iLSnyU7VUQshkbgBTo9dHzSpkVItLC1Dx+uTM0/j+i0iWpqEXkEg8KVNz9sjb84zEDW69qukjXGENksiYqKr+19q0sYkmmKx12kTKpKs+d5PpjAMWXljj8JkgbZik7QiEISsXd9g+uQkhqnjhSPUYBOhlrF9levbe4ynk1R7fWxvfzQ48jyubu+SME3K5lEMNfYd/alQ1AjDBmZ8gmNnZ4gY707v73R6hDLkUOH9RinvxQ9C/DAkcp+jThm2AAOhfOfzHPAD4P63cvzE83HPk/zvgA88d+/iv5QyfvfnK0KI32BfFP8AWAF+822vvgPuE2GSj0fRjD47rZvY6wqZ3C6KcRw76GAKnWHQwVIzKOmQbc+lmJilEy7T9CcwIlUWNtc5N7/D8u4cm6NdRrcEY2Ml1hpZxvIZ6jlJf+c2fZmgoA9Yur7Jzo7BkcMVDj10FhlZxo3muGPX2Nz8GsObFU5Pl9DKLR6OzLG+/CWYO8eFx4/j2DWkX+HazjbjSZXPPPSznD3usFp32VmokR/kaQcWDbmErKnIVRClJLpZw3MVOlWd2IyD2pX0b4WMElFG5TjaxgCRMslN92msRIlEhoxshSAZMgpNFK/LG1/XKE5CSUly7uEC/drrSD2NDMeIJj26/S3EwOfY+SQnLjRRFYFQbuM6Joa6Du6DxFWLUuLn0RWH0Fun77XpuJtYapq6s0gYBsTUPHVngYiaJq3NIYRCLjIPcgLuOuCMp99d1xPSIgwFF9frdEcO/+Ch8D1eqvXNBnbfIZVPUDD3p2wHIwdvtAbBCDhJw14kpQpMxSYimnz+2CHipsF0MsHylXX0kz1y8TzJSIRExHyn7l6rz+3XFvD9kAufP0O6Ms7XvvUKx6drzByqvKerzeTe6/pzLzJsQ1BD6Iep9vYDg06Pl++vD4cNEHHgQCQ/Mg5E8r74uLeAfNdmkVL+MfDHH8PjfGIRagUdyKox0pEsSi5k5eolxo7a5GOHCd3rhOH+elnPGbI32qNi+eTHj7HWSrDVWiR4do3D0zkSEZ2gaZOOd7n2ZpfCfEjSGhEMFM5MHycaf5Fa51P01ChblxrEEn0u397CmnGoiesImUep2Yz+DZMCAAAgAElEQVTn2pQPVbiz00RPREnpTbr9KGKgs9dMcGfzOvkjkubaLlZ+gh2vzcqbKimpcuet21i5Nq0lUHowmYZRwaXbSiKPBITbLvZII57yUHSNpmvhLnfJBDbTz/QwNINBM8DbgfmHffYWNFrbDl5LwMAlZuY4diaKrzbQ80eZnaoxfdRn5VaMVusQxx/rYUZt1EgRV0ItNPBCkxTHycghmvkkuu/QdNcxVY9S9CSaYtJx10ho44yCBroaJarl2Rvd5GqjwfHCUUrJ5F0h2GfgN1jc7TCVqbDZ7pCLRfnssUMMXPc7zMaThSQlz0do756/trWLEiaR3J2WreWxIxaRgkGtt4OvDAnCAEP18aIaa90NzsUyJCL7QhQEATtLe+QnsuQnUjR3e6hiBUUp8pkHH0U3dfxg32hAu7sd5G/PVGTAXYu6SipBMfHBdnXvRwZVkBKh3aegHnDAR8jBivsnACm9u4YC740wfDt6UgpJsngM3/W5+tZNpi/Mcru2y3krYLpwnqSTxZMDcqUKte0BU2cvcOXb19jau8BPP3yCf/vmX/LwmYc4WXJ5/tWv0wkUns4keParm1QqA7TBFpPhLBuxHvVGg2svXmS06VFMWHzu5ya5MQhIZAwuXV9gZ2OVq36HB58cY3erSVQugh9gFmKcKs/xYn+PuOOw2/LZWl4ndXgMM2khcwFz3pD60CUXURgkNUZXXVJ5jWFo41WSDOsDBrM5Uq/1CIOQiXEXfWSQK/eYPuqz1tC59qyBNFUiwxAzIrFtcEOPlYsdtqwBJz8bYkSyoDRIHp0luF1g9mQLrx+i6mUC+zp1t0k+8nmk0mTPN3D7b2GEA3a8Ogm9zCBokDMOszL6NqbSYOAo9PobFNMeUS3FdM5Aqjs4vkLf3yOpT1HrjdCNJp66jq6VOFoqoN1dG3zbPedeAtfnzsou/ZjG4WIegHPT4wziScJwf6uHphkoqoJQovT9Eq67Rr+zS9yKU5w6TSkx88707n5HgtVr63Rdl0OHbKaPpkBEAINYct+sYrnWJJSS+eL+9Opao03cNMjFvzPl1r7Bxf55IQSaui+otc0GnVqX+fOzH9yhRRyUv7tpwQHfHcnBdOv9ciCSnwTCNgTbSHUcwipCP/Gey0IIChM5wjBk/EgRLexwobKL59is9bKMxcaIxi129pYZiDWOToyzYLfIqju0VkP8O1vslLI8fKZCY3iE6fEtXn3uL1GcDDcWBMK5RWt7hwfOHuP85C8w/w+2+c9ff5beBqydf5a1VoQvjH+etLnDRnuDRlpHhFkKuQSLexJPdDk+WWCtEUHKw2zW2mxuV0nkM8zNRdhqprk40hlgUCg7bG1YVG2dQb9K0dhBWmBEHZpVlaTbZOZEj4s3c7S1OGfjTXot2FsUmLEQd6SBIjBS4NgSdczk5PFV6ksGo6bK1rcFo5UU2stxnvqvbqLONdGMdSJ5A5sCjvFpTuob+MqQulNDFQlGYchkdJZc9Cx99zYRfQJfOiiKymzicRwLOk6D3eFVcpHD5GNjOMGQzVYP3XDYqtdZb3Y4USmiBipDV2IY+/ZwygcIJEAsFePTT58llJLVZouddo8TY0V6zf2sHlbcIlexINhAygRCEYyaOgUxTiyX48r2JpoyTTmVeKdOVVM58+RJvnL7Nk4jymxBYKg6UTXKta1dBu6ASjKHZbz7sRHRtQ81GfgwUoUk0cSHG6jfK64HfIQciOR98V1F8m4yzBellBvfrewBPxyEWkAqecBFyi64FxHG+feUkd4thJJAhE3uvLrB/IUHUK023WYfZ6lNYS5Be3fEVOkUw2aDn/lvHsBuVri1cJMHP1UilmziiTjVzSZ63MdNpgk0k3D0CLt6DU3ZxA7eJMjOcvNKl9Pjk2QSk1zfeAF/z+dN9xpS9ag8XKDojPP8813mjvRpdeqUshMsOpfJJ08QtULyMUgpQ/ayOSK5IvHjcdzry+gJg1Y1RI9HcFbrFI+oLG5XkHUb905AzLJhI0DPBxydb1KvRgg0nUP5IV59RCRusHo7xNnyaBUSiLUAOQx447k0c8ds0qZCvQ5SbnDiyTS5bIRRaZOO3yauHaIv8hRi5+k6aRT3BRiepG06lFLToGgEskM+MosIq7RklqJ5DCkkCTOOFB2EN00xcgxV0TGUDAudBRKJDolIiaeOzKKpKnk/SkTX2b69jaopTB798ExAmqrgOh7FiIVIAxKmT7zrKS3DBoRNBHC8XCQo5AiDEE3Z5NFxnbWbO+QuRNDvCrEM+ySycT53doxhuMft+i7T6XGiWo7F+g663iBuWJj6uzMWpWQcKV2ktBHi/jKHGKaOcXcddbPVYeR574yGD/gYORDJ++J+RpL/CZBCiC3gJeDFu69LUsrwo3y4A+6f/bUhc39vpPJurj4ZDiFYRSrjCMUkXS7iuDmWrtTJVtJMJSOk51NUO0u4/oCX/r8lilMavXwFs7NKv2UySJaZyO/S3+mQGhpsfsPmzIMRbt+8zPpCgWLE58hTZ+hqt/mrFxZZ+ZsVDo9ZVJ7OMC0/TSPYoCv6TMYTbO5k2VpvEs25nMif5ZvX+4iIw3RW4a1LW8yfzXNtfYlBx2TDkbx57QqxuEHWb2OU+kgjSa0mMIoCOwATm37Wwi4rJHUYdOGt65ASA8aeEByeH/L6m2lGoc/GVpRKvktb6rirLiNbxUz4KMMEw13J2IxFPJ5kEPSpHFNIaT06bZ1WK4ZX6pJM30bRcyS0OL5nsXm7wfxRk6xeoeWuYUufWOJJICAr9t1xdkfXyBgzqIpB3CiyPniZsnUGS0uTH0YwlSnG5/anLh3PR1EUDE1l8tjYd1nv22d3ZT8f5ezxie+4JpT96dK361FVFVVVgVmiiZDiRAtVUxn2RvTdIVJepph9mHy0QhCWCJwOWXN/P+TPnzrDwBlyp9rhsBUigy2EelfAg12QA/jbzM0/hFws+o6h+vuR0tmvW526r7/FAQd8FNyPSB4BHgceBR5j361dAEMhxGvsC+ZL7JsAdD60lgN+oNhDh8AP3lkrehshNLg3sYrQQCTvri2pgErgK7RrbVaurTN9cowgGJGvzLC6d5nKXJLx2SGX3miQK2dQ03DrG1c4dqTAtb9+mVffBE3RCWMmk6crpOIt1l7Z5sqfDHngnEnB2qFT8NlrLPBXf9olMjZF6XQKZ6AzmowwWLY5MmfTCSe5dqPF6fQIJTIiNPT/n703jZEkTe/7fm/cGZH3VXdVd3V3dfXd07O7c+1NemmSskxySVsUJcuyJVOGYEO0AQOSPxiyZFuA9UECJAuwYcMkbVMg7SVFcZfHktx77pme6bu6677zqrwzI+N6/SG7e6anr+qeGYmcqR+QQGVkRGRkRWY88Vz/h/7IEW7thfSI0zdS+L02x1M6DaOM12ih1Q1mZpeYHtN55VKaflVl/LhKuB6hdiLCukBNhegTEbqlMFjt8c3vp3F9OHrcJZvqU942mSm2iZkOy4MYMhCkjqYR+hZ2ssKXfnKTAIOREY+1vXNkrHEYXSCZ+SK6WCEKm6hUUegz91kHS9VoDG6xF/QwxS5heA5dy9H366x2XyaKPBSp4RgFUvokXtRF3tbrnz07c8+5q3S6NDo9kt2IybkxFEWh3O5gatpD5ztOHBt56HfkgzlqGPbP1koNnESMwuTQOO+ulAkMhfjIeYQSZ6Vap9bpMZlJ3hU0317YxogZXJgeRxUtiN43lFmdAp7ufjlm6Eg5QEat+49XhiA/nuHPn3oOWkD2zWONpJRyEVgEfhVACJHkPYP5AkNZuf+Wobd5TUp59uM73E8H3sBnZ7nE5NzY7Tv/+6mXGgx6Hs6pR+duhDBAmwT/OgibgTdKfadOqpAmkfGJWSt87//+BsULz+G5IYcOn2T1RoX6yiqOMU5ta41zZ3Mczbv4XzyNNnaLUyde5Df+t5eRXhOsBJkTcap/0qM4n2fy9HHaP1imsZBiwy8R+XU+a6hs9bosXW2y04RcIcb2xSVOzM0yeSrilfWI75dSpOMuxdBi/UaNquph5hNsr/YYsWz0k0mqrYDd3QZxpU+gCsK4yc67EdohHb3VwI8rPHu0xtamiTEQNGsGoRYyf8TF1QTC0pk90iWKVPrvDogfipEMfYTYZGRW0pMZ3n1V4+yPfw0j8RquViNdPExM/zrIDpWBjqNfwNRG6YsiegRb/bcJlC1i+ji52I9R9bbYrP8eo7FTBKFPEHm0vRamFkcIQdGaf/A5D0Jyjk0hFmO3U747psr1A8Qj4mKKXGNYhnF0X9+t7Waba7fWefbYNDFnaHgPnxl6alL6SP8aI/EpDPXeStT8RBZFU29XtaZBea/1Y+jlfYhCm2hvmFf/gJEUig3Ksaff7wGP5lNiJIUQh6SUqw9YPiOlXHvc9k9cuCOlbDEcf/KHQogM8Hngl4GfBE496f4OeDBCiEeGmMYOP9yDuENls4aMIorTBeq1PIOeT35S4fTnh2GxTr/GlRvLjJyyOHPhHE4qQ2Vtjyjoc+alGGNzozRLu/zR7/VJvTkgnR1DdrJcXF7j9FGVsdmX2Fzp06jkSOUrrK+EuAM4NiZwRwq01mJI4F//cQkj08aqdogbGq+v5um+U6a55LF7NYnvmJCAY+dNaivbGCWDrNZmr9TH0zukZ9LsbtkURgeUWxajVovPHatRdhMspDOMZRsMEgZkA5Y28hw5VSOQBuquQnktIjPeY2yswx/9XoE920HGLI6/VCUkpFdV2VhOsLMe8tlnXQ4d0+jUfsDldZexoxFBJuTWosexk3kK8SN4apaav07N75KmRUpPk7Kfw5UCTU3hCBtLTZA2pjFUm24vQa9vkMmMsFlvUkw4NHYaJHPDgpntxV0OnZ6i3O7QGXjMjxaYeV/odDqbJgxCrvzwOkfOH7qrqHMX9f4w66MoJhyyz528p2LWl32uvfMOxeQMthOxubTB/PPzaKpCdWsLodh4tkaz3WPe2V/e8UkQ6hioY49f8YADno5LwIPEhS8Cj50A/kRGUggxz9CDvPM4DlSA1xh6kwdN/x8BhqkzPf/wgo3uwEMIgf2Qyse7+7H0u4LUuhlDSo2F1xeZmBsnU0whsQkdhzC+QaVbxYrFKU55jI5LKts2iZROu1fAPOxyZblL9MYuZ77wLN/+/psMru5Sq4akihk26i2kr1H7bod309dIFeOk/etMTvoI/wRrqx2aA4exuksnZxMJDTVv08FHqDbNcher0SVbaNDa3aBVijj31XFe/84WqhGwYe8RC9a50RjHSem0Uwk2a3kKYRuHAREqnaxNzurTz8V4tRJHyogXZ7bxbyl0miDzgvkTXRoNycaSoCbieF0fPVIwUx6YgnIzJNUuUTjXIumfYX4uST9YIYyPgvlj4P4WHb+DUDIcS/67CH+BQdDD994iF/9FFEXBj/pMOhcYeBCJkMl0HlWYSClpuwMydoxus0csbmE5JpZjIoRgIp3kYTOOVU1lYm4c0zbve+3OhJc7yKgL0S5CO/LAfemqem/bB6CgMjo1StJK01cGKBMai5UaR/Jp2q2LJJJnyNoTOIaOlPIgP/gJ4VMUbr3vkwohdPYpd7qf6ta/x9AgPg+kGFrlV4D/kWEeculJjvaAD0+p1UFRxENHE9XLJVrlTWZOPwsMKwgd0yCXiWMnY5ixoaxYGO5hdq4Q9WcxYqP8wa//DicudDh8TCUKp+l3q2jiMD/+1RiD3Wts3WwxMjfDXzt1mD/51W+xXfcp7a4yflpSfsdBNhSMhE1lu0GxoBDrqfQ1jcljYwxGYnTebqIJnfHDBTrZOM1qk861TZTTY/QTJu9cqdBs7ZJIZqn1E/RCj7ETLrfqNu0ND3+0S1ITNEtxhPSp9RXiskPSH7DbmyQpXJo1l2esGsvOCFGkk3025K2XM9SqGpah0AwNuqpJp9MlaAnOfKbF+pKDpptMnNdxkiGTMYfVBcG6ukH+8ICJwirt/g9JqAWQGda7r2CpEPirNLsDVLFBR7zNrnuZ+dRPEVPz/MHqN/jc+FdA6uz1+hQSDifGigAcPv2ecPn4kfca5h9lezLF1D3P3d6AzYVtDp+d/kBIXvCkksyq7FBM1Fnp7aBrcWYn5hDoNPsVWpbBofEphFAwlDLS36PsHiLn2HcFBQBktAdRD6FNstts44chU9mHq/G8t10HZAehHggHHPDRIoT4NkNDaAoh/ugDL08Db9+/1f3sx5P8h0AX+DXgn0opbz7JgR7w0TNbeHSEQNWgKZsEYYSmKsPQ7e2bqdj7wmVxK8F4cYS9RIGNtTJt7zKXdz7Dla0cX/+Lz/HHf/rrJJ0zTBRn+f43d2h0AtbtBQpaRG/7JulEnoaRpV9fpe3HyGfjSK+FiFVYXDfJ1/PkR8oE6y02nBxMjWJtthiZ9OntNWnsNTh9ZI+ruy5xcZiwu0az6kOrx0isSaatsrcdJ92NqPVjzHW3sWyFTC5kdSVPLhcQdyLcXZWCsovrSkqrCurJPK6d4Advm+QaVSaTbcpdByMMaexZOIaHn1Y4fd5jea+AkY2YnW2juR6G7TBo90lm3iEyQhReQpdNdpr/hLb1M4ynTiPlaXTvLUwpebcryTqfZVQIEmoCQ4ljqDZfOfTTJPQs37+1MrxBcey78xo/CjRdJZ5xUD6gxDPM4z24SV/KiL3BCkljAl15X9hUiYOAflegxyaxEsOQrqGNknNStwd4A0qeKIqz3WghglUSTpEbZZepvCRrJO6uFzN0jGi/OUoPZP+JPvsBHxGffE/yzuSoLzEsML1DBOyyT2W3/RjJv82wQOdrwN+63Qryyu3Hy8BFKeXBGIA/Q8RSeZT2Ca69usD8Z47e1QSV0gP/KugnubndoNW+RrwXYcVVio7N2Is/jm4fpu8pSGExMf9TNFbrvP69y5QqLZqlOnaqzV4W6soYY84WueIxGpdnMMwealCiGY+hZeIoakSpvo63rTBzJE5/s4UWGzAY6XJzsUprIMhqks2NGKNjO0ynq9zai2M0dLrbda77N3E399C2E0gtIBmLCOZ0llYkPzleIZ2PcW0hwdljDbwxi8ZrHrvC5JkXaugqdK9LivGAthpn+5CDrocUqrvo+Q5RC3xX42ozRfmmyfRRj/YgYH3VYW/Z4sjpLp2kw0ZLR2rXOTb1DBY6YeQhZIsw6tINVRAuF8ZfxDam0GSLvBHnZqVLMQH5+LBy9NzUGEnLxA0CNupN0rZ1X7hzv3SbXay4haqqaLrG6KHiE+5BoCnW+4Yw314qTITxLKdvpzeXL60xMpPHSTkg7PetZ6DpBs1uhXKpwpfOTlBIqCiihVDSd43kwypxH3hEShaUx6aFDvg4+IQbSSnl3wcQQlyXUv7m0+5nP9Wt/wL4F7ffrMB7la0/B/wPw8XibW4bTinlN572YA74aNBVlROTRRqGxfVyldFUgpFkHNBBnSD0BXsrFXQ9weSpY8Qsh40b2yzeMDn91ZDG7grXf3SZvpXGDVPEMnFe+KUXefPXfkQiqeJaRYrZVXbWCzTqFTKFASKlYwwiXMdlvTVFbETl8LGrXH4d+r0O6XiJQEZ4ZoZmpNENFJSejj+V4kIioHVrD6uZQI61abQMOpGLasBkJs5eSiEhJPrNGlbbZ2nPZrmWQh/X2RrodDomiVGfM+kSjY6J0pfIBsSeVXnGqdFPWWyUY+yUTMy8wom5Nim9x7W3E8yM98ikPYQq0PWAE1/pYqQqZHULfc/k+o0EqlFjfPwX0bUErdAnYZ3Fi6YwwjJlb4dB1KE8WMFUcuTiBQas0wtGCOWAjD0sSLENhQvT7426eprc3sqVDSbnxkgXUo9f+QEIIUgZD8913yGettGMey8N1xc3KYyk0VSNQc9lxB+j5emkYwZx88ETQPa6PcIwIpSSrGPfbSc54M8An64WkItCiIKUsiKEsIH/huGgjX8spXQft/ETFe5IKSsMR1j9LoAQQmPoyv4K8F/dXu3gl/BvmEbPJWEZ94hgq6pKbiyDOfAwb1+chBCgFiEKGEklGDt8hMWLq2imRrPS5NCpKRLZJK6oY0uLpjtJq7aHbZtcvrzKIIzoKWO89doyL5zIkpzKcemVdxhM2by94PP5o4fp31gnKFVpeS4/8jVG/ApGoJEdkawk8yT3XCpdg3hRcPJQRKawymYpT+RAiKQnTdSizktnSjSuSRY3DdKGTt/Xca0sTqJCc0ehsLqDkwtIjIRsrcaZPNFGjtusbGRQuz6dYopQSF7bcAiXfIzIQ8Yd4mkXJ92l3rVIP6Ngdlx2yjYzxyIcDepS5wdXp8h5Gs9+3kVKn9DPUel/j2TiF1BCFzN6AxGNsO3dwgzzVBd/gDbxZVZaDc6NVwhkne26TYDLfOH+qs1Sq0O53blvIsbNt5YYmx0hkXmwEPjJF+buCa+29tpUt/YYmSnc1y/7YShOF+55HoYhpbUqyYRNtuDwwskjJGMWy5U9FCGIm8YD99MZeDR7Ltd3K7wwO3VPjtILAuo99/bN2wH/Vvj0GMn/B/jrDItM/xHwZcADJoG/9biNn7gFRAgxy70VrqcYGsY+8KAZkQd8jEgpWarUOFLIkbaHYa56qYFpm9iJGHHTQEpJt9XFcwMyxRSarhFP2azf2CZ5tEC538Pb8BGOzmLVZy59nlcWVmlvbJG0YkwdG+XSXpV6QtB/9RLH0gVWXqsio23OnA1ZX/VR3trhRj2F6Vm4huCo0aM3YZETgppv8ea7JiNHOizWiqSOtIg1Wly/miN12CRstzlkt9moQieMcfJ0i06gUdFVfALCXovBnopcDdGPZEhlBmxXfXY6Bl4pxCp4rHZHGbwc0LUM0AxIqJQ2A44XQnbXoNGyyZ2NUfccLt0QDLoRO70kJ/I1CmMet3ZN4nmJ6cHJo7DejrHQgNOnEkjZos1hVJkibeXoBya32m8RCo9ZLJYrBQrjfc6MnaS8vY4iVcanMlzeuYGj7jGVvTecmLFjdyuTwyBk5co6U8fHyY1nH1jBeocP5h81XaPfdtlZLnH0/EPEwj8CVFXlyz92/u7z5O1w6p3cuIy6IGyEEGw1WjiGQdq2mM6mcRMBPd+nEH8vF9vzfLwgoNLp7stISjkA6SGUxGPXPeCAB3AEuHr7768zFMdpA5f5KIykEOL9BvEFoMjwHuRObvL/ZJgUvSilDJ748A/4UAghuDB9r4RZu95FSol9uwCj0+iy8MYihmUMQ2m6xE6FlDoKv/uHr3Ihm2NypkCkKShhxK23lrm5vE652eY//fkvc/OHN0lv93jxp59nceUytaUIsdelcDhHd7zBWD7J1FadxFwRLdkl/G6dpVWPKV0nOz3GpozhiG1S9TYriybLOFiKScFpsnbJIDkK665NYaxDaSUgm3Pp7sToL6nYpgvbATNxl1XFpD/oYay30YgzOtZj7x2NftMkLVrIuM2pYAMlbqCOx7m0mUKr9YhyWTIJl6mUy8amxmqQJOc3yBY8EuOChpUmk+tgpgdcrqQo3TQYyytsdhokEhpKO46qpen5TTJTz2DKPvOJC6DlwHuT/JlxKuUNOv0ameQkI+Yp4jGbtK/R2agTJlN0Wz2S2eFF3tBUDE0ljCIarouTslG1oecPw4HK1c0auYnsQ8UkAOxEjFMvHr8rPPB+gmhAJyiR0qc+1pYNKQMIriKVMZAuUhaR76ust3SNzx2avOcYru+UOZTLcHr88b2+wG2xgTooJx+/7gH75lMUbhWAKoQ4CvTuCAsIIfZ117UfT/KHQMjQ6v6/DIt1Xt6PUsEBD8f3fFq1zt0L44fhgxdBP2fh6u9dXBOZOPPPHaO8VkVRFfz+DuuX32BnI0e/uoiSbpKbmOStl99l9PgJ5p+fQ86mubGwydb1LZLnHfzQ5OVra6y2JOcnNGrtOm/8oMRpbZ5yJiB2rohY7hGfu0WYVyim81SJcXhmi/iP9tjzfVZqNvGgS7QYoTQHNOdM+qFBd82nWkizuxQjN9Yl1hqwXU2QLSpEuodxSNAdGIwEPnpygG4FqJc9OjWJkwyINyKKqsqtV/t00yHWWYn6+i7PjtVYSY6R0gJ2BnGSfcGZbBUlAzeuJMl2O1xcyRN1IkxL59y5PeL5DkZS0FemMEMPI4zjuTUSqR+QjpVpDo7R9SuowqKojxKKE/RXKhwb/QzpYhJheuiqjSo05qZOEvohnUaXzZs7nHrx+D3nqTPwWNtr8Myhe29ywiCkXm6RHkk/0kg+7Pzf4f3SykE0oOltkjEP3Ve4A8PQref65MefrIhGCA2pn0fIAGSLycz9+VIhBAM/YLfVYTqbYr6QY/fWLulTU6j7yFM+TGxg+PmCoarUAU/Op8dIvgb8c2AU+BYMVXiAvf1svB8j+ePAa1LK7tMd3wHvp+0O8MMQw5dDb+EjMJJSeiDdu9qX+biD9oHQnG4aWI5Js9ri1d9b4Atf/xonXrI5tjDJ+qVV3vi9HxCFLVLHT1N1+/zL3/4e53IefuokK6U9lLRGsN7G/dEKfGket6oxMZlB90KkrPHc587xcmWBhbdtwoqHNCRet8G/3rHIrzaJ9Ii9toYiBF7cR3FM5A0XMaIh/JD2lIWXECglybu1BHsNBdty6fcl/R2DqBeSiUtUJULPGiSUiK5UMGIR1ZKk+e2AF3+uQ2lX41Y9i3YjwLQTNPoaQWghpGT5psOK5qAFGlbGw9/RCWWIagtkW/BWZZr2siDt+fzMT6xhFQSrrTFOZiJi6c+z4y2RCGvEjVkS+tiwtUaZJHWyTdVtY6slGrs+vmVzNHfqnnabVD5Ju94hCiNS+eF5SsUsLkzfW0izWqtjaRrHP/NgMYAH0aq173qjd9AUk4x56O5zIVQ0xXqoxF3oh/gD//b36V7P9HGeqBAGCAMpLYJoQK3jIwT3DFkOpWQQDANNlqETi1sf/iIdlSCqgH6ghPlUiH310n8S+GWGff17wH9/e/U2x2IAACAASURBVNnnGOYqH8tju46llH96YCA/OnqeT8sdEE87HP/so/U2o4dMR7h/xTqE63efpmIWjmnQ6ru4/vDCtFyvE2VjRKFEAJZtIIRg6ugMGws1FH2UCz/xs6RHUowlE/zMV0awZxuMz2UpOtN0rrYYTyawEw7JTIZEcYzpH5uj2y8Ti4dMWEU+f+EErbWIHjHMmI7S8hAbXdpOmpKeYTBqogc+8a6HHoWIgQeVJkogKXSqpPt16nGL7Z0UATr1UBD6ArctGJhxjl1wSVohnY2Q4pcC7HMOQtcZ+ynJ/Asu29+VNLYFM6KJY3V4LrPB4Y01NOmSajZI3CqTDDuYfoTfiwhRUE3BoKmzc0my/bpgNGyTsvq0diKaVxRWr2/zx5d93ll+i4E3RtgeEJfrCCFouiv0+3/CWOwQmtrDc6t8939/kzd/VOPWtTUqm1UAthstKu0ut95e4eJ3rtw9r1Ek7zNIKWt47h6H6wd3p2dsLGzTbfYeub4qNFLGxHs9jx8gM5J+T+ow3IDgFluNFjd2K/es96jBP92gyt5g+YGiCLahMzeSRwiBqqmMHxm9x0vueU/RRaYUQTv++PUO+FQjpVyTUv6SlPKvSylrt5f9ppTy7+5n+/3kJA0p75XiF0JMA38HuMBQ0eBNhkIDm0/8CT5l7Leab9AfcOP1RU48dwzDevBFMwxCoihCN0ZAvT+/s9Nsk7BMio5NRmgog5Bus8eP/ZUv3p0hqKoKp75yitR0ltxIlq1bOxiWwbNzU/zObze5cmOFlh8wcXSUtYVtYqMJNNXnxNkcl26UiAarfHZ6ltRsgXwqQbqQorleIap5jCclDTdi0AlwwpDJ0x0SR1X2IpP1NYNDM23aik51BcKOhpc3GHUqNFZURrUWUcZkZUHjULpDL+wh6qDloTSI47R7RHUXPwjIrQ5IZkN2+jG0uICVPu11k85sQLumYWld2O0hdIXWOoACIyZdJ4Y0LdKHqyQWO1hKnXRKkN5tcPUbFsVnQHV0piYURLLCBlM09lYwzmeJO9cxVA2ULIa6RcvdQ8gpfu6/eI56qcHVH93AsAz+nb/6ZVRFQVMURqZz2IkAGe1Rr2jc2CkzOV28p+oz48TuO48P4la5Sj7uMJZK3BPGDSOP2mCJnHkEVTFYvrRGZjR9n2LPI1FHQIYUEwYZOzYsnPFvILXjlNwFsuYspnp/OsfRCsS0DKp4tFziB+kMPK5ul7gwPf5EPaRCDKfaHPDkyE9XCwhCiM8D/xEwJqX894QQzwKOlPL7j9t2P+HWvhDiBSnl67ff7AxwZ8d3VAz+BvAfCyFeOlDk+WgwLIPZszP3GUg/DO9eSHZXywx63n0jl2SwBkqe46MFthZ3qDb67O00kFJy5QfX+fzXn2fi6DDH0232MNI2fRlx+fvXePuPLzF5fILZczPs3Rjw5X//LN29HpGpINIW+Ysm737nLRiF7rLJ3laGY8+e443vfJuN7y+gh130Shs3bWNPRIRem+6ygfRh+5aFqkIm5xJIg41tAyUUGLUuvVgctS1x5l26jkm1aRPWI+xkSPwli+6Cz6XVOI4VUI00qpbN0ckevW2JCASNhokSNzhxuomSUlnfiPPDNxP4cxnUPR89EkSdCD2nkI/XyY8aLJQcvK06QV7HuJCAzACx12TLTbKTTbGzqXD2qMHnxjewUxkuKTtoxQmqwTjCc8knzyGMQ4TBDk4noFFZ5sSzc8Qci3jKYdAfekd3bowyx2LIEJB9hJJkMp28+5rbG9DvuPs2ZvOjBdQHeIWK0LC1HG7HJ/BcMqPpYWjzCRDCBAGGAoYGUoagjiCEQdacxVAerBokhEDlyQwkQNw0eGZq7KEGcme5RDKf+EjbXA7gU5OTFEL8ZeCfAf8X8MXbiyXD0OuXH7f9fozkB/+V/zOwDXxVSlm6fRAjwHcZStj9B/vY5wGPQQhxX79cq+9yo1Tl2elxVEVh9HARGT0orxBxR7s3CiMyI2lGD43QanXpqJLSWhknaZDK9mjv6ay9usj0/ASnXppn4+Y2gR9w8dIyUycn6ex1WbixwbFnZzl/5BCXegHGtQKiLTh1ocBSfpfmXoudaxt0By6Ts0VacYWRkRYVK4uBhpIZENZ9wlpEoAl26hpiXCK2BdIISB0Picd6lJdValcVElaf+iCG3zcQXUg0qvRaBqslnVrCJBEOIA2bFzUm8j5bWxbenkA6IbIv0DoeI4ZHX0aUru1hRxGKLfBsC2EF9L7Xotp0SJiSQT/gMA1M22JpO81aFKM/CBk3ekjV4PqmweVXDEY+73F4ssuxw8fZWujQKWjkEhJvEFFutsmPO+TDBN1WD93QyU/kqJcaLF5c4egz77VnCHUoKCCdPnHbwNCGP8F+u0+j3Ny3kXyYQRFCIa4XqZRq9DvuI4XyH4aUEaH00RTz9j5VuK2t+iAP8sPg+gHXd8ucGnt4pWsYRjxU/f2Ap+dTYiQZDt/4mpTyTSHEX7297Ar7nFr1xH2SwBeAv3nHQAJIKUtCiH8E/OOn2N8B+yRhmZwaK94VDVBV9YHRplDM8O7GDsdHdKaOv3eRVE0dMx9nc32N7sUFXvhigtHDJ5man0DRwNSXeO6n5vnWv7rExEiBU8/McvVPrrH49jKhEJzwIw5nUohnZ9krNzEtn7G0SnelTmuzQXG6gDaZxdzaobGu4Ha7iE0XBj6mJgiSMVxNMDdRo7niUgs1Ik/gbQgGZoC+F9HxTVpSJeYECF1FO2HSnUjT6auIXZ9YFDAYizFfqLGxYLKmOQSJEHUM0lrA9e/EiGICrylRYjDW7KKdCin3s4yVyviaSV1JEWz56FMOwUiS3njE8rUUWAq6EpKSHoqjs7Ft8/z5HlcrOco/FHz2pWm6ozaT49N09U1+///7A+TA5tDhEU48N0c/DFm9vEYy6TB9fAInZaOo93t7vuezcmuLwlT+bng1M5ImM/J4QfD9cmeg8tPQC+u0/R1GY6c/1DE8SFXog8sMVWUinUR/wP/pDpPHPpoxWv2ue08x1aedT1G4dVxK+ebtv+/cbQXsM1a/33EBH7yNe1D7xxpw0O37MSKEeGRRR/928YOmKozGYiy9vkTgv9e66pgGp6ZGOfm5o5z74gW02BmEUBmZzlNZr7F6vUE8myZbTJGOGay/s8rEsVGOzk3SqrepdXt4fY9W6GMcLRAFXXaXlqluLXL4hSJ6PkEyUvC3PPxbEdmuiqYo6CMR1oQPzT5adcDOqkUsK/mJr9cw4hK3oqBUITEOTjsg047IFEIsO2S22GH5DahcDFEMcBIBxmaPoAnZMZ+cCNBcMEohE9kB8YRPNBAkXzKQVkSYFfg5m9xhCZMWSjFGz1Dwezp1x8TtquxcypOYtZHjDoOExeB4hmpoUMh3aa42SSR36UcRf/jNHb7xa9+h1vkWaHtMXiiQ/0wMa0ZS7vYotzv0NYnfXcMP2xiWcbeS9f1EYURG0RlP/dn8udhqloI598TbVTtd3t3cYae+hpQB727uUu28V/MnpeTt9W0aPffucxFtUIjrH/v4rW6rx803lwiD8GN9nwP+TLJ0u9///bwILOxn4/16kv+TEOJOT4nPcAz6jz6wzgxQ2+f+DviI8cOQ11aWOVWokrLPMZZP46aa+F6Aqqk0qy2SWYVefYHKVQW1H3Dx0jqKrtAoNbGTNhHjOIkUP/31l1BZYdD30e1jvP3OEs2VGtuvrfDW4g5uz+Mv/XdfZycNN8srDBZV5FKXhZU1pr56guL5KZq7FdxWQOGYx86SQOsITnyuz/XvxegmHRS/x1rNQYYRKCqGERIbeJRjceZm2jTaKp2dkGjLpVeJ46dtXOkT1gZEZgyFHolMSFppMGgnsbIhoYyYec6n/opBe0WBjkKYBG75jE13uOLmoWlS6LXoDRS0RQU9phF0ApSYQzyfxWj38V2d0aiFPqJQFqMcyvWwg4hDh+PUFjrUdkb57PQsE0fG2dna5tbSMtk5lcmsRea4Tpw4FfcG+dgpDOX+PJoZMzl8ZphH7rX7dJu9D+X5fdQIIVCfovfQ0nXWa3uoYZnRVJbZfIYgDPGCAEPTEEJwpJAjcTvPHoQhrtskbufvC/0tV/cQCA7nM9R7fcIoIh+/PxcqpaTt7+DohUcWDDlJmxPPz+2rL/NTw6fHk/yHwL8SQvxTQBdC/NcMC0//s/1svB8j+X2GbukdQceLwKEHrPcLt1874COi33Vxu4N95al0VSVrJ9lrSbYvr3LmCydRNY3AC/BVhY0b2xz/zATJ3Cgnnk8x6HtkRtOousrhszP0EzqH8lkURUHVYOWyQrMywE6tMvLiEdaT4K73iGfjxOIBN39wk+qgQRApLC2s09JNNEPgXyvRXatgH9fxGx6KGaKZBqbjU15X6aSBokawLvH1iImcz0ZdYdDVaaITZHVWdh2scECqK9leMKEfEI6E4AkiVMKM5EolzVGty+6uRrNtEPMiFCNERAFqKAmlxHhGx4hHdF8J2ajYzOWquOsaZd9B90PMDZf8cagfj1Hf8TDLdSgY1NQUJ0+FxG2JwxT2tM47FzW+EN1k/jMROxffpjq+hJn9BVbe2sJ0NA5lc1i6A7qCrlgUo8HdnN77qWzWEIq427TvD3z6ncdqLD81UkYPbfvod13KaxWmT0x+JJ5c3DT44twRbGMeoagkY3Blu0QhkncLlO5IJwI03QFbjTwTLZdkVrunSG00+Z6X7QUhfvhgD1AS4Uc9Ihk+tqrWMJ+8qOgTi+BTYySllL8jhOgC/yXDiOdXgf9ESvnt/Wy/nykgX97nsfxdDjxJYHh3G0TRU49EukO/3adV6+y7mOPs1BhSjjIoeiiKwqFTU3dfO/OFE7f/SpLM3j7GwTAUm5vOs16ts/DGIq4XsNptUwhVupU2weoe9mSK1q0yZ07MsnUsQ/udLbbbLXav7rJ+q0exEMP0LDRb0G03UFWVxsUWgZTU2yaKY7ClxAndPk7Px85HzDwrSDYibr6tkX7Ro/KWQdyLcLw2PU3nyJkBOzsmu2EM0QyILfZQLCCuEBVj9HyN61GSVFRDiJDONgxUm0Y/oK/pmK0BST8iWAkJBzZaNaIfqAQZB8XXMDdcHF+j1MnRXxEkWy5oAvNwHttT6EbHKBY9/IHLxXcrbKwIvtcVZBMtLhRUXr9iUd75NtogTdJ2+OxXsqjKe+dbSu2BOTlVU+5ZlsonHxiSvYMbNjGU+ANVct6PlBGEm6COIW4bi45fph/WKVgP7iVUFPGRe1YfHJNl3pbgexD5uEM+7rD4zgqGpWNYBt7Ap7pZY2x25O7/6VFtU4pQyVmP7jc+4CF8esQEuG0Q92UUP8iTjTB/9EFcllJuf1T7+/PMbqtzXxP205Adzdxj6B5FdXuPermJEALrASLZbXdAd+DR77ps3txme2mX3dUysYSFoamIUoe9SpNLtzYIt5qcfWGOYNAlO57m1VevsnNxjbRp0ru6izWewvcCrNEEo7NjFI7Oce6nLxBYBvXpBE3pEfo+vck4SjpO3LJwttrEyx6JrM+0VuL1hRSvLmYpFnzkhiDMJ5BplZETAfmZgFt/arMT5rEVBaMnERKCEKwRn+xeGedaFSUuCByDQVbHHTHpIemuKpieR/aFkGQsoNGxMQoR6VGPbjqOURhwYXYXMxNh2oK84ZJ1JfGESs8S1NsSO2YiXJWX3xhQemWb2MUdjukbzLPBYLVNteUQ7gVMjmyRPVJm7kIehTIdd8BmvcnV7RJXtktUOvdrcGRHM8QSMa6/duuefPGDkFJSH6zhR48WChgSgezy/vKBmJYhZTz8+2PGTCbnxj+2fKCULgljgKndfy++eWuHfnfoQR89f/iurm0URrjdwQP1aN9Ps9qivFH96A/6U8SdXsmnefx5RQgxL4T4FSHEV/a7zX7EBP5D4I/vKBUc8HiKCYeMfW9TeBBG9Dzv7gSF/VJpd0lYJpZ+/6kK/ABN1wiDkI0bW0w8ogqw0u5iaCo53aC6XUc3VOafO4YRM/jDqzeZzaV5/uQznOy50PNYunEJUVjl2isr1BZbjMYcWtUWJ0/NsLRbpXRxjaPPHGHP6dJ3PUSti9mHqWIe+0t7NLsxtkKTQeSgvbLNyBeTlHagvOfSu2Wi9bv4vYgbUZx20QIRELVh6x2VzDx4Yyb6TpvZF7qsbBjItsr8yT6lfgx3AHF8rHiPQy+63PiOQrcGYcpk7nN7lOsm/XKCWD7CjHvEpiQZTyJLLu012MkkkMmIvUaE4YLj9RiUOtiTeWJpA7HXp7TnMkgo5ArHCdPb9KM+C5FFbDJJX68yM7tBbTFHhMbC5iLZtMKV1V1GjuQx7AaHEkeJ6Q8+103PIzOWeawXJ4RgzN6f5JoQGugn7lmmCv2JG/s/UqIGI04LoQ8rrKNIoiiCqnuTjuuSk+nbxtBHCIPSWgU7Gbuv7/dBSCkf0v50wAFDhBBHgF9j2OrxA+DvA98DekBWCPE3pZT/x+P2sx9P8jeAbSHEN4UQvySEOBgA9xhURbnPqLVcl8XKvvR0Wbu2QW2nDkCt26PnefetI6Xk2is3qWxVCYKQ7FiG7OjDWwhmC1kmMyli8RhnvjDP7LkZbr21zPbyLpW31knoOus7Na6/eotQSjpNk452AqlGzJ0a5wu/9Hn0+RE2N6rU603GvpxAn3FIJWwGOmyU98hM5UhqBoycJhhoKBsRY+0yoaWiaF0iLUS1dAaGg7B0RN5AmzQpej3iPZ/xM6DkdKSiMH+yT1Yf4K9C1IZIg61Vk/5ihOGFJHIhc2IXdvu0lBjmiE7M99nYsNnV8mx3HTaXVTw1TmUwwtJOilLDIowbVItJ3IzDIKvhNfqUhaQxkiP7wgwvnbWgUqP/1gYnc4L8RINepUnKHqPZkuiDMhk9Q23DR5lREUcgfToAZ5yt7XXc+hrBtkvUC1CU+2+5o0iy0+4QLyY+9orOf9sIdRRx23C/s7HD7166zsAPSOjjHDs1TyweG2qv+sMpRp3+YN+GL11IMTJTeOx6D/NIHyWvd8Anhn8CLAF/GWgBvw38DSll4fayv7Ofnew33PobDKtXfx0oCSF+Uwjxs0KIhw+/OwAYVi+WN6rQHnDEuf/+IooimtXWPcuSefuuSsr8aIGsc3+FpBCCo88c5trLN7n6oxvMnJhEe4C3+UH6XRdFUYg5wzv2ZDrOc2dmKeSTaI5BeafGjZdvMjFe4Ge/9gWOnfos+WQeq+PTrDTIn59Gzybw6kmWb1VwIsFkMkkmF6fS76P2QvZ+tEo+KRHJkILdQIxI1q5a+K2Q88crxCt7qNt9xkWLUadLu6zh2g7Rroep+WzVEqy/K8hPeyxvOzjpCDUAb0/BTIUQB8WUbNwweevVGFp5wKAZENkKqc8ZaM0+WrVNa6AxqPiIbRdnNMAWLn5TwyurZJQuuZkQ2h6JyGXccwmvrNJ6q4ctbeKWoL1dZ3U7g3PoWZyZEf7KT6SYSDpc7GlsBimuVnPY4TlWfv8Snd0SnzlVZCxVYONSjys7ZaIHXPAVRXB+aoy49cn+6QyrTncJb0/Pm8mmcQydnu9jqnFU5XaRjpIH/QTdgUfVlFipp1PVafVdLm5s32MUK+0ul7Z271s3iAbs9C8TRIOneq9PDOJDPP588Dzwy1LKbwH/OTAG/Obt136LoU17LPttAflfpJSvCyHOAn+JoarOzwMtIcRvMzSifywPbs/uI/AC3O4A3dAwYveX1bvdAevXtzj5gnM3/JZOr4M6Adyv4+n2Bqiagm7o2IkYz37tHJr+uKIOSSQlb/z+RRqVJi/+xc+SzCYorW7gZIYzCxVFoWBZTIzlOXxuCtuOoZs6I4fyvP6tt5k+OQmaIDOeZ65YwMsF9JZ30DIak8VxzsS6/Mt/8E32CjnqSw267Th+FHLVGEHNRQTlPprvU9Xi9DMaou9SWxGojoqMIuyNNo3IoDAzQKu3aMdsNmsqoa0xe6jB0gqoOdCdCMsJ2fqeiXQEcSUi8gPcrko4rRGZkMj2CUyFunQIPYmmRcTCgE4TVMMnMDRaM1mcGQXR13A6Zep9D1HSWGqXMI5Ok0pZdG5u4guVrDWKDBwW1XEiFbxOjXcvp1nWdJLHXZInBX+w/hpzVp54NsfxZ2cxinF2V0qMTm4i9KMI5aMTCnhaIhnSD+s4Wv5jfy9JhBu2sNQ0qtDIODG+On/krhDGHYaVtxaOCc9MjT+0yOdx2IbBdCZ9j3eeti3MB+xPFQZZ8/ADq48/Tfx5zi3uE1NK2QeQUraEEG0pZXj7eST2Gcp5IsUdKeUl4BLw94QQzzE0mD8P/DWgKoT4LSnl336SfX7SSeYSJHP3No2HYUh9t0FuPIudiL2v8vQ22nF4iJO+eXMbJ2XfndgQTz1YRxOg3+mz9O4ayeMjtD2P4lSOQycnqWxU6TZaiGgBv3+C7eX6sGet7eKcHOHa4ha9mxXslI3bHvCL/+AXeOviEnKtwfxonh1V540fXkUJPXzPI9q+Rrla4uw5hb5I01mpEngBSjKkP9AwNiVC11CbHuVXFWZPN1jqpghbClE3RAdUJMmRkL5tE66FGD0X7YiGXw95+/UEigBbiZiwBvg9CDCxowBRlERthROzXezRNm+8VUSvS7QjKsFOSDzRRy2YbFTTqFMh/uEEQSdiQlTpL8QIGx61HQMjaTNxBjqRTnq9jdLro2gJHHsUXd8joMvyjsGxr5zgfJhn8RXwgi4rlMhtn2Z3sIR7dpppz4Z2n7GZIlubTaRyCKR9z823DGt0GiXi2RP/RkOuoRzQ8cvE1Mxjq2U/LIpQKVj3ChJ80EBKGeFHfQx1+B1+WgMJQwGNXPxeL1RXVfTY/fsUQmCpD68oPuATy1MlsZ+6ulVK+ZqU8leAaYZ9J99g2Ct5wEPYWSlRWqvgDwIqm3sPVf8Qin17wsH9HD4zzeih4n37bdc7961r2iYTR0cZyySZzWdJF1PEM3H6HZde2yc58jmcdIHmbpN3/uQSs+dmGIvZTKbSPPcXniU/kQEhkb5Pp1yhOJWnVmly6+ISScsi7Kisv9GitO5xcyFkPXEcNZ3i8PlZLEchnwuIWQJtrYEmPcZORghTwJokFvRRZcTRsz1MJyS0VHQl4uRMi0yxh6n6pK0BMTdCiQQq4JYUNrdMgp5A0cBVbVpKjp5m4PqCdsfA70TojsZov0es3SU5FdFPxtGsENVWsbqCrD+gtWMwaCqoIob17DjxIzaZMxbC69JY2yKRaRI/CsVkEv9qRNRP0u66jEmNQqBycnyc5/UCGX2a6tZlJnI94ppGd/MasfgAM6Zx5NwhBq7DlR8t3lPJ6nuwsVBj0L8/1/xxois2I7GTH7uBfBQNb51+MMy3D6IOtcHiIytZO4OH/4/q3T7bjdZDXz/gEQiGLSBP+/jzQVwI4d15AOkPPH+4h/E+nka79R7k8Bv+XeC7QogDL/IROEkboQxbNE48d+yx65c3qnh9j8m58bvLHjepfu36Jk7KJj+eZdD32FrcZT4bJ2bo7HVcpATDNIglLEw7jpWM8flfeIFus0uz0uLSyjaFYpLv/7M/4Oj5Gc5/5Qx6HqZesjlsTfHKd6+wtL7LZ56Zo11poM6kcZsDSuWAuN5je3ML7UiW9MwEWze2SNJg5LmQhVsCtRugbfSpxHWCHtixgPKqQS7jE45qbF8yqb5jMzXSRbdg86aBKnxcVKKUhR300AshDV1HVSHyQ4zYACfu0Vg0SJ6CtOfSDRSiSGIqEe2KQT6soU6Bn7No9QzcNYlrxBGWSbzfRZlKEZQq7N4KaXcMZBiSCLLoQmPptSVMXcc8Psq8E+MvvFRkc5BEeJKFt5dJJGx605NIN452rYJ8yWbiUAfpL9LpZNlarHHo9NQ9+WIjlmP++ZdQlI+sA+vfOjJYBGUUoTy6rk9X7LtqPpaaZCR2+oHedBiE9IOAa7sVzk+OfSgv84CH8MkPt+67zeNR7MdI/iqwr6a/O/HeTyr1cpNus/fUgssfDLs+DidlP7DnEWDhjVskckka5SZHzs0QRZLKZo1UPoF5O/dpxgwmjo3hD3xUTb07HktGETsrFdp7Xbwxh856Da3lcfKF46SDPp1qh/EjI8yeneGb/+u3YT7PlVKFL9rv4Dg6J8/qtBOCrdUyXr/HytoeybjNoNmnVmrQqzXJpeKEQuAOLGpNG7XRZrNn4MwoTOQ7lJdVUpmQvq/g2BHlm+7/z957Bkt2nnd+v/ekzjndnO/cyXmAATgAQRIkSFEUlShxRalsbbC9ttdbZctl17q89m75y9q1VeuyLa+0tWLJSqu0kkiJEkUCDMgYADOYPDeHvqlz7tN9wusPPRjMADOYO8AMBQznV9VV957zntNvd5/u57xP+D8YXYNuXWG7YeAEdJygjpp38foc+nebmFkXpQ5WUOCLu7Q3HJwLNjWPgmoKyucFBAy6EYOVLRc1bKBvW+iTKrVVFTQf/rhKWehouTbuqTAy3sa8skYglcIqtzE7DpqvzWqzSSbcR/y4YCDkpZtfJ+BLs3L5CmpiH8VzOcy5bRZDkvTQNEcHEihGh4Gpfdiajmb/EIVLJDK9GkDpNii3anSdEH2R0ANlIHvo7MQx9e546O1WtQtvLRNJht+3hVYs4CN2i7j9Q3bIA24kpZQ/2OlYIcSvSyn/y1vtu+NVfa2b89LdTO59JvKvhBAXhRA1IcSGEOLfCSHiN+xXr41ZE0LUhRDnhRA/fy+e+15geDS8/rvXtHybreUcK5d33pc6EPbfZFid6x3tXUpbVVRNIT2SRPfoWB2LRqVJNBUht1akvF1BURSiqTDzZ5apl3ru2K1qnUhflHhfhMRAjOl0kumxfhRVoZKrEau7GOUWT391hGDMYHhmkGily8GOzsiuIXYf28XRY0/Sj4++gQQjxwUDIyFUWzI1muEzP3uSR49PkxqO43S6tOJeCvkOiKN+VQAAIABJREFUdMGf1ojMqFzZjKGHYW3BS77lY2XBQ7NmIBB4LJM6GuVUBKdmYgNOW6G5alFc1SiseClf1jDTProauFJgmAInLPFaLka1Q6Bkovk0hOnQJkB1WyUYamLOuWw2ggyFG4wfgdhiBf9Sg3DCQ3JQYFgtAhWb2HQadcpDxushoZtERlYQSpa8tHnunMJSzcT2asTTEU4ODPLokWnOnz3DlY03mM+ep1hb41Jumr9+KUAkPcNSoUy7W8F1ajgPaMsnoY0ibqFT+25ya4VbhgbezcieIZKD8TuqVpVbbS5t5nY8z4fcwIOf3Xo3/PLtdnwod6vopaadBM5LKes7OMS5NpkLQJReoefXgS9f2/9fAb9Cb5k8e237HwkhLkgpr3yYud4LApEAgfdJlLkTkWQIx/5gCcClZour6zmcVpfxkTQnPn/4JhdeOB4iHA/RNbu4toM34KGcq1AvNdlzchpN11i9uk5OtZHtLpFkmGC091q8/XEMj46qKkSSITIjfgorL9BoREmNDrD+3XUalRbzc1kmvRaTu9I8++Yig6emUNYTzOdfIVdtUJ9fxx/ys/cT41TPZkll4pjFIrLUxeN3UGsO+RcV/EKy95NNXiuEqBpBhgc76FqX1TkfOBpGw8aTr2EbIDtgBXWKGwoaNg4qfX0dTn6qzHfWwhQ1L92OzUDKRgKlOR0Rc9k7XadVEVwpG7QqNj5HRau1iL24ihywsYKCaExSa7vo+RIl0cJRI6R9CnLZJDw5SDAQpG80wtLZFsUzHoK+ZVqJDolDOtsVD0ODCaaOjnNxaYPJPT4WL3koeRp4vCZS+vCEk2w020hAijTJyNAHvnYeFBzLwXXu/B24nQcFoLxdQSiCaCqCX9dJBh82Y37Ih+a2pv/D+nxC9JQMDu9ksJTyn0kpz0gpLSllnl636KduGDIFfF9KeVX2+HN6erAfrrHdRwRf0HfdMN0tEZ+XsXAYrdRm61z2erlIs9pk7eo6jUpPAq2XlNNmaznHmWcvIBRx3ZgqQrCvL83c81dZvrh20/k7rS625eDxG1QKNuHBn8R0Rvjr1y6x/ycOM/MTuzHVcyycP0thfY6gx6Dy5hpzr6+hGirttTKhiMAxKixdeh57axVdKGiNDlGvTWzEJT2toY5kiA1JVha8WK6Gvt1moxVgq+xj7EALr+ISjjiM7uuiCQUFkH4DPSjoopDIdNCCDlrNwmPZhHNNjAq4IegGehe00bCoopOrG2jNDkbZwfQkkY6L1+3gcXSchoparOOmk/hDIYLbbRoXa0RiOiOHwhQvrHHh+XNY+TrH9vbxK7/2BLbSIuKLsTrfpVFqMJcv8sNvvwlJH7E9n6T/E4dJDY6xue7HvOLg0w10TWMiGX/fFmcfV7q2zZurG3TuIK/3NsvFMjLue1+t2p1gdSzsbu85PbpGOvRQ3+Tu+RBJOx+fxJ274bYvaieydH/0Prt1ehb4Xwoh8gBSyl+4i4l9hl5Jydv8O+D3hBB76fX6+plrc/zhXZzzvlDOVdlezrH7kTsn3OwUKSXl7QrRdOSOMSoB9GViZNJRLrxwhdJWhUR/DNeVVPI1Ou0uU4fHiSTDbC3lsEybvY/tuq5KsnRhlWA0gCtdkuNhMoM3Z8jOn12ibyyF4zjMn1liaFc/ZjSA1heibzJDdVOQyE9TWXP49m8vY7sORc2lP+JjaFc/C2eWGZ/J8IPT84SbNt5ok9VLNpNjfvadVPnm77pYmzZuqkNQCKo5g9ZYgqRWwy9NFNNGtASWI6i6HlpLKmrLxPFp6Dr0PelBXi6hBTW2ajH+6Lf8KAgc2WtRUzmrITRJaKJLa1mnck6ha6p4TRddkxxMFriQVWg7GoULXZxBBaNPI2hE2HpuERHw4MsECCXSdCd82EXBrkCHiw1wN7scfSzLxGMx/OFpJqfS/MWfvMD6xQ4TmShfHE4z1N/PxtIS1bCHEwemqW5VaHsFoWvuQteVtC0L23GIvEuyUDo5ED6Ecu/6S0ppIsT9bTCsqyrDsciOk2qiPh/qLVSI7pb0yJ2Vdh5yBx5ct+k9Zyfu1p8HcsDl9zn+riulhRA/B/wj4JM3bF6ktzK9ALhAB/gVKeUtgw5CiP+Maz3BRkZG7nYKd0Uw6ked7Lun57S6NpuLOQIRPx5fz710q84RAEvnV/GHffSPZxjbP4z3Wof1UCzIgVPv1FkuXVxFURWmjoxfP4+UEjXiJRgL0GgVWVi8QLNgEUmGWTq/itEfRozFGJweQNNVTn7xGIqqovk0Pjs9gd526FzOMzw6w9AobNdqrJ1eIRJQufTdy2T2JkkfGmTtTInBToD8YosNwwNRg63tCsZ8m1AoQmWzg+oI7OEAUaVGpdAknqnjz7ikBmzWX1MxApJQ2qK21EEkVGyvimi5FLc1xuKwfFnFqtl4pEAEu8iGgqNpxKMWlgPdmopn0Ka9oeE6gB8cG4obKk7VIRg16aoKoVYTazvGoSEflwdj5CsNHMth7pU5njwwSTumsJFSWVwrUFyqUl6wePQL+4gn0pj2mzzzEwoLrxoMHt5D1Se5unCRoE+HiJ+6LnlhaZV4xcbZaqBEvCiZEKlwkKtnFzm0a4TkYOLaNWChKS16a+B3jKTVtdCND6a7KqUL1jmkNoNQdtZB5oMghCAVen/PyEK+iKaojCaiN7XJutdIKcnVmySD/vfUY7a7Fr4P+F4+yPwYiAncE3bibv1v6a0YV4FfklJ+6u0H8KVrY/7pDdvuiBDiK/RWjT8lpXzzhl2/DhwBxgED+Czwb4UQn7vVeaSUvymlPC6lPJ5K3d+7S93Q7zo79U4YHp19j89cN5C51TzzZ26dIzUw1Udi4HqO0001llbXwmyZVAs13vr+RUrb1ZsM7dyFVS6ubqIYGqnUIJ98+otMH5vg+T99hRf/7FWKs5uMJGNousZsroga8PRuNJfK7D4wysrFNbJvLCOlpLRV4krtCiNPDLDv0DR7npjBHyjhG/OiZ4KMPDKJkgwRFjrxqk23rnDxbJiOV8c7GsMtNWhsuZSzClrLZakcZ/Ylg5e/GUB4BXafF/1axYtSkfSFLfy1Kt2zZeZe8FJvKqg4OBGJbBi4qHgDNkPjbSb3tbBLCqqjcK2XM1oLsAWbqwpays/EcRtvSFJSAygeD46zjC9UZ894lJjXgx7W+eE3t8Fq0t9s0Hcuy8HxfXSaClc2VigoVyiVG2ycC0E3RixQQSHHwtoSW2YN4YJf09l9eJTU4UFen10lEQowlU7Q6loMTwSJxHu1fY1Kk0svzXL5dIdm/Z3VZaPS5NLLszi36aF4J4RQQD94Xw3kTsmEQ3c0pPcCx5Vs1ep03lV7XDc7nN/Yxt5BHPQhDxZCiE/cYf/fu/Hf243bSXbrvwF2AxZwRQjxz27QbL1r57QQ4leB3wC+JKX83rt2HwN+R0q5IqV0pZQv0VtZfuFun+d+4rof7gvX7Vi3bJMU64vetpOHL+C93jS2tFmhUX6nDdPKpSw//OOX8YW8HP/cIcIxP83qO/td0+JQfwbPtdhkOB6iazTpn7I4/sxhuo0uEb8XIXqNcxfzRc6vbVJYL9NpdYn3xzjy9AHW5jb5wZ+fxlgWqLYHPeHnTC7Hm5se+gZGiSTDZLdLeMbiDB4bRfMbJMcSTM0M4RzI4AQVCKp0qwqdpoorIORtogswKyoLZ/y4i11aZzsIr4I2ohHPmHRCfuy6jjPuxR32oWUc4mkHVIFQBXYHzr8e4ty5CCiC5oYKUiAcwAD/cBRFVwgEJFde8FE3FYyQg2sI7GAD0WyQHCgxEPASGjXxZGw2X2kTkTNMH/dgyCJHPxtmLHGA1Zc20RsB+obG+Px/+jSdcojt56uMG9OM9PVx9htvsP7KIqfGu+weFfjjPoo+wfZyjoANw31xNKMXn/T7l5k+mqJvPE2306Ww3mu0E4j42XVs4o41se/H/Xa17pSAoaOpFve7OkxTFQ4N9eN/14ox5PVweKgPTX3QSm7uAQ9+TPJ5IcSfCyFud5f2Gzf8vfd2J9lRduu1JJt/KIT4DeD/Av6REOLXgO/udLYAQoj/BvhfgGeklKdvMeRF4GtCiG9IKdevSd89xQ7V2n8UNGstFs4us+/xmQ/csHZ9bhPd0G4SCYDeatXu2syfXWLi4Oht45Tv7jE5fmCE5GAcw2MQG/dgOlUq+dr1TNy+sRSed2ULVtsWLdNlZCLdKxtZLbC5tI3ZMCkGFMxCnc/8/KNomkYkGWZ2u8Bmrkx4JkPDa3D2pTkGIyHGpwYoX91gKhmk7vURPzxE9odzHH5yN88lvLSbNn1+L7oo0dU9tFM+2tvblJsK7ZEAibCLxxOiPdukE9MJuDZjQzazbxkoDjhdlUjYptF2YNHB73dRNAh7bIqRIFbUiyfXRDUt7JrEF7TpNDR0eu6kvqEO/Qf8rMx6kc0GhtLh4BGoNKIU2y5zcx6UqsOVV1QMbZn+oQa7Dz1F3l1n+rFhfvDyJv1xi7wTJ2pWUKIe9j5xivTobuz2q9h2P4FolL6xFOmpPjQpUFxAmyIUa5BMzqO3LbYXiyTTUaLBfnIVl8woVIoqtm2RHk5T3q5Qa+bxdOqEPGO9DhkPAF23QaH1Mn2eARR93/vK8JmWzXatwWji/aM33Y7F1lKOoV39O6o3NW7Rz/Ih/DjEJDtAH/CiEOInpZTvrr+7/g5IKde4DXer3XoaOCmE+Pv0MlNXubvV5P8J2MD3bvyySCnfTk/774H/HXhNCBEGtoF/LaX8nbuZ5/3EF/Qytn/4Q3V0H9k9eNsLVNU1gtHAXRWbq6pKNPWOa61/KnVT0fbb+9pNE1/AS8eyqXc0muUwZ567wIlnDvPd3/kBCEgNJjn41D42cybrs5u0GyZj+0fw6xrFSp1du4dIRkK8/uw5zl6d41f+6eP89fnztIpbrGeDWJ1+vCMxCldfxG7USSsjoKjoVxy2qwp6xkt1XSWY0NE8DlsFH3rTRBcu7mCAznqTrBXFDAqsvM1GPIBMCRqagW+pSl/Mou7x0gwYyJwDjoPu6dJtgzfu4k05mHMqriVQJdRyGsUXNrHQ8Ko6UhhIkjTWW3RqDUJ7vQx8chxlq8vsbJ6oP86TX/k8l86d58L3zuMKm8KVJoeSbfzhfnRvltnlH6LoCcziFbzBT7B6dYOVy1n2/sIJao5NOuCn05bMnt7k5PHHCQZjMD5EvdvBsV22l3OYTZNwsh+VnlciloniidWQ9ixSDt9WlvDjhkcNkfE/jqKovTip2o9Qe0lj0l4DYSDUng6xKyVdx75tXP5GpJS3lLNzXfcBFGq4Pzzgndqg5/38JL0yw9NCiC9LKV+7Yf+ObNcHusWSUv6WEOJPgP8J2AB21CJcyvcPFUspa8B/ce3xQeZFebtCLBO945fsg6IoyvUu6h+U9zOwhkd/jzbr3RDQegkhS+dXiPVFrxvIbsdi9vQCu05M4vF5cLfqGKLK+KMjdE2L/sk+0qMpDj3Z8zqkhuJ0zA4v/vlphBDMnJiCZpetyjZlZ5t9x+LsOxUnO9/G6voY2P1JLsy+QefCJo+cUiksBghu1BETgr5TU6gVk+Xzq6T8FrW4QU2q6HN1ArWekQj1C3wbZYTPojLrRTFcpFen3dVwK130bhcnHUAPd2gFwlTyoLfrhEQF3XHQPIJuTaPeMBBWFy2iIh0FU+oYqkN42EuxZeDLNynbRWpBF9srMFxB/vkK/oCX3VMT2I7KpSurzK+2CPpTbOZMKvksbzw7R/+YYHVunt2fP86xx6IsVj/BcMal0thgK9vlU6FPsfdTh1k8t4zVsciMpVher1GrbNFYyBM6OcaJsSGmj09id21CsZtLF/zGCFLv35GBlFKCWwAlca2TxkcXTe29TqlNwI1uYOED8c5PkN/QmU7fuUOJ4dEZ3XNzzal0qzg2XHplncnDYwTCD2sn35e3tVsfcKSUHeCXhBD/nN7i7B9IKf/D3ZxjJyUgfwv8Eynl1Ru2fRp4VUr5P9ztpO8nVtdmY2GbYDSA4f1o16W1mybNaotwIkS91CDRH7un54+kwtczYKH3w7Ln5PT19yUdDZErmzidFuGhUaLpMCsXV1E1QaPcwuMzWJtdR1EU+sZ7Rnt6ehgUQSwdJjWqkivkEe0EL3/jTRbOZhnti3P19UUWXjE59NQT+P0WywWX7ulVtrY30PwGxbxOkArmlobouuABS1OoZpIkq10IFKn7VKSqo5g2B4byrHt8bBXCKM0OPsVmsFpkc0XHDWp4RqF1zqaX5wWa16GLgSZsrLbC5NE6+igsLvjIdGt0fWBbLnokQtv1Y7a7eGIBWrU2QdOh2m7w2jdfI6go7HnmKO5WC5+Z4OXvr5OemGPPk+MkkvDCH79CudVG2UqSnJpg/+f6iPirtBsq63ObZMZSbC5uk1vOs+/UbpRMglpApdHpkgkHIdC7BrardRLxMKFr/SWF2GkWpgXOGihBbtVS7UdJ3eyQqzeYTCXed9y7S1yEeg9bdrllVEVj4uAo/tCD4ap+yL1DSvkvhRCXga8LIXZLKf9Xduhw3skt6NPAdV+e6N3mfgeY+QBzva8YHp39n9j9IzOQV19foLxd+UDHdttd6qUGZtMkny3e1bGO7dBpv9MwdmVhgbmNV29yP8X7YpS3KtdFBoCb3hdNU/FHd9HthrE7Vk/Cri/GldPztBsm5e0KfWMZDn96P6rf4PJmjthAjHathdnusrxq8d1vr2N1bI4+fYhDT+0jnAzTrDaot+MkB/spFuN86ulHiMcVZkbX2XN4mMxIGoHGiVMhnvq5GLG4itp08WYb+AYdUjEb1bLQwhaqx+bK614qqwKt2MYvOyxnfZS3VTTDxW45VK4qdPFgA5rXZfSoiZaSdCsatgMrl7wsfd+L+VabalmnUFVQK6CbOindR2WpTrvUwBfwUshV2F4rIswaDStP9uomR3f7ie4dYCgeJTOZZjATY+N8g3KxzqEjU2zmW1xY2Ka1ukG7lMUX9HL06YNYukKwL8LjXzqOq2/SDaywdyDTM5DXWDq/QnZlm65t3fT5XtzYJl9v8n4IYSCMowjxd28QFCHw/B3H/YQ2htCGCEYDP9L2Yx9r7rMsnRDi80KIq0KIeSHE/3iL/R4hxB9e2/+qEGLs2vaEEOJ7QoiGEOL/ftcx3792zrPXHjt2u0kp/5hejss/vFb/f+/7Sd7Aw6uQXkKM7wPetUaSYSLJMJV8Fbtj3XKMbdlIJN22dZP7qLBeolqosevYJACa8FFeU+nGuj1XquvSaXcp56oUN8rsP7X7Pefun0gzcK3uU0pJaiRJ49wq/WN9PPITRyhtlIn1RXnuW6eJrxWpOzYTA0mG9gzyt3/wQ9ykn6HhDBuFMoc/vZ/+8TSbizlGj4xDOsAb33mLC2/MIyIekgEPlaJOIFgkn60imzqT+wJsruVpGgE8SQs1oFMuOeQSKVrxDoruIaTU6BYFipQYSpeR8RabRQ9DIw7LWQ9aVuIIAQkvXSRScVjO+jGbJhqgKtA1VXxJP76AS9sXQF2pUG8mqCU9DIV9NHSDlmsxtjtNZ62OPhjh5BdP0kFSWSpx9m9b1MwNFNXL9maX5XaNgQO7URF0dPCjkGhJ6HhZm7fZl24SioVYLVUI9EeJRMMszapEBzLXb6himSiO7ZCrNhk/7EPRi8A7xnMgGsav60i3AUJH3Ka36EeFgMf4WCoKdW2bjWqdkVgU5R6IHHzsuI8v+dpi6v+hV8aXpRcT/IaU8tINw/4BUJZSTgkhvgr8K+AXARP4n+kprd1Kbe1rUsrXdzKNd2+QUr5+LSH0L9ihC+ajHcz4iBNJhq+XZXwY+q41UH43a1fWmX9zmaVzKzdtT48kmTw0dv3/aCJCYb5FYb2E67oUskWe/5NXGNs/jESyvZK/qSREyjZYr1MvFXFsh+JmiYUzS0weG8caDFIq10mPJMmt5DFiPkb2DiC36ixdXmP+9UUmdw9zdP8ksmly9cXL/M1vfZMX//xVmtUGHkVjIhohMZTkwJFJXMflwKcP4Rs+Amik+6uEE4K//N113npBoT+dJDSRorEritIyCbpNIknwNh18AoSUuLqCowpmL/mpb2tcPeOhk+1dvHpUQcZ0PJaNWnYwt02846BkABekA7bZwh8UBDqSRH8Uz95+KLVpXMlhtztYK1UWXlvCFA5f+PJJSmtldFNS2ixTK7cZOJxm6vg488+X2H/iIJ/93FHEgMOrV94g3hfmqZ96hBNfnEEGl+l0TBrVJuVza8j8Fm/Nr6Il4qTiGa6eXqCYr7JaKvO9uWXc0QjVnEm7enPPxJjf1yvXcbLg7KgBz0OuIaXTu7nYAa6E7m16uv54ID/E4448AsxLKRellF3gP/CORvfbfJlelymAPwE+I4QQUsqmlPIFesbyw3DL0kEp5TrwBPCf7OQkO11J3upd+UhGfaWULBXK9EdCH3mVjVKzRS1XIxC5dZLB0MxAL1PvXfdDa1c38Ie8JAcTNCpNFFXh6a89yZXX5jC8Bv6I/3ot59i+YTqtLgtvrZAYiKEoPRHz5QuCdjPL5GGNcDzEnpO72F66SjzqUN/2k0yE6bS7HJge4Y2/eoupY8OcXbuMLxomEQmTGU0QCfvJJAwapUW+8evfxhv0MrxrAK+vRmGjzPDMJKu1Gucvv8bAwRbtlYNc+uMc9Zqg46jocZP5zW1imTAJLUAw4sfuVNnOe4m0mjQSBiQkNh4S1DA7AmvVgU4vscVICTy7oLBmoXgEsiYx0x6sLQejaCPDGtqYgVlTceoSLJOuLfDoAlUXdAptJvYFmM+5lOI66eEoV5Y32HppkQNP7CXxqUkK59YZik6hZUD/2hSrZ+eI+xY4dOIIV0/nOHfmPMceP8Hcm6tcvWrRKW8y/9oiE/sjLLw5T3TiSVBVKvk6U0fGcAM6G/UGSV3HWa8RHvHTtLu0uxatRpt4LIQQgk67g+Gdeeg6vFvcMjirYBy941CvrrErcw/joh837u+lNQjcWFaRBR693RgppS2EqAIJ7pwI+nUhhAP8KfC/ydt07b5maG+JlLIN/O4dngfYuZH8thDi3dXvz95iG1LKD56aeQ8QQvxInMFbyzlcx73usrxbbMdlqVBmZipD8Jqr6t3p62/LkjmOQ2mrTLyvl9wTTgSvxxdLWxUMr44/5GPi4CiaoaEoCp/46UfwBbwIIQjFINYXoVasU8nVqM81yK11Of7MHvxhP4qikBpOUNwIMz6dQfEkUVWVYMTPW6+9iqOoVLaLaNksG/UUxcUCV1+dY+roGIc//Qh//YcdPINNPvtTj+BYDrGMj9XZV3nj+Vf4+//653j+m79N8aKf0aNjHPjZz7Dx8gKlXJnongBqU2LP17DXtjFGNFxVwY0auONJlNkcdqGNFrDxD7oMJE3WfEEaa4JQSlAPqAQ3G4TzYEodK24QaFtQdnE0gRZ1sDe6eF0NxTKxFAXV78dYLTH1aJvKBY2Roxr2aYNsywJN8NqLl7FnC1TcLuZpg7TmIfSlR3jpz16DuI+V12bpdCP85H4vn/rcF/jT7Cuce+0qMzMjxDwjDE/0U8vVyG61SQ4eJntpgxNPH6S4XmLwkWnKnRUm/AYBdZBGNEokGebM2gYvvHyRufMrfOUXP4mlQv78OmP7hthczDFxcBTDa/Rizs46qGmE+Pi5N+8X0m2BfRX0/Qg1iVTubRLcQ25JUghxo8vzN6WUv3nD/7f6FX63MdvJmHfztWs19CF6RvJX6HWTum/sxEj+i/s5gfvBRDJ+50EfklAsgOt+8MW0piocGx28/n+7aTL3xiK7H51+jwu30+qytZQjkgq/pyZyZPc753jbcNqWjdWxblqFqKqKiWS1WGHv5AB942mkhIsvXmX/qd0IIcitNjD9fhadPJ/dM83ypSz+mEG72GX5Up6ZRz7FoM/F2S4wNDlNZjTFuR9cYmuzhJPyEh+2uPT8BudeqOGLRfn0r07y6l9dpr49xvQjQ1hNi90HRnBzdYYemWBlM0sq4ye3btJYr7CR9cDIIF7VpOG6RDMGRtogalfZnlOoBHx0fF5GTjlEjCZzSwalnI4iBbjgSWv0p2w2Fnw4uoKumrgBnYat4KlLVMPFbLfR3CDF82EadoO/el1jSq8xvFcj99xFdh9NMrflA69BOhMjN7/Fd85eQUobdTbPkZO7OfTEbsL+PjoVOH54mpe+cZpKosb+U7uvC8o//723SOwbou3bxu7Y7Dreix/7tQSKUChkS9c/5yPDA6x3BeG2Qz5XpeVYHHx0Gs3Q6LQtVP3tkhAJsgYyDg+N5DsIL6hDvP1z9qDUmN5XBIgPVwJSkFIef5/9WeBG1ZMheuWCtxqTFUJo9BJES+/3pNdcpUgp60KI36fn1v27NZJSyo+dkfxR8GH6ShbWi0TTkZv6QXr9Hsb2D9OstijU2zetUP0hH3sf23kysdnssLWUe0+9qD/kY+rQGKlor1WR67qM7R9GCIEQguPPHMSyHUa8OkGPjm3Z1BZg74m9dDoWY4dGqW3Pcua1t0iOT/Dt//gyM7sGmRrMEK8FMUSbo5+e5MVnZ1m8UsTrM6gWy8w8PcX8pQrmhQ06TZOVy+sMTWQ4OhFg4VKejtpAOTVGdzbPsGGSLyk06i26jRoKGs3pEdz+HH2DbeShNOabm8y2E4i8g6o2CEagXFYQDZOtrE1rOgDVFv6Kg+p2CPlAy2i0dQPX1bADOhsLNaRuk4rbxEfqNNd8DB1NYQ0E6Kva9GViHHvmGJfCs4yEY6S+MEG31ARHQsjL7/1/36V0JssjXzpGaiRJYbVAYSxFdn4Ly7QYOTFBPBxk6EAQs94LrTz/7Fn6pvuZHskwl18jHQ0Sy/TUZQYn+0mPpGiUGmiG9k6pzvA77sCeJutt1bMAyJarxPy+j2UizQdFCAXUh51B7pr763E7DUwLIcaBdeCrwC8/DtQOAAAgAElEQVS9a8w36MUFX6bXSOO527lOAa4Z0qiUsiB6tVI/yV2qvn0QHuo18Xah/TxTRyfet9nrvcB1XYobZfxh/01GUghBOB6iXm5geHXK2xV8Id8Hmo9maFhdG6tr37QqDeo6VqmJ6e9yaW6dg7tHrhe0NypN3vrBZTKjSaaPTLA+v0lmtKcr2qy0SBwcYqlYZmmuQ7U1xtZ6kTPnF1BNm0d/8hjrcxu8/p2rSLnB/mNBLs3Bd773Gl/4/AxJs0KlIwmemKKVMGheWmG9nWfhWYvV9RxJUSeV7GPgy3tpzr/MygWN9KCNHAuzVdXQmhaZviADh2zmrzTILWmIVgOSQTxhDSMWwXJMlLqLKkC/XEL3qXR0H4bfYO8+nfR4mef+VhBUfIQMg02voKv7EJZgLTtKY63E6KMx2v4Ejl5g9q01CLgkMj7WL2Y5d3kZTShMRKMc/Mx+do0P8FdvLDC7tMHB0UFGZgZpBFTUrsa+oxPgVVEcSSQexhfwklst0DecpF2o4wwkObxv7D1yaYW1Is1ai6nD49e3bS5uE4j6dyxg0bUdnA+pLfxRRkr3Iy+e8PFAftiV5PufvRdj/K+Bb9PrZvdbUsqLQoh/CbwupfwG8O+B3xFCzNNbQX717eOFEMtAGDCEED8NfA5YoRf606+d87v0GmXcVx4aSUA3NAZ3DeDx3f+7b0VReuo1tyEUCxKKBVk8twJCfCAj6bouI3sGbzKQUkqs5iVKmwI16CG/VaIz1kfLtAknQhg+g72PTRPP9OI5mdEUa1c30A2NiSdGcV1J1OclPqMipoaxujYze0cx6xYbC5uce/4S3bEoyXA/awtV9ozCyKCH+MAQdX+QycdUts68xtSISf6Qn/zVFYJ9/exLTLF+bpV63WI5a+KuZ9j7mKS4USesx9he3qBqV3H6AtQLGdRCE19coIYUDK2NL2BhTLTwN3V0xaFdkChIPENpWoUadq3Gm8tR0k4E2yuRUlDK1egGfWhtk2Q4iFVvQ8chlUlQWq5RyuuIjJdNu4WrGCRGowRFi4AnQu5Kjm/9/g+RST+/+k+eIp4c5BuvXOAxPYplWRx8bIaw18Prf/sW7Xqb5FCC4ZkBLr50laNPH6DScZBSEvS+93NNjyRxbIdux0JVFVRNRSjiujegvF3BcVySA7cPJ0yk7n+o4e8KKSVYbyC1aYRy1935HvIjRkr5LeBb79r2z2/42wS+cptjx25z2mP3an475eEtGb1VXCwduWeZhLZls7GwddfdQkpbZcxWTyRg4uAosXTklvqUdyJ7dQPLvLn20rRsGqhMH5siFgly6sQeLj5/hdN/c4b8epH1uU1a1TaO3UsS0nSNvrEU8f4YQghW1vN8+9k36R9KooW8FLMlTj15EDESwZb04pdSQfFqbJUqWPUO/dFBujVwFLi0uslswWHuOZfPfOGzfOW/+8eM7pli/9MHiD8+gFmuoBWbpIYHiQ1MEJ7cw+KlIq4jSQ/EiOPFX/bhD4cx0IgfUtjzhInt7adw3mDQV+bgsRaD0+AdjGEYKrphoLUkMc3GXFLpVCwKfoG1XSMAKHuCFEQXzZQMHh2n2u5Q8ioERxPY2SqBTgj/wDibF5YZ9eZ46rFdGMkgnXyD8uw6hWqWZF+YXXugWV7D03BY2cjz4ukrDB8fY/TkJIoqyK0ViB8cxDY0NEOj3ei5X6WUVAu165+xqqkYXoPVS1lya70Ev76x9PXVvpQS+SHi4B93hBCg7QJxb1vW/dhyn8UEHhQeriTvAevzm/iC3uvZp67j0m6YvR+0a7chjuNQ3qqQGIjf1hhX8zUUVbm+eux2LK68Oseu45NU8zXi/dEdNeKdPDz2HpFn07IpmmmSkZ5U3frcJsFogIkDI2iGxuB0P4oiMJsmW8t5ounITZ0ohvvihDwG5Wabb12e40QiRn5xm5/43HEMTWNi7xCl7Qp/9G/+kuOfPYTbtdmc20Iogj2PT3P08RmszmM8/+vPUlmt8qcXrjJkeIkW2gzr4EtKLNPB0jsoskw0kiZ+Mk7+hTy6rtOsFxnRGlihDLm5Ls6yQicfIL/SQKZ8UPAwdMpBHxjgJF2qW1Fy8QCW10OYAlVDJykCmK5G+Mkp0pEwrW4XqZZwVBctoNNczHP8mb1EUhEWk1EqxRp2vsWpU0eouzaLr6ywObfJ8GiKcDCEWYyxeGGDRNtmaHecZiNIO9/ELTXpjLlkt0rEpIrX76HaalHJVzEUQcU0MSwvbtdm5VKW3Y9M3aSGNLZ/GOVaa6cb3YtvX18/znwUemQ+KDysLtoZD1eS9wBvwHvTj5zhNZg8NHaTkLndtclnS7fsI/k24wdGb8pcNTw6Y/uG0T0a9VIDu3v7Y2+kbTtsVnJI+c54w5GYlSYr2wVa9TYTh8aI90WJpMJEUxEMj46mawQiAcIzGao3yN5BT0YvmY4S8XkZMgXr59boG09fj6vF0lGC6Qg/+48/z1M/d5LIcJK2TyM6muLFf/td6utXGOhz2PPkHgpWF7vaRpgWT/78ScY+8xhf/Re/wuBkP2oyxPkVD82qjeYm2P+rTzF+eJyJg2MEDwyxaXfwjybo7J3B0z/DxLDNrlSFthvgyrMaYs5lrSRYb3eotjo0FIfNRpCyruGk/JjrZXLCwc7VUJbK9PepBPenaUuXeq1F34BNbeUyYXeRZrlE0HR4a3MbBTBiflajCpetNs22iXc6zeJ6ju+9XKNcy7A+v4XT6DA20Y+hqbw6t4InHWRgXDCW0mlbFs2Ayka5xtLCBme/d+Gmcp630fReGY90cmCd39Fn/pCH3BVvC5w/2P0k7wkPjeQ9INEfIxh9b7ar1bWolerYjsvlQomRw6M7WgneSDgRQlVVpo6M77jHoOO6WJ1ZWub69W1ms4PWdbHKJtsreRRFXDe8K5fWblLkUcQ7cbBKvsrK5SzzZ5fJbZT4g997lqV6jcRYitRQgpe+eZrVq1m2swUWalVEX5Cr6xfZe1jlyV94nOqgn7FHp8ikprnwVpWrWzmkIvi5Lz+O9+gQFxazxHUP5TWbT371E4w9sYs9B9MgN5GFJrLQZHXQj5geo7AZoe+ZI4R3ZfAVWrTWa6D5KNb8KG2bRjNMds4k10pQL5o0dBffWBhvQiXg82GETSI+hcxmGd2bY6teo+imMdfzHExt0Wl3+eGfLlLPecjXoKNrLG3keOOly+QLNdoeQabmcvzUbnx+D34LBqf7CUiVrbktUoNxmn6Fb/z+91FbFp87sY+VVpNctYQ3oLD6/Cz2Qok9mRRxv4+BiQwIQb3cYHvlFso6Sgy0yTt+3pWWScPs3HHcQx7yNoJeCcgHffw48dBI3kca5SabC9uoimAgGsKr/2i8251Cg+3VOIuld1Yoif4Y+w6M098fw+7alFsmk4d7htfwGZS2q1TyVRbPrRB0BFF/zy1bWC+xcinLnpPTmC2TwnKeaCZKZv8gQggc2yW3UqS6XWVPPM7muSxrF/JAEKPeoS/gp7RV5g/+j7/kz77+fVrZCl5Do5irsndiiPmlTf7w689y4dIK1WqBcrfD47/wGQpaHGMshhb2EkDFKjdo4DAaiDA4IJmO5tg1mCE9sRdZNNBdQTepEcqoGB6dvQM+Jutlqg0bx/CT9PoZSQ+THk7jDascOBxk7GdmwC+pNVzmq15mfvEw+oEoawGFyGefYGBqAM1jMDLZx9GTu4hpBqP7knhSBlvjQfLdNpOTA0yNpHs3GUKQv3SVdr6GadtkAj6iUiVbj1Atexg7OEp8KoU/GiA9ksIb9LJwdpmrr83hOu+NXwuhI5Tge7a/m3KrTe2hkXzIQ+4LD2OS95FYJnq9Di4duvOP3a2wHZdWt0vY573z4Gu4Xo3JsUFiyZ7r1mx1MLw6iqKgew2CiSDLxTI+Q8dv6PSPZ8itFZCuJJwMoeoql1+dY3TfEM2El8PTw+jqGqPTk/znv/az1GyLoMfDVq1B6MgQe/tS112G64UyW5tFapUr+NoCSwNVKISDPvY8uo/DJ3bhuhbRQKgXj/vsCdodC6XW5Y0XniNz/Biba3kCRycI59v48m32PDrFG/Yag22d1StZ0jOj6B2FzJ4ZXtvcImdnONjUWM8XmXx0jODecczTyyy2XcJtideroUS9BP1BamMKte0KfznvJTXiY6ivhbIepK3WaRWLTA/42WwKUtEQnhPDRIobuPUIf/P/fpfUU9McPTVEdWmDwJUG3y/PYzkuA2Efpa0K3/z6s3zha0McevIzXNrK03xzjcGJPtoBjUx/kqGpPv7jt17hxIFJvL4usmWw59EpgrEgwWiA4maZcNpHyykS1gduil331HYWQBlAKDfLGI4nH8Yq70TXdqibHRJBP13bBgTGh2ic/iDwMCa5Mx6uJD/i1EyT+fz7ilC8h5LdRfr1650NFs4uU8lVgV6cs380zbHRQXRVYalQxnYc0sNJoukQiX4f/pCP1HCCzfkt7O0665cLuG7vh9nr85AOBSku5dg6s8J4MnZTTO2ZZ47z976yGyVQxQWmJgb44i9/kuFjY7iWy7n5LD987i8o17ZIDScIB32c2D9BQPdQbqZY2jTJbpUYi0b47JdOEhlPs351k/pSiWRfnBEkvpaJHJ8gc2gIj+Wilk1KjoXh8VBfarD86izr83lk06HrOCijMZqFJi+fnmVtI09wNEZEGGTPZfHYQfr9carnWqyfzrP4cp3RdIpOvoEtBYW4j1g6yujPHuZctcylFZsLZytsbpQYjkQYxUOuY3L4p48x/tQejOh+1qoO/o5LLB7GY+gkI0HWZjfZWNhiTzzB+oUVLKPM6MF+MoNVghGHTrvL9nKOjmlyYXaBK1u5mz7TnsHUPtQvm5SS+TNLNGutHR9jdW/doebjRrPTZaNaA2C1VCVbrr5nzGqpQusBeb074aG7dWc8XEl+xIkH/MT87x+LlFLStZ1e5whgb//N8rkzJyZvSiK68bhirkJjdpsDj+8GNw/ONsI4RHIgTq3aZG1lk+P7J1D0mzuV6B6NQOgdZZd206RSatA2O2xcbPOZx56kVbPRDJ3UcJL9nn08e2kWr+Yw0HeQt55fwWk5PPPLT6KoKt4nJ9i7Lw0tm8FIiDPVMqffnCMzGKXoWkSjfZRnt5kc9TIwGqRmJ5n73nOY3RaPHZqm6disruQo70/R+N4CXstl+ugE69LkxKm9XCi8wXq7gdF2aC+XkdkqA7uTVLbX8E2P0FjwEcwE6d/XR7ltYpcdSjUXx+9nfX6JXeEoI02TwvxVIk9MMRKaYKw/wYXlLR59ZA8Nx2bm4Bjr81tsnlvjqV/8BMZoP5fPLFJs1hn2BfCHfVimjZQwktjN+pUCmjxLrH+cYPIREgNxtubKRK1++gIBli+uMTDVh6M2UYWOoY3d9fVjtjo4lk0g0uuzGE6G0HfYuUZKyeVX5hjbN0w48fEuu4gFfMQCve/R7VbeluPgfoCSq48tD1eSO+KhkfwYIISg3TTxBW7tci012ywXy0wFQghFvEedRbtNLNTQNI7sGqHdMDEtm6WiZCiW4e2j+0fSuF6NwbHMe8pW+sYy9I29YzjNZodsNg/9IWZOzFDIlmk12tRLDXLCYrveJB4L0Wh3mT6+j1deuEA65cXjNZjZM0I1t80nju2hsVjAG/BgXXSJjQ6xtlXg6nyW8UwC15F0vHFm3Si55XXWXiiTOhTisb1hclsqSqGFtdBgfHqY0UQEY1eK+edOU81WmJoeoLpZIX1sHH0whFowCfp9oAuW6w12HRrjF7+yH68Q/OBylVrbZKhi0ciWcTWNi8+eJzidItEf5+gjMc7N1vj3v/scxkiQXVNpLi8XmNo1hDoex35rldWr6wQSQS7OZ9kzNsD0I6NomkpuJc+lV65iNltMHI/QqYZ48wcdDj5RJZwI4g/7CMWCuK5LQ6uSW8mjJuqEwjEMtZccli1Xifq8txQkeBvbcXGlpJKr0m6YjF+TUbxR5u5OCCGYPnb/Vah+1KjvKo9yXYl0C0xESwg98Xc0qx8xH1679ceGh0byY0Cr3mbujUX2Pr7rltmx8YCPoMeglC2iqsqOJcygV8AejAbo2g6a6tBwKgRlzyj6Ah6mxvspbJSolhrYSR/jyTiVzTLbyzl0r8GuY5MUmy2SqTBHEiGevTLP+Gicqf5xXMdlbXaDhdltbNcl7vcwHo3g9+icPLkHnyMob1epb1YY9Hq5srTJI5NDGD6DCa/C6rkVFKHg7Q/TAtKDcR59fC9XLqzwQqmEdzRK0hdjrQYb6wX0iI+oYTC9a5C5K1koFvjlzw1QtUy2OgrJkQQJRcfNNun2hYjv6kfZqEHMhx02+e0/uchP//InmUhpnKuXyBsq/RE/4d1plr0uZlcydngca32JwUwA75dSNJU2l69e4MKGy5Fdo+Q2i6T3DqIbGuFIgJ/5pafwaSq6R6dRbjB0aJTs3DbDe4Y4fTnLp546wej+KK7r4vV7ca0FyltZopkZBqf72VjYJiAGCOrvfKZmp0vLubVqz9usV2qYlsXM2IdrynO7G7MHibVylY5lMv0AqxU95IPz0Eh+DPCHfOw5OX3b8hEhBB5do388g+W800S20+7QrLbeU4Re3q6Qnd9k+khvldC1bSptk+nUED2x/vc+P4pCU++Vhzi2g2poOLZDx7ZZK1eh2SEY8jMSj6KrCorSe4ztHSYcC1KsNajV28QCPnRVJShUKqUakaEYtgKXX5tjsVhGe2SZ3bv30edtk+9IDj+2F89gFE/Uw3q+ZzStjkWs5pIaTqH6fHx/LUdou8H/z957BUeWZvl9v++69N4gEwlvCgWUN13VbtxOz8wajnaXu+KuVhQlBYMbCokRipAepBeZB+lBUuhFQQblHkRKQVLUcrlckmtmZ2d2Znpmerq7fFcVXMEDiXRI727mvVcPicoCCkAVyrbLX0RFd2bevHnT4J57zvc//zN4Ms7p986iV5ucBD7+8V0Cv/cOydUfYNjDGI0Wq9s7uM/ECZR05u6tYldVXBsVmtslKmtp/mHwp4xIDhJC5dzlcdZSWZoSfOdXTlH5RYqdlSStqo3Tky521ps017fpP2HH67LzvZ/dJuFw8a3vXGLj4xVW5rfwTMdozqZJTMVZ+PADHJfivPHbV9AzZS6ODhP2RjHaBvd/usDE+RFU1c328hYuf4u1+5t4gu4DFz3eliC/kSMaPtqabSDg/XKVDl+AuM+DabkR8qdzOrQsi1SpQtjtQpFfn0ykV209Hr0g+Tnh8Ybzw2gbJjfWk8zEIrjtNhrVJjvbhW6QLNUbLKRzjDnctJttjLaBaZqU603WtnPk51IMzyQw2iYu7yMFpdPTEfO4a03u/2yOqSsTxEcflVovDvWzcncdyRJM71kPrTZ17m+nGZBs2JEwLYmasCjli8zEo/gjPjYLJeSwi1hfEO+JCE1jmZt3Z7FFKrRCQ7iCHq56xig1cix9eJ0PVjNc/dvfZKJylpjLSWmjQPP7H3I3tcY9T4vGTyROTw1RTqc4NSHTbhjsZIe49NY0LvsaH95cxC8gXDOpbRRIWW1a+RoRVcM2GmJY87C0nMIZ8aNm8iwVSwzW21z+qp3it91QbDK36WYnqbLj9WEGBXPXi1w834fVaJOvNFlbTWFoEk7VTrpcIT7gx3CnufKbb1NKtaDSxDBMHA6Nn340i8OEwtYOsdEo4USYictBJEmif0xH0ToWdqnVDLIqE+4PEh0ME048OeuRJYkvt3bz+DxJ5WqaJgvXlxk4Ed/3N/EyMUyLdLmKz2F/bUFSvGKD8y8SvSD5BUKRJWbiUVy7Gacv7MUX9nYfd9k0xsJBAi4H/m+cZv7aErIiIYRgoj9ATap3hjLnKwzPDKLZVJqtNrph4LHbeJDKUjPbXYGl0TaQZInMepbIQBCXz8Uvbi7Sztd45xtnsSsNRn0pqI8SHImSKVa59+E8X/v2RSyrwdKtRepVhVNvT+L1OHE77WQzg1z7cI5KzsU3vzXM9nIap8NG1BvEuh2nYDRYuLXM+3/wC/7D/+I3uT27QkVY+CN2BuIKkYEwmUqV02+foc+t8Gffu00rXeHen99CKjQ5WVfwrdbxhLyMh11MSjI5zaI1m+LMu5N4mxaeuoknopH7eJ2ZkRCj4TBrPyrjG/Qx9s4k861FZpd2CMkK1ASR37vKlDfAyuo2bpdCoVJnu1Hjt792iabe4o/+3p/gm9D4xnfHMdsVBk7GyBZL/ORffkxDFYRCXsqb+Y5/bqlOej1LbCTK0FQUyzKxrDaqTdknvnrcdrDHq0GSJEJxP5qaxDLsCDnx9Cc9I4oscXbg+Ya3vwi9IHk8ekHyNWGZFYBjNYc/xDB1akYOjxo/9nPcT5gjKEtSV+EnhMA0TPpGwjjdDtZmN/EG3USHIrT1NpsLSUZPD5GtVCk1mpyIhNi6v4nP5eBhFW/+2hKRwRCFTAnNodEyDFo2iaZNYuXuOsMzfQQ9Ce7dS7N2f5ORq+NMv3UCzaZitbfR1AwNS2JnPcfQ0DudnVaaxE70MfvD+6z/aJ4r373EUipLK1em3dQ5/+YJZk6NsbmSwWi0KKQKDJ8dIl82eOfiDAthBSVfQew0+Gd/Psvm7MdMTY7zxpvnaFZ1FlpVwgE3rpZEemmb/r4ArfQO7aifQqGKpmqcecPFtQ9/xOysB1efihZKkM1XML83z+wHD+h7J4Di36AyFyE+YjI95uV7P7xOOVvlN3/lGzSqOu/E/fj8LmqVBrahIHrQxU7TYGAwxPpWltn76ziGAnhDLvxNGP1qgP6JGLIiUylUCMb95NMtAqFtsOoEYwfL4D1eD+FECMuUoZebfyn5wgTJVvP19zdlylUUWXpqiwYAZq7z32cJkrTRjSqWYr20CSV7sTk0VLUz4HfvDMP4eB/sBsLaco5QxIusyHz9vQvIitzNYkZODyKrMgvXHlBMF3CfH2SoL0h4ME5mLYcQGg0zzInLIR7cXKG6VWBgsr/TNB+KMTAzwM0f3iS5LhEagp1KjZ/+4j6JoSgT/VFCYxHq5UZnbNhWmVAsSLVQ5Rf/6hqxuJ+dRsfH9erZQe6uJklligR0B5s3VmnMDDE4FkNVLjE8FGP17joi6CR1c4nBb5/nJz+6yfDUIDd+8AnJlTSmS+OX/92vkXmQ4vt/eQf9rUmu/NYQoek4zlKbr//GOf5wdYVbc2t88+oAQ9NXEAGZW0s3yN9cYzDhYz1X4vq/uUHoa5OEdxXFTreddy5NYY96kNsW1/7qLutmg/OXJqneTdLv9DJ44VF2YhgG0cEIWLC9kqHt6Ec3YGC3ulqvNpAkgc1xULRjWS0wdxBypxRuWG0EIAmF7NYOqk3F9zlv5fi0+CKO5uqZCRyPL0zN5lk9UY/D08ZUNdvtfUKZJyGUYYQy3L29XSyTLJaf+BxNchKyTxx0XnlJjJ0dxuXb7zmrN3RkWe6W9vonYvijHeceRVW4+fOPuf6Xt7otKZqm4vK5+ORn8zSSBTRFRtARB21tZbm1kcSSJFw+J6t3N6gUKlz73k0a1SaWZSFJKnaXF6NtUGo2GXtjHJeiIDlV8DtoaRJ9J/pRbSr9ZwfwXR4iX6iQzhSolmv8zr/1NlquyNt/4zTJVoPk9WXCHg/DX5lC9TuwOZwkhcnKZhZNUbj61TNceWOKiaE+hN5i4uIo575xGs90hHarzc72DrW8ILxpY/EPrhPbMVhcTfHP/teP6AuOcfHNSVxovP/xNj+6NofTiFJaLDGoJTgRn8IbcOMrtrHKDZqtNpZlIdwadz5coJRc4Mo3fPz1X3uLE9EQQ1MJXD4nxVyJj358l5X1NLIs0zccwRNwM/PmCTTVgao8+m2nVzNkNvabS1RLNYy2AVaDzZ0FirU6ACV9g6Le8e+d30yzmno2U4oeB2k+YUDB5w1JWM/978vEFyaTfBVSrRvrW4yGgt0S5eMMBJ5/bI8qP3vpxrIsrq9tMR4Jdb1Vn4d6pc7a7BaTF0f3rW2VcmVW7q5z5ivT3cC8V6ywvbqN4SgSCowj7xEYTL85Sbg/QLHdaZR3uB0kTsTJru9w7uIomiIzcKIfWZFJr+9w8VvnujMSz339NKv31lmf2+STG0tMnB9hcMTDiRkbhhnBtCwMp4vQ+RHSmztsLqQ5dXmcjZBKfSXPz/75+5z92nkikTAnI2WC02NYbZPljx4QiQc4GY9Q13WM0QTJG6u4gm4qhSoRt4tqo4Wt34dfSHz79BADk/2EgxKNYorstQVmfvUquVyJ4cEIprtKK7NARK5TSLoxd0okf7qI82Q/liFh++o5fGfiLN5dp7VTRG8U2RQm/pLExJUxmuUac7+4j16z80lyE19T8N7vvINlWcx+uEhLmGyspqDUxBf2dO0MfQ4NLINmvUmzrjM0fbDsunpvozP7MxZAqGeRd39bXm2g+2dx/tw4ci91eCEsy+L25jYT0dDxqkefYUSvT/LYfHGC5CtgPBLCpT1dVXoUlmXR0ttohzichNzPrpQTQjAeCeE5ROnaqDXJbe2QmDh6/dKyLFqGgWpTCcb8B8QfnqCbqTfGjyztegNeprxvHmhJyG7uUCs3mL7wqGQbSYQIxQNIksT2Spq5jxYZPTeC4rNT1gTettFVFSYm45imyeLKNvduPOD2nyZ5+9cGWH+wiWckzNJSErcQFMs1lKpB1tukDydDp0fZmv0xrUYGVY3xrd9+m8x6lkZNJzHWx51fzPNBaYeFG2uoQScDmoP6x1VufP8OmsNGQzJZSWZx1g2u313m6wE7m4UdLr03TnWnydB757j9L69RyZeoVeoYFQUzZeCayNFutrFpKpYFzrCLpFHH2dKYGU9QzZSI9BWp3C/icQ+QW8xQXMoRHx1idVbF7hZMnhtGtUmAIDEZY2luC1efD5/fQ6vZplau06g2cHubqMoG5Z1Ritnygc++3WozeWkUVe38xhL+R6rVRPoAACAASURBVEItWTz683a+gkrLlw0hBGcSMWyv2fP1uNWqZ6UXJI9HL0g+Ad8zmIofRjFbYn12izNfmT7W9u1Wm/sfLDBxYeTIsViHZZD5ap3Z1SSuuoGvqR8p3snX6ixld7g8PEBk4KCziBACza5RypUPtSF7vDT7kNhIFNPsTLEo1RuUGk36fR5++r0fojo0zl68xOTFMYTfzlalgseQ6C560inj6g2d937tCi29RSFdwmgbBPoKNAs1pkZjNJstxt4YJxHys7WcZCe5jfB4Of3Vv4a1K6hoVDJ89OfX8YUCXPrOOcxaAXlznUDQidfh5NLMCLV8jXzOQSVfw2zWMU1BwyUxcHWSsNPJg/U23rNTxMedZGdTnDg7wnKxhFxucuvaOp6gi/adbc7+0ikKo1E8bgdkayzcWcNZaTM+FiefKuB2JUgMx5k4P0pyOcWlb50iHEvz0V+UODE2gmVY0H4AwoY32E9iMkbTLhMI+1mf2wQB+e0CC+kip9+dJJzwEU6EMAyD+z+fZ/TsMC6vk7X7m9icGv3jMTCWQY4jxOc7y3lVNOtNKoUaofjzG8K/6CSf5FIKWZGIDkWO/ZyFdO6FXrPHi9ELki9IslgmX6sf8EuFTguG/dLxA62iKgye7Mf2DDZgjVqT0nqOkyNx8tU61ScEyYDTwal436GPPaRZ11m5u87Jq5OHZsCHIYRAlmWMtsHa/Bbu/k6WGu6PsvLJBtXxGsF4ALvTRl/A1zVe3/se5j5cZOjsIJVincHdHkzNrlKvNHCH3Cx8skbY4UTVVGxak2hfmcT0FdLrWTIbKTKbOxQrP6Oc1Tn97mlsDo34WByjVeWdU2doVZbxBos0o8O4M27W5zYJ+kNsF0tsl8pEHBr+sJuz58dJPtimpbeZ+3iJS++dpbCRoS/s58SFYQRw/spJ1m0Gd+fWmczYUCo65VyB1P0k1ctFrnzzHJ6gm9hIlM3FJIZhcvqdU+iNSRT/B6guB/1DEdbWd4jGgzgcGomBCNsraSpKFbffxfZKhumrkxQyRTSHk4XrSwxNJ7A5bAyeTOBwd35XA1P9pFczrNxdY+TkwXFbPR7RrOkU0sUXCpIvitPrQHrGXsiJV+QE1Ku+H49ekHxBgk4HjiPKL0KIZ/a99EcerXMahsHsLxYZOT14ZCOzZZoIBAGn46nrJEIIHE8pu9mdtn1rknsxDIPt5TSxkeiRhuluRWVgt+Q3ffYM02fPsHR7FVlRKBktIu6D2ajdaWPqygTr2QLL8+skhiNIktQ1QfjZ92+wXCwyLo9w64M5ps+PotomuPfBPIVMids3H3D1O+cpB97AGVunVqrTarY589WLxMdH+eDffMzF907jCzqoVSQUTSEyEGJ9bhOhydhaAt9WjXu+bZq1GqZhklxJM/jWOIpdIRYNMPtgCxH3YCVLBEYjeJotdowklirQXBrOYR9xnx1DUSmkSjQqDTxBF9sraRauLTPbv0BsOMLqZqajYI0HuLuUwrDbGHO4dr9LC9M08QTdtLBY3ylQN9tMqgrekKfrwbu391WzqUQGQxhtE6Hs//5N02T5zhr9E7Evhb3c0/CGPJ+6Ufve7+64aMqrOE1/+QQ4z0svSL4gNlXhwccPMEejB+zfXhRZlumfiGF3HR1oHW4HQydfToNzwyiRr20gF6KHGmFbpkWzpmOaJvIhPWOyIhieiSPE/p/V2Nlh6nqL2VQGv8OBMM19amTLslBUmYnBKOMD0QOZ5uSUxpiZYCudpyF3tq/pOinN5PI3TuEaDVJcztJ/cZjKiTa3fnQPzaExcW4EZ5+Hq792EVmSaDYE8dFw1wTh//uf/5jBb07z9u+8iVZv8a//zx9w+r1T/Hx2HYcBQpEID4R58GfXsSmC1nyGyFiM+YVNagtpLn37NJlyldlfLPBuJMzo1dOoqkK90iC5lObBzVVGTw/RP9HHgxsrNBstTl2cIKipLN1aJYqKx2nnwx/dIZEIY3PaumuOW3qDgOIg5nXvlsFV9IaOLgs8Ntu+z0iza5TzlQPfhxACp9dx6AXNURhtg9zWDpHB8CtpO+rx2UDQW5M8Ll+KIPng1gq+iJdw/4uVLYrZEt6Q58DJY/jU4CublBCIPr+C9llRhA3V8LKTLhJOBGm3DFRN6b5fRVUYOzt89A6MNbBaoJ4gu5nD5XN211YdmsqFwX70Zot7P5/nxBvjtJotTMOkrbdJLqcZPT2E0TYo56sYrTZ2l52+4QjlXAWn10djNc+lr0x31+EuTo/gcdgZiobYyDc4meiDRB8+pwO7U0Nv6tzfSnEiHiW/mCKfKiE0mc3VDAMjffzG3/1losMRFE1lPbmF3+fCqdmIJEJQroFlISsCJejiu985j9QyCcaDfPin15GmoiRrNS4P9qMvZgl6nIxMD1IpVDD8NuStHQL9AdbmtlBUmclL4xSLVRqtJq2qwYPbq0iSoJZwkzWbjNhUhBDozRaths7p/j5kSXQ/+2K2TL3WZFO0OBmL4Nljbt6oNbnx/TuceGN8n12gEGLf7ePQ0tvk0yVC/UFy9TpOTXuiQUWPzy8SvSB5HL4UQTIyGMLmeLE/9JbeMZyeuDh6oHT1qjwdi9kSnqD7hSzILLMEwo4QT3//imQj7B8gfKlze/7jeRITsW47wlORB3goyKkWa6g2FYfbQTlfoa23CfT50WwqJy6P4XDZqeSrtFttNIdGdiNHajXDlV+5gKJI+CNB2lhsFUqEBqYRmsRScoGRps7AVD+SJLrlx0DUhy/8qIw2eXGM2Q8XWL23gd5sEfgbwzgn44QHQuTMFvaRAPPXHmBZFqHRPtZWt9m+v4HmtnHzz2/zN/+b36aYKfHDH94iuZQmu1MitVVg8kSC7ZU0iqowc3mUOz+ZJVmFN96dwTQtFm4t86/+nx8xcH6QzQ9XcE1EUUYDTIRDlLIlBkf7mHDaKO+UiQ2G6BuOkt7IEQ9IRAfDtFtt5j5aRLWpnLg03n0/7VYbl99JZi3LmfMjbM1v45wZ6GaIDpedU+9OvZReYbvTxtTlzmtXGjqykHpBsseXmi9FkHxYwjLaxjOVnvaiauqxVapPI7ORQ4iO3dVRGG2DtfubjJ8f6UzheF6MFZBiID/7yKTJi6PHHtALIERn29X7G4QTwa4atlnX0es6gd2k5mF2+VBhu72SJpwIdgwFsmVaepvYaB+leoNkOsel4QQ7mSIiX8eo1EmXC0QGQhhto+s8Y1kWd96/3zFI8Do5eWWSW4vryG0LvdnCNC1kRaZP1UiXq8ROxGlXm1z/8V2uX5vn6++cZuaqj/nrGv6Ql2KqyJDfi+bUuDg9TGE5TcZho1lvYnfbSN3eQGm02dnKsXjjDo5EnOGZISauTuAFrAtDpLYy2Ast1O/2Ua82sTlt2O1JNldKbM6X0JttgjE/zl0RTqVQpVHVOXl1EuhI/xe3szQeZIn2Bxk/P4KsyNicGkJ6mGGWMOmIUhRVoVauoWjqkaKrRq3ZsRw8M/TUi6+x3uioLy6iJ9w5Lq/dcUcI8d8LIZaFECUhRFoI8QdCiKE9j/8tIcQDIURNCPELIcSll/G6jVqTT346i97QX8buXghFlZGfIiWXFZkzX5l+pgCpN1u0H3MEEepZxHMESACbw3bkibTjTpOnbZjc2dympndsASuFKsVMaZ+CL9wf7LQoHEFsJErs/DDOmTix0SgDJzq9npqiYFgWc7eWWbu7zq989TxOZQuJLX78Bx+wuZjs7kOWZfR6i/mPH1At1QAYjAWpJ4t8/Gc3uP6jT7j+wRx35tdJ+LyEdwVSctMgYXMwcKKfxFQ/l759CoBCpkS71cZoGtiddna2C7gDTq79xW12knnUhI8qFnpLx+srUc4XmftgAc2hcO0v/5Lk6grLN1dZW8uwvZLB7Xdhc9pYuZeiJEyypSpzHy4gSRI2h0YhUwQg1N/pLc1u7WBZFs1yHUyL2EgUm8OGoiokJuLd7yW5nefjuY4wKrWS5vr377Axv3XkZ51Zz5JaSffWG7/kdOwKe447x+HTyCT/b+B/tCyrKIRwAv8d8E+Bt4UQ7wL/APhN4EfAfwr8iRBi0rKs0ou8qN1pY+LC6LFGTr1qjl2+fEY257dQ7RoDk8c3RH9eGtUmqdUs/qiPiNuFtuvy8jB4msYw9UqdWrlxLMm9y6YhiU4JdfHGMr6Il8hAiMtDCWY/nCe3lWfygoXT70VxOJHkWUKJIMt31ihkipz92gyn3plieyWD0TaoFqsEfS70mQSl7SKL99epqYKvv30Cl6bhCKoE435OXp2gnKtgtE0c7hCa0+T6X95BlgXf/lvfwDRN8tsF8NnJCoOv/e5buD0u4uMxJgei3PvZHPN3q8iDgrDTwbbeYPSvf43rP18lWqzhOTdEsdnAZlfZ2Mhw/6erTJx38+t/85dQVBVFldmY30Kvt5i4MIo/4kNvtrjzk/sMTycYHwzjOnF01hf0ubDb1Y7jTtxPKBFiY34L0zQPfU58rO+5RDmNWhNJEp+Jv58eL4eecOd4vPYgaVnW7J6bAjCBqd3bfwf4Q8uyvgcghPifgL9LJ2j+wxd97Ve1dvg60ZstVj5ZY/TM0IE1qKHpgdc2SdXtdzG9WxaM+Trl7NJOGbffxYVfOoPdbaeUq1ApVI8VJJ2a2nWFiY9FUXdPxpIkmHlzipk3Oz8Rq7WOzeHnm7/3FRZvLJPZyDJyeqjjN+uUGZkZoJApsnZ/k6k3J7nxyQqJeJD3fuNNWs0WqqrRrDaxVIX0xg437i7zjfcuAHBrfYvt1Qy23COlqCRJhPqDaFtpNhe2EVslgrEAvj4/P/jJJ+jlBtHTA3jDBtWlKoFKnaxb4hvvncdfg9RWloUfzWK8c4If3prnd3/766TX06SyRTyqxsq9De79bJY3fvlCx+dVCGRF4s1fu0i90mT5zhpj5wL85J/f5cI3zxIb7lQF6tUG67ObhAeC+GydsrZmUwn3B/GGPPsCpGG1MXQLva7j9ru6a7nPwvZyGkVTXssFWI8enyU+lTVJIcTv0ckYvUAb+M92HzoH/F8Pt7MsyxJC3Ni9vwcgKxK+sPfQtdXnXW99WWzMJ4mP9XUVuYGo77nUuXudfZLLKZo1nb7hMC29jTd4svtY4kSc4VMDBy4W/BEf3pCHG+tJ4gEv/X4PlUKVYCxAej3Lz/7oQyYvjXHi8jjTshezmaJOAE1RiMo2ZhtpLpyfAEBvNMmnSvRHAgzEg3xyc5n+/gj+kIc3v3WO+dk1Wi2DEyeHsV3QWPngAY56g7CpcuMnt1j4eJn4eB/B4TAXBmKEQ1E21sps3lqhtprnje+4iA5exO4K0G61qRRqrN3fYOatEwRjDnwRD83ih5jtevfCAUDVFPwRL4Go/0BW+Ph6ZLYxh56xU0vTFeU8C4s3lukbieD2H+641OPzyJevbPq8fCpB0rKsfwz8YyFEDPjbwJ3dhzxA8bHNC3SC6QGEEL8P/D7A0NDQYZt84Xg4JeIhS7dX8YY9L9zespditkSr2XqisOgwZt48se92S2+xdGuV0bPDRwpJSrkyLr8TLNhc3KZ/vG9fptPW2/ijXso7FerVZleEtbGQJBD1ou5RGi/fWcXhcRAbibJ0e5WAUyObrVBWVZLLKcbODlMpVGnpbTxBN6qmMhTxcO0vb7Nu+jg5GOP8m1M4oh68u5M3jMZN6iWVRniAzIMUffEAQycHqOotNvIl9FoLNInZB1uMTycYPJngD/+3PycTcPPr/8mvcP+jRW7eX2HugwXadZ3RgSiTY3E8QkYalBBWk/v3kzhGTCb0jmfryKlB8tsFIoNhZFnGGXyLk9/eplJrIDc3aOYUovG+p1qbtfQWlmkRtI0jD6pIQ893EeWLeLE5bb11zC8YvXLr8fhUR2VZlrUN/B/AvxZCBIEy8Hjq4QcOXY+0LOt/tyzrsmVZlyOR43shft7YmN9ibXbz0MfCiSCewMu7wm+32piGidF+cYszWZEJxPwo6uEnZ8uyWLu/QbXYEdpYpollWVSbOpWmTq1cY2e7gGbXiA5F8Ee8XbGOJB2U50WHwvijPsr5CpuL29gVBX/Yi+XSSK1mmf1wkZ//0bVuIF2b3WR7Q8blH+WdKycZSHTW6iaHYwR3hT127ymGT59lJBRAKelEnS4cDg2bEDRvbBLzu5BXCrQW0tiKOiVDJ+eXGT7nopTdhD4Ppy5NEI0FSEzEuDm7RkPptKmE4l5QY5TXK7TW8qh2tWO8UK6T3dqhVqmTWs0AkMsWqVTqVEolHtxaolZpcO/n8+SS+SM//9Rqls2FJKpkRxLPX2WIDISObVHY4/OBED3hznH5LLSAKIAL6AduARcfPiA6l67ngT/8dA7ts0F4IHTkHMmXabNVzJZYu7/J6XdPHpo1ZLd28AbdxxZvSJJEQQOzXCXm86A3WyxeX2L8/Ag2RyczOfVOp3xqWhbDM4MAbOUKGKaJu26g2bVuj6usyN2WlMfVspVGE7vbgSJLbC4kkYQg0OfD0+9nIZ3lr/1H32GnUkUdDhKP+qlXGniCbhRNJre5g1uzdcuJuWSe1XvrxEf7iA5HWLu/zsipQfqvjqHXdLZWUsSGImiKRNDuZPAbZ/jD//3PiU0nKKeK/NLFkzjlNJ/8dI6zv/51Qj43ytszpNYy/NWfXKN+pYnldrG1IuENu3n3u5eQVIXNhSSWaVLIlEhMxrnzk/vYnTaiQ2FcOvQPBnhws0h+o0q9VKNRa+D0dtTP1WKV9FpnfTaXzBPo89E/3vfS5o82ak1Mw3yxdqQenyl6ZgLH47VmkkIISQjxd4UQ0d3bA8DfB1aAWTpZ5V8XQnxTdLrf/3PADvyL13mcr5M7m9sU640nbmN32l6L96Y35GHiwsiRZbVCukij1nymfUY97u40FVVT6BuJ7uu9FEKwWSgxl8p27xsO+RmLBIkORbAsi1KuM5za7XcdsMsz2gbJ5RS3lzaYm10DOjZ4U1cm0GwqHruNi0MJVFXG6bARHAqxlSvSqDYJRH14/G7Gzg53gw10MqepNyY6lm6yhMvr7LS0tA3ef/8uc/fXWJ/d5OqvXkKvtzBaBm//O28TH49x9u0pqLZwBk/w1b/xHYxMhR/8k/fJNZqE+0NMzQwxu5KkVKsjyRJCElTLDf7iTz9C8jtYn93CsEw++NfXsdm1ro/uySsTBPr8BGIBJFnC4bFz+t1pMus5DMMgu7mDpMiYhkl6LYveaCFJEhvzSbJbnWHLqVKFtvF8FYKdZJ70WvbpG/Z4qehtg5Xc0dWCHq+eTyOT/FXgvxZCuOisN/4V8J5lWW3gfSHEf0wnWMbprFX+6ou2f3yWiXk9ONRPv5RVzJbQ7OqRI7oAJs6PHnp/S2/RbhndQG6ZJTCLCGVw32gvvaHTqDaQpP1q1z6vm/Ae4/NSrkx6PcvE+VGmr04+cS3MaBtU8lXGIl5MvTN3TwhxqPesx25jOh6FeBTLskiVKkTcrgOCFCEEmkNj4foSM29N0TfS8ZMdigT52oVJtjd3cHqd7GwXsLs0YmN9iJU0G9dXKe1UCPT5aFSatJstwgMhhpstNpe22UhVcHoctNIVbv3pLU6/O43L5+DBrVVmzo/SPxgm27KwTJOxM0MoNgW9ruNwP/JfHZiMszV3C6u9CrbJbqZoWR1Rl2ma+9aGfWEPNoeGaXber8um4ZafvY1jb+beNCq7JdzPQiHqi41lWTTbvXmSnyav9VduWZZJJ0g+aZt/BPyj13NEnz4Rz2dDMVhIF/d5re4lny6i2ZQj50nmtvJU8lUmukOXLfbOi9Tbbap6C7slaDXb3VaHh6iyzN5lS7vL1u0lfbhdyzBQ5YPrappdIxDzk17LHhAOHcX63Caa20bSbOFz2LFLj/4MFm8uEx3qmKDr9RaqpnB9fQtNlhgJBai7VJo2iWK2RFtvsbmwTbVU58SlMfqGI5RyZXwRL5Is8cG/usby4hZXvnWekNtJFRlP0EM4EQQBgT4fmGlOXHJwOylhd9kZPzeMJElYlsVH1xbYvl/l8rkJZEVGCIHNrvHub32LVrOFEDA8PYBpmgye7GfxxgrNmo6qqVQKVRweO/6Ir2OK0G5zduBoQ4dnIa+v4FMTOJRnN/TPp4s43PZX5nX8RcOmKkz1Hbzge1FET916bD5V4c6XGcMwXtp60ctgeGbwSDVrrVSjXjm6JNw3HGHs3CPjcyH5EMojtXGp0WQjX8ThsjNyavCpKknNru3rrdTbBtfXtqg2D3dLCsb8TJwf2XdfS2+RTxcxTJPNQgnTtLj58QIP7q/j8nXUtP5SuztlPpfMk08VcO720jo9Dt767mUMCxZvLaPXW1SaOnO3buFu6p15mQNhTr17EkVTSK/n0Owa4UQIVVORZZnYWJS7q0k2i0UUTWXx1go//Cfvk08VsDlsLN1eBaEhS3ZGQgHW0jssL2+TXs/y/r/4kDPnx3C0BXpdZ/XuOlsPtjufr3Cw9aDI9nIagK3FbdZnt5i6PN7Nilc+WaOSrwKdHseN+STHpbRTplKo7rsvuZQinyoA0Gef2RcgG602LeN42U5+u0C9XD/2sfR4dfSEO8ejVy/5lFi+vYbL73zmKQ2fBomJJzeQC9GZVlHMllBU+ZFna6tNTW8Rdrv2lVOfFU2RORWP4jrCaFuSpANionqlQWoljTPgIpUvYuaqCL8dh9dNMBrg2uIaclOnX2+hqArlnQqFdJHYaJT8dgFZkRk40Y8iS0wNx5kejIFp4ZNbBOJeYkNRUisZXD4nU5fHsSyLQqZIrVSnbzRKslgmPt7Hd37tDabGEyzdWCWVzOOMeVA0BafHTqupkd6oEervQ1QrbN3dRLOgEfNSdcu47TbOvTlGIblErdQZsPyQZq1EeLBzOzgQxDT3n7hm3p7qGgrEx/s4rkajUWtS3qmgqMq+MrRqV1G0zulCiP3X1kvZHbx2GwOBp/fEPnGKTA8ALKsOrTlQT3X9kF82D23pejydXpD8lBiY6j+yNeLzSqVQRbWp3SBZbjbJlKsEXMdXRFqWRS6ZJxjzI0kSLcOgWKuzulPk4lD/viy0VG+QrdYYCx/sEfUGPXiveMgl80grRVohD2fPDHWfPzMUR1NkFq8tEYj5GTk1yKokOmuP0wPd/ciyxJmZYWrlOt6gh0tvfIWf/fE1vL4gesiOaVnQaFBuligtbeBSwgQNk/vJNBM2F/Y2pBa3QcB3/oOvcf/6EqH+ADaHjXZjnfW5bVqNN6iWalw4P44kCYr1BptLG2QyBcIhhVJugxt/lSdxIo7dZcfmgGg8jdPXOc7tag3DMhkQgvXZjim+vKc0LR9Spj4MvaEz9+EiU1cmDpRDn9SHO9UXRtrzvejNFg9uLjM0PfCFcLl6/Wggx+mdnj8b9L6FT4lPa03Gslov/erUsizapnkg4wy7XYRcz3aSNNoG6bUsnoALm8PGRr5Eo9ViPBI6UKaVJKnrGfv48cxuZxgM+PBHvNhdtgMna6vZJr25w+iZIdLVGnW9RTDmZ3k1TaHW4MTJwe6+Fm8sozfbnP3KNJ6gh6u/eoFAn5/iwibZdJFPNINTQz4CcQ9hbx+qLCHlasy2ytiEidxoEYoH6OsL4riiUi7W8ITauAPTTF6exBf2YRgmmk3Fstr4LYnv2s8RDHoQkszwmfcID1VJrudQRImRU4PYfRdYuJ5k+qqbgYCXBzeWWWpl0J5iSv8kSzrNrjH95uQz+7PKj72erEi0mm22HmwzeWHsmfbVA4SQQX7FFSbRyySPSy9IfomwzAq072GpFxEvqEzcO3YsVaqQLlcPCENaeov7HywweWns2C0siqrsE+AMBX1YFijywRO/23b4QGAhBD6HHU2RkRX50Gzm4bBnza5RLZbwGgbegBs1V8Dc0yVhWRY2h0bfcIRP3r/PyauTBGOd9bjxyQTxwTA3//h93Mka73zrQvfi593LJ2m0DRRJoMpyN/A43HZ+fm0ey29nKPxoXU9WZG5vbGO00gz6SsRj7wJQqDWoNJvEvB5yLsHJXRGHzeUlMSmQFZlWrYle08lt7TD1xgRG2yCzkSM2EkUIQXZrh1ZDJ72eY/rqk4PgyzAwl2WZ0++exDJ7J+HPMr0+yePRC5JfJoQLlJkXDpCNWpO5jxa7J9yIx4XfebCkqmpqJ+t5xqw5u7WD2+/C7rQdyFKOS7//UCfDLg3ZYqtRp98wmAgH0BstWnqL6YmBfdtJksTomWFM00TsGfQMnWDsctj5O//2L1GvNPa9T5vDhg0wTJN6XUcDspUqhVqDt9+cRtMe7adeqbP8yTr9M/3cWC8TcA+wV89oWRayJDg3EMe++/qSJCFEp0RqtA18YS/T70yhKQrNepNqsYZpmt1Sq+2xKTiZjRzugAuHy061VMPpcbxU2zlJknqywM8wPXXr8en9jL9ECCEQkvuF92N32pg4P9I94cqS1D15P4435Hnmk295p0LzGU0LnoTeNljNFfaJW1QhMMsNjLZJIV3i5g8+YeHa0r7n5ZL57vxRSZLw71rV3f3ZHKWdcne7tmnSUiTy1TrNPfM8LctiNXmXP/2LDygUqzhUFb/Tzs7GDoXtRxbFmkMjMhgi7HUzJmx4TbGrMK1QajRobBTYXEge+IyzGztUS3VcXidWFH48+xOgE6Anzo92A2S4P4g/6se2J5uvFmu0mi0Mw+DBzZWuNWCPHj3208skXwGpUoWWYRxL7fd55aieyZfB0MzAc2eQ0GmvufezecbODuHyubAsi0a7jYXFw1liPreLt949DXRaSC59+yymYXX7MU3TIrWRQ7UpLH+yTmwkgi/cyU4Hp/r3lXCL9SapcgVZCCIeF7Y9wWw4otE4O8RqLs/Z0QT1bJm+4UjX3q2kJ6lVy6QftPGFvbRrOtdn75OsVPmld05Td6tEhyO4dl2K7m6lcNs0CvUGZ3Z7KgF8DhcjoaMN6TcLRSpNvWOmAIyckGL2YwAAIABJREFUGsSyTDBWmHlrFEXt2c192ehlksejFyRfATZFQXmBk/yXmVylxupOnotDiQOP6e02qzsFxsLBJwZRWZYZnhnAsRuIntaQLYRAs2mkShVSO3nODsTYKpaoehVKuQrRoTAOjwPLsqjpLYRLwwAeSoYiHtehphC5ao2a3sdAv8GP/uw2g14PtXKDdK1OX8uLYoIz6Gd7q0hbldBsKoMnE9TrOumNHJ6Am8Tu1JOarqM3dSRtE5djEKfm5f52hqDLSX11h4YCIvBoTXjrwTZ/8f5t/tpvvUPI7SLu82KYJnq7k+lqioJlmrTbLVTb6/+tGobBTrJAOBHsTRf5FOi1gByfXpB8Bey1YvsyoTdbLzwtwu+0Y1OPmugijp1h7mwXkGTpmWYght1OvPbOumLc58FlSTSKte5MzHytzmI6h02R6fN66PMeXrq2LItiqUauVMZUJLyuNvHzUZAkgjE/pZ0C2+kC7UqTkBzF4Q1RlCuYpsn8Rw+QVZnf+jvfxuboHIthmvxkYRGXvMXZwVOYdRV/yIVDVdAUhdawhCEEhtIJNrVyneRKmumJBJ7d96PIEoos8SCTQyAYiwRJV+qkyz7ODrx+pXVbb5Pb2iHQ53uuIdA9XpxekDwevV9nj5dCOV9h6fYqp989eaAvL1+r02i1ifuePrFElqRDFavQMRU4rCfyMBxuO/Iz9KGapsXqToGBXcGPLEkEgh4IPjrmgNPB+cE4iiR1s59SroyQJVLLaUbPDCErMjvVOt//i2vo20W+9e99HZ/mZjoeZv7OKra2BaZJtd+N6nShGwZjgxEG6VwYzLx1AkmWSK1mME0Th8tOOBHiKxPjqCLE0u0SqdUVvvpbb9HM18hbJkWrhdtuw1los1zKEOjzMTSVINQfONAOMhIKIHZLzhGPi8Cu4CpfrdM2zZdik/hwRuiT+jNtDhsnr0y+8Gv1eD4EPXXrcenVBHu8FNx+F1NvTBx6YrQsq9N0/wop1RsYe3o3+oYjzzw5xTQtnnaYqizvKw8ml9M0KnVcfidC6twfdDl46/IJ1LAbr8NOvlrnj27eoxHQmLg8hixLjDs601H8jv3HqNk7ZuTNmo7T7cDmtHXaUBSFjfkmwVgAl9dFrdrgo9kV1lJZPHY7ZrZKanuTerWBXtdpynDnx/cx2gbVUo2V5RR620CWpM4sTjoXAg/XT3XDQN9jLVcr15n9cAHTfLapIaZpsnZ/g3r5yZNtevT4vNDLJHs8Fyt313EHXF0nFiHEka0ewWc0FHgeFtI5xsLBZ3L32YskCSaiRwtfjmLq8nhnXNdSikqhimmY6HaZik3ia79ymblUhnOJOO+MDxPxuNAUhfhYHy6fk5C2vzRdqjeo6i3iPg+J6QQVXQdZZi6dpN7OELFFcPldaHYFRZE5dzmBQ2vht/lJ13XmF+5z5a1v4vWHuLm+xcDJfmRFpllrsri2jTviPtIecG/pOFupUqk3CA+EuirYh72hT/8cJU69c/g80pdJo9U+UlHd4xh8CT1Yn5fer6zHsdAb+r5G80CfD83x4o3nL4sLg/3dDOlx2q12d4rGq8A0TVrNFtViHdMwaKIRcTsJOJ0d9x1JMBzy8/HqJn1eN31uB41qE3U3SC7eXMYf8WI4VSq1Bvg8rOTy5Kp1hoI+En4vdaNFpD+O0TZw+10IAQGnnUq1ztydBwyd7CesTaNKncHTl0ce9XsGYwH6tnfILWcInnJ0vXaPQpFkHHYbYa+bXDJPtVClWdOJjUaP9Rm+6gBZaTS5t53h4mD/oSYTPY6HJJ5vtuiXjV6Q7PFUDltvfNgO8WmRXsvgDri7rRRHBUiA+Y8f0DcS3TdZZC/tVhshOu41+VRH8PO092eaJpIksTa7iSfgYvRMx7jbbG8wn1rH6Z1hu1jg4YqGEILxcJCFTA652GT55gonr04S7g/SNxzB5tDIbu6g1JqQgIloiElE93156GR6iqowcnoIsFCFF9XpwozuYHfZufzt80cer+x3YNdUVu9toNnVJ5rWt3aquD2dMnAoHsDlc7K5kDww4uzTwm23cS4R6wXIF6Cnbj0+vSDZ46l4Am5OXjl8vfHTolHTsbvbT98QGD07jGY/WnW7uZCkWW8ycWEMvdFCVp588rUsi7s/nWN4ZgC334ltt8y8WShRa7SZio8gJI1mYwUh+zHaHoQkCLqdXHbaO+Ikj6N7TG6/ExDEx/q649MeV/HqzRayLCErMuXWNrpZIWyfRFZkokNHqYEfMTPSmRjS8DeRnhJcmnUd1fbo1GB32hg/N/LU13id2Hql1hemJ9w5Hr1fWo9j8bAd4bPC0MmDfZRH8TQBT2Iyzt2fzlLcbfR/GkIIxs4O4fA49qlHwy4nLbsNIdkwTJNqu5+4K8jqvQ1sTo3ERLwb/PZlqu1Z0hUJS0rgdbWot/KEbOPdh5utNuv3N3B5nZ31TDWMzfBSrzZwuOw0ak1qpRrBWIDZ7Qx6u82ZRKyb9VnmDgg/5XynbBoZePLa68Dkk0ej9ejxZaJXr+jxpUdRFU6/O93th9xLsd7oNuA/pJApUq82D7RX2FQF925fomlZVHSJ7Y08zYa+L/iW6g3S5cqjJ8ojKEpndJcqOXHKj9pcCrUGtze3GZoZoOQQZCtVZKGy+OEGt/7qLrVynTs/vkc+VaBtmEiC7tiqlt6ilN2B9hJY9a6p++Pka3XmtjPH/rwsq94xy+/xueWhd2tv6PLT6WWSPT4XWJZFKVd+ZWuhDyeaPM5GvkjY7dqn/jQNE9PYL3owTYvNQpGY1wOmiaqpTMej6A0dv9+9r2FeNwwaezxeheQktKeFVJXszKeTBJw2fKqHmb4ImqYSdLvQCzVSuSqeoEJiFDS7wti5EULxAB/cW2IgFuREXycgVwo1Uis5Tl65DIA/Qtd/di9b9zaRvTbYNewxTJNSo9ntoTyAkQGrCVKvz/HzTE+4czx6mWSPzwXNus7a/U30ZuuVvk45X6Gcf5QlnervO+CsE4wFiA7ut7kzLYtKUyeXyjP30YPu/Zpd67r+pEoVbq4nCbtdDAX9nftWM1QK1X372nqwTXpzmaaZY+3eBqXtAtBp/he6SWo1g6rZ8EUiyIqCLsHtjxcQyTLV5RymadJutankK0xePDjP0TRNcsl8d/1zaDzG2NCj+YWVps7txXWau+buD6lX6uTTRYQyhFB7AfLzjBAgC+u5/x3vNcQvCyHmhBCLQoj/8pDHbUKI/3f38V8IIUZ27w8JIX4ohKgIIf7eY8+5JIS4s/uc/0W8BiVZL5Ps8dKpNjsnV9cRzjnPg91p4/S7r77/rpKvguiIlZ4FRZaYjkcxTRN/4HBnIb/Dxux2hru3lwl5XcRGohht40BW6o/6uBA+h8vron26vU9oEx/rIz62fyBvw2jTFnD+7ZOsz21hmRabC0mqpTrlepNWsb7PI7XVbJFaSeMNuVE19cB79TnsxFsytVId2562n1q5QSVfObQs3aPHXoQQMvD3gW8BG8BHQog/tizr3p7N/jaQtyxrQgjxu8D/APwO0AD+K+D07r+9/APg94EPgD8Bfhn401f5XnpBsscLkd3aoa23iY1Eu/dlKlVMy2LMdjwLuePyOtoPHg9Ax6VtmDTabdw2jQYWRlM/cJFgU1XeGBnAqD5SmPaPxw7s62FbC9At0+oNndRqBuG1kWnrXBjs724z2h9htL9TYp04P9p5nqYwPDPArc1tlO3aPo9Um8PGzFtTT3w/Jy6NH7gvFA8c2UbT4/PHK1a3XgEWLctaAhBC/FPg14G9QfLXgf929///APh7QghhWVYVeF8IMbF3h0KIOOC1LOvnu7f/EfAb9IJkj88ymk090KM4Ejr+ibRaqlGvNLrOPZ9HUqUKbcMgW61xbiBOrtqZHXlYJu3UVHjMacdqL4JwI+SDAfMhK3fXqVcaDEeGcPv2Z37rOwUs6JZwgW4f5GXnMNrJz07rztpOgaDLeaQ/7170ZotSrvy5/m18drFe9ZpkAljfc3sDuHrUNpZltYUQRSAEZJ+wz43H9nl8mftz0luT7PFCeEOeY1uWHYbeaNGofL59PjOVKh67jdP9nSx0PBKi33+4wEhvt2k/Vl5FCoF4svn72NlhBk7Eya3nDkyZeegBWylU2V5J73tMO0KQ9KyYpsnijWXq1Sd/V6nVDEu3V4983DCt7lro02jWmuwk8890nD2Ox0MzgRdQt4aFEB/v+ff7h7zE4zz+xR9nmxfZ/qXQyyR7fKoEor7P/RrXw+B4HJayecyaTgClW9oV0sGLjGqxysrdDabfnESSJBRVwe13IR1i6ODdNUkv1cv71jez9Qc0sgp9ff1dC7znRQiBO+BCOWSySsswkEXHfs8f9eIOHD1JZDR8/AsqT8CN59KzrQ33OD7yi8WXrGVZl5/w+AYwuOf2ALB1xDYbQggF8AE7T9nnwJ7bh+3zpdPLJHv0eI1MREIk/N7uxJCjsLvt9E/E9vVi2hy2fRcULb21T+3rDXr2r3G2VOZ/sczKJ4+qXtWmzsezKweme5jm4SfMh9tlKlVE0HlosJ1PZdkqlrrH6PK+ekP7Hp95PgImhRCjQggN+F3gjx/b5o+Bf3/3/38b+IH1hDKDZVlJoCyEeHNX1fq3gH/58g99P71MskeP14TebrORLzESCuALPrm8KsvyUzPs1EqGlt5m9PRQ977NQomarjMZDRP2DvG130jsC4j/f3t3HibHXd95/P3pY+5Dc2p0Hz7kA4NtvDhr4yTErDl2CTwhXrxsnuyyu3Eegh9ikt0NAdZ4CYYQvAkkgSQGGxI/YUniXfL4IU6MWWOS2MJY2MaWhWTLsiTrGGtGGmnuo7u/+0fVjHp6pmd6Zrq7eqa/r+epZ6arqqu+VdL0t3+/+h1j50bZ9+gLXLZpPQ3N9ZzpHWDP0wfpmxrnPW+/dtZz1LGRcV760SEuufYiYhKZPCWPi7o7FpwMe2RwlHginneWGFd+KvEzyfAZ423Aw0AcuM/MXpD0KWCPmT0I3AvcL+kgQQnylpn4pMNAC1Aj6T3ATWHL2A8CXwfqCRrslLTRDniSdK7kxkcnOPj0IbZfvb3geTVfeOIAW3ZtpCVrlIGBkTHGpqZmnnduuGBuNW9bQz3NWYkunogT53wVaVt7Mze98xrqm4IqWjPobG5gYiTDVFhVe/DZV2jpaKZrcwfbX7eFmtoknbX5q2trEgt/jJw62k9dQ21BLYf7j59mZHCMbZduXnRftzKlHjnHzB4i6KaRve6OrN/HgZvzvHd7nvV7mNstpKQ8STpXYjV1STZdvBFiMba2ty44Y8m0zRdvoLF1/mrLgYkjNCTaqY0HCfRM7wD9x89wwZXbqY3Fgha0ecQTcXq2n09W0906rs7ap2d7NzV1SSTRskiJtxDZJd1c/SfOcPa1c1x4VdB1pbG1geQCCdkVx/RgAm5xniSdK7FYLEZbdyv7Tp5iXX1d3pav0wZGxxiJG605LVPbGutpo56hqTFiOr+tqa2JRE2Ck4dOMTU+SfuF6xmdnGRkYoqt7a2LlvRyTY8QVA4t7U3UZs1LWt9UT33T8ibOdksTw4elK4Q33HGuTC7t6ZpJkFPp9ExXiHQ6TTqdntkvtsikyM3J9SRj50uZNbVJWtqb6dneRfv2LsanUkym0uFA5/mP03fsNK/sPRrEkEpz4uXeWXEU28TYBEf2vTrrGWlNXc3MiD9Tk1Mc2fcq6VTpYnBuqTxJOlcm2Ylv74nX6B8eBeDYiyc59uLJmW2t9XVsWqS0OZ9EMsHLAwMkYjG2dbSxs6sdm0oxeGZo3v2b25vo2Bh0yUinM4wNj5e015kkYvFY3i8AklAstlBed0Xis4AUzqtbnYvAJeu7qA2rQTfmNMDJZDKMnBtd8vixAFds6iGZ1Zdy6Mwwg6eH5zxbnEyl2dd/mkt7guHsamqTsyZWHhseY2hgZM5A7itRU1fDll35B0hJJBNLmifUrUzcq1sL4iVJ5yJQX3N+OL9kTXJW/8PRwTEO7311Tl/GXMdeOkn/idl9r5M5gw10bupg5+u3zXlvMh5jS1vrTKLONTWRCkqWJWBmHHz2FUaHxkpyfLe4Ioy4UzU8STq3DMPjE/z42Mm8nfBXomldI5dfv2vOpM65GlvqqW8srO/h0PjE7DksJbqaG/O2tG3paC5ZNwxJNIeNjZyrdGVPkpLukvSKpEFJpyQ9IGlruO2XJT0haUBSv6S/l3RFuWN0bjF1ySQbWpsL6s6xHIslSIC29etobC2sJeqJs4OcHhldaVhFs35bFzXe1SNCRlyZZS/VJIqS5P3AlWbWAmwHjgLfDLc1A58kGJNvE/A08B1J3ibcVZREPEZ3c+WNK5pOpRkfnZizfldP17IaAy1V/4kzHHtx7nCaA6fOcepoX8nP7wojgqmylrtUk7InSTPbb2bnwpcCMsCucNuXzOwRMxsxswngM0APcEm543RuNeo/foajPzlGJpPh1QPHZ43tulLHBs4xOLbwc8r6pjoa5+lnGYuFLVcjcupo35wZUqqdlyQLE8lDAUnvJ5hhugVIAb+RZ9cbgVHgYJ7j3EowSzVbt+Yf1cO5atG9tZPOTe2YWTAjSIHD4BUiY7ZoGaKxpYHGeQqsrZ3nV5qNAQmk8lW31jXWFTxFVzWQSj6f5JoRyVc7M/uGmbUCGwhmpn4+dx9JFwNfBX7TzObt6GVm95jZNWZ2TVdXVylDdq7ijJwbmbNOUjBeazzOtsu2UFO3+OTGmUyGfbsPMDK48DPLre3raK2vW3CfgqQOQaa8pbqWjuZZidq5QkXautXMeoGvAN+WNDP9uKTLgO8Bd5vZn0YVnyu/dDq96MS+Lhi95uCzh5kYm/v8calisRg9O7qLOktHOpVm3+4DjA3P7uYxPD6BxXdBbGPRzuWWJ44te6kmldAFJAE0AhsBJF0NPAb8rpn9XoRxuQgM9J6dNf+hm19tfS2vu/4SausL7wLy3LHemSrH3KrH9p424om5EyovR9+x00xNpujZ0U1N1risk6k0+3r7GJ3KcKb3LIeeO1KU87mlC/pJZpa9VJOyJklJMUm3SeoOX28GvgQcBvZLuh74f8AnzOyPyhmbqwwdG9u5+I07ow5jVVhKUqtLJuhpbUISfcdOc/CZV4oWh5nx2uAwqXCqreGzI0yOT9LY2sDQmeGZ/WoSca7asoGm2hoaWxtmhsRzUVh+KdJLkqX3TmCvpBHgSYKGOW81sxTwaaAV+H1Jw1nLDRHE6SIw/UzNFVcyHp/pstLa1TJnKLyVyJjROzjERCoYrGDH67bS0t7MyLlRzpw8OycOgLqGWn9G6FaFsrZuNbMMQZLMt/0tZQzHuapUU5ssakf+eCzGGzZvmLO+vaeN9p7FS4updIZE/Pz3dTMjk8kQjy/8ZWkylebImQF2dLTPer9b3HR1q1uc/89ybhkWG1e10llmGEuV7plgJpPh6P7jTI5Pks5keG1weN4uGONTKZ5+9cSsIfP6Xu3n5WcPL3oOKUjQC8wq5hYQJ7PspZp4knRuiTKZDC88foDhs3O7YFSrdDrNS08fYujsMMcPniSTycwkxal0ht7BIVLzfLGoSya4tKeLuuT5Sq2Oje1sLWDc2GQ8zs7OduIRDlKwWvlUWYXzEYadW6JYLMb2122hoWX1jpaoWBPEVj6s3ujQGKnJFM3tTbR0BGPZTo5NImnWAOnzVcdOa66b3UI3noj7c+kyqLYS4XJ5knRuGZYz1+NaNHJulPGRcVo6mlm/rQszY8cVc6fmAhgaGCaeiJGsnT01mHOVzJOkc2U2NjmFpFlVjKtV1+aOWa8PPHWQri2ddGyY3WBncmKKQ88dIVGToGNDGz3bu4sWg5khfzC5JIKqG4N1uVb/X6lzq8zxs4Mk4jG2d6y9foKbL95IXTjHZTqdnmmhWlOb5IobLgUoekJ76elDtK1fNydhu4VU32wey+VJ0rkyu6CrffGdVqmmdY2k02nS6TQvPH6AC96wbWbOy0LmyFyOTRdtoKbOq2+XQvKSZKG8WZhzZSap4qoHRyenGBgdW3zHeUyl0/QPBy19p1v+jg2Ns/P122hoaShmmPNqbGnwZ5zLECOz7KWaeJJ0rsJYujecTqp8BsfGZxLdUo1NTnFsYBAzIxaLhcmxnqZ1jUX7MmBmTGT1pXSuXDxJOldhMqkBMlPl7YPZ09rMRd2dy3pvS30dV27ZMJMQm9Y1rqhqdXL4x7y050mmJs9PGD0wOsbzJ3qXfUw3mzDiWv5STfyZpHMV5vgrLVhmjG2XRR1JYVLpDGeGDtPZCLHkygenT9RtpnX9+Ky+km0N9VyxsWfFx3YB4f0kC+VJ0rkKs/GC9fMO4VapJtNp+kaM9saWolRNxRIddG+ZvU4StRF2mTnbd46pidSaakHrY7cWxqtbXUkc2PMyQwPDi+/o5kgkE6uqIUpDTZLLN11AItkVdSgzpianSKfTRTue2dw5OF118CTpSqJrc/tMfzlXXdIlGvw9kzGeffUkw+MTswZQn8+RF45x6kh/0c7d1t1K95blPbOtRMJ8gPMCeXWrK4lCpkhya9Nzx3vZ0tZKZ1NjUY8bi4lN61qoSwal7IVKdtsu30zMp89aULU1wFkuT5LOuaK6qKuD+hJVF3c1n0+82xaYKWQ1VVdHQVB1/R2Xy5Okc66omuoKq2bvGxphaHyCnWt4BKLKZT7iToE8STrnIlGq0qZzxeRJ0jkXiabaGppqa6IOoyp5P8nCeZJ0zrkq5LOAFMaTpHOu7E4Pj3JqaJhLNxRvXklXOMmfSRbKk6RzruyaamuQmqIOo6rFvSRZEO9I5Jwru9pkgvbGlU+jZZbGJp/BMpU7utPIuRFGh8o7q4srHi9JOuciNzk+SaImseTZQ6Q4Ft8Mqi9RZCt3pvcsiZoEDc2VE6P3kyycJ0nnXOQOPnuY7q2ddG5cep9JxStnzNj5bNm1KeoQ5uHPJAvlSdI5F7kLr9pBIhlffEdgYGSMjBkdTSuvrq1WQRcQfyZZCE+SzrnI1dQWPrDARCpFxmfkcGXiSdI5t6r0tDZHHcKaEPMBzgviSdI556rM9FRZbnGeJJ1zS5bJGKlMhppEYc8RV7vJVIpkPI6kqEMpCn8mWTjvJ+mcW7JTQ8Ps7+0ry7kGRsY4PTxalnPls/fEKfqGRyKNodhismUv1cRLks65JetubqKtoTz9/iZSKdIRN9S5bEM3NfHqKDW72TxJOueWLBYTtbHyfHysbzwLSgItZTnffOqSa+uj0qtbC7e2/uWdc2uP6kGV/1G12vpvepIsTOX/z3POVTXFO6MOoSCrqf+mgNjaaINUcmVvuCPpLkmvSBqUdErSA5K2zrPf5ySZpF8qd4zOucpjZvzk5CmGxyciiyGdyWB5EmFPazMb10VXJbw0RnwFSzWJonXr/cCVZtYCbAeOAt/M3kHSm4B3ACfLHp1zriJJoqW+jmSEDWj29/Zx4txQZOd35Vf2JGlm+83sXPhSQAbYNb1dUi1wL/CrwGS543POVa5N61qojbARzc7OdrqbGyM7f7EEs4AsfynoHNLbJR2QdFDSR+fZXivpr8LtT0ranrXtt8P1ByS9LWv9YUnPS3pW0p6lX/nSRfK/TdL7gT8haK6WAn4ja/OdwKNmtnuxjruSbgVuBdi6dU6NrXPOFVV9TeFjzFY0QbyEzyQlxYEvAf8KOAY8JelBM9uXtdt/BgbM7EJJtwCfA94n6TLgFuByYCPwXUkXm1k6fN9bzKy/dNHPFslgAmb2DTNrBTYQJMXnASRdA9wMfLzA49xjZteY2TVdXZU9XY5z5XRmZJRUujKHHRuZmGQqnV58R1cyQsRXsBTgTcBBMztkZpMEj9TenbPPu4E/D39/ALhRQcno3cA3zWzCzF4BDobHi0SkI+6YWS/wFeDbkrqBrwEfMrPKnWbcuVXgyJmzDE9U5tOKQ/1nIh9Bx61Yp6Q9WcutOds3Aa9mvT4Wrpt3HzNLAeeAjkXea8B3JP1onnOWRCV0AUkAjUA3QfH6L7OqWduAP5H0DjP79xHF59yqc9WWjVGHkNdlG7qJrZExULOdPjlALB6jrbs16lAKssISUr+ZXbPA9vn+gXObxebbZ6H3Xm9mJ8JC1SOS9pvZPy4e7vKVtSQpKSbptvACkbSZoN76MPASsBW4Mms5AXwM+HA543TOlU48Fqu4gcLP9p3L27WjEMPjE+w//hrp1OqoRhYQl5a9FOAYsCXr9WaCz/N595GUAFqBMwu918ymf54CvkUZqmGjqG59J7BX0gjwJDAKvDWsfz6WvQBpgge7pyOI0zlXYiODo4yNjEcaw9TkFK/uP8HE2PKrp2sScXZetInOje1FjKy0YmjZSwGeAi6StENSDUFDnAdz9nkQ+A/h779I0GDTwvW3hK1fdwAXAT+U1CipGUBSI3ATsHfFN2IRZa1uNbMMQZIsdP/tpYvGORe10ycGSCTj1F/QE1kMyZokV9xw6YqOUZNIsGEVTQYdjN1autK8maUk3QY8DMSB+8zsBUmfAvaY2YMEXf3ul3SQoAR5S/jeFyT9NbCPoPfDh8wsLWk98K2wFiIBfMPM/qFkFxGqhGeSzrkqtfWS3LYcbq0ws4eAh3LW3ZH1+zhBb4b53nsXcFfOukPAG4of6cI8STrnXBUqsNq06nmSdM65KiMKboBT9TxJOudcFYpF201+1fAk6ZxzVSYYu9VLkoXwrxLOOedcHl6SdM65HGZWcQMeFJeIy8tIhfAk6ZxzWU4d7WPw9DAXXrUj6lBKJqhu9SRZCK1kKKZKIqkPOFKkw3UCZZuKJULVcp1QPddaLdcJ1XOtnUCjmRVtqiNJ/xAed7n6zeztxYqnkq2ZJFlMkvYsMnjvmlAt1wnVc63Vcp1QPddaLddZqby87ZxzzuXhSdI555zLw5Pk/O6JOoAyqZbrhOq51mq5Tqiea61fO5MRAAAIqElEQVSW66xI/kzSOeecy8NLks4551weniSdc865PDxJziOcEfvPJL0kaUjSUUmfl1QXdWzFICkeXk9feH3/R9JK+kxVJEmfk/SCpEFJJyR9RdLqmTp+GSTFJD0hySRtjjqeUpD0Vkk/kDQsqV/Sl6OOqRQk9Uj6q/DvdEDSo5LKPp9itfMkOb8EQSfldwHrgBuAnwM+F2VQRfRR4N3AtcD0B+n90YVTMmngl4AOgslaNwNfizSi0vsIMBp1EKUi6WeBB4C7Cf5dNwNfjTKmEvoy0A7sAtYDe4Bva22Pl1dxvOFOgSR9CLjVzFb9NzlJR4BPmdm94esLgIPADjM7HGVspSTpXwPfMLPWqGMpBUkXA38PvBd4BthiZseijaq4JO0Gvm9mH406llKT9Bzwx2Z2T/h6F7Af6DKzahhpqCJ4SbJwNwLPRR3ESklqBbYCP5peZ2YvA4PA66OKq0zWxL/hfCTFgPuA/wacjTickpDUCLwJGJf0dFjV+piktToazeeB90rqDB/13Ar8syfI8qq6JCnp6+HzmnzLp+d5z+3Am4GPlz/iomsJf57LWX82a9uaI+m9wK8Avx51LCXy60Cvmf3fqAMpoTaCz6xfAf4jsBH4DvCQpHURxlUqjwNxoA8YBn6B4NpdGVVdkgRuA7oWWD6TvbOkjxA8w/s5Mzta3lBLYij8mVvluI6gNLnmSLoZ+Arw82b2dNTxFJukC4HfJPi/vZZN/9/9mpk9Z2aTwGeBJHBddGEVX1gz8F3gRYK/1QbgLuCfJK2PMrZqU3VJ0syGzax/gWWm0YOk/0Hw4fMzZrY3uqiLx8zOAkeBq6fXSdpJUIpcc1WRkj4A/BnwLjP7XtTxlMibCb7g7ZXUD0x/EXhO0q9FF1Zxmdk54DAwX0OKtda4oh3YAfyRmQ2a2aSZfZXgM/unog2tulRdkiyUpM8D/4UgQR6IOp4iuwf4LUk7JLUQtNp9eK012pH0YYJWkG8zs8ejjqeE/hq4ALgyXN4Zrr8J+IuogiqRLwMfkHSZpATBM9hx4Ilowyqu8Lnji8CvSWqUlJD0n4Bm4Ploo6suPunyPCRtA/4rMAn8OKvF9REzuzyywIrndwme7zwF1AKPEHSVWGu+CKSA72W3mjezpsgiKoGw9iO7BmT677rXzIajiapk7iZIFI8CdQSteN8RljLXmvcQNN45QlClfBC42cwORRpVlfEuIM4551weXt3qnHPO5eFJ0jnnnMvDk6RzzjmXhydJ55xzLg9Pks4551weniSdc865PDxJuqKRdGee8XC/m2f/28PtD+SsX2h83X+Xtd9jefapC7ffGL5+c87xPxiu/0TO+ovC9e8vx72Q1CLpC5IOSxqV9JPwnihrny5Jfyjph5ImJR0u4Nxz7muU98K51cwHE3DFdg54+zzrZpHUDdxBMHhzrt8B/jRn3QeB9xOMZ5nte8DHctZNhD+fJJhT8jrgn7O2X0fQ+T53vM/p18UanWexe/F14KcJ4j8IvAX4fUDAH4T7bALeR3AtzwLdC51wgfsa9b1wblXyJOmKLWVmPyhgv88Cfwdsyd0QTt31cvY6SfcC3zWz3A//M/nOZ2bDkp5nbgL4lwTDtb1Pkuz8iBrXAcfN7EgB8Rci772Q1EAw8fXt0/MFAo9Kuhy4hfNJ8jkzWx++527gFxc557z3tQLuhXOrkle3urKT9C+Af0swu0oh+78euAz438s43eMEiWD6WN0E45x+kWBQ90uz9r2O8o0BmiD4+5tvyrKZ6lYzyxR6wALua6XeC+cqlidJV3ThYMzZS/YzNgF/DPyemR0v8JC3EAxi/bfzbLspfJ43KunhMKFmewLoDqeTgiBJHDez/QSznlwXxtVKkIiLWr2Y716Y2SDBwOT/XdKVkpol/RuCJPelZZynkPsa6b1wbjXyJOmKrQOYylluzNr+AaCHYKDqQr0PeChMLNm+TzDZ8NsIZm3fSjDf3vasfaZLQ9dl/dwd/r47a/1PEfw9FDMxLHYvfhnYTzBI9yDwIPA7ZvbnyzhXIfc1ynvh3KrkzyRdsZ0D3pqz7gDMlFA+A3zYzMYKOZika4GdwG/lbjOzT2a9/Kew5eh+4PZwwcwOSzpOkAD+Ivz5rfA9PwA+Hv4+3YDl2QViiTH7i2VmkerQvPci9AfAtQQJ7hDBvJB3Suo3s3sXOG5uXAXd12LeC+eqhSdJV2wpM9uTZ9vHgFeB70haF65LAMnw9ZCZpXPecwvBjPR/t9iJzaxX0uNkTSgd2g1cJykJvJFgDsLp9bskdRAkhh+aWWqBU9wBZCfm/wncucD+ee9FWC38QeAmM3skXP2PkpqBuyV9bQnPI5dyX4t1L5yrCp4kXTntAq4BBubZNgDcQFb3hLDkdjPwt4WWPEO58789AfwC8DMEJcFnAMzsoKQ+4HqCEt0fLnLce4BvZ70+sYSYcl0S/swtrT0DrCOoqp2ve8x8lnJfi3UvnKsKniRdOX0C+ELOui8QVEt+krkzrv80QT/Bglq1SlpP8CF/X86mxwkSwkeAp81sImvbD4BfJZjId8HWnGZ2gpUlxmzTXSuuBh7OWv9GYAToX8KxlnJfi3IvnKsWniRd2ZjZ3tx1ks4C/Wb22DxvuQU4DTySuyGsrvws8DcECWcr8NtAhrkJ4xlgDHgH5/sfTtsN3EVQ+txN+ewJl/sk3QG8QvBM8nbgi1n9FZE03TfyYqAh6/X3zaxvife1Eu+FcxXLk6SrSJISwHuBB/I8GztN0J/wswRVk0PAY8B7zOxo9o5mNiXpKYKSae6H/+7wOPvMbL7qypIws7SkdwGfJnjW2UWQ7O8E/lfO7n+T5/VbCK55KeetuHvhXCVT1hdW55xzzmXxfpLOOedcHp4knXPOuTw8STrnnHN5eJJ0zjnn8vAk6ZxzzuXhSdI555zLw5Okc845l4cnSeeccy4PT5LOOedcHv8fp6r8hmIrnzsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAF/CAYAAAAirDIZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeWxlWX7Y9++529s3Pj7uaxVZxVq6qqurunuW7ozGI2lGy2iiDVIkxY4RWDBswQ6SP6IocBw4ggEFcQAjNpJIkQVZsjYoljyWNSNNNBrNTPf0Ul1d+0qyuO9v3+928sdjs8haWWxWsbvf+QAPzXfvufcdvn6s3zvb7wgpJYqiKIqiPEg76AooiqIoykeVCpKKoiiK8ggqSCqKoijKI6ggqSiKoiiPoIKkoiiKojyCCpKKoiiK8ggqSCqKoij7TgjxJSHELSHEpBDilx9yPiCE+MPN828LIUY2j78ihLi4+bgkhPjx3d7zmfweap2koiiKsp+EEDpwG/gBYAF4F/gvpJTXt5X5B8ApKeXfF0L8LPDjUsqfEUKEAVtK6QoheoFLQB8gn3TPZ0G1JBVFUZT99gowKaWcllLawB8AX7mvzFeA3978+Y+BLwghhJSyJqV0N48HaQXH3d5z36kgqSiKouy3fmB+2/OFzWMPLbMZFItAGkAI8aoQ4hpwBfj7m+d3c899ZzzrF3heOjs75cjIyEFX42PFlxLX87EM/aCroijKY7z33nsbUsrMft2vU/RIG3vP15fJXwMa2w79upTy17c9Fw+57P6xvUeWkVK+DZwQQhwDflsI8bVd3nPffWKC5MjICOfPnz/oaiiKouw7IcTsft7PxuZV7Qf2fP3/5/9RQ0p57jFFFoDBbc8HgKVHlFkQQhhAAshtLyClvCGEqAInd3nPfae6W5UnqpZqB10FRVE+Xt4FxoUQo0IIC/hZ4Kv3lfkq8Hc2f/4p4JtSSrl5jQEghBgGjgIzu7znvvvEtCSVZ8OxHSbfv8uRs4cIRUMHXR1FUfaJ0B7We7lL/uNPb85M/SXgLwAd+DdSymtCiH8GnJdSfhX4TeB3hBCTtFqQP7t5+WvALwshnM1X+gdSyg2Ah91z77/E7nxiloCcO3dOqu7WZ8N1XAxTfZ9SlIMihHjvCd2bTyWupeWnjC/u+fpvOL+/r/X5KFP/8ilPpAKkonyyCD5kS7KNqDFJRVEURXkE1URQFEVpR0K1kXZDBUlFUZR2IwDV3borKkgqjyX9EkKLH3Q1FEXZVwKECpK7oYKk8khSNsG9iTRPIUTwoKujKMo+Eprqbt0NFSTbkJQe4COE+dhyQgSQ5llaCf0VRVHaj/oq0Y68RXAnHzgs/fIDx1SAVJRPKCH2/mgjqiXZjvQ+7k+ZIaUN7g2kcRKhhQ+mXoqiPB9CgOpu3RUVJNvQZlrE+45ZSPOlh55TFOUTqM1ahHul/kVUtqgAqShtRC0B2RXV3lYURVGUR1BNB0VRlHYjQKiMO7uigqSiKErbEaq7dZdUkFQURWlHauLOrqj2tqIoiqI8gmpJKoqitCPVktwVFSQVRVHajUAlE9glFSQVRVHaTvull9srFSQVRVHakQqSu6La28oT+b7PzXfuUCvXD7oqiqIoz5VqSSpPpGkanQNpAiHroKuiKMp+US3JXVFBUtmVzr6Og66Coij7RaCSCeySCpKKoijtSLUkd0UFSUVRlLYjQOVu3RX1LimKoijKI6iWpKIoSrtRY5K7poKk8gDXcdENHaHGLBTlk0v9fe+K6m5VHnD7/BS5lcJBV0NRlGdJiL0/2ogKkgoAtuuykC8ipeTQ6RFS3YmDrpKiKMqBU0FSAcD1JZWmjZQQDAcAWJ1dx/O8A66Zoij770O0IlVLUmlHYctkoieDtjmY77kexY0SnusfcM0URdl3H0zc2eujjaiJO8pDmZbJkbOHD7oaiqI8K23WItwrFSQV5Rmwmw7VQpVUd/Kgq6IoDyVVkNyV59rdKoT4NSHENSFESQixJIT4DSFEx7bzf1sI8aYQIi+E2BBCfE0I8cLzrKOi7IdGpcH6Qvagq6Eoyof0vMckPeAXgDRwGhgAfmvb+RjwTzeP9wMXgL8UQoSecz0V5UOJp2Oqu1r5aNM+xKONPNfuVinlr2x7ui6E+FfA7207/6+3lxdC/HPgV4AJ4P3nUklFUZRPOoEak9ylgx6T/AJw+Qnna8Dkw04KIX4R+EWAoaGhfa+coijKJ1P7LeXYqwNrOAshfhL4e8A/fsT5I8D/A/x3Usryw8pIKX9dSnlOSnkuk8k8u8oqiqJ80qh1krtyIEFSCPHTwG8APyalvPCQ88eBvwb+Nynl//W866coiqIocADdrUKIvwv8C+DLUso3HnL+JeDrwP8ipfw/nnf9FEVR2oFaArI7zzVICiH+Ea3Zq1+UUr77kPOfBf4M+O+llL/+POumKE/ieB6mrh90NRTlwxO03SzVvXreb9O/BOLAXwshKh88tp3/VSAB/O/bzwshXn/O9fxEczyPpUIJKeVBV+Ujr9Jo4ngenu/z/vwy5UbzoKukKPtDjUnuyvNeAvLYd1dK+fnnVZd25ng+uVqd7ngUvc0+8E/rbjZPVyxKdzzK8Z4MkYB10FVSFOU5OuglIMoBCFsmJ/u6D7oaHwsneru3kr5Hg4EDro2i7CP1BXlXVJBsc3M3F4mlIirH6CNobbbjgdIeJEJN3NklFSTblJQ++GtEEmECYdVCUpS2oibu7Jp6m9qWA94qHT0RNF3DsZ2DrpCiKM+TmrizKypItikhAgjrNEJYLE2usD6vdqxQFEW5n+puVRg5OYhos2+HitLu1Jjk7qiWpIKmaQ8EyXqlju/7B1QjRVGeOfEhHm1EBck2I/0q0r6IlO5jy01fnqO4XnpOtVIU5blTY5K7orpb240Igt6HEI//Xz/xyhi6oVKwPYqUHkKo90f5mBIgVRNpV9Tb1GaE0BF6FwDlfIW5mwtUSzVuvH0Hz/O2ym0PkNVSbce5dielD84FpF846KooivKMqSDZxnzPZ+riLI1qg8xgGv2+5N0bi1nuXj7P3St3KWUrj7hL+xFCA2MCRPygq6Ioe/eMu1uFEF8SQtwSQkwKIX75IecDQog/3Dz/thBiZPP4Dwgh3hNCXNn879/ads23Nu95cfPRtU/vxiOp7tY2JaVLPB3jtZ94BdMyH2gpun4TL5Ql2ekzeGwYw4weUE0/moQWe+x535dcWlxmLJMmptLZKR9Bj8+k/eGI1ljEvwZ+AFgA3hVCfFVKeX1bsf8ayEspx4QQPwv8GvAzwAatrRSXhBAngb8A+rdd9/NSyvPPrvY7qZZkm5HeOlJ64F4HfwXTMimsF7nxvds7yyExIwZSG6da3NssV9dvUrQX2nK3EU0TDKWShEzzoKuiKA/xIVqRu2tJvgJMSimnpZQ28AfAV+4r8xXgtzd//mPgC0IIIaV8X0q5tHn8GhAUQhzYN00VJNuIlB54CyDrYIyDlgEgno5x6PTIjrKmFqQjcAjXdnGae8vGI5F48vlm8inlylQK1ef6mo+SjoYxdPUnpnwidQohzm97/OJ95/uB+W3PF9jZGtxRRram2xeB9H1lfhJ4X0q5fY+639rsav0n4jks8FbdrW1ECB2sM1vPm/Umq7OrDByuE4r0PPSarqFWIJVSIqVE03b/j34r0I7uunw5X2FjMcfoyaFdX/PAPXIVDNMgmozs+R6K8on34dc7bkgpzz3hFe53f5fSY8sIIU7Q6oL9wW3nf15KuSiEiAH/L/BfAv92d1XeG/U1t03lVwvM3VjE8etkm7M7Pr0Py+O6NrfB1MWZZ1onM2ASSYQ/1D36x3rpHs48sVx+tYDnqhm7SvuSQuz5sQsLwOC25wPA0qPKiNaatASQ23w+APwJ8LellFNbdZZycfO/ZeD3aHXrPlMqSLapYCRAui/FyLERwoFTNGv61tjh+2+eZ2l5ekf5dF+KgaN9z7ZO4QBdg53P9DUAfN9neXqVRrXxzF9LUT6ytA/xeLJ3gXEhxKgQwgJ+FvjqfWW+CvydzZ9/CvimlFIKIZLAfwL+BynlGx8UFkIYQojOzZ9N4EeBq0/3Sz89FSTbVCgawrAMqvk6Qa2D2+9NUy3WABg/M0qiM87GYhbXaWXmMUyDUCS4r3VodeE2n1xwn2maxvFPHyWSUF2ySnuSPNuW5OYY4y/Rmpl6A/gjKeU1IcQ/E0L82Gax3wTSQohJ4L8FPlgm8kvAGPBP7lvqEQD+QghxGbgILAK/sX/vysOpMck29kFQjHfEOP7pI5hWayZmKtGD7/ssLE0TjocxzGf0MZF5cKfAevnZ3F9RlAMjpfxz4M/vO/Y/bfu5Afz0Q677VeBXH3Hbs/tZx91QQbKN9Y52UylU8TxvK0B+QAqPoy+P7TwmbcBHiH1qUYoUmC/sz732kXSnAYkwDh90VRTl2WjDROV7pbpb28j29Yqe67FwZ4mpSzNUC7Ud5daWVnn/6l/h+PeN2Xkr4M489jUaXpGmV95VfYQQWwH3w6yllNJupYrbZu7mImvzGwAsT6+SXyved41k6tIM9Ur9wRtqPaD17rk+ivJxIMXeH+1EBck2sZAvcmt1Y+u55yxRr1SQUqIb9z4GjVqT2StLpK1xTO2+FqM+2Fpf+RhNr4LtP/06xatLq6yV95b6Tto3WJ+9jLtttmoyE99aBmIGDAxzZ8o9IQSRRBj9IV3JQgsjtA83y1ZRPvLULiC7orpb20QmGiEZDgGtVpRplBg7PUxhw+PapfcZGO+jr/cQwXCA0993EivwYKaYqfUcpq4znE4+8nUS1v3rhXdnJJ0iuMexT1+Mk1/9GxKZNIaxOetctGbwAnT231ufXClUWZ/fYORkHz0jT077KL01QEfo969xVpSPt3ZrEe6Vakm2iYBpEA1YwGY3p3kCoUVJdSVwbI9m5d4s0w8CpN10KGXvdZ32JmLEIx6r9evst1gwgKnvbespwwozfu4MZrDV+vM8j5mr89QrDy7xMAMG4ZgG9oXNbtoG0lt5zN29zYeiKO1IBck2Va/Uya+2tnr61OdfY2Rs4oEy1UKV27cuUnWzAEQCFvFAgrj5bNdL7kbFnsezL7dS7QFCOghaQVHXdU6+NkEk/mCXaSAUoHtkEMwTCGGBbICfB6DplSk7qzvKC713a2ux/dLwim2Zz1b5iBEf4tFGVJBsMwt3lrn4zauUclVK2TLTl2fZWMhxfwrEjaUcvi858cpJTC20dVwXBiHj0d2tz4OUkrpXwiPIBx9hYQwi9FZXr3SuIrg3vuk6LoXlt3a0GIUW3fxvEmEea12Hj/8hc826nk+uWnvkeU+65JozuPIhE4YU5XkRgCb2/mgjakyyzeiGRiQVprM/hS8irObu4uQtPNfbsdGy43oELIOQkXriPV3HfXZrKR9CCEEmdOLRBbRO2LZMpVlrsrYQIN6deuyX4KCeIKgnPlTdqrbNbK5AKhx64IsHtL5k9IZOPfScojxPakxyd1RLso1IKekd7Wb8zCF0XUegEY5EKedLLBWvY/s1pJS4ns+cW8eNeKw3bj2xa/DmO5Oc/8tLO8YvD5LQe1pdqZsiiQhHXj6DEBbZxiSO/+iW3sM4fp1sY/KBZSYPkwgFOTPYhxACx/OwH5IfVgVIRfn4UEGyjdy5MM36QnbruaEF6AgN0Xe4l5nzqxRWsswX3sP1K6QqPvWlKvUNQTn/+KUZh08PM3pqiGB0f9PWPY6Ue9uGy9QiaBg0vTJVZ31X12jCQNcCrNSv4fi77yadzxe5u5F7cL3pY0i/hrQvIJ/zFmNKG1JjkruiulvbSP9YD1bIeuC4a7tUFgRz/hu4RgdiuETvYCeBcIDsUg7PefzszlA0RCgaemyZ/Vb38pTsRXrCrYw9Uvpkm1MkrMEH13duKtizWHoMXbOw3epWkJXSx8ejYUuWi2XGunYu99CFScIcwNLCGE+x9+twR5K6V2S9cWv3Xawi2FqPqv40lWdMdbfujvpLbCOPSuid7u3g1OeOM3PlNqvzJer5GYrrZb74X32e3tHu51zL3Qnpya0lHy0CS4uiiUcvIwnqCQytFeRCRooQrfHWirtGzckTYOSRy1CEEISNp1srqWsaUS1FSI/suotVCA30J2/1pSgfShsmBdgr1d3a5qSUbCxmiaSixDIZmlWHRCYBEq6/P830Rg5obdC8OLl8wLW9RwhtR4tRCEHc6kUXDyZB+EDISGFuy6Tj+A1W69cI6kmazS4WCqXHJkp4FCkdpJ975Hlde7D1rigHqbULiEpLtxuqJdlmPOlQc7PEzB4AfM9nYzFHKBYiu5gn2Z3gxc+d4OSnj1Is15gqlUiFQwSlwGm6SCkfaBVJbxn8PMI8fhC/0p41bQhqnRgiwEAigBd/cGLOXK5AyDTJxHa2wqW3CFpmc61lBdxZsDqeV9UVRXlOVEuyzfjSoemV7s3U1ATJoz10HsrAUIz0QKtL0QpaZDJJBjuSCAShSJCRE4MPBkgpKazrSG3w/pc6ENJdeOQelb70aHrlrQTsM7ki1XprqYamiYd2tUpq5Jsz9577RXz7LtK5DtIGQGgphHVm53XSR7rTmzunKMpHkJq4syuqJdlG1ubW8X1Jz8gR7IaNMDSWihWW1nJ0S4Navs6p105QLdaYvb7Aic8cpT8Zf+w9HdtlcSpHJHkIa29Z5R7gSRddPP1HU0oJskzDEQg9umPNY90tULTnCRkdCDQCeozjPV0PDMtILwtaqjU2CBjCZbnqQudmAb8I3k3QwiAet2mzBKnS2SkfXe3WbbpXz7UlKYT4NSHENSFESQixJIT4DSHEQ/uoNstKIcQvPM86fpIFo0FCm8s07lyaYXV+g7XKOtpigakLMxw+NUK2UCYYCTB4tO+hk00Wbi9R3ChtPbcCJic/O4EVtFicXKZaero1iPfzpcdq/equt9varpWT9hiu0HD9na3JgB6jI3CIoB4noEdxPZ9ry6s0HHerjJQOeHdhWzac3vAGL/X2bp7fXC8a+Dxa4HOPnYwjhI4wx3es19zOk+6u1l0qyjMhULuA7NLz7m71gF8A0sBpYAD4rfsLCSFeAX4I+OjMFPkEiHfEcB2Pm+9NUUxZmNEAcn2GzGiYnpFOchdmKd1a5Z2vvc/S5M6k3xuVKoVaAyNgcPfqPAsrWfK1p0+tJv0y0p175HlN6GSCR7A208bt+r7SbbUCgZjZS9TcmW9VEzqWHqHqtPa7dD2P5WIJf1uiBCFMhHUOod1rIQrrNJa17V6yhnhMwnMpJXW7tbTE9XyuLK5sPd8u15yk4u5unaaiKAfnuXa3Sil/ZdvTdSHEvwJ+b3sZIUQA+E3gF4Hff47VawuxVAQzYDAYCWBKqJhjiLrOsVf7WJxcYc6rkNAEnckETa9MQI9RK9epOw6WIekeyqBpGjWNB7LJ9I/tz0bF5lPu5SilD7KOdK8ixWto2sP7fUv1BpOrcHaoB00Izgz2E7YePRsWWi3Cez8LpDGKY6+BHsAyDOyms2NbsWK9yZ21Dc4O9aNrgs5oBOm1Woy+dKmW6th1m1A6TXXJo2nm6OxTE36U5091t+7OQY9JfgG4fN+x/xn4ppTye09aWyaE+EVawZShoaFnUb9PHCtoYQXvdQEePj2K49e5PXeVeDpN1MsTj2qEgoKCPUenOcGdC9McOj1INBZGCEHXYOdjXuHxhBYDLfbAcbvpsHh7iaFjAztyyD6J9Ivg3kYaLyBEGIQNPDyxQSwY4HhvF7rW6kC5f8bqQ+8vJcgCQtvMYSsd1kqL1GWI4USCG9+7zfi5Q7hNl3g6RjIc5PRAD9pmEujuWISr373JwJFeZDJHbqOCbocJxMo0AE1odKKCpHIAVJDclQOb3SqE+Eng7wH/eNuxc8BPA//jbu4hpfx1KeU5KeW5TEYtwH5arucyuTHLlfklvvU37/K98+9SqSbpCb7I+s06WrYb3dA58ZmjNIIrVNyd20i5fvOBsb+HubK4Qr76+K5ZTROYQevp/3BFDIwjaFoQzHMI8ejMP0KIrT017yfdSXxvA+kt7RwrlHVwJ7dmqQotSlQcZzAewwqYDJ8YYG12g5lr89hNh2qpRmEpj5R1pF9G0zTGzx5iaWoVey1EaQ66+voI+hmiXQEGuo885S/8aFJKmtvGWBXlcaS290c7OZCWpBDip4H/G/gxKeWFzWMWrfHJfyilfHyyUGVfNP06C6UFeoKjHH/5dc6MDBOyLCxDJ93XsZXCzjANUvrwjmw2vnQpO8sIoZO0Hr/8oy8RxxLigZ1GoPUPe6VQJZaKMjD+9N21QmggElv3kt48nkhh6jFK9hKetEkFRp54H+nXQDNAllu7iLC5QbUWRprnaNZKWMZ1EIKV6RDdI90Eg4GtVvkLrx+jVqrhNF3shgNethVgtRihSJCxM6N4GkyW6xTzVUqrDSZeOb6vyc43KjXm80VeGjr4/T6Vj7g2XMqxV889SAoh/i7wL4AvSynf2HaqDzgB/Ltt/3CkgP9TCPFDUsqff741/eTbmCwSnA6xEbxJot+lshInPJLElwHi6Z1dorowtsbnfOkxufQ2Mp/kyIlWAoGqs46Pjy47MDQNa1swTEfDTF68SzgWou9wz4771isN7l6Z4/inj3zo7bbKzhK1xjtkPZex+A8TMlI7WoVSytZzbwb8KsLoAq0bkCAsEDGEMbJZ1gfEVhC79uYdcOc59qkXOPry4a3j4ViIkROtLwkz1xboG+th4MiDQSoQslib2+DYQBcdsQiZ3tS+7wbSGQ0TD+4+t6yiKE/2XIOkEOIfAf8U+KKU8t37Ts8D9w8sfg/4X7lvco+yP5KZeKslF17HlXDz5g1mNY2RrhSZ4MRW2jfpl8C9hTTPIoTGlcU1OqxRIp2trs2NxSzBjIau6cxu5IkFAwykEuRXC+imTrwj1kpE8JDNWsOxEINnR8g1GnSZTzej9X4+Lpp5jB7LQtOMHZtFA0hvFuyL4M2BcQrEIfAWQZYQsgpi2yxW9yaIOA07g2u7DE0M885fFDAuN5l4xSYQagWj/GoBoQlc2+XoK4cxjIf/SdXKda6+cZNUd4LOL5xCN13yzRkS1uBWC72SXyUYcjCCA3v6/YUQBJ7jvp7Kx5uauLM7z/sv6l8CLvDX279FSymjUkoPWNheWAjhAXkpZRZl30WTEa5/7zZWbJHekZewumNEwnHSgSCmFsT3JbOTywQNQc/I0a0F9gPJBPFQAFPXadQaXPrWNV790bOEExGOdsutZVTNuo3htT5ij2slur7csV7xYaS3AVoUIR69HVfM7MXWqyxW38OVDdLBw0jpY/jrCOHT6pjwIPjzCCOJEDpSWCA7kH4B/DoIr9Vi1kdYvpvlb/7062ysFfm5/+bLvPh9J/A9n0a1sRUkm3Ub35esza0T7YiCvPe7Sr8ESISWQPqSkZODOLUF1heWSfV44OcQ274XLk/NkxkwSfbsLUgqylNps/WOe/Vch2CllEJKaW4Gxa3HY8qPSCl/93nW8eNEShvp72341vd9hCYYeWEQUz/DjTdLZLqTkG3iVlstm2y1xnQ+T9PMYW9+7Ww4LiHLJLeQo16pY1omR18eIxRpBS9Nu9dF2TPStavlDZlYhKGOJyQW9zdAPj5RgaEFCBsdZEITaMKi3JxmvvQnVH0PtG6EnkIEPgPkwJ0GQAgLoYVxmoKVyUtI507ruBYmmkpy6vMnGDk3yursOrqp0Xuom5mrC+RW8gB0DzTpHW1lJXrj37/NX/7bb1EtVjfrXAS/iO3XKFtTjJ7sp3soQihqoYsQSWto64sHwNjZsyR7Tj/x/VKUD0slON891TfzcebnWsFDO/lUl9UrdS5/9xpmpsrExFniCR+cAvVSFqdpoukaTa9MMmzSq1kgXcTm96nVUoV8vsTi5XmOvHSI8ZHeh47B3a9arD5yq67dEObEA8da44Y+4r4UdhG9k4gOhvCI+rPoegzxQXICvRe01kxV6W0gvQWEOYEwOvH1k6DfC9bxjhjHU1ECmk65kmeuch3PHqJrvJOF28skuxKt5Ob2KhOvjHHjbUnPcIZAzMT1mxhGa6zSlD5JawhNM4n3voAvXaYuL5PqTpLeMVfJ4YMJQ7vl+k08aRPQH1xWoyiP1WbBbq/abDLvJ4vQe8A48dTXSQmZvjTNks/737zB1397muJGgemLN3AaDlZYZ7bwLpfeOY8uBJaIcmelTLZUoSccYvWNKarZCrFIiEqhSr1Sp5Qrc/WNmw99vWa9yeTFGZr1Jy8XuZ/ruPj+w9O3Sfcu0rnd+tmvIO3zSOlStBeZLvwbmu4aZviH0Y3urSUcfuO7SPc2yCpocUDHrtwCoH9UA/s7+F6W5elVHNuh6Mzjh0uMjI8y0vciDbcAqRL9Z6KtDF3GBOhJTCOPaQmisXnW61eZr75D3S0ArRm4Tb+E7VWpOusU7Xm6BjuJpe59aZDSAecidqNAs7rYer4LDa9IxVl76vdVUZTdUS3Jj7m9zJAMx0IcOjVKb7UXx3FJZeJ09KYob1RI9SZYnVknvwwxrZNw2qDoztEsdLK4UGL0SB+BsU6GwwF6MknuXJjCbrhMvDLG0ET/jtepV+pYQYtAKMDJz07sOknA3Y08IdOgJxHj7pU5Yh1RekZ2pplrBT0HVzZx7QUMHHJ2jYwpSVoD2M4EupYCP4cvDLCvIEUG0MC+hjQ8hB4B4wRLt2awQhv0HYph6+O4jqRcKmHVPUKBJKNjmc1JQClSfhc1J0vWvUvM78TSw6B1kV++QTCcJtrRgemHKThLTJW+yZHkl7C0MJ5vY4saMbMHiY8WvP+9MKjITlanlwnr8/SOR7eWtjxO1Ox6IAWfojxRG3ab7pUKkm0sFAkSAiphg1QsQPHWMlOXbtF/pAc3G2Xg9X40TSMT7MEYMFidWWdlfplTR4cQm3013cNd5NeK6Ib+wLKRmWsLZAY66OxPP1UWnWQoiKm3OjmGjw+g6dqOfSx9v0Su8mcEA59mpT5JWC/THegnYI60Nl3WTXoir0D9d5DaMAReBi0Aza9D4CdAT9Gsd4I/RSAaZ/jECPVKnalLa2SOR/GokPPukM/nsGZOkDltEApHSQdG0YRJwfv6dnoAACAASURBVFmg5CxQsvvoDI0hCRPreolAzAYtTFAXePZd+sJnsTZT7JlaBMev0fRLFOx5ekL3usjnby3iijp+zwLpw4dJmN+P2MwKlG1MEjW7VXeqsv9UkNwV1d3aZoobJeyG3Zr0487h+z5usY7hQ2d/isLaDDff/g6262GYOjPX56nkahimwezUFEXukkxHSXW2JqvE0zGGjw3QqDW5e3VuR9fokXOHSD9lXlIpXVKRENHN9X5W0EJnurVsg800cc5lQloECw/Tu0OMBZpaioaXx5MO0s+BOwkkgBQ0z4NXB+0w1H4fmt9hfX6G9dnvUSr/No3qHd758/epNvOUnRXWqmtUtEWCVpiBU2ly8haeb1Nx1tio30ETBiE9Tdho/W65yh/guH+NY10ib8/Q8IrYXgUNQbY5hS89oiyRYB1ThEiY/dheBV+2ZvSm+zro7u1nKPQZUoHWnp3eZl7cgB5Hf8ROIk/ieB7zuQK+L59cWGk7auLO7qgg2WbW57NUClWWphdYXZrnze9cJje9RsgyKKwVcZ0MFbOHxmCNd772Pm9+6wpWKoxjO0y+tURzNroj884HqrZNrVRn6uLM1jFd1xFC3Jvt+RDVYnVrCyrp58C5+EAZV8vga63NoIUQlJoLCGMA0xqiJ/Il1u0iNTdHV/BYazKPiCCMQUTwVQiMA1Vwb4OWBGMURBcDhw26DyVZtdNkKwW6hjIcOj1MUE+QL0YYHn6J3tQxQrEAvhvm4vwsC5ULWHqY/vBLjEZfI2dPU3dqWMZp1hp3WaxeRidA2VkhGRgmanVjiACu12C5lmMqa7NWamD5RdZLf03NzQGtLy7ztxaZvtj6IpBdynHnQmv2bdTswtDuJQiwXZdsZXfbkXm+pGo7SFSQVJS9Ut2tbWbszCi+7/P2n1xnbnEDuzTHqZePMLWWxQtoNGoNBg910+XFSZ3sITSUwtB1GrUmwycGOPmZk0gpya8WIGox+/4sI8cHuDi3RPXWAgND3Tter1FrTdoZPNpHOB4mGL73D77ruExenGHszDDhWAREEoyds1il9Cg5WUwtTMwMgl/AtV7C0rso2EvkmrOkrG6SVh+rjRsU7Dn6w2eJW31AJ9Irg/ESGAb484jIV8DPU2vcZrqe4NqNC5zqPsHIK50E9QSl2ixW7CqaPkw6eJq6k6PqL6BbGkUHqqV1koEhAlqcxcptLud8ElaS/syLBGng+jYlZ4mkNYgnbaJGilz5L2ja61xePk0itIY+aHDj3RLHT5eIdncRDAcIRgIEI0Fqbo5EV5RI8t6knlKujBW0CIYDVBoFlvKrpKNPnrAVNA0melROY+UR2qxFuFcqSLaZarHK2twGA90dvPTKEVbvrnPk3CHe+M5VNm6vgABLD5GKeAyNniecfR2nXOfm23cwTINyrkowEmR5eg3ZFyPYHSOeiDCIhXN0gMGJfqSU3D4/xcCRXiKJCEfOHebCNy5z+MVhekbuBVHDNDj52Qk0eR38ToTeC+K+ZbPuNSw/zmrJItZZB28BjTia3MDyV2g4c9Ssw6SERYIslhHDooD0AkhvrdUy1UZAOODNI/1DCK0DoRkEnRhR2YfVU2O9fpP+0ASav46PS64xSVgPEhQemiYZSo5ScpdJBw5hiiBNv0R/dAJLLDMYHcGWBnhlau48cSOMpbda3LZXQ+pBeiNnWY42GcpkCJoWp8+9TjjWGq9MdiWouKvomslqY4qu4DFCkehWd+zGQo5AQhDpFaTCUVLBRydx30+e5zF/c4m+w907do5RPhnardt0r1SQbDNC09AMnaMvH8a0TDShsTy1Sqg3yfobt+jujJNfK5IZ7CGf7eGd/3QBw9JJZhJMvDpObjmPsXn9ysw63aO9TF+eJRAyyS7mMS0Dx/NY9G1yq+uM4tMRDDJ4NE3X0IOtGt3Qkf6hVu7UTdK+BHo/Qu8E/TC6r2HqTUCACJAKDCDdOaR5knRAkrAGEcIgGHgJWf0PuM1FrODnQYRb9/VXQOhgfo71SoB01CBkDdOXtsmfWEBoGnl7lrAWwRAWY/EfoGDPsd68iymrpKwRKu4qfaFT9EZOAVB2lnF9G6KSoKnzrek/ZTT6BY6mfSx/DdM4Q8XNA5KMlUHqI3zmSIq5jdssZKE/EyNsdFAqFLn6zhX6zkQxZYlALEpAb31RKNoLgODQqWFsv0bNySO0FL6I4fnNHd2wz+SzIgS6oT00naDyMacSnO+aCpJtJhwLUc5VmLo4Q+9oF9nlPL2HurDsIl65jh+L8PIPnWFjPsub/7HE2kaBo2cOkxnsRDc0xl86BIDdsHEaNhKfu3NXkOUI4UiUQDhA0/XQUyFMyyAWtNC1IgOHcuSWk6R6kuj6zjFNobW6FqWsAzoYI7C55ZXQIoQDMBwIIWVzc22jROCBFiFkdWLKOaQrQXQADTSvArXfBes1ROgnkNIFWcapfo3FlSZapoN4/HOYZhJNCDqCI4yYn2W++jZJ8zANt0ChMY0uQrhairjc4HD805hW63ffqJRZKXukQ3Hc+i2u1Uy8+svE0jFWaiaHUq+zVq6Rb9QZ7kgi9QmQGo4HcWOa3lgHZWkhkZTFHCvWd4jO/iBhw6Tv9Pjme+HjS29rdmzNKXFlvsSZgU6kXqDhFcgEj+L7kvVKlUw0srWH5V5IvwjeIsI8vnVM0zQGj/Y/5irl40yqtHS7ooJkGxo61k88EwMfApEAM9fmWavcQbccnIjB1/7gu3z/f/4qsVSUtHAZOzKAn68hfYnv+zRrTVzHw3U8DF3jxdc6CehHcRs6mqbh1eqc7cpwt1pBSrh9IU+qZ4D8So5YRxQ91AqSUvo70rLhziDREHoXQlhI6YFstrar8lZB68AmjvBdLPMoSIeYaFB1NcLeZYT1CiEhwDgNzrexPYNi9S2iukHFWaVTLjHWpVHy8zS8l0DU6Q+dQPoevlfE9daZakwzEDlLv6VT9S1qEpr1N6npBnGzF+nXkP4MumkQDWZYyg8wV8ySq2VxnWFydZ+hhCRimRhaBs8pgnwXpEHJO8Ld0mFOxrpJGynWFzaYn85xbOIs/lyA/vHerWUuueY0RXuJuDGO69SpiSWafoNCvUF/souw3sFadYmIkWKlVCYVDmJpH+LPWQRBU5s/K8r9VJBsM+sLWW5fmGJ9LstX/uGXaNQafON3/gbfE3z6h18jOdrBH/7z/0Cz7hCKWPQIg9VL80QSYSLxMKuzG2SXcvSeChPNWAghyCS7yW9I3vqz83zhF/4zihslNF3jhdHWtljDxwcIhCx6hls52KSXbQVDbxJpnkEI414eWq0L/CweEfKN86R0i4KfQtpvkgiMU9f6WatfJxkYJuZ0k10/Ty2S51Cg2RrT1AeACpjDGIZJSLoEaCKDL5OtzOMTIUwFu/FtInoS0bjGhcY6GWsIS2hU3DplZw1BAiGiOPkKq2aCWi3KCesOAp1sWdCfHmdy+X0MLcbx7sO8edfi7kaNhicoNRp0RiMU8g0mV5YYi5d4ZyXFoe5LjHcdxfU9isUqt25cputQklBxDLPbxAqY+NKj5CxRt22CWgdXFvJ0RzVGuw7xQq+LhgF+FuHOcmOtwrHOE5weaL2vS1MrGKb+0G7t7erVBq7tEkvdG/8VIgB6z2OuUj5xVENyV1SQbDOu49I9nKF3tBMhBEITvPylY2zML6IJqC+Xef2HznD30gye79OsNPn0V86R7k2xNrdBNBXl2KvjlP0l0CW1cpNIfIxExuPFz7+AFTDpH+vd8Xrh2H1bVrkzoB8C48hW3lXp18FbA/MUQgsgpIclIgig7i7Q8IPE9T6S5mBrZw8RbK3JdA4zFAugNb8DziRQARpAEs29gumssOgnSEZ78a0TFGtvEbeGabhZ5uvLhIxRBE1W7RxBLUUyMErevkvaSDBTfJO1250cOhZmclkQJoMvBXPFEppe5eZqlaVimSM9GhNdXfz51Vt8anSAatNmrVRlrrDAQnGRRDBNWGxgOjrZokUwaHH71gxWM0BXdx8zt6d5YexVdF3Hly4LpZssZF0+O/JpjnRpxMM2mjBAGlxZWuHFgQyp8BE+MxTG1HUcz8PUdaLJCJr+5FVd5WyZWrmxI0gq7eWDBOfKk6kg2SY2FrOYARNd1+ge1IhGNyjlynz7j98imZFIJ0d2KQkITn3hBdy6TbVY471vXOLy31zn1R95ie6RLorrJRzbZfVak8XJFTIDZV54/Ti6rtN7qAvXdrGCFs16Eyto8eZX3yXd10ElV2H4xAA9I92traiEA94aEnD8CLoWQwt9f6tFAyArROUs6J+lP5wBeRhfhJkpf4vO4DGCWgcV4wbJ4U4sfwV0A0QESIJ/A2SQpjdDsXoT1x5HmO+BjJAUTZYbi/THPsPdxtexKSCkTkzvpkERxyvh+HXyvkfDCzF0+EVMfZ5UsItvXHuTZGSExWIZz5M4fpJMTPAfL93gRF8X/ckEfakkhq6zkN+g4egsZuE9y+FE9yt0pfuZmcsRbjRIORDo7CQSTnL4hVF0XUdKidv0GU99isGojWXo9Cdj3Fy/zu2VMn/r6AQdiQKG3o/QgphAoVbi9mqes8ODD2Q8epQntTSVNqGC5K6oINkmfM/H93w810f6STA6CUUtTn/uOLVSHYjje5LYaJq3pucYsyKU1ktMvDLOnXffwfOOIv0QnuthWgZ20+bM958kkY4hvRUkOit3l7j5TomXf/gMt9+dYuLVMWKpGOm+JKuz63iuh2M7GMYREAFAgghxey1LMhSkJxFEw9tMVmCClmklBtBbiQSa9bdoOPPYZh+Xb3wPoS1zYngQSY5SvUDYeBPTPAZemVJ9klxjnrzzKm5lkpp3CRKv0mkdZygyjoZNWIQxhSCsBxFaA99xyduXSFnd1Pw4k7k1avkNYsYgiaCL42nMZovU5CoXF2ySoRjD6RRjXSk6oxEGUnHem12gP3mc0c4UF+ZqdAQzpINpgnoHNddnNbdMKjOMYxkMHh9E+AYWcTzPo7BWYuXuGum+FF6wiBudxbS66Y8dQbpFBBbluoHWca+1GDcWOd5lomsqL4jyFNTs1l1TQbJNfNB6KGXLBCMBqiUH16kxeLQfu1mjtH6BYr6Du2/nqXaGuF1ep7u3g86+FNEvHieQjNCo2cxeX0DTfQxxA0PvxGnU8ZozBOMjdPSkGD2VYmMhR7Irjm7odPan6OhJMX5mlHq1yZVv3+D4Z44SDOtIrYul6RXGhjoxdZ1s8xZhI03U7ELTwvjmGNjfxDfGQB/CMtIMRdJUmxdJRvpJ6ElE4wZZzyXXCNAdTODnvoeZDFFtdDJfbOKlb6NzGbcQQ4SWMMwxGpVrzFS/iyGCjMb66Q8NsVS7TMWZJaFrOK5NsdqNLA/TF6kztV5iamWaE70aKyWPjniMRDDKi4MDdEQMhnsKXL7r8fbMAmHT5OtXbxMNWgQDNl8+10W5GkUimc2uU4xW6D3UzXqgtV/n2tQ0t6ffpUNM8PKPnqAnEiG3tkyXOYpp5CjZc4S1Gt2xY0SsEC8PniDAFL6bJN+IEjKGiIQfvRH1dq7jcvOdSQ6/OLK1/yeAL10E+p6S5SvKJ536+tlG7l6Z5c6FaSqFKmvzG9x+r5X6zBDzDE0MUi3aeJZOZ0eM4dEOdOrcfHeSMhmWKhU0kUMLOfi6R9/4OcLxFDPXV7j+bpDL7xQIRAZJZuJ0DWfo6Ovg5juT9I31YAUswkMuTafcSv0WDrS2tMqWOf/1N/FKF9AEpI0AYT1JtnGLpn0H3PnNmaqXwb2D5s0TdG6SNgwmRsZJJG2WCpPE9FkSVoYbdzXuXNVw9C9SDFm46QAdsollhensDaP5S0wVv81c5S1sr4qGyWLlDteKXyduHMWuBWhUBsjXwwQCHp4fYXJdp1D3ScWH6Et1M7ORZXHD4/WxQxRrDQpFG3s+SjIYxfWbhMPrpCIB3pyepW776JqNFVgh17zNRM8gR9Mn8aRNXzJGVGg4RcmLRzMc+VQneXsGEfCweuqEkwLTGMUKvErF6+ed2RVmszlcr0jZjuP4Ib59Y5r35tbwdzm4pBs6/WM9BEI7EwOsN25Tczf2/fOmfLSp3K27o1qSbSTZnaT3cA/BcIBQNIgfydPwyqxUJ6n6Fqe/cIzvfePbmGsgO2ZJd25w51KEUDRMsOZgjMeI9a1TqxcYGPkRrr5xk6WpZaLJBsWOAS69cxsnX8WwTE597jjN7jDrlRqd4RBu1aXOFfyoifR1cK8TT03wgz+XJhAfBnyEexuEhSkLaDIE+gDSm6LueIT9GdBD4N0AuwDOHOHgOcbTSWw7z6XzFsMjMca+D9aXbjFzvU70hTqZWI4mKSqEWbGLaJqDhklIT6HjkTSSSNIsFQLYzX7eyudIBLrQZZOpjSXWij4nenvJxCJcX/MY6hjgcE8nf/zeVQr1Jj/z4jEuz+fIRzUatuTKXI3h1Bx9cZ2XB8fw3Cb5coFKI4jjuQi9ykp5me7QSb77Z++DEBw+/SKemeLW4gYne7voiA63lrzIVUzzFCFD8trQeYRhkS/P05ATpMIGzmqZke6uXXe1CiFIdScfON4RGN1zEnXlY6zNgt1eqSDZRlJdCZpemdX6FMHGAIXVMkMDBcK+oFzqoCiXGJ6o8sqna8xeW2TxboR6l0+ucANNG6bn0BDjh0f5q3/3HdZW/oTmeh0rNEg0LhnqiBOJJjEnoJyrkF8tYmYbxIZdrn73OiMnuuiN1QgLH+nXQD/GajGH5lYplxcZjDiY1ksIESUW3FwqIiWul6Xg/BX4aUJ+CiF6cf08Jd8mYVTQRQDLCjMY/DZ6qYOr02fo7Vylt3cZV/isMUzWqeOJGKa/QdGdoY5DnCMUGjlKJPDlUU72pCnXXyC/XmPREWSrJSJBh/FuA10vYfpXyYTPMpf3MTWBrul4ssnN9XkWdI+UHmQwFMV3TdLuKnoyxY2VVbKVNX709DmksUS2Mkm9UCJ/p4k4uUg8Had7pJNgJMmVxWW8gsuam2X42ABC70ZqrX0ihRBEIodBxFmeF8yX15kNbfCplwz6e/a2ttHzPDRNQwixuVem0m7arUW4V6q7tc2UVhvUlnTMmE/ncBzT7CGTep10ppvrF64gGl0slE8Qz4yj6SkOHRngzPd5vPDZEslMmEA4SiSV4O6FVTp70vQf6mf85c9TXGkQTYaJRPL0DFTo6EkyciqB8L/ByJFlhGaQ6X8JyxpC+AsgLDQ9Sd7ppVbxMPwVHN9lOTePY/sIoSOoYlIhHP4hCvYGU5NruPYddM1DCkGz8rvgr+HSTc9IEN1IMPt2kZmpMkXbw7R6KLglar7A9rLYQnIo2IWOwPdn0f0oJR/mCtO8PbtEyLrDSnmd2WweHY2IEUZbjuHnDL494/HuwjoLuSL//vwV3r42xcuDHQynYKFQpEsPMPtHFzjqWtTsAe5ey9IdXuTFzpsEzApJa5iU34kzkyUSzzJT/3Pi3Zdx6ksU5v+IePMSZ18aZ2iibzPzUCs42k2HW+9OsjJjszqb4+137uBUbfpTCaQRbM0Uvs/dq3MU1ouP/RzcvTzHyszaM/mMKconiWpJtolaqUowOIVpZWg286B3Ew4kmL42x/CxXjq7uvnyT/0kmrnGQiXJ9NsjmEGdSGCd+bkG18rX+cynzjFza4X80kVSsVFC0TEGjiRxa1fR9Bh3zr/PxCsjoCUQokkoHEH6r+EKn7mLS5iBEC+8HqNCB3rju2RinyFq2ZTqb6PpP44QCVZmp9C64vQM9rLeXEYjQTo0QsLspyxvYMRbe0QmfB1RKeB7Kyw7d0l2TDDQeZimdxNbj+CHj+BqRZyKTW+siw2vji095h2flDGOQYKlchdlZ46aLGBXLN681Umt2eB0r8HNxRwrXgd2yCBlBgj6cSzh8uroAAsrOfrzHgOpAf70q28xu7bO8XMvcfjnvo8r37lOoCfI4e4Yq3fzaLJKKrPEYNwmoMHhcRMtcoK33rlCIJ3nzLle8kse6XgI6fpglFjPXaTc9DjU/zouOomuBGXfwW7afPlHPkUkHtpM7dfH3M1FwvEQtVL9/2fvPYNsy87zvGftePbJOXTuvn1zvpMwAZgZAMMMkBJJkaJcolS2WcUq2S7bf2RXyVa59Ic/rZJsSyraLKqoIk2aAQJBghhgMMDkdHPsnLtPzmfn5R99Z+bOYIa4IDADYNBP1anuvffa6+7ba53znrXWt96PkQhJJCxiSQsz+l5fVylHIH2Esr9NZOLoGJp+/4mw/64s1Rpko1EysYPR6o8cByPJ++JAJH8CCPyAhYsrHD4TI5XLY6RNRo2Qi391A6O8RX6qiO9L2ms+pdkputUVqtt9zj9xEs0MCGOzOHWXtWuvoZTjPPVPPs+wFmdvrUGratLt1ZBaDEMP2V7YZHw+TuCZIIos123mi0WOPZLl5st3aFXbhAkP3+9T8K4T+lV6YZyg/XWKZoTpYxOoSg0ZWqjhHq4fstv+CogUGi0YZUCLogkNVAUnsFC0OA0vpOf9MZnpMn1/m6XlWczOkIFwwbhMQIR+qBAhxUhpUu/fojM8Qc8eEQZZOm2D4ajPVKLFtZ0CXk+hrEiEJch6glHdRMt3aHuCWsemMD/OpaVVxiId2tsDtpb2OP/AYbYXd6lvreKJPmEuz9HYBagayFidGy98k+lTpxj1bhObzDLsJOk2qixdrWLGZlHUO8yenuT1GwnEoMlMWePGzh5yq0u+kiVZyZBMxpEypOtuE9OLJHNxjIjBC3/6Km01pFzO8tCnjr4nehWAsAnhAO6KZCT60Zqjv03cNDG0j16MD/ge+QkMwPm7ciCSPybIsAlhH6FNfc/3qprKyceOoekaMuxjqQmM9BJHHsiyunCHjasd+vYdNOU4hvcq/f42qfE0vjvF2FQVmTIYZTNEFShljoOdZm9nlYsvvkV2McOFXzhEqTSFPxT0mgOGwxh7a3U07WXSpWkUkcWMWxiVFJdffY6Hn7nAgDkI27h+m0Fzka0aiLkjqLEhMS2P9JYxgxyNLY8gahMGy2S0HuhJXC+k60NWlQzlNgoFum6Papikp2ToDhfJj+8x6oSMF+ZpeS0cuYQky4g2wy3BLkmk7bDbTjIZO00l3uNwapWt3iS5ZJwgGqNf7SEbI9xCDm+nT/vNderJLInxPMNWn+Rym6Lpo5XKXL+2wuGjk0yfmMBxXJRQkgwSbN7cJRFdgpljxDITGKbk6jc72NoiqGnWS+MY00UOz0yiqhHa1Q7Dt6ogJCuT27z6e9/k9ONHaMdMerttSo8do9fu0/JqRPM50oUUAKefPE7gBXi2R+R9AjnwGxhKBl3/+M3KS8kDV58fWQ5E8r44EMkfG9T3pJP6XtkXyCH4N7DtKUztKpXZcxDNY4UKG1/b4MhjI1LRf8jRI9+iV26gRxTihcdoDy+hihu0pUncm6PfanCl9waHvzBOPIwRtBLU/D1Ebg/8CZavNDj2yDz9lsnq9ZdRH6hTiT3C5KEKlUkFQ8txbVfBLI7jmxHm8wFbPYXlpRyHzhfRtTkGzqt0eilu33iJzzwp6Ps+mjpGP5SMvNdQRJZ+oBOGfUYcYtN9nUlFYqkT5JOnaNgvopfKRNQInuvSCH3coUTTh9RHFkZMMFRbxPQYqzd3SRTGseMzeHaa1WoD3fY4EkkwfGkFf8whOfSIF2cwHI9fefpBdtbfQpvWSMYrdNZWMOsur/35a4RyxPSxQ0i5byS/m47QauyydA1qmy7lGZdkNsNEJsf0qSNsLDSJJWw61RZSRujUuySzceLzBdZxOPXYISrzFVZbbc6fnAVgZ6lKc9cj8dCIbGl/RHjo9AwLby2TG8sSS0bf0/a230YoIX1fkDBNtPuwrjvgJ4ADkbwvDkTyxwShpIDU91lHFFee5NLVlzh16vPEEgaZ2AQoIz79j57EU0p03AWCsI6ZfZyyKQjc67ScO+SMCgExvrb+B8wkxnn6iUdxwg4qHhnbQVOWUbxtLt6pUz5xgo3+BmmryOTsESKaycBZwDIreG6O9p7DhclxVAVq6yaqdhrf61A8KvBlwFr/VZrOFiVFMnEqYGicxNDidIbPM5QunjSYVGIEyhJa0MNUryI1l5HIsDBaI6efpuEcoWIdw1CWGdBD+ALdcBA9i0CqBJ5gdWsaP4ROAFfXNjlVjjNlN3m8UmZto0rb6ZBPgOyOWF/YJb1iMD4f5YX/66uolqC+0mLq7Di+0qO1ZBONJ3H7t4k8cAh7AHurNVRlm5f+4g1OPHaWs58eJ5ZKEAZ7WKkTRCJtpudqBMqjVDe61Lf26Lf6zJ6eonysyFJtm+M/qxGGeVKtOPn8fvtHoiZKrkXdu04qfAhVMZBSMn4iS8RIvtPeru3iOR4tv4Wq32S9c5zJTIVMzEIIsZ9lJVgFdRJxsAXkgAM+kAOR/AlDMyLMn53GH0mc3jq9vdsE8SmS0Xks50tY5lPokV8mVEAVGoG7inRdBsE0pYxJKTJPOaJRMHMsL8Cec4nJM2dRAxff2aZ45iieMaI36qBHQnZ8k8O+D+zSDYaIYRavfYlsfgK0CsYohpHeZOJMgs2Ww6g3YGDdYLMzpL1nIHMB7uoeIrxCoTBC9Q+h6dcIlKuMnCFbTo5UpI4qBEPPJS0WcZxdlCDDanWKRMbBJM1aUxD3kwSWR9dz6XSKzKTOU2/tsaMERCMhfRde3usz1lHxN7uMVaJUplRal7ZIxqIkLcnElIVfnGbhb27h9GqoMkO0MkVzvU7oq1hTc+g5jdf+6ipj80Xaew7tukUQJClOn0cL/5xHfvoJ3vhGDW8U0Kmn8NxFHv7584zPl2nutjELCa5VrzKXy2FGToGIEY3HsYMug1GL8cPjVJQsPW/vnXYd+HVWhs9zVP85DPZHku1qh06zy2ayRzRzlDMTc2y0OtQGQ46W8nfvlB9/JzzgR4KDNcn740Akf8IQ0iGvUkdNogAAIABJREFUt1hbdfDTJcZP/RpXN68z6qiMR8vEwjojBNujHtOJz7LtrjG0dVKxPr7+IFMZFU2JoDMkknTIhjFURtSHL9F3q0wWkzS9KinLJRd8FSP9JJnYKeAYoQwQlkRmrkOwiVRSTBypIP0O/cBgff1ZWtspPvP5Z3D722SmXBwJy6/XyOQnmS4ZPP9agyceOAHWHlJfpKK2WR9p+K7C8vqIo7OSDUUgNchYlwmlYChtYvqQxlYSGYkwGgS0RjpLm9vERJtgGKOEyWDkIPohwy9fwTdU8v/oUVp7AUKV6HYfPa7x1rNbxFOb5PM9qv0it15pkSuHpMspGjtNkkR5+f+9RugHqJrGycfm6LdrhCFc/tYCpx6OYaqrTB2bRsokpUNRDFNHVVXsgcOgMyReSRN6WYauQk3bRFciZMwZ7L7DxW9eo5gdcObTJ8ip+0mg27UOnqMwX34GQ313qrU4VaA4VWAqKGIoMYQQlBJxArkvjEKooM3/MLrhAT8KHIjkfXEgkj9hCCVKzVcoTr9GJPZLCEIUN8LmtW9RPD+HHbnDwL8Foxm2t/8zbjoNe49TfvgQXXeTjd5zTESfYLW3gdrKU6pEqXXXSVpPkTAbGOE6FetBkEO2Oh2uNRZ5PDKLGa7SbpoUJ+cR1s8gpcSzX6Vl79DtSqYyBj919gKL84vEDShEWniiQu3WFG19gBkXvHQLklqHMKyx2qlCP4WX3COuOGQjEm/SZ7EVY5QNsVd69Is6mqrR2PHoOjF8y2f3pkJNjkFSwzSG6B2XSl2yZYQkNwdQjhJ5cIJUxKSxdgt3qYPhRBFCod0MMM0UVnzE2Kwklq+wtzxi7OgYqiKob7U49ehprnzzOguX1jj84BzHH5lmfLrO3s4k/XaPavVR0vko5dksjdEyX/+918keGWdsusDh+QlKJ6KoYsgTh+dZ7j2PGyRIG1NIGZJOFfjUU0+h6RorvW+TMaZJm1O0qx3CQFKYmCbwA9R7okmDIEAj+k5ya1M/eMsfcDdV1g/7IX5MOFjB/4QiZYgMtvfXnYAgdHjj5eepbV1FEQla7hhte5nR6DVW1q5jJt4E/1n6gYqrncLRy5jx4+zxEtnDf4MKxLU8M9FDDN03WPe3aKuSLuMsd7/G7d4LtLAQxjkGfoNmewMx7HOheIaouILbe4PO7iphGCKlC7JPe7BGtbsA3mu0/RbXm2U2OgMub75I318la+/iJYf0dr5Nr/qX/OGzKnuROV68lsDrDGi6PW430qw1k7yyVeZ6v4ieCDEYkZhwUOQAue0zdCyEVUGoQ+xsHNVLoo8c2isDiqKDWtFRDAXhS1RLI36owIXpCQ4rkmxSwx7aNLZbaBGdWMbi6HmbwPMZdW3Of/4I44fKPPDMOc5++gjRmEIql+Q3/vnPce7JAqs3Guj6Oqc+pfKpn1aw9Dd54U9f4a1vXmT9+g7Txyqs3drkm3/4IltLu7Rr7XfacDr+GGOxszhhh53RFbxwSDwVQ4uAF9roIgaAbupU12tsr+xx67XF/fb2AzZu3WT9xgJv/M1lRgP7Y++DB/wII77P1/38E0L8jBDithBiUQjxzz/guimE+KO7118VQszcPf+MEOJNIcTVuz8/e889D9w9vyiE+NfiY3DlP/ha+YnFh7AOSh5Qwb9JrjIiZt1CylNcvyg5fuo6Stzkc49/gUGzTDQ+z7r718TVIpYVkEz0yPYTuKLA5uA6WeMI0jnGUDQ5lf0iO/HL+MJBtyrYQQ+1m8cRQ2z/LaotSdAbwHIb80iTUHmR6ZO/DcM/wpMhevw3qPrj9L0FYsmjaKJKbXCL29tdpvMTvPr6JdS1FU5/JoMR7XC7oXGocpPRlkG13aVzPUbp0JC45RGfDIiWfNKEbNRjxFI+CcNlM+yw5BmIjM/Cy32UlkE35mArAqsN7pstrpVjRMcttFaPYXdA6U0Xa2zAqxtD2rs9CodLqOYIETOw5rL0V9rceitOtmhQmNCIJ0fEMmUUNaTffIvZY08xd/I4uglGRJLKmSh+FNuvYRonsQdbnH7qGjeu29RfCDn2yDy/+k+fYenyKp16l8J4DktLU7cXiGl5LC1DVMvTdrYY+i3snQFmTmGjtUvRCOl5e8QmAw5FZolnYgjpIL0bBH4Jb7hCef4kvruHPXyZhcYYM4VpEqaPlHLf1UiJfteedMAB3yti3wrq3wLPAJvA60KIL0kpb9xT7L8EWlLKeSHErwO/A/waUAe+IKXcFkKcAr4KvL1/6f8Efgt4BfgK8DPAX32U/5cDkfyEIoSB1I69c6zoR8lUUrgoJIwxDj8oUJQHMMyQQVhnJ9ImoteYt34G3OssDa9w1X2KwBB02ot4NoRxycaNddoJj8NnJc32kEwsgnQdNG+GjZ1d6mMNZLBNX5gkpkqURgGxqGSvcRZH7JIxWqw6DnltkcOFc9xs7nKn1uLxsYeYSrzOih0QdDRm5+LcEJs834Z4J09otmheGWIrQzTTRc8KSlPg7A3pbUSJzoYYVoCRH1GTERY2TKIZn2i8TbeaRlWgox5GjmxmR2ssbmWZLKqo2pCNy+vIlInq+RiZKJG0Q6euEDoe04UM69UBmq6QtWyKT5TpNjUOn4tR3+qxcuVFcpV1Hvm5/x7LOsewuwZiQHHmJI6E9uiPKSa+wCBwsP0aSv4wheQp4kkV+3QDzZzAikYoTRZwhg6Fif3cmTEtj0Cl5+2R0EsYahRVGvRafbRklLR2DEvLgDJCKiHpiRSDzoBv/+lrzJyIEEt2mD87hRGvMHE6pOvcwfI91lsdTuY3AfBkiq5XIR/fH5E6no+hqbRHNsmI+ZHlqJRhF0T8nSngA35IfLRjsIeBRSnlMoAQ4g+BXwTuFclfBP7l3d//BPg3Qgghpbx4T5nrQETsZ2PPAkkp5ct36/x94Jf4iEXyoJd+kgnWkf46oXsD0IjpZWJ6EVXopKOHuF1v4wYjdOdl4uEqrr8LapK93SxZeYhsxCStTiCUGRQ3xo2150md6nB29hlS6hh0XDruEt0a7NwJWNx5hfWlKmOZLzKfeRpLy5IqH8c1nubSYpKhn0I1H2Y8/WvYIxdntMdM/BxldrlxaQmn+zCdnSi3r17kRKWGzGrcec6h67nYYQqr6bBXl3ihz63Lcb7+tTSXL+YgptLsBIxsnWFTRQsdko5N3g/Imj7JXpdIe8hURiIXQhTfZNYLqfQjDP66hrnWI7nRo1z1CJsOa284hLtdwqHD9W/dIJq0KFdyzEymeejpGoHb4fabyxDusbkAkWiM7s4fgbeMZSwggz0EDobsEGjHcImSN2cwg1U6keu0FI92u01rd8DeehUpJdGyJDWrcvuNJXrNLVTZp+vt4ARdQhkwdJfo298gexyiCZNz4+cwdQ1TTRBR97eGdBt9YqUcG0EcYyqCET8JwR4RYVOMP8NE7iilRBz0syjGAwyCcXa7/Xe6y7XtPZbrTd5Y3aLvuB9Jl5RSgn8bZPcjqf+A++f7TJWVF0K8cc/rt95X/Tiwcc/xJu+OBr+jjJTSBzpA7n1lfhm4KKV07pbf/C51/sA5GEl+klHnIOiC9yxSm0ILm4ALyjyBaJFOXyQIJ2n4Lpv2Eu0gSrP9Z9TrSYpTM9zpf5OS7lFJPcwyO+jeKRgU2PFeQ2Bh6jkUU2FsfIIv33qZydiDTGYm6QiPdCTNhPYYb774bfSKx8yRMfKJAlK2EaMkd77+Jsl4jUMP/CJz2S/y4s09+rkhnUSGmZkxVhbi9F+/DXuC4XaPVS9Cfy9JMuFwo59irGSTK3ZQm4KWM8ILLTrSY2gprD8XY/KcTTuh4FwxGNUsrFEXe2MBbSHHbitKV5GYN7dIFg1kZ8RIlUgZ0tocYE0UmZ2t0V0Lae/6OCOXfCXDm98IqW4M2V1ukC3vce7vw9SxC4wfeQSdP6BQDImmHyIW+RxSSSKcr1ISXVR5Cum8ghfWSevH0BULrewwVC2KxTYNZwlDiaIpJvGShm56bPZeYsvZ5VPF30bKAEmCqtembNj0wh0SVLC096a9CvyAx3/+QQaKy3Jzk7LtsHllxPTxKaJJBaH2SEYVhNh/22eiFpnou56qJ8dK9GybY+U8Kev+Ejnfi5QOSA+hfLDLjpQuoIP+wMEo8keB728kWZdSPvg91v7+WKG/tYwQ4iT7U7A/9T3U+QPnQCQ/oQShT92+TjZyGM36RYTQCWUAwQbIAFNNkNTStEcvYagXSOtZap0ewbCGkxBYCYNpEcfpjFhb89iLR/E3VBrRTXJWEZnXOD31DLfvXEIesvnNX3iUre5xMrrFv/7Klzl56AQnPQ09plJJjaGZK7yydJGzFYeIFSN3cpeUcpSB8SxKsMEjjzzE1cWLjK91eezBC7x5pU47TNEpx+itJxhs1KEYYXdRJSP6uAnJ3m0TfTqg3UqQMV2yhYDRyCA7FZABdrd03trJoxYVvI5OvtRl/DGN1oJC23MwjhgUPI9RJIOetfDXa+DYDFpdlqshmaKKM4zzyM9OcehMmSsv99ANl/NPG2SmJ+mNBJOfcigk/pw4ILQM68sxFP0SE/NxgmCdppwn7t5Ekx1U4yEsaaArFtnUDFpwm1QkQcevYSpJgtBHyw2pyT6KPse0Mc9uZ0QhkWQu9RRNZw0FQcqYxAuC72jzsfkygR+QNhJko0ksQ6c4VaC+3ULZ7ZCcAT+0ESjowsNx1zDN0wih0LMdOiObicz3YVgR1iHsgnL8g697l0E7hFD+bum9DvixYhOYvOd4Atj+kDKbYv+bWwpoAgghJoA/A/6xlHLpnvIT36XOHzgf69c5IcTvCCGuCyG6QohtIcR/EEJk31fmkBDiz4QQnbuvV4QQ+sf5nJ8ERFgnRgsVFeleJvS3EIoFcoD0V9EVi0r8c0Qjj1FtDhBLGr1AY6Ofx3cfYqGxhR1ESOXyHD4xzcmJkNKZDufPl/Cj2zRXGoy6LpVilKWqw++/MOLLz13jy196DuulGpOOgXG4ixU3qW/2GNoR5ouPYkZP8o3VFymPTTM5a5EwT9CQBTa4Rk3UKZ6qcnPn63jNbc7G2zw0NiC0BqhxQWS3idkZkZwPGNQFN143ySR8QhuGnmC7G6E70nEcnfpylIWdLGHWZLeRR43bbIs47ahNmNSZiLicLDuEsRjeTpfIWoPAl2iGwdGJIUFgYSUijB8tY6UnePHL+7M8DzxzisnD46Qzn2Vqbo7JVI360i0Gg0XwLzM+9gqp8hsM/JCOs0yKFpbSpU0Sn8i+S5HQ8UOHfGYKU88jhIKuWOyMLqMKjaQ2w7h1jpw5y8B18e8KoiZTLNcc1uttvvLsW7RrnfekxKptNFi+sg6AZey/ZXKVDJlKBiUVIWmM0bUD+l6TUELHr+NLG9/zcT2fIJT4QUgQhsDdqdHvpc+p4wj9QwQSQD8FIvM91XnAR8f3Od363XgdOCyEmBX7dk6/DnzpfWW+BPzm3d9/BfiGlFIKIdLAXwL/k5TyxXeeV8odoCeE+NTdqNZ/DPzF9/VHuA8+7pFkAPwXwDUgDfw+8P+wv4CLEKIAfBv498A/AfrA+bv3HfABSClBjr4jSlGoRWJWBhBIHBA6MnQBA0SE0H4OoYwTlVWSSYeuH5Dy2kjDwlhvMJXXWb2oYotrlM+eYGfjKnvtHhsDnUhEkslZbLfaDCO3GSxrLK4OOJROMnE4xZlDn+LylTW2Q4PH58ZYat5m8VKJo5k9dseGzBXH6NuTXF7bYqIc4UajjxQjjowN6W1t8PJzG1z4qUmqapxG6BF/2SViuoySArsdUL9q4FbimAO49NWA6UeHLHwtQeq4S+mzAQ07xZoXIaMHpNU60XEPewNGez67qQKRpM0jYw069Sia4ZM8USa8swotiM8WGG226G+5yF6ME2MKb371FVRliJE6xLA3ot4ZcvZwnLGJWzTan8JM/wJ6bAeMHVT9PKpsokfOEREeargC2tMI0ccLh6SNKQZ+A8ddxQuH5CNHKFunAIGlZRFC5crWCrOZOXTtFeYKT2Co+/6sMSNJKa5QjMcIDmfYbVZp1RweLaTYG75FvCDIlE+9px84QZ9QV1mu70C8SrObpGDlUVWDUvxz9GyH2sIWuqExfXScO3t1dFVFVQS253OklMf2fG7t1jhRKX5fGT2EOEiX9SPD97CV4++ClNIXQvwz9iNTVeD/llJeF0L8b8AbUsovAb8L/EchxCL7I8hfv3v7PwPmgX8hhPgXd8/9lJSyCvw28HuAxX7AzkcatAMfs0hKKf/new5rQoh/A/yne879D8C6lPJf3nPujY/j2X5skW3wF5H6g9y7ZWh/zWf/w1WYjwPQsm/R7vdxvDGO5LJU3T02+tt07lgsbYyIxgYkFI2KGeUbX1+hfvMNyjMpNkpLrC2UKE6qVLJDbq60yKQGNGp1Ds1UODVTwIjeorMTUipp1OyLWDkPuTHLQuQ1juaeZmFtlYubq7QWHE4de4i+6aEMBIQtxvUKVdshlpTsqnE66TVCb5Kbr1/BVpJMlHVu3fYIRxI/aeHbIaLv4eRS3Hldo7WrEpv1sRsRirt9zp/YY2RrDDZhZZTEG9rYxKntRohu7DJ9xGaPPOVjEfTtNoM3PGR5nL5TZdC3GQwF0QkQbp/m1jVGHUk0a5E7I5k6HkNUD6FoLXY296dIK4fT6OZJCK6BfpqovwmyAVRBO0LPu4NUygz9Ol13i5x5GDccUYgcQUXnduerTMUeIa1PEFFSzJcEKV0nopxHKAlk2Kc+uohLlErqHIpQiZU1Gg2byRP7s09xrYgpXDT93UkXKUMazhJZc5ZHZg4R4jE2laDWG+CHAbudPu2Rzdxkho7tEoaSmVwaIQT93oi4uf/xYKgqlVQC/UOM0YMwRCBQlAMLlx8rPuLmklJ+hf1tGvee+1/u+d0GfvUD7vtXwL/6kDrfAE590LWPih/2muTngCv3HD8NLAgh/gL4NPtz0L8jpfyDH8bD/TgglAxSP/segXyb/UAJyX70NCSMWdSIg6MPUYyzhM4GRSvN1HTI0RN3CIN5tt/0OHG+TXJjm9+9nCcTf4hD0RX6sxEiowT2okdMTVDfqRLPqqxf2+S1Roe5SYsv/r2/h6qY1L9eI5uOobox0ok4SnmAcjTEGOV5JDXNm40qZ3MKj8w/QlSt0VFHHC1+jsXmAs1IDCOd4c3nBUyeJ2t00To+DaI4OyH1riCyM8SpSVSD/e2ggUq/GiGRC2mOTKxlwboTw/c1essW/YaOvdjFmtbRpIWwHXqLOpd6NrphYSRDHpyZxUxG2V7exfcEg66J4ivUApXiRJZubZu5WINBU8EzdlFjKkmtTyJTh/B5cCpgfhqCNvbo62A8QDecImueJCYUYsKkGDlG19tBQUURCpa2v9KQM+fQFIvGaJGImsLSo9TdmwCUrBSGkETVBKE0CKWPHbTpD5Mo0mDk+QDEjH2xdNwRqD6mmkAIhbJ1CkW8PfrbD8bZadxC1XNYRpIHpsYIQslGp09jMKSQiNHsD7l8ZYnDlSLZdBxFEUQ0jVdXNnhkdvI7+tpSrYmhqczkDqZSf5w48G69P35oIWZCiF8G/mvgv7vndB74DeA/AkXgfwR+VwjxxIfU8VtvhyDXarWP+pF/ZPnQDA7BNvir7xyqQiUWGcMWdVaqb9HvVRGeTpi6RcJ6gI4vCQ/XicUd8uULxMbGiNkOvTsJBm/Z+NYEyfHzBGELM73M5rbCsFEiNp6hl5zj1o0brK4/x9q1Hm2vjZ9rseFe56uv/TW7W7eIpZu8dOk54qMGX/qj1/g/vvICm+0U33g1Qb09QAZZmg2V6X4emYLPf/Ec4VyC8sMnOXE0j9sX6LsjRFZiaZKi16Z4MsAzovRsnd6NgO2dKK9WU2zcNuivBGSDJp070NyLEm5LjFaXzSWFYa1Kul0jptjQ7XH529eJC5WkKtBDl89+PuDJXxkjV/TIFgRnHlWo74zo1xtUEodImDUSyQDUBBgPEUiXneElOkGMa47GXhBnSICqxNDUJJpi0vW2UYQgYZSYjj+KKjRUoVGwjmKoFuXoaUw1QdqYZDx6gaQxdnfDfxJHJOl5u/jhiOpggxeWVslELdwgoNrr861nL7G1uMPV1y7Rdje5s1enM7Kp9UbU+4P3dIu5YgI/9JnIpNBUFVPXGHouN3aqAGy2OphjaeLjGbba+1s1vCCg7+yPNt/PdDbNWCr5HecPOOCTwA9lJCmE+FXg3wFflFK+dc+lHvCylPJP7h5/TQjx18AXgRfeX4+U8t+zv37Jgw8+eGBF+H7UKd4TIe0vgdRRlSyuNDlcTtO1Va5sd8maX6I7PMlYMgdKlWisw5kLA5TYLnriJMKx8JwYdXkbPTvOAycSvLHns+Rc5shkjkbd5IVFn8hYh0bWZrIypNloUzDyzM141BcDWnu7PPbYFCuvVUlgMNxdoDUsM396knQ6weFkAXvtKsOIgSEsLFGgcStC9dV1SrkAqajY43HEZg8jDFBQ6a9I8qcHSO3uIsu6S/GEx2o7gV0yWe3nSZwUDG7oRHsDujtR/EMFtG6LIGeSWBlQHo/QnZT0B23ylQSlcZ3xeej6axx96CyJxBaaHiFdzHLywhIhPXqNPEmrh6adZoiJ6r5FVj/LQI5wpUVcq5AykihCZei18KW9bxV4tymklIT4qPfEpOmKhW7sr9spQidtvJtgO6JkKEYiRLQ0M6lzVB706dhVdvpNSsk4ldkCxck82XIay7II3R6GqmLfHWm+TRCG3KxGOVrKoykKI9fDMnQemZ0klB4AJ8dLCAQd20ZKiR10EEadzx+f5+ZOlUTEfE8U7IEf7I8pByPJ++JjH0kKIf4p+wL5BSnlc++7fIkP3vdyIIDfI1JKgvBupoe30WbxlBQofeaK4wglTnO5xrGYgynnyckZ5M6ApWs+lpljIj9No1VhLn6OZDRg7/o6zcs7iK2A5kaGVM5j7EEbURW02pucvjDO4/MnOZlOc7hYoOoKrm6PmCkfpVw5SkSP0WtdJVpM88VfO8uFJ4+y0fwz9jrP89Jz38Yd+Jw782ly8xpEi1Qdl3Q5y2rQY2zOZyI7TiqSJKqAk7HY8pN09kxWVnPsXRQocfDLJoNrEmdTobUkEJ0BESRaN2TQBoYe2laPQBFkrT7jpztAhEpUoThdo1sbYY8UvvaXDei2OfJIha5xhEiyRLdRpysfIUhOkCmfYm8rR8fO0/JtBmIaU5sjbY4zl/wMSSOKHq7hBkPa7ipO0EUi8UOHod9gGDTZG90gCD2klEgpubVbo287AFTtmwz9Bl44pOmsYGlpksbYO01pahqJSJTzk2O4fsD0dBnd0LHi+yJbSSWwDJ1SMk4+HmPketzeq6MIwWw+S0TXaI9G3Nip4ng+m60WNfsGbjBAVRQURZCJWkxkUqxc2sLvqfTbA3q39sjH3g3AsT2fket9HF36gB80H7F36yeFj/UroBDivwX+V+CnpZSvf0CRfwd8WwjxS+yHBz/J/kbS3/n4nvLHH+mvstvXqPVVjhay9JtDcpUMQhj4MiBjzDAMGsS0PLHEgFhExTPLdOubmOYtvvmnEs84x2grhqbY7K1XOZWd58Giwxt//hzdLUE1m6aZGXA8cRohC5jDgELmJt5oGykEQZDhgZJHc93k4quSXmKLoB6nb52hGoyYtwo8UTrCV/+8jZKKQTrDUIY0Apd1e42FVRVphDzxwARbYp4r9T5yzkV0bUZmBm42yZR8HEsQ0X1ST0q6uzpC0+hspRg5Jt4gJBzAsO9ixh2ECWnVxjRs3IFKMkwykctTT8DKsmSaGNFkk3QhjaUk2Fg/RX2qRimxSL/Z4vwTAru6iLSnyU7VUQshkbgBTo9dHzSpkVItLC1Dx+uTM0/j+i0iWpqEXkEg8KVNz9sjb84zEDW69qukjXGENksiYqKr+19q0sYkmmKx12kTKpKs+d5PpjAMWXljj8JkgbZik7QiEISsXd9g+uQkhqnjhSPUYBOhlrF9levbe4ynk1R7fWxvfzQ48jyubu+SME3K5lEMNfYd/alQ1AjDBmZ8gmNnZ4gY707v73R6hDLkUOH9RinvxQ9C/DAkcp+jThm2AAOhfOfzHPAD4P63cvzE83HPk/zvgA88d+/iv5QyfvfnK0KI32BfFP8AWAF+822vvgPuE2GSj0fRjD47rZvY6wqZ3C6KcRw76GAKnWHQwVIzKOmQbc+lmJilEy7T9CcwIlUWNtc5N7/D8u4cm6NdRrcEY2Ml1hpZxvIZ6jlJf+c2fZmgoA9Yur7Jzo7BkcMVDj10FhlZxo3muGPX2Nz8GsObFU5Pl9DKLR6OzLG+/CWYO8eFx4/j2DWkX+HazjbjSZXPPPSznD3usFp32VmokR/kaQcWDbmErKnIVRClJLpZw3MVOlWd2IyD2pX0b4WMElFG5TjaxgCRMslN92msRIlEhoxshSAZMgpNFK/LG1/XKE5CSUly7uEC/drrSD2NDMeIJj26/S3EwOfY+SQnLjRRFYFQbuM6Joa6Du6DxFWLUuLn0RWH0Fun77XpuJtYapq6s0gYBsTUPHVngYiaJq3NIYRCLjIPcgLuOuCMp99d1xPSIgwFF9frdEcO/+Ch8D1eqvXNBnbfIZVPUDD3p2wHIwdvtAbBCDhJw14kpQpMxSYimnz+2CHipsF0MsHylXX0kz1y8TzJSIRExHyn7l6rz+3XFvD9kAufP0O6Ms7XvvUKx6drzByqvKerzeTe6/pzLzJsQ1BD6Iep9vYDg06Pl++vD4cNEHHgQCQ/Mg5E8r74uLeAfNdmkVL+MfDHH8PjfGIRagUdyKox0pEsSi5k5eolxo7a5GOHCd3rhOH+elnPGbI32qNi+eTHj7HWSrDVWiR4do3D0zkSEZ2gaZOOd7n2ZpfCfEjSGhEMFM5MHycaf5Fa51P01ChblxrEEn0u397CmnGoiesImUep2Yz+DZMCAAAgAElEQVTn2pQPVbiz00RPREnpTbr9KGKgs9dMcGfzOvkjkubaLlZ+gh2vzcqbKimpcuet21i5Nq0lUHowmYZRwaXbSiKPBITbLvZII57yUHSNpmvhLnfJBDbTz/QwNINBM8DbgfmHffYWNFrbDl5LwMAlZuY4diaKrzbQ80eZnaoxfdRn5VaMVusQxx/rYUZt1EgRV0ItNPBCkxTHycghmvkkuu/QdNcxVY9S9CSaYtJx10ho44yCBroaJarl2Rvd5GqjwfHCUUrJ5F0h2GfgN1jc7TCVqbDZ7pCLRfnssUMMXPc7zMaThSQlz0do756/trWLEiaR3J2WreWxIxaRgkGtt4OvDAnCAEP18aIaa90NzsUyJCL7QhQEATtLe+QnsuQnUjR3e6hiBUUp8pkHH0U3dfxg32hAu7sd5G/PVGTAXYu6SipBMfHBdnXvRwZVkBKh3aegHnDAR8jBivsnACm9u4YC740wfDt6UgpJsngM3/W5+tZNpi/Mcru2y3krYLpwnqSTxZMDcqUKte0BU2cvcOXb19jau8BPP3yCf/vmX/LwmYc4WXJ5/tWv0wkUns4keParm1QqA7TBFpPhLBuxHvVGg2svXmS06VFMWHzu5ya5MQhIZAwuXV9gZ2OVq36HB58cY3erSVQugh9gFmKcKs/xYn+PuOOw2/LZWl4ndXgMM2khcwFz3pD60CUXURgkNUZXXVJ5jWFo41WSDOsDBrM5Uq/1CIOQiXEXfWSQK/eYPuqz1tC59qyBNFUiwxAzIrFtcEOPlYsdtqwBJz8bYkSyoDRIHp0luF1g9mQLrx+i6mUC+zp1t0k+8nmk0mTPN3D7b2GEA3a8Ogm9zCBokDMOszL6NqbSYOAo9PobFNMeUS3FdM5Aqjs4vkLf3yOpT1HrjdCNJp66jq6VOFoqoN1dG3zbPedeAtfnzsou/ZjG4WIegHPT4wziScJwf6uHphkoqoJQovT9Eq67Rr+zS9yKU5w6TSkx88707n5HgtVr63Rdl0OHbKaPpkBEAINYct+sYrnWJJSS+eL+9Opao03cNMjFvzPl1r7Bxf55IQSaui+otc0GnVqX+fOzH9yhRRyUv7tpwQHfHcnBdOv9ciCSnwTCNgTbSHUcwipCP/Gey0IIChM5wjBk/EgRLexwobKL59is9bKMxcaIxi129pYZiDWOToyzYLfIqju0VkP8O1vslLI8fKZCY3iE6fEtXn3uL1GcDDcWBMK5RWt7hwfOHuP85C8w/w+2+c9ff5beBqydf5a1VoQvjH+etLnDRnuDRlpHhFkKuQSLexJPdDk+WWCtEUHKw2zW2mxuV0nkM8zNRdhqprk40hlgUCg7bG1YVG2dQb9K0dhBWmBEHZpVlaTbZOZEj4s3c7S1OGfjTXot2FsUmLEQd6SBIjBS4NgSdczk5PFV6ksGo6bK1rcFo5UU2stxnvqvbqLONdGMdSJ5A5sCjvFpTuob+MqQulNDFQlGYchkdJZc9Cx99zYRfQJfOiiKymzicRwLOk6D3eFVcpHD5GNjOMGQzVYP3XDYqtdZb3Y4USmiBipDV2IY+/ZwygcIJEAsFePTT58llJLVZouddo8TY0V6zf2sHlbcIlexINhAygRCEYyaOgUxTiyX48r2JpoyTTmVeKdOVVM58+RJvnL7Nk4jymxBYKg6UTXKta1dBu6ASjKHZbz7sRHRtQ81GfgwUoUk0cSHG6jfK64HfIQciOR98V1F8m4yzBellBvfrewBPxyEWkAqecBFyi64FxHG+feUkd4thJJAhE3uvLrB/IUHUK023WYfZ6lNYS5Be3fEVOkUw2aDn/lvHsBuVri1cJMHP1UilmziiTjVzSZ63MdNpgk0k3D0CLt6DU3ZxA7eJMjOcvNKl9Pjk2QSk1zfeAF/z+dN9xpS9ag8XKDojPP8813mjvRpdeqUshMsOpfJJ08QtULyMUgpQ/ayOSK5IvHjcdzry+gJg1Y1RI9HcFbrFI+oLG5XkHUb905AzLJhI0DPBxydb1KvRgg0nUP5IV59RCRusHo7xNnyaBUSiLUAOQx447k0c8ds0qZCvQ5SbnDiyTS5bIRRaZOO3yauHaIv8hRi5+k6aRT3BRiepG06lFLToGgEskM+MosIq7RklqJ5DCkkCTOOFB2EN00xcgxV0TGUDAudBRKJDolIiaeOzKKpKnk/SkTX2b69jaopTB798ExAmqrgOh7FiIVIAxKmT7zrKS3DBoRNBHC8XCQo5AiDEE3Z5NFxnbWbO+QuRNDvCrEM+ySycT53doxhuMft+i7T6XGiWo7F+g663iBuWJj6uzMWpWQcKV2ktBHi/jKHGKaOcXcddbPVYeR574yGD/gYORDJ++J+RpL/CZBCiC3gJeDFu69LUsrwo3y4A+6f/bUhc39vpPJurj4ZDiFYRSrjCMUkXS7iuDmWrtTJVtJMJSOk51NUO0u4/oCX/r8lilMavXwFs7NKv2UySJaZyO/S3+mQGhpsfsPmzIMRbt+8zPpCgWLE58hTZ+hqt/mrFxZZ+ZsVDo9ZVJ7OMC0/TSPYoCv6TMYTbO5k2VpvEs25nMif5ZvX+4iIw3RW4a1LW8yfzXNtfYlBx2TDkbx57QqxuEHWb2OU+kgjSa0mMIoCOwATm37Wwi4rJHUYdOGt65ASA8aeEByeH/L6m2lGoc/GVpRKvktb6rirLiNbxUz4KMMEw13J2IxFPJ5kEPSpHFNIaT06bZ1WK4ZX6pJM30bRcyS0OL5nsXm7wfxRk6xeoeWuYUufWOJJICAr9t1xdkfXyBgzqIpB3CiyPniZsnUGS0uTH0YwlSnG5/anLh3PR1EUDE1l8tjYd1nv22d3ZT8f5ezxie+4JpT96dK361FVFVVVgVmiiZDiRAtVUxn2RvTdIVJepph9mHy0QhCWCJwOWXN/P+TPnzrDwBlyp9rhsBUigy2EelfAg12QA/jbzM0/hFws+o6h+vuR0tmvW526r7/FAQd8FNyPSB4BHgceBR5j361dAEMhxGvsC+ZL7JsAdD60lgN+oNhDh8AP3lkrehshNLg3sYrQQCTvri2pgErgK7RrbVaurTN9cowgGJGvzLC6d5nKXJLx2SGX3miQK2dQ03DrG1c4dqTAtb9+mVffBE3RCWMmk6crpOIt1l7Z5sqfDHngnEnB2qFT8NlrLPBXf9olMjZF6XQKZ6AzmowwWLY5MmfTCSe5dqPF6fQIJTIiNPT/n703jZEkTe/7fm/cGZH3VXdVd3V3dfXd07O7c+1NemmSskxySVsUJcuyJVOGYEO0AQOSPxiyZFuA9UECJAuwYcMkbVMg7SVFcZfHktx77pme6bu6677zqrwzI+N6/SG7e6anr+qeGYmcqR+QQGVkRGRkRWY88Vz/h/7IEW7thfSI0zdS+L02x1M6DaOM12ih1Q1mZpeYHtN55VKaflVl/LhKuB6hdiLCukBNhegTEbqlMFjt8c3vp3F9OHrcJZvqU942mSm2iZkOy4MYMhCkjqYR+hZ2ssKXfnKTAIOREY+1vXNkrHEYXSCZ+SK6WCEKm6hUUegz91kHS9VoDG6xF/QwxS5heA5dy9H366x2XyaKPBSp4RgFUvokXtRF3tbrnz07c8+5q3S6NDo9kt2IybkxFEWh3O5gatpD5ztOHBt56HfkgzlqGPbP1koNnESMwuTQOO+ulAkMhfjIeYQSZ6Vap9bpMZlJ3hU0317YxogZXJgeRxUtiN43lFmdAp7ufjlm6Eg5QEat+49XhiA/nuHPn3oOWkD2zWONpJRyEVgEfhVACJHkPYP5AkNZuf+Wobd5TUp59uM73E8H3sBnZ7nE5NzY7Tv/+6mXGgx6Hs6pR+duhDBAmwT/OgibgTdKfadOqpAmkfGJWSt87//+BsULz+G5IYcOn2T1RoX6yiqOMU5ta41zZ3Mczbv4XzyNNnaLUyde5Df+t5eRXhOsBJkTcap/0qM4n2fy9HHaP1imsZBiwy8R+XU+a6hs9bosXW2y04RcIcb2xSVOzM0yeSrilfWI75dSpOMuxdBi/UaNquph5hNsr/YYsWz0k0mqrYDd3QZxpU+gCsK4yc67EdohHb3VwI8rPHu0xtamiTEQNGsGoRYyf8TF1QTC0pk90iWKVPrvDogfipEMfYTYZGRW0pMZ3n1V4+yPfw0j8RquViNdPExM/zrIDpWBjqNfwNRG6YsiegRb/bcJlC1i+ji52I9R9bbYrP8eo7FTBKFPEHm0vRamFkcIQdGaf/A5D0Jyjk0hFmO3U747psr1A8Qj4mKKXGNYhnF0X9+t7Waba7fWefbYNDFnaHgPnxl6alL6SP8aI/EpDPXeStT8RBZFU29XtaZBea/1Y+jlfYhCm2hvmFf/gJEUig3Ksaff7wGP5lNiJIUQh6SUqw9YPiOlXHvc9k9cuCOlbDEcf/KHQogM8Hngl4GfBE496f4OeDBCiEeGmMYOP9yDuENls4aMIorTBeq1PIOeT35S4fTnh2GxTr/GlRvLjJyyOHPhHE4qQ2Vtjyjoc+alGGNzozRLu/zR7/VJvTkgnR1DdrJcXF7j9FGVsdmX2Fzp06jkSOUrrK+EuAM4NiZwRwq01mJI4F//cQkj08aqdogbGq+v5um+U6a55LF7NYnvmJCAY+dNaivbGCWDrNZmr9TH0zukZ9LsbtkURgeUWxajVovPHatRdhMspDOMZRsMEgZkA5Y28hw5VSOQBuquQnktIjPeY2yswx/9XoE920HGLI6/VCUkpFdV2VhOsLMe8tlnXQ4d0+jUfsDldZexoxFBJuTWosexk3kK8SN4apaav07N75KmRUpPk7Kfw5UCTU3hCBtLTZA2pjFUm24vQa9vkMmMsFlvUkw4NHYaJHPDgpntxV0OnZ6i3O7QGXjMjxaYeV/odDqbJgxCrvzwOkfOH7qrqHMX9f4w66MoJhyyz528p2LWl32uvfMOxeQMthOxubTB/PPzaKpCdWsLodh4tkaz3WPe2V/e8UkQ6hioY49f8YADno5LwIPEhS8Cj50A/kRGUggxz9CDvPM4DlSA1xh6kwdN/x8BhqkzPf/wgo3uwEMIgf2Qyse7+7H0u4LUuhlDSo2F1xeZmBsnU0whsQkdhzC+QaVbxYrFKU55jI5LKts2iZROu1fAPOxyZblL9MYuZ77wLN/+/psMru5Sq4akihk26i2kr1H7bod309dIFeOk/etMTvoI/wRrqx2aA4exuksnZxMJDTVv08FHqDbNcher0SVbaNDa3aBVijj31XFe/84WqhGwYe8RC9a50RjHSem0Uwk2a3kKYRuHAREqnaxNzurTz8V4tRJHyogXZ7bxbyl0miDzgvkTXRoNycaSoCbieF0fPVIwUx6YgnIzJNUuUTjXIumfYX4uST9YIYyPgvlj4P4WHb+DUDIcS/67CH+BQdDD994iF/9FFEXBj/pMOhcYeBCJkMl0HlWYSClpuwMydoxus0csbmE5JpZjIoRgIp3kYTOOVU1lYm4c0zbve+3OhJc7yKgL0S5CO/LAfemqem/bB6CgMjo1StJK01cGKBMai5UaR/Jp2q2LJJJnyNoTOIaOlPIgP/gJ4VMUbr3vkwohdPYpd7qf6ta/x9AgPg+kGFrlV4D/kWEeculJjvaAD0+p1UFRxENHE9XLJVrlTWZOPwsMKwgd0yCXiWMnY5ixoaxYGO5hdq4Q9WcxYqP8wa//DicudDh8TCUKp+l3q2jiMD/+1RiD3Wts3WwxMjfDXzt1mD/51W+xXfcp7a4yflpSfsdBNhSMhE1lu0GxoBDrqfQ1jcljYwxGYnTebqIJnfHDBTrZOM1qk861TZTTY/QTJu9cqdBs7ZJIZqn1E/RCj7ETLrfqNu0ND3+0S1ITNEtxhPSp9RXiskPSH7DbmyQpXJo1l2esGsvOCFGkk3025K2XM9SqGpah0AwNuqpJp9MlaAnOfKbF+pKDpptMnNdxkiGTMYfVBcG6ukH+8ICJwirt/g9JqAWQGda7r2CpEPirNLsDVLFBR7zNrnuZ+dRPEVPz/MHqN/jc+FdA6uz1+hQSDifGigAcPv2ecPn4kfca5h9lezLF1D3P3d6AzYVtDp+d/kBIXvCkksyq7FBM1Fnp7aBrcWYn5hDoNPsVWpbBofEphFAwlDLS36PsHiLn2HcFBQBktAdRD6FNstts44chU9mHq/G8t10HZAehHggHHPDRIoT4NkNDaAoh/ugDL08Db9+/1f3sx5P8h0AX+DXgn0opbz7JgR7w0TNbeHSEQNWgKZsEYYSmKsPQ7e2bqdj7wmVxK8F4cYS9RIGNtTJt7zKXdz7Dla0cX/+Lz/HHf/rrJJ0zTBRn+f43d2h0AtbtBQpaRG/7JulEnoaRpV9fpe3HyGfjSK+FiFVYXDfJ1/PkR8oE6y02nBxMjWJtthiZ9OntNWnsNTh9ZI+ruy5xcZiwu0az6kOrx0isSaatsrcdJ92NqPVjzHW3sWyFTC5kdSVPLhcQdyLcXZWCsovrSkqrCurJPK6d4Advm+QaVSaTbcpdByMMaexZOIaHn1Y4fd5jea+AkY2YnW2juR6G7TBo90lm3iEyQhReQpdNdpr/hLb1M4ynTiPlaXTvLUwpebcryTqfZVQIEmoCQ4ljqDZfOfTTJPQs37+1MrxBcey78xo/CjRdJZ5xUD6gxDPM4z24SV/KiL3BCkljAl15X9hUiYOAflegxyaxEsOQrqGNknNStwd4A0qeKIqz3WghglUSTpEbZZepvCRrJO6uFzN0jGi/OUoPZP+JPvsBHxGffE/yzuSoLzEsML1DBOyyT2W3/RjJv82wQOdrwN+63Qryyu3Hy8BFKeXBGIA/Q8RSeZT2Ca69usD8Z47e1QSV0gP/KugnubndoNW+RrwXYcVVio7N2Is/jm4fpu8pSGExMf9TNFbrvP69y5QqLZqlOnaqzV4W6soYY84WueIxGpdnMMwealCiGY+hZeIoakSpvo63rTBzJE5/s4UWGzAY6XJzsUprIMhqks2NGKNjO0ynq9zai2M0dLrbda77N3E399C2E0gtIBmLCOZ0llYkPzleIZ2PcW0hwdljDbwxi8ZrHrvC5JkXaugqdK9LivGAthpn+5CDrocUqrvo+Q5RC3xX42ozRfmmyfRRj/YgYH3VYW/Z4sjpLp2kw0ZLR2rXOTb1DBY6YeQhZIsw6tINVRAuF8ZfxDam0GSLvBHnZqVLMQH5+LBy9NzUGEnLxA0CNupN0rZ1X7hzv3SbXay4haqqaLrG6KHiE+5BoCnW+4Yw314qTITxLKdvpzeXL60xMpPHSTkg7PetZ6DpBs1uhXKpwpfOTlBIqCiihVDSd43kwypxH3hEShaUx6aFDvg4+IQbSSnl3wcQQlyXUv7m0+5nP9Wt/wL4F7ffrMB7la0/B/wPw8XibW4bTinlN572YA74aNBVlROTRRqGxfVyldFUgpFkHNBBnSD0BXsrFXQ9weSpY8Qsh40b2yzeMDn91ZDG7grXf3SZvpXGDVPEMnFe+KUXefPXfkQiqeJaRYrZVXbWCzTqFTKFASKlYwwiXMdlvTVFbETl8LGrXH4d+r0O6XiJQEZ4ZoZmpNENFJSejj+V4kIioHVrD6uZQI61abQMOpGLasBkJs5eSiEhJPrNGlbbZ2nPZrmWQh/X2RrodDomiVGfM+kSjY6J0pfIBsSeVXnGqdFPWWyUY+yUTMy8wom5Nim9x7W3E8yM98ikPYQq0PWAE1/pYqQqZHULfc/k+o0EqlFjfPwX0bUErdAnYZ3Fi6YwwjJlb4dB1KE8WMFUcuTiBQas0wtGCOWAjD0sSLENhQvT7426eprc3sqVDSbnxkgXUo9f+QEIIUgZD8913yGettGMey8N1xc3KYyk0VSNQc9lxB+j5emkYwZx88ETQPa6PcIwIpSSrGPfbSc54M8An64WkItCiIKUsiKEsIH/huGgjX8spXQft/ETFe5IKSsMR1j9LoAQQmPoyv4K8F/dXu3gl/BvmEbPJWEZ94hgq6pKbiyDOfAwb1+chBCgFiEKGEklGDt8hMWLq2imRrPS5NCpKRLZJK6oY0uLpjtJq7aHbZtcvrzKIIzoKWO89doyL5zIkpzKcemVdxhM2by94PP5o4fp31gnKFVpeS4/8jVG/ApGoJEdkawk8yT3XCpdg3hRcPJQRKawymYpT+RAiKQnTdSizktnSjSuSRY3DdKGTt/Xca0sTqJCc0ehsLqDkwtIjIRsrcaZPNFGjtusbGRQuz6dYopQSF7bcAiXfIzIQ8Yd4mkXJ92l3rVIP6Ngdlx2yjYzxyIcDepS5wdXp8h5Gs9+3kVKn9DPUel/j2TiF1BCFzN6AxGNsO3dwgzzVBd/gDbxZVZaDc6NVwhkne26TYDLfOH+qs1Sq0O53blvIsbNt5YYmx0hkXmwEPjJF+buCa+29tpUt/YYmSnc1y/7YShOF+55HoYhpbUqyYRNtuDwwskjJGMWy5U9FCGIm8YD99MZeDR7Ltd3K7wwO3VPjtILAuo99/bN2wH/Vvj0GMn/B/jrDItM/xHwZcADJoG/9biNn7gFRAgxy70VrqcYGsY+8KAZkQd8jEgpWarUOFLIkbaHYa56qYFpm9iJGHHTQEpJt9XFcwMyxRSarhFP2azf2CZ5tEC538Pb8BGOzmLVZy59nlcWVmlvbJG0YkwdG+XSXpV6QtB/9RLH0gVWXqsio23OnA1ZX/VR3trhRj2F6Vm4huCo0aM3YZETgppv8ea7JiNHOizWiqSOtIg1Wly/miN12CRstzlkt9moQieMcfJ0i06gUdFVfALCXovBnopcDdGPZEhlBmxXfXY6Bl4pxCp4rHZHGbwc0LUM0AxIqJQ2A44XQnbXoNGyyZ2NUfccLt0QDLoRO70kJ/I1CmMet3ZN4nmJ6cHJo7DejrHQgNOnEkjZos1hVJkibeXoBya32m8RCo9ZLJYrBQrjfc6MnaS8vY4iVcanMlzeuYGj7jGVvTecmLFjdyuTwyBk5co6U8fHyY1nH1jBeocP5h81XaPfdtlZLnH0/EPEwj8CVFXlyz92/u7z5O1w6p3cuIy6IGyEEGw1WjiGQdq2mM6mcRMBPd+nEH8vF9vzfLwgoNLp7stISjkA6SGUxGPXPeCAB3AEuHr7768zFMdpA5f5KIykEOL9BvEFoMjwHuRObvL/ZJgUvSilDJ748A/4UAghuDB9r4RZu95FSol9uwCj0+iy8MYihmUMQ2m6xE6FlDoKv/uHr3Ihm2NypkCkKShhxK23lrm5vE652eY//fkvc/OHN0lv93jxp59nceUytaUIsdelcDhHd7zBWD7J1FadxFwRLdkl/G6dpVWPKV0nOz3GpozhiG1S9TYriybLOFiKScFpsnbJIDkK665NYaxDaSUgm3Pp7sToL6nYpgvbATNxl1XFpD/oYay30YgzOtZj7x2NftMkLVrIuM2pYAMlbqCOx7m0mUKr9YhyWTIJl6mUy8amxmqQJOc3yBY8EuOChpUmk+tgpgdcrqQo3TQYyytsdhokEhpKO46qpen5TTJTz2DKPvOJC6DlwHuT/JlxKuUNOv0ameQkI+Yp4jGbtK/R2agTJlN0Wz2S2eFF3tBUDE0ljCIarouTslG1oecPw4HK1c0auYnsQ8UkAOxEjFMvHr8rPPB+gmhAJyiR0qc+1pYNKQMIriKVMZAuUhaR76ust3SNzx2avOcYru+UOZTLcHr88b2+wG2xgTooJx+/7gH75lMUbhWAKoQ4CvTuCAsIIfZ117UfT/KHQMjQ6v6/DIt1Xt6PUsEBD8f3fFq1zt0L44fhgxdBP2fh6u9dXBOZOPPPHaO8VkVRFfz+DuuX32BnI0e/uoiSbpKbmOStl99l9PgJ5p+fQ86mubGwydb1LZLnHfzQ5OVra6y2JOcnNGrtOm/8oMRpbZ5yJiB2rohY7hGfu0WYVyim81SJcXhmi/iP9tjzfVZqNvGgS7QYoTQHNOdM+qFBd82nWkizuxQjN9Yl1hqwXU2QLSpEuodxSNAdGIwEPnpygG4FqJc9OjWJkwyINyKKqsqtV/t00yHWWYn6+i7PjtVYSY6R0gJ2BnGSfcGZbBUlAzeuJMl2O1xcyRN1IkxL59y5PeL5DkZS0FemMEMPI4zjuTUSqR+QjpVpDo7R9SuowqKojxKKE/RXKhwb/QzpYhJheuiqjSo05qZOEvohnUaXzZs7nHrx+D3nqTPwWNtr8Myhe29ywiCkXm6RHkk/0kg+7Pzf4f3SykE0oOltkjEP3Ve4A8PQref65MefrIhGCA2pn0fIAGSLycz9+VIhBAM/YLfVYTqbYr6QY/fWLulTU6j7yFM+TGxg+PmCoarUAU/Op8dIvgb8c2AU+BYMVXiAvf1svB8j+ePAa1LK7tMd3wHvp+0O8MMQw5dDb+EjMJJSeiDdu9qX+biD9oHQnG4aWI5Js9ri1d9b4Atf/xonXrI5tjDJ+qVV3vi9HxCFLVLHT1N1+/zL3/4e53IefuokK6U9lLRGsN7G/dEKfGket6oxMZlB90KkrPHc587xcmWBhbdtwoqHNCRet8G/3rHIrzaJ9Ii9toYiBF7cR3FM5A0XMaIh/JD2lIWXECglybu1BHsNBdty6fcl/R2DqBeSiUtUJULPGiSUiK5UMGIR1ZKk+e2AF3+uQ2lX41Y9i3YjwLQTNPoaQWghpGT5psOK5qAFGlbGw9/RCWWIagtkW/BWZZr2siDt+fzMT6xhFQSrrTFOZiJi6c+z4y2RCGvEjVkS+tiwtUaZJHWyTdVtY6slGrs+vmVzNHfqnnabVD5Ju94hCiNS+eF5SsUsLkzfW0izWqtjaRrHP/NgMYAH0aq173qjd9AUk4x56O5zIVQ0xXqoxF3oh/gD//b36V7P9HGeqBAGCAMpLYJoQK3jIwT3DFkOpWQQDANNlqETi1sf/iIdlSCqgH6ghPlUiH310n8S+GWGff17wH9/e/U2x2IAACAASURBVNnnGOYqH8tju46llH96YCA/OnqeT8sdEE87HP/so/U2o4dMR7h/xTqE63efpmIWjmnQ6ru4/vDCtFyvE2VjRKFEAJZtIIRg6ugMGws1FH2UCz/xs6RHUowlE/zMV0awZxuMz2UpOtN0rrYYTyawEw7JTIZEcYzpH5uj2y8Ti4dMWEU+f+EErbWIHjHMmI7S8hAbXdpOmpKeYTBqogc+8a6HHoWIgQeVJkogKXSqpPt16nGL7Z0UATr1UBD6ArctGJhxjl1wSVohnY2Q4pcC7HMOQtcZ+ynJ/Asu29+VNLYFM6KJY3V4LrPB4Y01NOmSajZI3CqTDDuYfoTfiwhRUE3BoKmzc0my/bpgNGyTsvq0diKaVxRWr2/zx5d93ll+i4E3RtgeEJfrCCFouiv0+3/CWOwQmtrDc6t8939/kzd/VOPWtTUqm1UAthstKu0ut95e4eJ3rtw9r1Ek7zNIKWt47h6H6wd3p2dsLGzTbfYeub4qNFLGxHs9jx8gM5J+T+ow3IDgFluNFjd2K/es96jBP92gyt5g+YGiCLahMzeSRwiBqqmMHxm9x0vueU/RRaYUQTv++PUO+FQjpVyTUv6SlPKvSylrt5f9ppTy7+5n+/3kJA0p75XiF0JMA38HuMBQ0eBNhkIDm0/8CT5l7Leab9AfcOP1RU48dwzDevBFMwxCoihCN0ZAvT+/s9Nsk7BMio5NRmgog5Bus8eP/ZUv3p0hqKoKp75yitR0ltxIlq1bOxiWwbNzU/zObze5cmOFlh8wcXSUtYVtYqMJNNXnxNkcl26UiAarfHZ6ltRsgXwqQbqQorleIap5jCclDTdi0AlwwpDJ0x0SR1X2IpP1NYNDM23aik51BcKOhpc3GHUqNFZURrUWUcZkZUHjULpDL+wh6qDloTSI47R7RHUXPwjIrQ5IZkN2+jG0uICVPu11k85sQLumYWld2O0hdIXWOoACIyZdJ4Y0LdKHqyQWO1hKnXRKkN5tcPUbFsVnQHV0piYURLLCBlM09lYwzmeJO9cxVA2ULIa6RcvdQ8gpfu6/eI56qcHVH93AsAz+nb/6ZVRFQVMURqZz2IkAGe1Rr2jc2CkzOV28p+oz48TuO48P4la5Sj7uMJZK3BPGDSOP2mCJnHkEVTFYvrRGZjR9n2LPI1FHQIYUEwYZOzYsnPFvILXjlNwFsuYspnp/OsfRCsS0DKp4tFziB+kMPK5ul7gwPf5EPaRCDKfaHPDkyE9XCwhCiM8D/xEwJqX894QQzwKOlPL7j9t2P+HWvhDiBSnl67ff7AxwZ8d3VAz+BvAfCyFeOlDk+WgwLIPZszP3GUg/DO9eSHZXywx63n0jl2SwBkqe46MFthZ3qDb67O00kFJy5QfX+fzXn2fi6DDH0232MNI2fRlx+fvXePuPLzF5fILZczPs3Rjw5X//LN29HpGpINIW+Ysm737nLRiF7rLJ3laGY8+e443vfJuN7y+gh130Shs3bWNPRIRem+6ygfRh+5aFqkIm5xJIg41tAyUUGLUuvVgctS1x5l26jkm1aRPWI+xkSPwli+6Cz6XVOI4VUI00qpbN0ckevW2JCASNhokSNzhxuomSUlnfiPPDNxP4cxnUPR89EkSdCD2nkI/XyY8aLJQcvK06QV7HuJCAzACx12TLTbKTTbGzqXD2qMHnxjewUxkuKTtoxQmqwTjCc8knzyGMQ4TBDk4noFFZ5sSzc8Qci3jKYdAfekd3bowyx2LIEJB9hJJkMp28+5rbG9DvuPs2ZvOjBdQHeIWK0LC1HG7HJ/BcMqPpYWjzCRDCBAGGAoYGUoagjiCEQdacxVAerBokhEDlyQwkQNw0eGZq7KEGcme5RDKf+EjbXA7gU5OTFEL8ZeCfAf8X8MXbiyXD0OuXH7f9fozkB/+V/zOwDXxVSlm6fRAjwHcZStj9B/vY5wGPQQhxX79cq+9yo1Tl2elxVEVh9HARGT0orxBxR7s3CiMyI2lGD43QanXpqJLSWhknaZDK9mjv6ay9usj0/ASnXppn4+Y2gR9w8dIyUycn6ex1WbixwbFnZzl/5BCXegHGtQKiLTh1ocBSfpfmXoudaxt0By6Ts0VacYWRkRYVK4uBhpIZENZ9wlpEoAl26hpiXCK2BdIISB0Picd6lJdValcVElaf+iCG3zcQXUg0qvRaBqslnVrCJBEOIA2bFzUm8j5bWxbenkA6IbIv0DoeI4ZHX0aUru1hRxGKLfBsC2EF9L7Xotp0SJiSQT/gMA1M22JpO81aFKM/CBk3ekjV4PqmweVXDEY+73F4ssuxw8fZWujQKWjkEhJvEFFutsmPO+TDBN1WD93QyU/kqJcaLF5c4egz77VnCHUoKCCdPnHbwNCGP8F+u0+j3Ny3kXyYQRFCIa4XqZRq9DvuI4XyH4aUEaH00RTz9j5VuK2t+iAP8sPg+gHXd8ucGnt4pWsYRjxU/f2Ap+dTYiQZDt/4mpTyTSHEX7297Ar7nFr1xH2SwBeAv3nHQAJIKUtCiH8E/OOn2N8B+yRhmZwaK94VDVBV9YHRplDM8O7GDsdHdKaOv3eRVE0dMx9nc32N7sUFXvhigtHDJ5man0DRwNSXeO6n5vnWv7rExEiBU8/McvVPrrH49jKhEJzwIw5nUohnZ9krNzEtn7G0SnelTmuzQXG6gDaZxdzaobGu4Ha7iE0XBj6mJgiSMVxNMDdRo7niUgs1Ik/gbQgGZoC+F9HxTVpSJeYECF1FO2HSnUjT6auIXZ9YFDAYizFfqLGxYLKmOQSJEHUM0lrA9e/EiGICrylRYjDW7KKdCin3s4yVyviaSV1JEWz56FMOwUiS3njE8rUUWAq6EpKSHoqjs7Ft8/z5HlcrOco/FHz2pWm6ozaT49N09U1+///7A+TA5tDhEU48N0c/DFm9vEYy6TB9fAInZaOo93t7vuezcmuLwlT+bng1M5ImM/J4QfD9cmeg8tPQC+u0/R1GY6c/1DE8SFXog8sMVWUinUR/wP/pDpPHPpoxWv2ue08x1aedT1G4dVxK+ebtv+/cbQXsM1a/33EBH7yNe1D7xxpw0O37MSKEeGRRR/928YOmKozGYiy9vkTgv9e66pgGp6ZGOfm5o5z74gW02BmEUBmZzlNZr7F6vUE8myZbTJGOGay/s8rEsVGOzk3SqrepdXt4fY9W6GMcLRAFXXaXlqluLXL4hSJ6PkEyUvC3PPxbEdmuiqYo6CMR1oQPzT5adcDOqkUsK/mJr9cw4hK3oqBUITEOTjsg047IFEIsO2S22GH5DahcDFEMcBIBxmaPoAnZMZ+cCNBcMEohE9kB8YRPNBAkXzKQVkSYFfg5m9xhCZMWSjFGz1Dwezp1x8TtquxcypOYtZHjDoOExeB4hmpoUMh3aa42SSR36UcRf/jNHb7xa9+h1vkWaHtMXiiQ/0wMa0ZS7vYotzv0NYnfXcMP2xiWcbeS9f1EYURG0RlP/dn8udhqloI598TbVTtd3t3cYae+hpQB727uUu28V/MnpeTt9W0aPffucxFtUIjrH/v4rW6rx803lwiD8GN9nwP+TLJ0u9///bwILOxn4/16kv+TEOJOT4nPcAz6jz6wzgxQ2+f+DviI8cOQ11aWOVWokrLPMZZP46aa+F6Aqqk0qy2SWYVefYHKVQW1H3Dx0jqKrtAoNbGTNhHjOIkUP/31l1BZYdD30e1jvP3OEs2VGtuvrfDW4g5uz+Mv/XdfZycNN8srDBZV5FKXhZU1pr56guL5KZq7FdxWQOGYx86SQOsITnyuz/XvxegmHRS/x1rNQYYRKCqGERIbeJRjceZm2jTaKp2dkGjLpVeJ46dtXOkT1gZEZgyFHolMSFppMGgnsbIhoYyYec6n/opBe0WBjkKYBG75jE13uOLmoWlS6LXoDRS0RQU9phF0ApSYQzyfxWj38V2d0aiFPqJQFqMcyvWwg4hDh+PUFjrUdkb57PQsE0fG2dna5tbSMtk5lcmsRea4Tpw4FfcG+dgpDOX+PJoZMzl8ZphH7rX7dJu9D+X5fdQIIVCfovfQ0nXWa3uoYZnRVJbZfIYgDPGCAEPTEEJwpJAjcTvPHoQhrtskbufvC/0tV/cQCA7nM9R7fcIoIh+/PxcqpaTt7+DohUcWDDlJmxPPz+2rL/NTw6fHk/yHwL8SQvxTQBdC/NcMC0//s/1svB8j+X2GbukdQceLwKEHrPcLt1874COi33Vxu4N95al0VSVrJ9lrSbYvr3LmCydRNY3AC/BVhY0b2xz/zATJ3Cgnnk8x6HtkRtOousrhszP0EzqH8lkURUHVYOWyQrMywE6tMvLiEdaT4K73iGfjxOIBN39wk+qgQRApLC2s09JNNEPgXyvRXatgH9fxGx6KGaKZBqbjU15X6aSBokawLvH1iImcz0ZdYdDVaaITZHVWdh2scECqK9leMKEfEI6E4AkiVMKM5EolzVGty+6uRrNtEPMiFCNERAFqKAmlxHhGx4hHdF8J2ajYzOWquOsaZd9B90PMDZf8cagfj1Hf8TDLdSgY1NQUJ0+FxG2JwxT2tM47FzW+EN1k/jMROxffpjq+hJn9BVbe2sJ0NA5lc1i6A7qCrlgUo8HdnN77qWzWEIq427TvD3z6ncdqLD81UkYPbfvod13KaxWmT0x+JJ5c3DT44twRbGMeoagkY3Blu0QhkncLlO5IJwI03QFbjTwTLZdkVrunSG00+Z6X7QUhfvhgD1AS4Uc9Ihk+tqrWMJ+8qOgTi+BTYySllL8jhOgC/yXDiOdXgf9ESvnt/Wy/nykgX97nsfxdDjxJYHh3G0TRU49EukO/3adV6+y7mOPs1BhSjjIoeiiKwqFTU3dfO/OFE7f/SpLM3j7GwTAUm5vOs16ts/DGIq4XsNptUwhVupU2weoe9mSK1q0yZ07MsnUsQ/udLbbbLXav7rJ+q0exEMP0LDRb0G03UFWVxsUWgZTU2yaKY7ClxAndPk7Px85HzDwrSDYibr6tkX7Ro/KWQdyLcLw2PU3nyJkBOzsmu2EM0QyILfZQLCCuEBVj9HyN61GSVFRDiJDONgxUm0Y/oK/pmK0BST8iWAkJBzZaNaIfqAQZB8XXMDdcHF+j1MnRXxEkWy5oAvNwHttT6EbHKBY9/IHLxXcrbKwIvtcVZBMtLhRUXr9iUd75NtogTdJ2+OxXsqjKe+dbSu2BOTlVU+5ZlsonHxiSvYMbNjGU+ANVct6PlBGEm6COIW4bi45fph/WKVgP7iVUFPGRe1YfHJNl3pbgexD5uEM+7rD4zgqGpWNYBt7Ap7pZY2x25O7/6VFtU4pQyVmP7jc+4CF8esQEuG0Q92UUP8iTjTB/9EFcllJuf1T7+/PMbqtzXxP205Adzdxj6B5FdXuPermJEALrASLZbXdAd+DR77ps3txme2mX3dUysYSFoamIUoe9SpNLtzYIt5qcfWGOYNAlO57m1VevsnNxjbRp0ru6izWewvcCrNEEo7NjFI7Oce6nLxBYBvXpBE3pEfo+vck4SjpO3LJwttrEyx6JrM+0VuL1hRSvLmYpFnzkhiDMJ5BplZETAfmZgFt/arMT5rEVBaMnERKCEKwRn+xeGedaFSUuCByDQVbHHTHpIemuKpieR/aFkGQsoNGxMQoR6VGPbjqOURhwYXYXMxNh2oK84ZJ1JfGESs8S1NsSO2YiXJWX3xhQemWb2MUdjukbzLPBYLVNteUQ7gVMjmyRPVJm7kIehTIdd8BmvcnV7RJXtktUOvdrcGRHM8QSMa6/duuefPGDkFJSH6zhR48WChgSgezy/vKBmJYhZTz8+2PGTCbnxj+2fKCULgljgKndfy++eWuHfnfoQR89f/iurm0URrjdwQP1aN9Ps9qivFH96A/6U8SdXsmnefx5RQgxL4T4FSHEV/a7zX7EBP5D4I/vKBUc8HiKCYeMfW9TeBBG9Dzv7gSF/VJpd0lYJpZ+/6kK/ABN1wiDkI0bW0w8ogqw0u5iaCo53aC6XUc3VOafO4YRM/jDqzeZzaV5/uQznOy50PNYunEJUVjl2isr1BZbjMYcWtUWJ0/NsLRbpXRxjaPPHGHP6dJ3PUSti9mHqWIe+0t7NLsxtkKTQeSgvbLNyBeTlHagvOfSu2Wi9bv4vYgbUZx20QIRELVh6x2VzDx4Yyb6TpvZF7qsbBjItsr8yT6lfgx3AHF8rHiPQy+63PiOQrcGYcpk7nN7lOsm/XKCWD7CjHvEpiQZTyJLLu012MkkkMmIvUaE4YLj9RiUOtiTeWJpA7HXp7TnMkgo5ArHCdPb9KM+C5FFbDJJX68yM7tBbTFHhMbC5iLZtMKV1V1GjuQx7AaHEkeJ6Q8+103PIzOWeawXJ4RgzN6f5JoQGugn7lmmCv2JG/s/UqIGI04LoQ8rrKNIoiiCqnuTjuuSk+nbxtBHCIPSWgU7Gbuv7/dBSCkf0v50wAFDhBBHgF9j2OrxA+DvA98DekBWCPE3pZT/x+P2sx9P8jeAbSHEN4UQvySEOBgA9xhURbnPqLVcl8XKvvR0Wbu2QW2nDkCt26PnefetI6Xk2is3qWxVCYKQ7FiG7OjDWwhmC1kmMyli8RhnvjDP7LkZbr21zPbyLpW31knoOus7Na6/eotQSjpNk452AqlGzJ0a5wu/9Hn0+RE2N6rU603GvpxAn3FIJWwGOmyU98hM5UhqBoycJhhoKBsRY+0yoaWiaF0iLUS1dAaGg7B0RN5AmzQpej3iPZ/xM6DkdKSiMH+yT1Yf4K9C1IZIg61Vk/5ihOGFJHIhc2IXdvu0lBjmiE7M99nYsNnV8mx3HTaXVTw1TmUwwtJOilLDIowbVItJ3IzDIKvhNfqUhaQxkiP7wgwvnbWgUqP/1gYnc4L8RINepUnKHqPZkuiDMhk9Q23DR5lREUcgfToAZ5yt7XXc+hrBtkvUC1CU+2+5o0iy0+4QLyY+9orOf9sIdRRx23C/s7HD7166zsAPSOjjHDs1TyweG2qv+sMpRp3+YN+GL11IMTJTeOx6D/NIHyWvd8Anhn8CLAF/GWgBvw38DSll4fayv7Ofnew33PobDKtXfx0oCSF+Uwjxs0KIhw+/OwAYVi+WN6rQHnDEuf/+IooimtXWPcuSefuuSsr8aIGsc3+FpBCCo88c5trLN7n6oxvMnJhEe4C3+UH6XRdFUYg5wzv2ZDrOc2dmKeSTaI5BeafGjZdvMjFe4Ge/9gWOnfos+WQeq+PTrDTIn59Gzybw6kmWb1VwIsFkMkkmF6fS76P2QvZ+tEo+KRHJkILdQIxI1q5a+K2Q88crxCt7qNt9xkWLUadLu6zh2g7Rroep+WzVEqy/K8hPeyxvOzjpCDUAb0/BTIUQB8WUbNwweevVGFp5wKAZENkKqc8ZaM0+WrVNa6AxqPiIbRdnNMAWLn5TwyurZJQuuZkQ2h6JyGXccwmvrNJ6q4ctbeKWoL1dZ3U7g3PoWZyZEf7KT6SYSDpc7GlsBimuVnPY4TlWfv8Snd0SnzlVZCxVYONSjys7ZaIHXPAVRXB+aoy49cn+6QyrTncJb0/Pm8mmcQydnu9jqnFU5XaRjpIH/QTdgUfVlFipp1PVafVdLm5s32MUK+0ul7Z271s3iAbs9C8TRIOneq9PDOJDPP588Dzwy1LKbwH/OTAG/Obt136LoU17LPttAflfpJSvCyHOAn+JoarOzwMtIcRvMzSifywPbs/uI/AC3O4A3dAwYveX1bvdAevXtzj5gnM3/JZOr4M6Adyv4+n2Bqiagm7o2IkYz37tHJr+uKIOSSQlb/z+RRqVJi/+xc+SzCYorW7gZIYzCxVFoWBZTIzlOXxuCtuOoZs6I4fyvP6tt5k+OQmaIDOeZ65YwMsF9JZ30DIak8VxzsS6/Mt/8E32CjnqSw267Th+FHLVGEHNRQTlPprvU9Xi9DMaou9SWxGojoqMIuyNNo3IoDAzQKu3aMdsNmsqoa0xe6jB0gqoOdCdCMsJ2fqeiXQEcSUi8gPcrko4rRGZkMj2CUyFunQIPYmmRcTCgE4TVMMnMDRaM1mcGQXR13A6Zep9D1HSWGqXMI5Ok0pZdG5u4guVrDWKDBwW1XEiFbxOjXcvp1nWdJLHXZInBX+w/hpzVp54NsfxZ2cxinF2V0qMTm4i9KMI5aMTCnhaIhnSD+s4Wv5jfy9JhBu2sNQ0qtDIODG+On/krhDGHYaVtxaOCc9MjT+0yOdx2IbBdCZ9j3eeti3MB+xPFQZZ8/ADq48/Tfx5zi3uE1NK2QeQUraEEG0pZXj7eST2Gcp5IsUdKeUl4BLw94QQzzE0mD8P/DWgKoT4LSnl336SfX7SSeYSJHP3No2HYUh9t0FuPIudiL2v8vQ22nF4iJO+eXMbJ2XfndgQTz1YRxOg3+mz9O4ayeMjtD2P4lSOQycnqWxU6TZaiGgBv3+C7eX6sGet7eKcHOHa4ha9mxXslI3bHvCL/+AXeOviEnKtwfxonh1V540fXkUJPXzPI9q+Rrla4uw5hb5I01mpEngBSjKkP9AwNiVC11CbHuVXFWZPN1jqpghbClE3RAdUJMmRkL5tE66FGD0X7YiGXw95+/UEigBbiZiwBvg9CDCxowBRlERthROzXezRNm+8VUSvS7QjKsFOSDzRRy2YbFTTqFMh/uEEQSdiQlTpL8QIGx61HQMjaTNxBjqRTnq9jdLro2gJHHsUXd8joMvyjsGxr5zgfJhn8RXwgi4rlMhtn2Z3sIR7dpppz4Z2n7GZIlubTaRyCKR9z823DGt0GiXi2RP/RkOuoRzQ8cvE1Mxjq2U/LIpQKVj3ChJ80EBKGeFHfQx1+B1+WgMJQwGNXPxeL1RXVfTY/fsUQmCpD68oPuATy1MlsZ+6ulVK+ZqU8leAaYZ9J99g2Ct5wEPYWSlRWqvgDwIqm3sPVf8Qin17wsH9HD4zzeih4n37bdc7961r2iYTR0cZyySZzWdJF1PEM3H6HZde2yc58jmcdIHmbpN3/uQSs+dmGIvZTKbSPPcXniU/kQEhkb5Pp1yhOJWnVmly6+ISScsi7Kisv9GitO5xcyFkPXEcNZ3i8PlZLEchnwuIWQJtrYEmPcZORghTwJokFvRRZcTRsz1MJyS0VHQl4uRMi0yxh6n6pK0BMTdCiQQq4JYUNrdMgp5A0cBVbVpKjp5m4PqCdsfA70TojsZov0es3SU5FdFPxtGsENVWsbqCrD+gtWMwaCqoIob17DjxIzaZMxbC69JY2yKRaRI/CsVkEv9qRNRP0u66jEmNQqBycnyc5/UCGX2a6tZlJnI94ppGd/MasfgAM6Zx5NwhBq7DlR8t3lPJ6nuwsVBj0L8/1/xxois2I7GTH7uBfBQNb51+MMy3D6IOtcHiIytZO4OH/4/q3T7bjdZDXz/gEQiGLSBP+/jzQVwI4d15AOkPPH+4h/E+nka79R7k8Bv+XeC7QogDL/IROEkboQxbNE48d+yx65c3qnh9j8m58bvLHjepfu36Jk7KJj+eZdD32FrcZT4bJ2bo7HVcpATDNIglLEw7jpWM8flfeIFus0uz0uLSyjaFYpLv/7M/4Oj5Gc5/5Qx6HqZesjlsTfHKd6+wtL7LZ56Zo11poM6kcZsDSuWAuN5je3ML7UiW9MwEWze2SNJg5LmQhVsCtRugbfSpxHWCHtixgPKqQS7jE45qbF8yqb5jMzXSRbdg86aBKnxcVKKUhR300AshDV1HVSHyQ4zYACfu0Vg0SJ6CtOfSDRSiSGIqEe2KQT6soU6Bn7No9QzcNYlrxBGWSbzfRZlKEZQq7N4KaXcMZBiSCLLoQmPptSVMXcc8Psq8E+MvvFRkc5BEeJKFt5dJJGx605NIN452rYJ8yWbiUAfpL9LpZNlarHHo9NQ9+WIjlmP++ZdQlI+sA+vfOjJYBGUUoTy6rk9X7LtqPpaaZCR2+oHedBiE9IOAa7sVzk+OfSgv84CH8MkPt+67zeNR7MdI/iqwr6a/O/HeTyr1cpNus/fUgssfDLs+DidlP7DnEWDhjVskckka5SZHzs0QRZLKZo1UPoF5O/dpxgwmjo3hD3xUTb07HktGETsrFdp7Xbwxh856Da3lcfKF46SDPp1qh/EjI8yeneGb/+u3YT7PlVKFL9rv4Dg6J8/qtBOCrdUyXr/HytoeybjNoNmnVmrQqzXJpeKEQuAOLGpNG7XRZrNn4MwoTOQ7lJdVUpmQvq/g2BHlm+7/z957Bkt2nnd+v/ekzjndnO/cyXmAATgAQRIkSFEUlShxRalsbbC9ttdbZctl17q89m75y9q1VeuyLa+0tWLJSqu0kkiJEkUCDMgYADOYPDeHvqlz7tN9wusPPRjMADOYO8AMBQznV9VV957zntNvd5/u57xP+D8YXYNuXWG7YeAEdJygjpp38foc+nebmFkXpQ5WUOCLu7Q3HJwLNjWPgmoKyucFBAy6EYOVLRc1bKBvW+iTKrVVFTQf/rhKWehouTbuqTAy3sa8skYglcIqtzE7DpqvzWqzSSbcR/y4YCDkpZtfJ+BLs3L5CmpiH8VzOcy5bRZDkvTQNEcHEihGh4Gpfdiajmb/EIVLJDK9GkDpNii3anSdEH2R0ANlIHvo7MQx9e546O1WtQtvLRNJht+3hVYs4CN2i7j9Q3bIA24kpZQ/2OlYIcSvSyn/y1vtu+NVfa2b89LdTO59JvKvhBAXhRA1IcSGEOLfCSHiN+xXr41ZE0LUhRDnhRA/fy+e+15geDS8/rvXtHybreUcK5d33pc6EPbfZFid6x3tXUpbVVRNIT2SRPfoWB2LRqVJNBUht1akvF1BURSiqTDzZ5apl3ru2K1qnUhflHhfhMRAjOl0kumxfhRVoZKrEau7GOUWT391hGDMYHhmkGily8GOzsiuIXYf28XRY0/Sj4++gQQjxwUDIyFUWzI1muEzP3uSR49PkxqO43S6tOJeCvkOiKN+VQAAIABJREFUdMGf1ojMqFzZjKGHYW3BS77lY2XBQ7NmIBB4LJM6GuVUBKdmYgNOW6G5alFc1SiseClf1jDTProauFJgmAInLPFaLka1Q6Bkovk0hOnQJkB1WyUYamLOuWw2ggyFG4wfgdhiBf9Sg3DCQ3JQYFgtAhWb2HQadcpDxushoZtERlYQSpa8tHnunMJSzcT2asTTEU4ODPLokWnOnz3DlY03mM+ep1hb41Jumr9+KUAkPcNSoUy7W8F1ajgPaMsnoY0ibqFT+25ya4VbhgbezcieIZKD8TuqVpVbbS5t5nY8z4fcwIOf3Xo3/PLtdnwod6vopaadBM5LKes7OMS5NpkLQJReoefXgS9f2/9fAb9Cb5k8e237HwkhLkgpr3yYud4LApEAgfdJlLkTkWQIx/5gCcClZour6zmcVpfxkTQnPn/4JhdeOB4iHA/RNbu4toM34KGcq1AvNdlzchpN11i9uk5OtZHtLpFkmGC091q8/XEMj46qKkSSITIjfgorL9BoREmNDrD+3XUalRbzc1kmvRaTu9I8++Yig6emUNYTzOdfIVdtUJ9fxx/ys/cT41TPZkll4pjFIrLUxeN3UGsO+RcV/EKy95NNXiuEqBpBhgc76FqX1TkfOBpGw8aTr2EbIDtgBXWKGwoaNg4qfX0dTn6qzHfWwhQ1L92OzUDKRgKlOR0Rc9k7XadVEVwpG7QqNj5HRau1iL24ihywsYKCaExSa7vo+RIl0cJRI6R9CnLZJDw5SDAQpG80wtLZFsUzHoK+ZVqJDolDOtsVD0ODCaaOjnNxaYPJPT4WL3koeRp4vCZS+vCEk2w020hAijTJyNAHvnYeFBzLwXXu/B24nQcFoLxdQSiCaCqCX9dJBh82Y37Ih+a2pv/D+nxC9JQMDu9ksJTyn0kpz0gpLSllnl636KduGDIFfF9KeVX2+HN6erAfrrHdRwRf0HfdMN0tEZ+XsXAYrdRm61z2erlIs9pk7eo6jUpPAq2XlNNmaznHmWcvIBRx3ZgqQrCvL83c81dZvrh20/k7rS625eDxG1QKNuHBn8R0Rvjr1y6x/ycOM/MTuzHVcyycP0thfY6gx6Dy5hpzr6+hGirttTKhiMAxKixdeh57axVdKGiNDlGvTWzEJT2toY5kiA1JVha8WK6Gvt1moxVgq+xj7EALr+ISjjiM7uuiCQUFkH4DPSjoopDIdNCCDlrNwmPZhHNNjAq4IegGehe00bCoopOrG2jNDkbZwfQkkY6L1+3gcXSchoparOOmk/hDIYLbbRoXa0RiOiOHwhQvrHHh+XNY+TrH9vbxK7/2BLbSIuKLsTrfpVFqMJcv8sNvvwlJH7E9n6T/E4dJDY6xue7HvOLg0w10TWMiGX/fFmcfV7q2zZurG3TuIK/3NsvFMjLue1+t2p1gdSzsbu85PbpGOvRQ3+Tu+RBJOx+fxJ274bYvaieydH/0Prt1ehb4Xwoh8gBSyl+4i4l9hl5Jydv8O+D3hBB76fX6+plrc/zhXZzzvlDOVdlezrH7kTsn3OwUKSXl7QrRdOSOMSoB9GViZNJRLrxwhdJWhUR/DNeVVPI1Ou0uU4fHiSTDbC3lsEybvY/tuq5KsnRhlWA0gCtdkuNhMoM3Z8jOn12ibyyF4zjMn1liaFc/ZjSA1heibzJDdVOQyE9TWXP49m8vY7sORc2lP+JjaFc/C2eWGZ/J8IPT84SbNt5ok9VLNpNjfvadVPnm77pYmzZuqkNQCKo5g9ZYgqRWwy9NFNNGtASWI6i6HlpLKmrLxPFp6Dr0PelBXi6hBTW2ajH+6Lf8KAgc2WtRUzmrITRJaKJLa1mnck6ha6p4TRddkxxMFriQVWg7GoULXZxBBaNPI2hE2HpuERHw4MsECCXSdCd82EXBrkCHiw1wN7scfSzLxGMx/OFpJqfS/MWfvMD6xQ4TmShfHE4z1N/PxtIS1bCHEwemqW5VaHsFoWvuQteVtC0L23GIvEuyUDo5ED6Ecu/6S0ppIsT9bTCsqyrDsciOk2qiPh/qLVSI7pb0yJ2Vdh5yBx5ct+k9Zyfu1p8HcsDl9zn+riulhRA/B/wj4JM3bF6ktzK9ALhAB/gVKeUtgw5CiP+Maz3BRkZG7nYKd0Uw6ked7Lun57S6NpuLOQIRPx5fz710q84RAEvnV/GHffSPZxjbP4z3Wof1UCzIgVPv1FkuXVxFURWmjoxfP4+UEjXiJRgL0GgVWVi8QLNgEUmGWTq/itEfRozFGJweQNNVTn7xGIqqovk0Pjs9gd526FzOMzw6w9AobNdqrJ1eIRJQufTdy2T2JkkfGmTtTInBToD8YosNwwNRg63tCsZ8m1AoQmWzg+oI7OEAUaVGpdAknqnjz7ikBmzWX1MxApJQ2qK21EEkVGyvimi5FLc1xuKwfFnFqtl4pEAEu8iGgqNpxKMWlgPdmopn0Ka9oeE6gB8cG4obKk7VIRg16aoKoVYTazvGoSEflwdj5CsNHMth7pU5njwwSTumsJFSWVwrUFyqUl6wePQL+4gn0pj2mzzzEwoLrxoMHt5D1Se5unCRoE+HiJ+6LnlhaZV4xcbZaqBEvCiZEKlwkKtnFzm0a4TkYOLaNWChKS16a+B3jKTVtdCND6a7KqUL1jmkNoNQdtZB5oMghCAVen/PyEK+iKaojCaiN7XJutdIKcnVmySD/vfUY7a7Fr4P+F4+yPwYiAncE3bibv1v6a0YV4FfklJ+6u0H8KVrY/7pDdvuiBDiK/RWjT8lpXzzhl2/DhwBxgED+Czwb4UQn7vVeaSUvymlPC6lPJ5K3d+7S93Q7zo79U4YHp19j89cN5C51TzzZ26dIzUw1Udi4HqO0001llbXwmyZVAs13vr+RUrb1ZsM7dyFVS6ubqIYGqnUIJ98+otMH5vg+T99hRf/7FWKs5uMJGNousZsroga8PRuNJfK7D4wysrFNbJvLCOlpLRV4krtCiNPDLDv0DR7npjBHyjhG/OiZ4KMPDKJkgwRFjrxqk23rnDxbJiOV8c7GsMtNWhsuZSzClrLZakcZ/Ylg5e/GUB4BXafF/1axYtSkfSFLfy1Kt2zZeZe8FJvKqg4OBGJbBi4qHgDNkPjbSb3tbBLCqqjcK2XM1oLsAWbqwpays/EcRtvSFJSAygeD46zjC9UZ894lJjXgx7W+eE3t8Fq0t9s0Hcuy8HxfXSaClc2VigoVyiVG2ycC0E3RixQQSHHwtoSW2YN4YJf09l9eJTU4UFen10lEQowlU7Q6loMTwSJxHu1fY1Kk0svzXL5dIdm/Z3VZaPS5NLLszi36aF4J4RQQD94Xw3kTsmEQ3c0pPcCx5Vs1ep03lV7XDc7nN/Yxt5BHPQhDxZCiE/cYf/fu/Hf243bSXbrvwF2AxZwRQjxz27QbL1r57QQ4leB3wC+JKX83rt2HwN+R0q5IqV0pZQv0VtZfuFun+d+4rof7gvX7Vi3bJMU64vetpOHL+C93jS2tFmhUX6nDdPKpSw//OOX8YW8HP/cIcIxP83qO/td0+JQfwbPtdhkOB6iazTpn7I4/sxhuo0uEb8XIXqNcxfzRc6vbVJYL9NpdYn3xzjy9AHW5jb5wZ+fxlgWqLYHPeHnTC7Hm5se+gZGiSTDZLdLeMbiDB4bRfMbJMcSTM0M4RzI4AQVCKp0qwqdpoorIORtogswKyoLZ/y4i11aZzsIr4I2ohHPmHRCfuy6jjPuxR32oWUc4mkHVIFQBXYHzr8e4ty5CCiC5oYKUiAcwAD/cBRFVwgEJFde8FE3FYyQg2sI7GAD0WyQHCgxEPASGjXxZGw2X2kTkTNMH/dgyCJHPxtmLHGA1Zc20RsB+obG+Px/+jSdcojt56uMG9OM9PVx9htvsP7KIqfGu+weFfjjPoo+wfZyjoANw31xNKMXn/T7l5k+mqJvPE2306Ww3mu0E4j42XVs4o41se/H/Xa17pSAoaOpFve7OkxTFQ4N9eN/14ox5PVweKgPTX3QSm7uAQ9+TPJ5IcSfCyFud5f2Gzf8vfd2J9lRduu1JJt/KIT4DeD/Av6REOLXgO/udLYAQoj/BvhfgGeklKdvMeRF4GtCiG9IKdevSd89xQ7V2n8UNGstFs4us+/xmQ/csHZ9bhPd0G4SCYDeatXu2syfXWLi4Oht45Tv7jE5fmCE5GAcw2MQG/dgOlUq+dr1TNy+sRSed2ULVtsWLdNlZCLdKxtZLbC5tI3ZMCkGFMxCnc/8/KNomkYkGWZ2u8Bmrkx4JkPDa3D2pTkGIyHGpwYoX91gKhmk7vURPzxE9odzHH5yN88lvLSbNn1+L7oo0dU9tFM+2tvblJsK7ZEAibCLxxOiPdukE9MJuDZjQzazbxkoDjhdlUjYptF2YNHB73dRNAh7bIqRIFbUiyfXRDUt7JrEF7TpNDR0eu6kvqEO/Qf8rMx6kc0GhtLh4BGoNKIU2y5zcx6UqsOVV1QMbZn+oQa7Dz1F3l1n+rFhfvDyJv1xi7wTJ2pWUKIe9j5xivTobuz2q9h2P4FolL6xFOmpPjQpUFxAmyIUa5BMzqO3LbYXiyTTUaLBfnIVl8woVIoqtm2RHk5T3q5Qa+bxdOqEPGO9DhkPAF23QaH1Mn2eARR93/vK8JmWzXatwWji/aM33Y7F1lKOoV39O6o3NW7Rz/Ih/DjEJDtAH/CiEOInpZTvrr+7/g5IKde4DXer3XoaOCmE+Pv0MlNXubvV5P8J2MD3bvyySCnfTk/774H/HXhNCBEGtoF/LaX8nbuZ5/3EF/Qytn/4Q3V0H9k9eNsLVNU1gtHAXRWbq6pKNPWOa61/KnVT0fbb+9pNE1/AS8eyqXc0muUwZ567wIlnDvPd3/kBCEgNJjn41D42cybrs5u0GyZj+0fw6xrFSp1du4dIRkK8/uw5zl6d41f+6eP89fnztIpbrGeDWJ1+vCMxCldfxG7USSsjoKjoVxy2qwp6xkt1XSWY0NE8DlsFH3rTRBcu7mCAznqTrBXFDAqsvM1GPIBMCRqagW+pSl/Mou7x0gwYyJwDjoPu6dJtgzfu4k05mHMqriVQJdRyGsUXNrHQ8Ko6UhhIkjTWW3RqDUJ7vQx8chxlq8vsbJ6oP86TX/k8l86d58L3zuMKm8KVJoeSbfzhfnRvltnlH6LoCcziFbzBT7B6dYOVy1n2/sIJao5NOuCn05bMnt7k5PHHCQZjMD5EvdvBsV22l3OYTZNwsh+VnlciloniidWQ9ixSDt9WlvDjhkcNkfE/jqKovTip2o9Qe0lj0l4DYSDUng6xKyVdx75tXP5GpJS3lLNzXfcBFGq4Pzzgndqg5/38JL0yw9NCiC9LKV+7Yf+ObNcHusWSUv6WEOJPgP8J2AB21CJcyvcPFUspa8B/ce3xQeZFebtCLBO945fsg6IoyvUu6h+U9zOwhkd/jzbr3RDQegkhS+dXiPVFrxvIbsdi9vQCu05M4vF5cLfqGKLK+KMjdE2L/sk+0qMpDj3Z8zqkhuJ0zA4v/vlphBDMnJiCZpetyjZlZ5t9x+LsOxUnO9/G6voY2P1JLsy+QefCJo+cUiksBghu1BETgr5TU6gVk+Xzq6T8FrW4QU2q6HN1ArWekQj1C3wbZYTPojLrRTFcpFen3dVwK130bhcnHUAPd2gFwlTyoLfrhEQF3XHQPIJuTaPeMBBWFy2iIh0FU+oYqkN42EuxZeDLNynbRWpBF9srMFxB/vkK/oCX3VMT2I7KpSurzK+2CPpTbOZMKvksbzw7R/+YYHVunt2fP86xx6IsVj/BcMal0thgK9vlU6FPsfdTh1k8t4zVsciMpVher1GrbNFYyBM6OcaJsSGmj09id21CsZtLF/zGCFLv35GBlFKCWwAlca2TxkcXTe29TqlNwI1uYOED8c5PkN/QmU7fuUOJ4dEZ3XNzzal0qzg2XHplncnDYwTCD2sn35e3tVsfcKSUHeCXhBD/nN7i7B9IKf/D3ZxjJyUgfwv8Eynl1Ru2fRp4VUr5P9ztpO8nVtdmY2GbYDSA4f1o16W1mybNaotwIkS91CDRH7un54+kwtczYKH3w7Ln5PT19yUdDZErmzidFuGhUaLpMCsXV1E1QaPcwuMzWJtdR1EU+sZ7Rnt6ehgUQSwdJjWqkivkEe0EL3/jTRbOZhnti3P19UUWXjE59NQT+P0WywWX7ulVtrY30PwGxbxOkArmlobouuABS1OoZpIkq10IFKn7VKSqo5g2B4byrHt8bBXCKM0OPsVmsFpkc0XHDWp4RqF1zqaX5wWa16GLgSZsrLbC5NE6+igsLvjIdGt0fWBbLnokQtv1Y7a7eGIBWrU2QdOh2m7w2jdfI6go7HnmKO5WC5+Z4OXvr5OemGPPk+MkkvDCH79CudVG2UqSnJpg/+f6iPirtBsq63ObZMZSbC5uk1vOs+/UbpRMglpApdHpkgkHIdC7BrardRLxMKFr/SWF2GkWpgXOGihBbtVS7UdJ3eyQqzeYTCXed9y7S1yEeg9bdrllVEVj4uAo/tCD4ap+yL1DSvkvhRCXga8LIXZLKf9Xduhw3skt6NPAdV+e6N3mfgeY+QBzva8YHp39n9j9IzOQV19foLxd+UDHdttd6qUGZtMkny3e1bGO7dBpv9MwdmVhgbmNV29yP8X7YpS3KtdFBoCb3hdNU/FHd9HthrE7Vk/Cri/GldPztBsm5e0KfWMZDn96P6rf4PJmjthAjHathdnusrxq8d1vr2N1bI4+fYhDT+0jnAzTrDaot+MkB/spFuN86ulHiMcVZkbX2XN4mMxIGoHGiVMhnvq5GLG4itp08WYb+AYdUjEb1bLQwhaqx+bK614qqwKt2MYvOyxnfZS3VTTDxW45VK4qdPFgA5rXZfSoiZaSdCsatgMrl7wsfd+L+VabalmnUFVQK6CbOindR2WpTrvUwBfwUshV2F4rIswaDStP9uomR3f7ie4dYCgeJTOZZjATY+N8g3KxzqEjU2zmW1xY2Ka1ukG7lMUX9HL06YNYukKwL8LjXzqOq2/SDaywdyDTM5DXWDq/QnZlm65t3fT5XtzYJl9v8n4IYSCMowjxd28QFCHw/B3H/YQ2htCGCEYDP9L2Yx9r7rMsnRDi80KIq0KIeSHE/3iL/R4hxB9e2/+qEGLs2vaEEOJ7QoiGEOL/ftcx3792zrPXHjt2u0kp/5hejss/vFb/f+/7Sd7Aw6uQXkKM7wPetUaSYSLJMJV8Fbtj3XKMbdlIJN22dZP7qLBeolqosevYJACa8FFeU+nGuj1XquvSaXcp56oUN8rsP7X7Pefun0gzcK3uU0pJaiRJ49wq/WN9PPITRyhtlIn1RXnuW6eJrxWpOzYTA0mG9gzyt3/wQ9ykn6HhDBuFMoc/vZ/+8TSbizlGj4xDOsAb33mLC2/MIyIekgEPlaJOIFgkn60imzqT+wJsruVpGgE8SQs1oFMuOeQSKVrxDoruIaTU6BYFipQYSpeR8RabRQ9DIw7LWQ9aVuIIAQkvXSRScVjO+jGbJhqgKtA1VXxJP76AS9sXQF2pUG8mqCU9DIV9NHSDlmsxtjtNZ62OPhjh5BdP0kFSWSpx9m9b1MwNFNXL9maX5XaNgQO7URF0dPCjkGhJ6HhZm7fZl24SioVYLVUI9EeJRMMszapEBzLXb6himSiO7ZCrNhk/7EPRi8A7xnMgGsav60i3AUJH3Ka36EeFgMf4WCoKdW2bjWqdkVgU5R6IHHzsuI8v+dpi6v+hV8aXpRcT/IaU8tINw/4BUJZSTgkhvgr8K+AXARP4n+kprd1Kbe1rUsrXdzKNd2+QUr5+LSH0L9ihC+ajHcz4iBNJhq+XZXwY+q41UH43a1fWmX9zmaVzKzdtT48kmTw0dv3/aCJCYb5FYb2E67oUskWe/5NXGNs/jESyvZK/qSREyjZYr1MvFXFsh+JmiYUzS0weG8caDFIq10mPJMmt5DFiPkb2DiC36ixdXmP+9UUmdw9zdP8ksmly9cXL/M1vfZMX//xVmtUGHkVjIhohMZTkwJFJXMflwKcP4Rs+Amik+6uEE4K//N113npBoT+dJDSRorEritIyCbpNIknwNh18AoSUuLqCowpmL/mpb2tcPeOhk+1dvHpUQcZ0PJaNWnYwt02846BkABekA7bZwh8UBDqSRH8Uz95+KLVpXMlhtztYK1UWXlvCFA5f+PJJSmtldFNS2ixTK7cZOJxm6vg488+X2H/iIJ/93FHEgMOrV94g3hfmqZ96hBNfnEEGl+l0TBrVJuVza8j8Fm/Nr6Il4qTiGa6eXqCYr7JaKvO9uWXc0QjVnEm7enPPxJjf1yvXcbLg7KgBz0OuIaXTu7nYAa6E7m16uv54ID/E4448AsxLKRellF3gP/CORvfbfJlelymAPwE+I4QQUsqmlPIFesbyw3DL0kEp5TrwBPCf7OQkO11J3upd+UhGfaWULBXK9EdCH3mVjVKzRS1XIxC5dZLB0MxAL1PvXfdDa1c38Ie8JAcTNCpNFFXh6a89yZXX5jC8Bv6I/3ot59i+YTqtLgtvrZAYiKEoPRHz5QuCdjPL5GGNcDzEnpO72F66SjzqUN/2k0yE6bS7HJge4Y2/eoupY8OcXbuMLxomEQmTGU0QCfvJJAwapUW+8evfxhv0MrxrAK+vRmGjzPDMJKu1Gucvv8bAwRbtlYNc+uMc9Zqg46jocZP5zW1imTAJLUAw4sfuVNnOe4m0mjQSBiQkNh4S1DA7AmvVgU4vscVICTy7oLBmoXgEsiYx0x6sLQejaCPDGtqYgVlTceoSLJOuLfDoAlUXdAptJvYFmM+5lOI66eEoV5Y32HppkQNP7CXxqUkK59YZik6hZUD/2hSrZ+eI+xY4dOIIV0/nOHfmPMceP8Hcm6tcvWrRKW8y/9oiE/sjLLw5T3TiSVBVKvk6U0fGcAM6G/UGSV3HWa8RHvHTtLu0uxatRpt4LIQQgk67g+Gdeeg6vFvcMjirYBy941CvrrErcw/joh837u+lNQjcWFaRBR693RgppS2EqAIJ7pwI+nUhhAP8KfC/ydt07b5maG+JlLIN/O4dngfYuZH8thDi3dXvz95iG1LKD56aeQ8QQvxInMFbyzlcx73usrxbbMdlqVBmZipD8Jqr6t3p62/LkjmOQ2mrTLyvl9wTTgSvxxdLWxUMr44/5GPi4CiaoaEoCp/46UfwBbwIIQjFINYXoVasU8nVqM81yK11Of7MHvxhP4qikBpOUNwIMz6dQfEkUVWVYMTPW6+9iqOoVLaLaNksG/UUxcUCV1+dY+roGIc//Qh//YcdPINNPvtTj+BYDrGMj9XZV3nj+Vf4+//653j+m79N8aKf0aNjHPjZz7Dx8gKlXJnongBqU2LP17DXtjFGNFxVwY0auONJlNkcdqGNFrDxD7oMJE3WfEEaa4JQSlAPqAQ3G4TzYEodK24QaFtQdnE0gRZ1sDe6eF0NxTKxFAXV78dYLTH1aJvKBY2Roxr2aYNsywJN8NqLl7FnC1TcLuZpg7TmIfSlR3jpz16DuI+V12bpdCP85H4vn/rcF/jT7Cuce+0qMzMjxDwjDE/0U8vVyG61SQ4eJntpgxNPH6S4XmLwkWnKnRUm/AYBdZBGNEokGebM2gYvvHyRufMrfOUXP4mlQv78OmP7hthczDFxcBTDa/Rizs46qGmE+Pi5N+8X0m2BfRX0/Qg1iVTubRLcQ25JUghxo8vzN6WUv3nD/7f6FX63MdvJmHfztWs19CF6RvJX6HWTum/sxEj+i/s5gfvBRDJ+50EfklAsgOt+8MW0piocGx28/n+7aTL3xiK7H51+jwu30+qytZQjkgq/pyZyZPc753jbcNqWjdWxblqFqKqKiWS1WGHv5AB942mkhIsvXmX/qd0IIcitNjD9fhadPJ/dM83ypSz+mEG72GX5Up6ZRz7FoM/F2S4wNDlNZjTFuR9cYmuzhJPyEh+2uPT8BudeqOGLRfn0r07y6l9dpr49xvQjQ1hNi90HRnBzdYYemWBlM0sq4ye3btJYr7CR9cDIIF7VpOG6RDMGRtogalfZnlOoBHx0fF5GTjlEjCZzSwalnI4iBbjgSWv0p2w2Fnw4uoKumrgBnYat4KlLVMPFbLfR3CDF82EadoO/el1jSq8xvFcj99xFdh9NMrflA69BOhMjN7/Fd85eQUobdTbPkZO7OfTEbsL+PjoVOH54mpe+cZpKosb+U7uvC8o//723SOwbou3bxu7Y7Dreix/7tQSKUChkS9c/5yPDA6x3BeG2Qz5XpeVYHHx0Gs3Q6LQtVP3tkhAJsgYyDg+N5DsIL6hDvP1z9qDUmN5XBIgPVwJSkFIef5/9WeBG1ZMheuWCtxqTFUJo9BJES+/3pNdcpUgp60KI36fn1v27NZJSyo+dkfxR8GH6ShbWi0TTkZv6QXr9Hsb2D9OstijU2zetUP0hH3sf23kysdnssLWUe0+9qD/kY+rQGKlor1WR67qM7R9GCIEQguPPHMSyHUa8OkGPjm3Z1BZg74m9dDoWY4dGqW3Pcua1t0iOT/Dt//gyM7sGmRrMEK8FMUSbo5+e5MVnZ1m8UsTrM6gWy8w8PcX8pQrmhQ06TZOVy+sMTWQ4OhFg4VKejtpAOTVGdzbPsGGSLyk06i26jRoKGs3pEdz+HH2DbeShNOabm8y2E4i8g6o2CEagXFYQDZOtrE1rOgDVFv6Kg+p2CPlAy2i0dQPX1bADOhsLNaRuk4rbxEfqNNd8DB1NYQ0E6Kva9GViHHvmGJfCs4yEY6S+MEG31ARHQsjL7/1/36V0JssjXzpGaiRJYbVAYSxFdn4Ly7QYOTFBPBxk6EAQs94LrTz/7Fn6pvuZHskwl18jHQ0Sy/TUZQYn+0mPpGiUGmiG9k6pzvA77sCeJutt1bMAyJarxPy+j2UizQdFCAXUh51B7pr763E7DUwLIcaBdeCrwC8/DtQOAAAgAElEQVS9a8w36MUFX6bXSOO527lOAa4Z0qiUsiB6tVI/yV2qvn0QHuo18Xah/TxTRyfet9nrvcB1XYobZfxh/01GUghBOB6iXm5geHXK2xV8Id8Hmo9maFhdG6tr37QqDeo6VqmJ6e9yaW6dg7tHrhe0NypN3vrBZTKjSaaPTLA+v0lmtKcr2qy0SBwcYqlYZmmuQ7U1xtZ6kTPnF1BNm0d/8hjrcxu8/p2rSLnB/mNBLs3Bd773Gl/4/AxJs0KlIwmemKKVMGheWmG9nWfhWYvV9RxJUSeV7GPgy3tpzr/MygWN9KCNHAuzVdXQmhaZviADh2zmrzTILWmIVgOSQTxhDSMWwXJMlLqLKkC/XEL3qXR0H4bfYO8+nfR4mef+VhBUfIQMg02voKv7EJZgLTtKY63E6KMx2v4Ejl5g9q01CLgkMj7WL2Y5d3kZTShMRKMc/Mx+do0P8FdvLDC7tMHB0UFGZgZpBFTUrsa+oxPgVVEcSSQexhfwklst0DecpF2o4wwkObxv7D1yaYW1Is1ai6nD49e3bS5uE4j6dyxg0bUdnA+pLfxRRkr3Iy+e8PFAftiV5PufvRdj/K+Bb9PrZvdbUsqLQoh/CbwupfwG8O+B3xFCzNNbQX717eOFEMtAGDCEED8NfA5YoRf606+d87v0GmXcVx4aSUA3NAZ3DeDx3f+7b0VReuo1tyEUCxKKBVk8twJCfCAj6bouI3sGbzKQUkqs5iVKmwI16CG/VaIz1kfLtAknQhg+g72PTRPP9OI5mdEUa1c30A2NiSdGcV1J1OclPqMipoaxujYze0cx6xYbC5uce/4S3bEoyXA/awtV9ozCyKCH+MAQdX+QycdUts68xtSISf6Qn/zVFYJ9/exLTLF+bpV63WI5a+KuZ9j7mKS4USesx9he3qBqV3H6AtQLGdRCE19coIYUDK2NL2BhTLTwN3V0xaFdkChIPENpWoUadq3Gm8tR0k4E2yuRUlDK1egGfWhtk2Q4iFVvQ8chlUlQWq5RyuuIjJdNu4WrGCRGowRFi4AnQu5Kjm/9/g+RST+/+k+eIp4c5BuvXOAxPYplWRx8bIaw18Prf/sW7Xqb5FCC4ZkBLr50laNPH6DScZBSEvS+93NNjyRxbIdux0JVFVRNRSjiujegvF3BcVySA7cPJ0yk7n+o4e8KKSVYbyC1aYRy1935HvIjRkr5LeBb79r2z2/42wS+cptjx25z2mP3an475eEtGb1VXCwduWeZhLZls7GwddfdQkpbZcxWTyRg4uAosXTklvqUdyJ7dQPLvLn20rRsGqhMH5siFgly6sQeLj5/hdN/c4b8epH1uU1a1TaO3UsS0nSNvrEU8f4YQghW1vN8+9k36R9KooW8FLMlTj15EDESwZb04pdSQfFqbJUqWPUO/dFBujVwFLi0uslswWHuOZfPfOGzfOW/+8eM7pli/9MHiD8+gFmuoBWbpIYHiQ1MEJ7cw+KlIq4jSQ/EiOPFX/bhD4cx0IgfUtjzhInt7adw3mDQV+bgsRaD0+AdjGEYKrphoLUkMc3GXFLpVCwKfoG1XSMAKHuCFEQXzZQMHh2n2u5Q8ioERxPY2SqBTgj/wDibF5YZ9eZ46rFdGMkgnXyD8uw6hWqWZF+YXXugWV7D03BY2cjz4ukrDB8fY/TkJIoqyK0ViB8cxDY0NEOj3ei5X6WUVAu165+xqqkYXoPVS1lya70Ev76x9PXVvpQS+SHi4B93hBCg7QJxb1vW/dhyn8UEHhQeriTvAevzm/iC3uvZp67j0m6YvR+0a7chjuNQ3qqQGIjf1hhX8zUUVbm+eux2LK68Oseu45NU8zXi/dEdNeKdPDz2HpFn07IpmmmSkZ5U3frcJsFogIkDI2iGxuB0P4oiMJsmW8t5ounITZ0ohvvihDwG5Wabb12e40QiRn5xm5/43HEMTWNi7xCl7Qp/9G/+kuOfPYTbtdmc20Iogj2PT3P08RmszmM8/+vPUlmt8qcXrjJkeIkW2gzr4EtKLNPB0jsoskw0kiZ+Mk7+hTy6rtOsFxnRGlihDLm5Ls6yQicfIL/SQKZ8UPAwdMpBHxjgJF2qW1Fy8QCW10OYAlVDJykCmK5G+Mkp0pEwrW4XqZZwVBctoNNczHP8mb1EUhEWk1EqxRp2vsWpU0eouzaLr6ywObfJ8GiKcDCEWYyxeGGDRNtmaHecZiNIO9/ELTXpjLlkt0rEpIrX76HaalHJVzEUQcU0MSwvbtdm5VKW3Y9M3aSGNLZ/GOVaa6cb3YtvX18/znwUemQ+KDysLtoZD1eS9wBvwHvTj5zhNZg8NHaTkLndtclnS7fsI/k24wdGb8pcNTw6Y/uG0T0a9VIDu3v7Y2+kbTtsVnJI+c54w5GYlSYr2wVa9TYTh8aI90WJpMJEUxEMj46mawQiAcIzGao3yN5BT0YvmY4S8XkZMgXr59boG09fj6vF0lGC6Qg/+48/z1M/d5LIcJK2TyM6muLFf/td6utXGOhz2PPkHgpWF7vaRpgWT/78ScY+8xhf/Re/wuBkP2oyxPkVD82qjeYm2P+rTzF+eJyJg2MEDwyxaXfwjybo7J3B0z/DxLDNrlSFthvgyrMaYs5lrSRYb3eotjo0FIfNRpCyruGk/JjrZXLCwc7VUJbK9PepBPenaUuXeq1F34BNbeUyYXeRZrlE0HR4a3MbBTBiflajCpetNs22iXc6zeJ6ju+9XKNcy7A+v4XT6DA20Y+hqbw6t4InHWRgXDCW0mlbFs2Ayka5xtLCBme/d+Gmcp630fReGY90cmCd39Fn/pCH3BVvC5w/2P0k7wkPjeQ9INEfIxh9b7ar1bWolerYjsvlQomRw6M7WgneSDgRQlVVpo6M77jHoOO6WJ1ZWub69W1ms4PWdbHKJtsreRRFXDe8K5fWblLkUcQ7cbBKvsrK5SzzZ5fJbZT4g997lqV6jcRYitRQgpe+eZrVq1m2swUWalVEX5Cr6xfZe1jlyV94nOqgn7FHp8ikprnwVpWrWzmkIvi5Lz+O9+gQFxazxHUP5TWbT371E4w9sYs9B9MgN5GFJrLQZHXQj5geo7AZoe+ZI4R3ZfAVWrTWa6D5KNb8KG2bRjNMds4k10pQL5o0dBffWBhvQiXg82GETSI+hcxmGd2bY6teo+imMdfzHExt0Wl3+eGfLlLPecjXoKNrLG3keOOly+QLNdoeQabmcvzUbnx+D34LBqf7CUiVrbktUoNxmn6Fb/z+91FbFp87sY+VVpNctYQ3oLD6/Cz2Qok9mRRxv4+BiQwIQb3cYHvlFso6Sgy0yTt+3pWWScPs3HHcQx7yNoJeCcgHffw48dBI3kca5SabC9uoimAgGsKr/2i8251Cg+3VOIuld1Yoif4Y+w6M098fw+7alFsmk4d7htfwGZS2q1TyVRbPrRB0BFF/zy1bWC+xcinLnpPTmC2TwnKeaCZKZv8gQggc2yW3UqS6XWVPPM7muSxrF/JAEKPeoS/gp7RV5g/+j7/kz77+fVrZCl5Do5irsndiiPmlTf7w689y4dIK1WqBcrfD47/wGQpaHGMshhb2EkDFKjdo4DAaiDA4IJmO5tg1mCE9sRdZNNBdQTepEcqoGB6dvQM+Jutlqg0bx/CT9PoZSQ+THk7jDascOBxk7GdmwC+pNVzmq15mfvEw+oEoawGFyGefYGBqAM1jMDLZx9GTu4hpBqP7knhSBlvjQfLdNpOTA0yNpHs3GUKQv3SVdr6GadtkAj6iUiVbj1Atexg7OEp8KoU/GiA9ksIb9LJwdpmrr83hOu+NXwuhI5Tge7a/m3KrTe2hkXzIQ+4LD2OS95FYJnq9Di4duvOP3a2wHZdWt0vY573z4Gu4Xo3JsUFiyZ7r1mx1MLw6iqKgew2CiSDLxTI+Q8dv6PSPZ8itFZCuJJwMoeoql1+dY3TfEM2El8PTw+jqGqPTk/znv/az1GyLoMfDVq1B6MgQe/tS112G64UyW5tFapUr+NoCSwNVKISDPvY8uo/DJ3bhuhbRQKgXj/vsCdodC6XW5Y0XniNz/Biba3kCRycI59v48m32PDrFG/Yag22d1StZ0jOj6B2FzJ4ZXtvcImdnONjUWM8XmXx0jODecczTyyy2XcJtideroUS9BP1BamMKte0KfznvJTXiY6ivhbIepK3WaRWLTA/42WwKUtEQnhPDRIobuPUIf/P/fpfUU9McPTVEdWmDwJUG3y/PYzkuA2Efpa0K3/z6s3zha0McevIzXNrK03xzjcGJPtoBjUx/kqGpPv7jt17hxIFJvL4usmWw59EpgrEgwWiA4maZcNpHyykS1gduil331HYWQBlAKDfLGI4nH8Yq70TXdqibHRJBP13bBgTGh2ic/iDwMCa5Mx6uJD/i1EyT+fz7ilC8h5LdRfr1650NFs4uU8lVgV6cs380zbHRQXRVYalQxnYc0sNJoukQiX4f/pCP1HCCzfkt7O0665cLuG7vh9nr85AOBSku5dg6s8J4MnZTTO2ZZ47z976yGyVQxQWmJgb44i9/kuFjY7iWy7n5LD987i8o17ZIDScIB32c2D9BQPdQbqZY2jTJbpUYi0b47JdOEhlPs351k/pSiWRfnBEkvpaJHJ8gc2gIj+Wilk1KjoXh8VBfarD86izr83lk06HrOCijMZqFJi+fnmVtI09wNEZEGGTPZfHYQfr9carnWqyfzrP4cp3RdIpOvoEtBYW4j1g6yujPHuZctcylFZsLZytsbpQYjkQYxUOuY3L4p48x/tQejOh+1qoO/o5LLB7GY+gkI0HWZjfZWNhiTzzB+oUVLKPM6MF+MoNVghGHTrvL9nKOjmlyYXaBK1u5mz7TnsHUPtQvm5SS+TNLNGutHR9jdW/doebjRrPTZaNaA2C1VCVbrr5nzGqpQusBeb074aG7dWc8XEl+xIkH/MT87x+LlFLStZ1e5whgb//N8rkzJyZvSiK68bhirkJjdpsDj+8GNw/ONsI4RHIgTq3aZG1lk+P7J1D0mzuV6B6NQOgdZZd206RSatA2O2xcbPOZx56kVbPRDJ3UcJL9nn08e2kWr+Yw0HeQt55fwWk5PPPLT6KoKt4nJ9i7Lw0tm8FIiDPVMqffnCMzGKXoWkSjfZRnt5kc9TIwGqRmJ5n73nOY3RaPHZqm6disruQo70/R+N4CXstl+ugE69LkxKm9XCi8wXq7gdF2aC+XkdkqA7uTVLbX8E2P0FjwEcwE6d/XR7ltYpcdSjUXx+9nfX6JXeEoI02TwvxVIk9MMRKaYKw/wYXlLR59ZA8Nx2bm4Bjr81tsnlvjqV/8BMZoP5fPLFJs1hn2BfCHfVimjZQwktjN+pUCmjxLrH+cYPIREgNxtubKRK1++gIBli+uMTDVh6M2UYWOoY3d9fVjtjo4lk0g0uuzGE6G0HfYuUZKyeVX5hjbN0w48fEuu4gFfMQCve/R7VbeluPgfoCSq48tD1eSO+KhkfwYIISg3TTxBW7tci012ywXy0wFQghFvEedRbtNLNTQNI7sGqHdMDEtm6WiZCiW4e2j+0fSuF6NwbHMe8pW+sYy9I29YzjNZodsNg/9IWZOzFDIlmk12tRLDXLCYrveJB4L0Wh3mT6+j1deuEA65cXjNZjZM0I1t80nju2hsVjAG/BgXXSJjQ6xtlXg6nyW8UwC15F0vHFm3Si55XXWXiiTOhTisb1hclsqSqGFtdBgfHqY0UQEY1eK+edOU81WmJoeoLpZIX1sHH0whFowCfp9oAuW6w12HRrjF7+yH68Q/OBylVrbZKhi0ciWcTWNi8+eJzidItEf5+gjMc7N1vj3v/scxkiQXVNpLi8XmNo1hDoex35rldWr6wQSQS7OZ9kzNsD0I6NomkpuJc+lV65iNltMHI/QqYZ48wcdDj5RJZwI4g/7CMWCuK5LQ6uSW8mjJuqEwjEMtZccli1Xifq8txQkeBvbcXGlpJKr0m6YjF+TUbxR5u5OCCGYPnb/Vah+1KjvKo9yXYl0C0xESwg98Xc0qx8xH1679ceGh0byY0Cr3mbujUX2Pr7rltmx8YCPoMeglC2iqsqOJcygV8AejAbo2g6a6tBwKgRlzyj6Ah6mxvspbJSolhrYSR/jyTiVzTLbyzl0r8GuY5MUmy2SqTBHEiGevTLP+Gicqf5xXMdlbXaDhdltbNcl7vcwHo3g9+icPLkHnyMob1epb1YY9Hq5srTJI5NDGD6DCa/C6rkVFKHg7Q/TAtKDcR59fC9XLqzwQqmEdzRK0hdjrQYb6wX0iI+oYTC9a5C5K1koFvjlzw1QtUy2OgrJkQQJRcfNNun2hYjv6kfZqEHMhx02+e0/uchP//InmUhpnKuXyBsq/RE/4d1plr0uZlcydngca32JwUwA75dSNJU2l69e4MKGy5Fdo+Q2i6T3DqIbGuFIgJ/5pafwaSq6R6dRbjB0aJTs3DbDe4Y4fTnLp546wej+KK7r4vV7ca0FyltZopkZBqf72VjYJiAGCOrvfKZmp0vLubVqz9usV2qYlsXM2IdrynO7G7MHibVylY5lMv0AqxU95IPz0Eh+DPCHfOw5OX3b8hEhBB5do388g+W800S20+7QrLbeU4Re3q6Qnd9k+khvldC1bSptk+nUED2x/vc+P4pCU++Vhzi2g2poOLZDx7ZZK1eh2SEY8jMSj6KrCorSe4ztHSYcC1KsNajV28QCPnRVJShUKqUakaEYtgKXX5tjsVhGe2SZ3bv30edtk+9IDj+2F89gFE/Uw3q+ZzStjkWs5pIaTqH6fHx/LUdou8H/z957BUeWZvl9v++69N4gEwlvCgWUN13VbtxOz8wajnaXu+KuVhQlBYMbCokRipAepBeZB+lBUuhFQQblHkRKQVLUcrlckmtmZ2d2Znpmerq7fFcVXMEDiXRI727mvVcPicoCCkAVyrbLX0RFd2bevHnT4J57zvc//zN4Ms7p986iV5ucBD7+8V0Cv/cOydUfYNjDGI0Wq9s7uM/ECZR05u6tYldVXBsVmtslKmtp/mHwp4xIDhJC5dzlcdZSWZoSfOdXTlH5RYqdlSStqo3Tky521ps017fpP2HH67LzvZ/dJuFw8a3vXGLj4xVW5rfwTMdozqZJTMVZ+PADHJfivPHbV9AzZS6ODhP2RjHaBvd/usDE+RFU1c328hYuf4u1+5t4gu4DFz3eliC/kSMaPtqabSDg/XKVDl+AuM+DabkR8qdzOrQsi1SpQtjtQpFfn0ykV209Hr0g+Tnh8Ybzw2gbJjfWk8zEIrjtNhrVJjvbhW6QLNUbLKRzjDnctJttjLaBaZqU603WtnPk51IMzyQw2iYu7yMFpdPTEfO4a03u/2yOqSsTxEcflVovDvWzcncdyRJM71kPrTZ17m+nGZBs2JEwLYmasCjli8zEo/gjPjYLJeSwi1hfEO+JCE1jmZt3Z7FFKrRCQ7iCHq56xig1cix9eJ0PVjNc/dvfZKJylpjLSWmjQPP7H3I3tcY9T4vGTyROTw1RTqc4NSHTbhjsZIe49NY0LvsaH95cxC8gXDOpbRRIWW1a+RoRVcM2GmJY87C0nMIZ8aNm8iwVSwzW21z+qp3it91QbDK36WYnqbLj9WEGBXPXi1w834fVaJOvNFlbTWFoEk7VTrpcIT7gx3CnufKbb1NKtaDSxDBMHA6Nn340i8OEwtYOsdEo4USYictBJEmif0xH0ToWdqnVDLIqE+4PEh0ME048OeuRJYkvt3bz+DxJ5WqaJgvXlxk4Ed/3N/EyMUyLdLmKz2F/bUFSvGKD8y8SvSD5BUKRJWbiUVy7Gacv7MUX9nYfd9k0xsJBAi4H/m+cZv7aErIiIYRgoj9ATap3hjLnKwzPDKLZVJqtNrph4LHbeJDKUjPbXYGl0TaQZInMepbIQBCXz8Uvbi7Sztd45xtnsSsNRn0pqI8SHImSKVa59+E8X/v2RSyrwdKtRepVhVNvT+L1OHE77WQzg1z7cI5KzsU3vzXM9nIap8NG1BvEuh2nYDRYuLXM+3/wC/7D/+I3uT27QkVY+CN2BuIKkYEwmUqV02+foc+t8Gffu00rXeHen99CKjQ5WVfwrdbxhLyMh11MSjI5zaI1m+LMu5N4mxaeuoknopH7eJ2ZkRCj4TBrPyrjG/Qx9s4k861FZpd2CMkK1ASR37vKlDfAyuo2bpdCoVJnu1Hjt792iabe4o/+3p/gm9D4xnfHMdsVBk7GyBZL/ORffkxDFYRCXsqb+Y5/bqlOej1LbCTK0FQUyzKxrDaqTdknvnrcdrDHq0GSJEJxP5qaxDLsCDnx9Cc9I4oscXbg+Ya3vwi9IHk8ekHyNWGZFYBjNYc/xDB1akYOjxo/9nPcT5gjKEtSV+EnhMA0TPpGwjjdDtZmN/EG3USHIrT1NpsLSUZPD5GtVCk1mpyIhNi6v4nP5eBhFW/+2hKRwRCFTAnNodEyDFo2iaZNYuXuOsMzfQQ9Ce7dS7N2f5ORq+NMv3UCzaZitbfR1AwNS2JnPcfQ0DudnVaaxE70MfvD+6z/aJ4r373EUipLK1em3dQ5/+YJZk6NsbmSwWi0KKQKDJ8dIl82eOfiDAthBSVfQew0+Gd/Psvm7MdMTY7zxpvnaFZ1FlpVwgE3rpZEemmb/r4ArfQO7aifQqGKpmqcecPFtQ9/xOysB1efihZKkM1XML83z+wHD+h7J4Di36AyFyE+YjI95uV7P7xOOVvlN3/lGzSqOu/E/fj8LmqVBrahIHrQxU7TYGAwxPpWltn76ziGAnhDLvxNGP1qgP6JGLIiUylUCMb95NMtAqFtsOoEYwfL4D1eD+FECMuUoZebfyn5wgTJVvP19zdlylUUWXpqiwYAZq7z32cJkrTRjSqWYr20CSV7sTk0VLUz4HfvDMP4eB/sBsLaco5QxIusyHz9vQvIitzNYkZODyKrMgvXHlBMF3CfH2SoL0h4ME5mLYcQGg0zzInLIR7cXKG6VWBgsr/TNB+KMTAzwM0f3iS5LhEagp1KjZ/+4j6JoSgT/VFCYxHq5UZnbNhWmVAsSLVQ5Rf/6hqxuJ+dRsfH9erZQe6uJklligR0B5s3VmnMDDE4FkNVLjE8FGP17joi6CR1c4nBb5/nJz+6yfDUIDd+8AnJlTSmS+OX/92vkXmQ4vt/eQf9rUmu/NYQoek4zlKbr//GOf5wdYVbc2t88+oAQ9NXEAGZW0s3yN9cYzDhYz1X4vq/uUHoa5OEdxXFTreddy5NYY96kNsW1/7qLutmg/OXJqneTdLv9DJ44VF2YhgG0cEIWLC9kqHt6Ec3YGC3ulqvNpAkgc1xULRjWS0wdxBypxRuWG0EIAmF7NYOqk3F9zlv5fi0+CKO5uqZCRyPL0zN5lk9UY/D08ZUNdvtfUKZJyGUYYQy3L29XSyTLJaf+BxNchKyTxx0XnlJjJ0dxuXb7zmrN3RkWe6W9vonYvijHeceRVW4+fOPuf6Xt7otKZqm4vK5+ORn8zSSBTRFRtARB21tZbm1kcSSJFw+J6t3N6gUKlz73k0a1SaWZSFJKnaXF6NtUGo2GXtjHJeiIDlV8DtoaRJ9J/pRbSr9ZwfwXR4iX6iQzhSolmv8zr/1NlquyNt/4zTJVoPk9WXCHg/DX5lC9TuwOZwkhcnKZhZNUbj61TNceWOKiaE+hN5i4uIo575xGs90hHarzc72DrW8ILxpY/EPrhPbMVhcTfHP/teP6AuOcfHNSVxovP/xNj+6NofTiFJaLDGoJTgRn8IbcOMrtrHKDZqtNpZlIdwadz5coJRc4Mo3fPz1X3uLE9EQQ1MJXD4nxVyJj358l5X1NLIs0zccwRNwM/PmCTTVgao8+m2nVzNkNvabS1RLNYy2AVaDzZ0FirU6ACV9g6Le8e+d30yzmno2U4oeB2k+YUDB5w1JWM/978vEFyaTfBVSrRvrW4yGgt0S5eMMBJ5/bI8qP3vpxrIsrq9tMR4Jdb1Vn4d6pc7a7BaTF0f3rW2VcmVW7q5z5ivT3cC8V6ywvbqN4SgSCowj7xEYTL85Sbg/QLHdaZR3uB0kTsTJru9w7uIomiIzcKIfWZFJr+9w8VvnujMSz339NKv31lmf2+STG0tMnB9hcMTDiRkbhhnBtCwMp4vQ+RHSmztsLqQ5dXmcjZBKfSXPz/75+5z92nkikTAnI2WC02NYbZPljx4QiQc4GY9Q13WM0QTJG6u4gm4qhSoRt4tqo4Wt34dfSHz79BADk/2EgxKNYorstQVmfvUquVyJ4cEIprtKK7NARK5TSLoxd0okf7qI82Q/liFh++o5fGfiLN5dp7VTRG8U2RQm/pLExJUxmuUac7+4j16z80lyE19T8N7vvINlWcx+uEhLmGyspqDUxBf2dO0MfQ4NLINmvUmzrjM0fbDsunpvozP7MxZAqGeRd39bXm2g+2dx/tw4ci91eCEsy+L25jYT0dDxqkefYUSvT/LYfHGC5CtgPBLCpT1dVXoUlmXR0ttohzichNzPrpQTQjAeCeE5ROnaqDXJbe2QmDh6/dKyLFqGgWpTCcb8B8QfnqCbqTfGjyztegNeprxvHmhJyG7uUCs3mL7wqGQbSYQIxQNIksT2Spq5jxYZPTeC4rNT1gTettFVFSYm45imyeLKNvduPOD2nyZ5+9cGWH+wiWckzNJSErcQFMs1lKpB1tukDydDp0fZmv0xrUYGVY3xrd9+m8x6lkZNJzHWx51fzPNBaYeFG2uoQScDmoP6x1VufP8OmsNGQzJZSWZx1g2u313m6wE7m4UdLr03TnWnydB757j9L69RyZeoVeoYFQUzZeCayNFutrFpKpYFzrCLpFHH2dKYGU9QzZSI9BWp3C/icQ+QW8xQXMoRHx1idVbF7hZMnhtGtUmAIDEZY2luC1efD5/fQ6vZplau06g2cHubqMoG5Z1Ritnygc++3WozeWkUVe38xhL+R6rVRPoAACAASURBVEItWTz683a+gkrLlw0hBGcSMWyv2fP1uNWqZ6UXJI9HL0g+Ad8zmIofRjFbYn12izNfmT7W9u1Wm/sfLDBxYeTIsViHZZD5ap3Z1SSuuoGvqR8p3snX6ixld7g8PEBk4KCziBACza5RypUPtSF7vDT7kNhIFNPsTLEo1RuUGk36fR5++r0fojo0zl68xOTFMYTfzlalgseQ6C560inj6g2d937tCi29RSFdwmgbBPoKNAs1pkZjNJstxt4YJxHys7WcZCe5jfB4Of3Vv4a1K6hoVDJ89OfX8YUCXPrOOcxaAXlznUDQidfh5NLMCLV8jXzOQSVfw2zWMU1BwyUxcHWSsNPJg/U23rNTxMedZGdTnDg7wnKxhFxucuvaOp6gi/adbc7+0ikKo1E8bgdkayzcWcNZaTM+FiefKuB2JUgMx5k4P0pyOcWlb50iHEvz0V+UODE2gmVY0H4AwoY32E9iMkbTLhMI+1mf2wQB+e0CC+kip9+dJJzwEU6EMAyD+z+fZ/TsMC6vk7X7m9icGv3jMTCWQY4jxOc7y3lVNOtNKoUaofjzG8K/6CSf5FIKWZGIDkWO/ZyFdO6FXrPHi9ELki9IslgmX6sf8EuFTguG/dLxA62iKgye7Mf2DDZgjVqT0nqOkyNx8tU61ScEyYDTwal436GPPaRZ11m5u87Jq5OHZsCHIYRAlmWMtsHa/Bbu/k6WGu6PsvLJBtXxGsF4ALvTRl/A1zVe3/se5j5cZOjsIJVincHdHkzNrlKvNHCH3Cx8skbY4UTVVGxak2hfmcT0FdLrWTIbKTKbOxQrP6Oc1Tn97mlsDo34WByjVeWdU2doVZbxBos0o8O4M27W5zYJ+kNsF0tsl8pEHBr+sJuz58dJPtimpbeZ+3iJS++dpbCRoS/s58SFYQRw/spJ1m0Gd+fWmczYUCo65VyB1P0k1ctFrnzzHJ6gm9hIlM3FJIZhcvqdU+iNSRT/B6guB/1DEdbWd4jGgzgcGomBCNsraSpKFbffxfZKhumrkxQyRTSHk4XrSwxNJ7A5bAyeTOBwd35XA1P9pFczrNxdY+TkwXFbPR7RrOkU0sUXCpIvitPrQHrGXsiJV+QE1Ku+H49ekHxBgk4HjiPKL0KIZ/a99EcerXMahsHsLxYZOT14ZCOzZZoIBAGn46nrJEIIHE8pu9mdtn1rknsxDIPt5TSxkeiRhuluRWVgt+Q3ffYM02fPsHR7FVlRKBktIu6D2ajdaWPqygTr2QLL8+skhiNIktQ1QfjZ92+wXCwyLo9w64M5ps+PotomuPfBPIVMids3H3D1O+cpB97AGVunVqrTarY589WLxMdH+eDffMzF907jCzqoVSQUTSEyEGJ9bhOhydhaAt9WjXu+bZq1GqZhklxJM/jWOIpdIRYNMPtgCxH3YCVLBEYjeJotdowklirQXBrOYR9xnx1DUSmkSjQqDTxBF9sraRauLTPbv0BsOMLqZqajYI0HuLuUwrDbGHO4dr9LC9M08QTdtLBY3ylQN9tMqgrekKfrwbu391WzqUQGQxhtE6Hs//5N02T5zhr9E7Evhb3c0/CGPJ+6Ufve7+64aMqrOE1/+QQ4z0svSL4gNlXhwccPMEejB+zfXhRZlumfiGF3HR1oHW4HQydfToNzwyiRr20gF6KHGmFbpkWzpmOaJvIhPWOyIhieiSPE/p/V2Nlh6nqL2VQGv8OBMM19amTLslBUmYnBKOMD0QOZ5uSUxpiZYCudpyF3tq/pOinN5PI3TuEaDVJcztJ/cZjKiTa3fnQPzaExcW4EZ5+Hq792EVmSaDYE8dFw1wTh//uf/5jBb07z9u+8iVZv8a//zx9w+r1T/Hx2HYcBQpEID4R58GfXsSmC1nyGyFiM+YVNagtpLn37NJlyldlfLPBuJMzo1dOoqkK90iC5lObBzVVGTw/RP9HHgxsrNBstTl2cIKipLN1aJYqKx2nnwx/dIZEIY3PaumuOW3qDgOIg5nXvlsFV9IaOLgs8Ntu+z0iza5TzlQPfhxACp9dx6AXNURhtg9zWDpHB8CtpO+rx2UDQW5M8Ll+KIPng1gq+iJdw/4uVLYrZEt6Q58DJY/jU4CublBCIPr+C9llRhA3V8LKTLhJOBGm3DFRN6b5fRVUYOzt89A6MNbBaoJ4gu5nD5XN211YdmsqFwX70Zot7P5/nxBvjtJotTMOkrbdJLqcZPT2E0TYo56sYrTZ2l52+4QjlXAWn10djNc+lr0x31+EuTo/gcdgZiobYyDc4meiDRB8+pwO7U0Nv6tzfSnEiHiW/mCKfKiE0mc3VDAMjffzG3/1losMRFE1lPbmF3+fCqdmIJEJQroFlISsCJejiu985j9QyCcaDfPin15GmoiRrNS4P9qMvZgl6nIxMD1IpVDD8NuStHQL9AdbmtlBUmclL4xSLVRqtJq2qwYPbq0iSoJZwkzWbjNhUhBDozRaths7p/j5kSXQ/+2K2TL3WZFO0OBmL4Nljbt6oNbnx/TuceGN8n12gEGLf7ePQ0tvk0yVC/UFy9TpOTXuiQUWPzy8SvSB5HL4UQTIyGMLmeLE/9JbeMZyeuDh6oHT1qjwdi9kSnqD7hSzILLMEwo4QT3//imQj7B8gfKlze/7jeRITsW47wlORB3goyKkWa6g2FYfbQTlfoa23CfT50WwqJy6P4XDZqeSrtFttNIdGdiNHajXDlV+5gKJI+CNB2lhsFUqEBqYRmsRScoGRps7AVD+SJLrlx0DUhy/8qIw2eXGM2Q8XWL23gd5sEfgbwzgn44QHQuTMFvaRAPPXHmBZFqHRPtZWt9m+v4HmtnHzz2/zN/+b36aYKfHDH94iuZQmu1MitVVg8kSC7ZU0iqowc3mUOz+ZJVmFN96dwTQtFm4t86/+nx8xcH6QzQ9XcE1EUUYDTIRDlLIlBkf7mHDaKO+UiQ2G6BuOkt7IEQ9IRAfDtFtt5j5aRLWpnLg03n0/7VYbl99JZi3LmfMjbM1v45wZ6GaIDpedU+9OvZReYbvTxtTlzmtXGjqykHpBsseXmi9FkHxYwjLaxjOVnvaiauqxVapPI7ORQ4iO3dVRGG2DtfubjJ8f6UzheF6MFZBiID/7yKTJi6PHHtALIERn29X7G4QTwa4atlnX0es6gd2k5mF2+VBhu72SJpwIdgwFsmVaepvYaB+leoNkOsel4QQ7mSIiX8eo1EmXC0QGQhhto+s8Y1kWd96/3zFI8Do5eWWSW4vryG0LvdnCNC1kRaZP1UiXq8ROxGlXm1z/8V2uX5vn6++cZuaqj/nrGv6Ql2KqyJDfi+bUuDg9TGE5TcZho1lvYnfbSN3eQGm02dnKsXjjDo5EnOGZISauTuAFrAtDpLYy2Ast1O/2Ua82sTlt2O1JNldKbM6X0JttgjE/zl0RTqVQpVHVOXl1EuhI/xe3szQeZIn2Bxk/P4KsyNicGkJ6mGGWMOmIUhRVoVauoWjqkaKrRq3ZsRw8M/TUi6+x3uioLy6iJ9w5Lq/dcUcI8d8LIZaFECUhRFoI8QdCiKE9j/8tIcQDIURNCPELIcSll/G6jVqTT346i97QX8buXghFlZGfIiWXFZkzX5l+pgCpN1u0H3MEEepZxHMESACbw3bkibTjTpOnbZjc2dympndsASuFKsVMaZ+CL9wf7LQoHEFsJErs/DDOmTix0SgDJzq9npqiYFgWc7eWWbu7zq989TxOZQuJLX78Bx+wuZjs7kOWZfR6i/mPH1At1QAYjAWpJ4t8/Gc3uP6jT7j+wRx35tdJ+LyEdwVSctMgYXMwcKKfxFQ/l759CoBCpkS71cZoGtiddna2C7gDTq79xW12knnUhI8qFnpLx+srUc4XmftgAc2hcO0v/5Lk6grLN1dZW8uwvZLB7Xdhc9pYuZeiJEyypSpzHy4gSRI2h0YhUwQg1N/pLc1u7WBZFs1yHUyL2EgUm8OGoiokJuLd7yW5nefjuY4wKrWS5vr377Axv3XkZ51Zz5JaSffWG7/kdOwKe447x+HTyCT/b+B/tCyrKIRwAv8d8E+Bt4UQ7wL/APhN4EfAfwr8iRBi0rKs0ou8qN1pY+LC6LFGTr1qjl2+fEY257dQ7RoDk8c3RH9eGtUmqdUs/qiPiNuFtuvy8jB4msYw9UqdWrlxLMm9y6YhiU4JdfHGMr6Il8hAiMtDCWY/nCe3lWfygoXT70VxOJHkWUKJIMt31ihkipz92gyn3plieyWD0TaoFqsEfS70mQSl7SKL99epqYKvv30Cl6bhCKoE435OXp2gnKtgtE0c7hCa0+T6X95BlgXf/lvfwDRN8tsF8NnJCoOv/e5buD0u4uMxJgei3PvZHPN3q8iDgrDTwbbeYPSvf43rP18lWqzhOTdEsdnAZlfZ2Mhw/6erTJx38+t/85dQVBVFldmY30Kvt5i4MIo/4kNvtrjzk/sMTycYHwzjOnF01hf0ubDb1Y7jTtxPKBFiY34L0zQPfU58rO+5RDmNWhNJEp+Jv58eL4eecOd4vPYgaVnW7J6bAjCBqd3bfwf4Q8uyvgcghPifgL9LJ2j+wxd97Ve1dvg60ZstVj5ZY/TM0IE1qKHpgdc2SdXtdzG9WxaM+Trl7NJOGbffxYVfOoPdbaeUq1ApVI8VJJ2a2nWFiY9FUXdPxpIkmHlzipk3Oz8Rq7WOzeHnm7/3FRZvLJPZyDJyeqjjN+uUGZkZoJApsnZ/k6k3J7nxyQqJeJD3fuNNWs0WqqrRrDaxVIX0xg437i7zjfcuAHBrfYvt1Qy23COlqCRJhPqDaFtpNhe2EVslgrEAvj4/P/jJJ+jlBtHTA3jDBtWlKoFKnaxb4hvvncdfg9RWloUfzWK8c4If3prnd3/766TX06SyRTyqxsq9De79bJY3fvlCx+dVCGRF4s1fu0i90mT5zhpj5wL85J/f5cI3zxIb7lQF6tUG67ObhAeC+GydsrZmUwn3B/GGPPsCpGG1MXQLva7j9ru6a7nPwvZyGkVTXssFWI8enyU+lTVJIcTv0ckYvUAb+M92HzoH/F8Pt7MsyxJC3Ni9vwcgKxK+sPfQtdXnXW99WWzMJ4mP9XUVuYGo77nUuXudfZLLKZo1nb7hMC29jTd4svtY4kSc4VMDBy4W/BEf3pCHG+tJ4gEv/X4PlUKVYCxAej3Lz/7oQyYvjXHi8jjTshezmaJOAE1RiMo2ZhtpLpyfAEBvNMmnSvRHAgzEg3xyc5n+/gj+kIc3v3WO+dk1Wi2DEyeHsV3QWPngAY56g7CpcuMnt1j4eJn4eB/B4TAXBmKEQ1E21sps3lqhtprnje+4iA5exO4K0G61qRRqrN3fYOatEwRjDnwRD83ih5jtevfCAUDVFPwRL4Go/0BW+Ph6ZLYxh56xU0vTFeU8C4s3lukbieD2H+641OPzyJevbPq8fCpB0rKsfwz8YyFEDPjbwJ3dhzxA8bHNC3SC6QGEEL8P/D7A0NDQYZt84Xg4JeIhS7dX8YY9L9zespditkSr2XqisOgwZt48se92S2+xdGuV0bPDRwpJSrkyLr8TLNhc3KZ/vG9fptPW2/ijXso7FerVZleEtbGQJBD1ou5RGi/fWcXhcRAbibJ0e5WAUyObrVBWVZLLKcbODlMpVGnpbTxBN6qmMhTxcO0vb7Nu+jg5GOP8m1M4oh68u5M3jMZN6iWVRniAzIMUffEAQycHqOotNvIl9FoLNInZB1uMTycYPJngD/+3PycTcPPr/8mvcP+jRW7eX2HugwXadZ3RgSiTY3E8QkYalBBWk/v3kzhGTCb0jmfryKlB8tsFIoNhZFnGGXyLk9/eplJrIDc3aOYUovG+p1qbtfQWlmkRtI0jD6pIQ893EeWLeLE5bb11zC8YvXLr8fhUR2VZlrUN/B/AvxZCBIEy8Hjq4QcOXY+0LOt/tyzrsmVZlyOR43shft7YmN9ibXbz0MfCiSCewMu7wm+32piGidF+cYszWZEJxPwo6uEnZ8uyWLu/QbXYEdpYpollWVSbOpWmTq1cY2e7gGbXiA5F8Ee8XbGOJB2U50WHwvijPsr5CpuL29gVBX/Yi+XSSK1mmf1wkZ//0bVuIF2b3WR7Q8blH+WdKycZSHTW6iaHYwR3hT127ymGT59lJBRAKelEnS4cDg2bEDRvbBLzu5BXCrQW0tiKOiVDJ+eXGT7nopTdhD4Ppy5NEI0FSEzEuDm7RkPptKmE4l5QY5TXK7TW8qh2tWO8UK6T3dqhVqmTWs0AkMsWqVTqVEolHtxaolZpcO/n8+SS+SM//9Rqls2FJKpkRxLPX2WIDISObVHY4/OBED3hznH5LLSAKIAL6AduARcfPiA6l67ngT/8dA7ts0F4IHTkHMmXabNVzJZYu7/J6XdPHpo1ZLd28AbdxxZvSJJEQQOzXCXm86A3WyxeX2L8/Ag2RyczOfVOp3xqWhbDM4MAbOUKGKaJu26g2bVuj6usyN2WlMfVspVGE7vbgSJLbC4kkYQg0OfD0+9nIZ3lr/1H32GnUkUdDhKP+qlXGniCbhRNJre5g1uzdcuJuWSe1XvrxEf7iA5HWLu/zsipQfqvjqHXdLZWUsSGImiKRNDuZPAbZ/jD//3PiU0nKKeK/NLFkzjlNJ/8dI6zv/51Qj43ytszpNYy/NWfXKN+pYnldrG1IuENu3n3u5eQVIXNhSSWaVLIlEhMxrnzk/vYnTaiQ2FcOvQPBnhws0h+o0q9VKNRa+D0dtTP1WKV9FpnfTaXzBPo89E/3vfS5o82ak1Mw3yxdqQenyl6ZgLH47VmkkIISQjxd4UQ0d3bA8DfB1aAWTpZ5V8XQnxTdLrf/3PADvyL13mcr5M7m9sU640nbmN32l6L96Y35GHiwsiRZbVCukij1nymfUY97u40FVVT6BuJ7uu9FEKwWSgxl8p27xsO+RmLBIkORbAsi1KuM5za7XcdsMsz2gbJ5RS3lzaYm10DOjZ4U1cm0GwqHruNi0MJVFXG6bARHAqxlSvSqDYJRH14/G7Gzg53gw10MqepNyY6lm6yhMvr7LS0tA3ef/8uc/fXWJ/d5OqvXkKvtzBaBm//O28TH49x9u0pqLZwBk/w1b/xHYxMhR/8k/fJNZqE+0NMzQwxu5KkVKsjyRJCElTLDf7iTz9C8jtYn93CsEw++NfXsdm1ro/uySsTBPr8BGIBJFnC4bFz+t1pMus5DMMgu7mDpMiYhkl6LYveaCFJEhvzSbJbnWHLqVKFtvF8FYKdZJ70WvbpG/Z4qehtg5Xc0dWCHq+eTyOT/FXgvxZCuOisN/4V8J5lWW3gfSHEf0wnWMbprFX+6ou2f3yWiXk9ONRPv5RVzJbQ7OqRI7oAJs6PHnp/S2/RbhndQG6ZJTCLCGVw32gvvaHTqDaQpP1q1z6vm/Ae4/NSrkx6PcvE+VGmr04+cS3MaBtU8lXGIl5MvTN3TwhxqPesx25jOh6FeBTLskiVKkTcrgOCFCEEmkNj4foSM29N0TfS8ZMdigT52oVJtjd3cHqd7GwXsLs0YmN9iJU0G9dXKe1UCPT5aFSatJstwgMhhpstNpe22UhVcHoctNIVbv3pLU6/O43L5+DBrVVmzo/SPxgm27KwTJOxM0MoNgW9ruNwP/JfHZiMszV3C6u9CrbJbqZoWR1Rl2ma+9aGfWEPNoeGaXber8um4ZafvY1jb+beNCq7JdzPQiHqi41lWTTbvXmSnyav9VduWZZJJ0g+aZt/BPyj13NEnz4Rz2dDMVhIF/d5re4lny6i2ZQj50nmtvJU8lUmukOXLfbOi9Tbbap6C7slaDXb3VaHh6iyzN5lS7vL1u0lfbhdyzBQ5YPrappdIxDzk17LHhAOHcX63Caa20bSbOFz2LFLj/4MFm8uEx3qmKDr9RaqpnB9fQtNlhgJBai7VJo2iWK2RFtvsbmwTbVU58SlMfqGI5RyZXwRL5Is8cG/usby4hZXvnWekNtJFRlP0EM4EQQBgT4fmGlOXHJwOylhd9kZPzeMJElYlsVH1xbYvl/l8rkJZEVGCIHNrvHub32LVrOFEDA8PYBpmgye7GfxxgrNmo6qqVQKVRweO/6Ir2OK0G5zduBoQ4dnIa+v4FMTOJRnN/TPp4s43PZX5nX8RcOmKkz1Hbzge1FET916bD5V4c6XGcMwXtp60ctgeGbwSDVrrVSjXjm6JNw3HGHs3CPjcyH5EMojtXGp0WQjX8ThsjNyavCpKknNru3rrdTbBtfXtqg2D3dLCsb8TJwf2XdfS2+RTxcxTJPNQgnTtLj58QIP7q/j8nXUtP5SuztlPpfMk08VcO720jo9Dt767mUMCxZvLaPXW1SaOnO3buFu6p15mQNhTr17EkVTSK/n0Owa4UQIVVORZZnYWJS7q0k2i0UUTWXx1go//Cfvk08VsDlsLN1eBaEhS3ZGQgHW0jssL2+TXs/y/r/4kDPnx3C0BXpdZ/XuOlsPtjufr3Cw9aDI9nIagK3FbdZnt5i6PN7Nilc+WaOSrwKdHseN+STHpbRTplKo7rsvuZQinyoA0Gef2RcgG602LeN42U5+u0C9XD/2sfR4dfSEO8ejVy/5lFi+vYbL73zmKQ2fBomJJzeQC9GZVlHMllBU+ZFna6tNTW8Rdrv2lVOfFU2RORWP4jrCaFuSpANionqlQWoljTPgIpUvYuaqCL8dh9dNMBrg2uIaclOnX2+hqArlnQqFdJHYaJT8dgFZkRk40Y8iS0wNx5kejIFp4ZNbBOJeYkNRUisZXD4nU5fHsSyLQqZIrVSnbzRKslgmPt7Hd37tDabGEyzdWCWVzOOMeVA0BafHTqupkd6oEervQ1QrbN3dRLOgEfNSdcu47TbOvTlGIblErdQZsPyQZq1EeLBzOzgQxDT3n7hm3p7qGgrEx/s4rkajUWtS3qmgqMq+MrRqV1G0zulCiP3X1kvZHbx2GwOBp/fEPnGKTA8ALKsOrTlQT3X9kF82D23pejydXpD8lBiY6j+yNeLzSqVQRbWp3SBZbjbJlKsEXMdXRFqWRS6ZJxjzI0kSLcOgWKuzulPk4lD/viy0VG+QrdYYCx/sEfUGPXiveMgl80grRVohD2fPDHWfPzMUR1NkFq8tEYj5GTk1yKokOmuP0wPd/ciyxJmZYWrlOt6gh0tvfIWf/fE1vL4gesiOaVnQaFBuligtbeBSwgQNk/vJNBM2F/Y2pBa3QcB3/oOvcf/6EqH+ADaHjXZjnfW5bVqNN6iWalw4P44kCYr1BptLG2QyBcIhhVJugxt/lSdxIo7dZcfmgGg8jdPXOc7tag3DMhkQgvXZjim+vKc0LR9Spj4MvaEz9+EiU1cmDpRDn9SHO9UXRtrzvejNFg9uLjM0PfCFcLl6/Wggx+mdnj8b9L6FT4lPa03Gslov/erUsizapnkg4wy7XYRcz3aSNNoG6bUsnoALm8PGRr5Eo9ViPBI6UKaVJKnrGfv48cxuZxgM+PBHvNhdtgMna6vZJr25w+iZIdLVGnW9RTDmZ3k1TaHW4MTJwe6+Fm8sozfbnP3KNJ6gh6u/eoFAn5/iwibZdJFPNINTQz4CcQ9hbx+qLCHlasy2ytiEidxoEYoH6OsL4riiUi7W8ITauAPTTF6exBf2YRgmmk3Fstr4LYnv2s8RDHoQkszwmfcID1VJrudQRImRU4PYfRdYuJ5k+qqbgYCXBzeWWWpl0J5iSv8kSzrNrjH95uQz+7PKj72erEi0mm22HmwzeWHsmfbVA4SQQX7FFSbRyySPSy9IfomwzAq072GpFxEvqEzcO3YsVaqQLlcPCENaeov7HywweWns2C0siqrsE+AMBX1YFijywRO/23b4QGAhBD6HHU2RkRX50Gzm4bBnza5RLZbwGgbegBs1V8Dc0yVhWRY2h0bfcIRP3r/PyauTBGOd9bjxyQTxwTA3//h93Mka73zrQvfi593LJ2m0DRRJoMpyN/A43HZ+fm0ey29nKPxoXU9WZG5vbGO00gz6SsRj7wJQqDWoNJvEvB5yLsHJXRGHzeUlMSmQFZlWrYle08lt7TD1xgRG2yCzkSM2EkUIQXZrh1ZDJ72eY/rqk4PgyzAwl2WZ0++exDJ7J+HPMr0+yePRC5JfJoQLlJkXDpCNWpO5jxa7J9yIx4XfebCkqmpqJ+t5xqw5u7WD2+/C7rQdyFKOS7//UCfDLg3ZYqtRp98wmAgH0BstWnqL6YmBfdtJksTomWFM00TsGfQMnWDsctj5O//2L1GvNPa9T5vDhg0wTJN6XUcDspUqhVqDt9+cRtMe7adeqbP8yTr9M/3cWC8TcA+wV89oWRayJDg3EMe++/qSJCFEp0RqtA18YS/T70yhKQrNepNqsYZpmt1Sq+2xKTiZjRzugAuHy061VMPpcbxU2zlJknqywM8wPXXr8en9jL9ECCEQkvuF92N32pg4P9I94cqS1D15P4435Hnmk295p0LzGU0LnoTeNljNFfaJW1QhMMsNjLZJIV3i5g8+YeHa0r7n5ZL57vxRSZLw71rV3f3ZHKWdcne7tmnSUiTy1TrNPfM8LctiNXmXP/2LDygUqzhUFb/Tzs7GDoXtRxbFmkMjMhgi7HUzJmx4TbGrMK1QajRobBTYXEge+IyzGztUS3VcXidWFH48+xOgE6Anzo92A2S4P4g/6se2J5uvFmu0mi0Mw+DBzZWuNWCPHj3208skXwGpUoWWYRxL7fd55aieyZfB0MzAc2eQ0GmvufezecbODuHyubAsi0a7jYXFw1liPreLt949DXRaSC59+yymYXX7MU3TIrWRQ7UpLH+yTmwkgi/cyU4Hp/r3lXCL9SapcgVZCCIeF7Y9wWw4otE4O8RqLs/Z0QT1bJm+4UjX3q2kJ6lVy6QftPGFvbRrOtdn75OsVPmld05Td6tEhyO4dl2K7m6lcNs0CvUGZ3Z7KgF8DhcjoaMN6TcLRSpNvWOmAIyckGL2YwAAIABJREFUGsSyTDBWmHlrFEXt2c192ehlksejFyRfATZFQXmBk/yXmVylxupOnotDiQOP6e02qzsFxsLBJwZRWZYZnhnAsRuIntaQLYRAs2mkShVSO3nODsTYKpaoehVKuQrRoTAOjwPLsqjpLYRLwwAeSoYiHtehphC5ao2a3sdAv8GP/uw2g14PtXKDdK1OX8uLYoIz6Gd7q0hbldBsKoMnE9TrOumNHJ6Am8Tu1JOarqM3dSRtE5djEKfm5f52hqDLSX11h4YCIvBoTXjrwTZ/8f5t/tpvvUPI7SLu82KYJnq7k+lqioJlmrTbLVTb6/+tGobBTrJAOBHsTRf5FOi1gByfXpB8Bey1YvsyoTdbLzwtwu+0Y1OPmugijp1h7mwXkGTpmWYght1OvPbOumLc58FlSTSKte5MzHytzmI6h02R6fN66PMeXrq2LItiqUauVMZUJLyuNvHzUZAkgjE/pZ0C2+kC7UqTkBzF4Q1RlCuYpsn8Rw+QVZnf+jvfxuboHIthmvxkYRGXvMXZwVOYdRV/yIVDVdAUhdawhCEEhtIJNrVyneRKmumJBJ7d96PIEoos8SCTQyAYiwRJV+qkyz7ODrx+pXVbb5Pb2iHQ53uuIdA9XpxekDwevV9nj5dCOV9h6fYqp989eaAvL1+r02i1ifuePrFElqRDFavQMRU4rCfyMBxuO/Iz9KGapsXqToGBXcGPLEkEgh4IPjrmgNPB+cE4iiR1s59SroyQJVLLaUbPDCErMjvVOt//i2vo20W+9e99HZ/mZjoeZv7OKra2BaZJtd+N6nShGwZjgxEG6VwYzLx1AkmWSK1mME0Th8tOOBHiKxPjqCLE0u0SqdUVvvpbb9HM18hbJkWrhdtuw1los1zKEOjzMTSVINQfONAOMhIKIHZLzhGPi8Cu4CpfrdM2zZdik/hwRuiT+jNtDhsnr0y+8Gv1eD4EPXXrcenVBHu8FNx+F1NvTBx6YrQsq9N0/wop1RsYe3o3+oYjzzw5xTQtnnaYqizvKw8ml9M0KnVcfidC6twfdDl46/IJ1LAbr8NOvlrnj27eoxHQmLg8hixLjDs601H8jv3HqNk7ZuTNmo7T7cDmtHXaUBSFjfkmwVgAl9dFrdrgo9kV1lJZPHY7ZrZKanuTerWBXtdpynDnx/cx2gbVUo2V5RR620CWpM4sTjoXAg/XT3XDQN9jLVcr15n9cAHTfLapIaZpsnZ/g3r5yZNtevT4vNDLJHs8Fyt313EHXF0nFiHEka0ewWc0FHgeFtI5xsLBZ3L32YskCSaiRwtfjmLq8nhnXNdSikqhimmY6HaZik3ia79ymblUhnOJOO+MDxPxuNAUhfhYHy6fk5C2vzRdqjeo6i3iPg+J6QQVXQdZZi6dpN7OELFFcPldaHYFRZE5dzmBQ2vht/lJ13XmF+5z5a1v4vWHuLm+xcDJfmRFpllrsri2jTviPtIecG/pOFupUqk3CA+EuirYh72hT/8cJU69c/g80pdJo9U+UlHd4xh8CT1Yn5fer6zHsdAb+r5G80CfD83x4o3nL4sLg/3dDOlx2q12d4rGq8A0TVrNFtViHdMwaKIRcTsJOJ0d9x1JMBzy8/HqJn1eN31uB41qE3U3SC7eXMYf8WI4VSq1Bvg8rOTy5Kp1hoI+En4vdaNFpD+O0TZw+10IAQGnnUq1ztydBwyd7CesTaNKncHTl0ce9XsGYwH6tnfILWcInnJ0vXaPQpFkHHYbYa+bXDJPtVClWdOJjUaP9Rm+6gBZaTS5t53h4mD/oSYTPY6HJJ5vtuiXjV6Q7PFUDltvfNgO8WmRXsvgDri7rRRHBUiA+Y8f0DcS3TdZZC/tVhshOu41+VRH8PO092eaJpIksTa7iSfgYvRMx7jbbG8wn1rH6Z1hu1jg4YqGEILxcJCFTA652GT55gonr04S7g/SNxzB5tDIbu6g1JqQgIloiElE93156GR6iqowcnoIsFCFF9XpwozuYHfZufzt80cer+x3YNdUVu9toNnVJ5rWt3aquD2dMnAoHsDlc7K5kDww4uzTwm23cS4R6wXIF6Cnbj0+vSDZ46l4Am5OXjl8vfHTolHTsbvbT98QGD07jGY/WnW7uZCkWW8ycWEMvdFCVp588rUsi7s/nWN4ZgC334ltt8y8WShRa7SZio8gJI1mYwUh+zHaHoQkCLqdXHbaO+Ikj6N7TG6/ExDEx/q649MeV/HqzRayLCErMuXWNrpZIWyfRFZkokNHqYEfMTPSmRjS8DeRnhJcmnUd1fbo1GB32hg/N/LU13id2Hql1hemJ9w5Hr1fWo9j8bAd4bPC0MmDfZRH8TQBT2Iyzt2fzlLcbfR/GkIIxs4O4fA49qlHwy4nLbsNIdkwTJNqu5+4K8jqvQ1sTo3ERLwb/PZlqu1Z0hUJS0rgdbWot/KEbOPdh5utNuv3N3B5nZ31TDWMzfBSrzZwuOw0ak1qpRrBWIDZ7Qx6u82ZRKyb9VnmDgg/5XynbBoZePLa68Dkk0ej9ejxZaJXr+jxpUdRFU6/O93th9xLsd7oNuA/pJApUq82D7RX2FQF925fomlZVHSJ7Y08zYa+L/iW6g3S5cqjJ8ojKEpndJcqOXHKj9pcCrUGtze3GZoZoOQQZCtVZKGy+OEGt/7qLrVynTs/vkc+VaBtmEiC7tiqlt6ilN2B9hJY9a6p++Pka3XmtjPH/rwsq94xy+/xueWhd2tv6PLT6WWSPT4XWJZFKVd+ZWuhDyeaPM5GvkjY7dqn/jQNE9PYL3owTYvNQpGY1wOmiaqpTMej6A0dv9+9r2FeNwwaezxeheQktKeFVJXszKeTBJw2fKqHmb4ImqYSdLvQCzVSuSqeoEJiFDS7wti5EULxAB/cW2IgFuREXycgVwo1Uis5Tl65DIA/Qtd/di9b9zaRvTbYNewxTJNSo9ntoTyAkQGrCVKvz/HzTE+4czx6mWSPzwXNus7a/U30ZuuVvk45X6Gcf5QlnervO+CsE4wFiA7ut7kzLYtKUyeXyjP30YPu/Zpd67r+pEoVbq4nCbtdDAX9nftWM1QK1X372nqwTXpzmaaZY+3eBqXtAtBp/he6SWo1g6rZ8EUiyIqCLsHtjxcQyTLV5RymadJutankK0xePDjP0TRNcsl8d/1zaDzG2NCj+YWVps7txXWau+buD6lX6uTTRYQyhFB7AfLzjBAgC+u5/x3vNcQvCyHmhBCLQoj/8pDHbUKI/3f38V8IIUZ27w8JIX4ohKgIIf7eY8+5JIS4s/uc/0W8BiVZL5Ps8dKpNjsnV9cRzjnPg91p4/S7r77/rpKvguiIlZ4FRZaYjkcxTRN/4HBnIb/Dxux2hru3lwl5XcRGohht40BW6o/6uBA+h8vron26vU9oEx/rIz62fyBvw2jTFnD+7ZOsz21hmRabC0mqpTrlepNWsb7PI7XVbJFaSeMNuVE19cB79TnsxFsytVId2562n1q5QSVfObQs3aPHXoQQMvD3gW8BG8BHQog/tizr3p7N/jaQtyxrQgjxu8D/APwO0AD+K+D07r+9/APg94EPgD8Bfhn401f5XnpBsscLkd3aoa23iY1Eu/dlKlVMy2LMdjwLuePyOtoPHg9Ax6VtmDTabdw2jQYWRlM/cJFgU1XeGBnAqD5SmPaPxw7s62FbC9At0+oNndRqBuG1kWnrXBjs724z2h9htL9TYp04P9p5nqYwPDPArc1tlO3aPo9Um8PGzFtTT3w/Jy6NH7gvFA8c2UbT4/PHK1a3XgEWLctaAhBC/FPg14G9QfLXgf929///APh7QghhWVYVeF8IMbF3h0KIOOC1LOvnu7f/EfAb9IJkj88ymk090KM4Ejr+ibRaqlGvNLrOPZ9HUqUKbcMgW61xbiBOrtqZHXlYJu3UVHjMacdqL4JwI+SDAfMhK3fXqVcaDEeGcPv2Z37rOwUs6JZwgW4f5GXnMNrJz07rztpOgaDLeaQ/7170ZotSrvy5/m18drFe9ZpkAljfc3sDuHrUNpZltYUQRSAEZJ+wz43H9nl8mftz0luT7PFCeEOeY1uWHYbeaNGofL59PjOVKh67jdP9nSx0PBKi33+4wEhvt2k/Vl5FCoF4svn72NlhBk7Eya3nDkyZeegBWylU2V5J73tMO0KQ9KyYpsnijWXq1Sd/V6nVDEu3V4983DCt7lro02jWmuwk8890nD2Ox0MzgRdQt4aFEB/v+ff7h7zE4zz+xR9nmxfZ/qXQyyR7fKoEor7P/RrXw+B4HJayecyaTgClW9oV0sGLjGqxysrdDabfnESSJBRVwe13IR1i6ODdNUkv1cv71jez9Qc0sgp9ff1dC7znRQiBO+BCOWSySsswkEXHfs8f9eIOHD1JZDR8/AsqT8CN59KzrQ33OD7yi8WXrGVZl5/w+AYwuOf2ALB1xDYbQggF8AE7T9nnwJ7bh+3zpdPLJHv0eI1MREIk/N7uxJCjsLvt9E/E9vVi2hy2fRcULb21T+3rDXr2r3G2VOZ/sczKJ4+qXtWmzsezKweme5jm4SfMh9tlKlVE0HlosJ1PZdkqlrrH6PK+ekP7Hp95PgImhRCjQggN+F3gjx/b5o+Bf3/3/38b+IH1hDKDZVlJoCyEeHNX1fq3gH/58g99P71MskeP14TebrORLzESCuALPrm8KsvyUzPs1EqGlt5m9PRQ977NQomarjMZDRP2DvG130jsC4j/f3t3HibHXd95/P3pY+5Dc2p0Hz7kA4NtvDhr4yTErDl2CTwhXrxsnuyyu3Eegh9ikt0NAdZ4CYYQvAkkgSQGGxI/YUniXfL4IU6MWWOS2MJY2MaWhWTLsiTrGGtGGmnuo7u/+0fVjHp6pmd6Zrq7eqa/r+epZ6arqqu+VdL0t3+/+h1j50bZ9+gLXLZpPQ3N9ZzpHWDP0wfpmxrnPW+/dtZz1LGRcV760SEuufYiYhKZPCWPi7o7FpwMe2RwlHginneWGFd+KvEzyfAZ423Aw0AcuM/MXpD0KWCPmT0I3AvcL+kgQQnylpn4pMNAC1Aj6T3ATWHL2A8CXwfqCRrslLTRDniSdK7kxkcnOPj0IbZfvb3geTVfeOIAW3ZtpCVrlIGBkTHGpqZmnnduuGBuNW9bQz3NWYkunogT53wVaVt7Mze98xrqm4IqWjPobG5gYiTDVFhVe/DZV2jpaKZrcwfbX7eFmtoknbX5q2trEgt/jJw62k9dQ21BLYf7j59mZHCMbZduXnRftzKlHjnHzB4i6KaRve6OrN/HgZvzvHd7nvV7mNstpKQ8STpXYjV1STZdvBFiMba2ty44Y8m0zRdvoLF1/mrLgYkjNCTaqY0HCfRM7wD9x89wwZXbqY3Fgha0ecQTcXq2n09W0906rs7ap2d7NzV1SSTRskiJtxDZJd1c/SfOcPa1c1x4VdB1pbG1geQCCdkVx/RgAm5xniSdK7FYLEZbdyv7Tp5iXX1d3pav0wZGxxiJG605LVPbGutpo56hqTFiOr+tqa2JRE2Ck4dOMTU+SfuF6xmdnGRkYoqt7a2LlvRyTY8QVA4t7U3UZs1LWt9UT33T8ibOdksTw4elK4Q33HGuTC7t6ZpJkFPp9ExXiHQ6TTqdntkvtsikyM3J9SRj50uZNbVJWtqb6dneRfv2LsanUkym0uFA5/mP03fsNK/sPRrEkEpz4uXeWXEU28TYBEf2vTrrGWlNXc3MiD9Tk1Mc2fcq6VTpYnBuqTxJOlcm2Ylv74nX6B8eBeDYiyc59uLJmW2t9XVsWqS0OZ9EMsHLAwMkYjG2dbSxs6sdm0oxeGZo3v2b25vo2Bh0yUinM4wNj5e015kkYvFY3i8AklAstlBed0Xis4AUzqtbnYvAJeu7qA2rQTfmNMDJZDKMnBtd8vixAFds6iGZ1Zdy6Mwwg6eH5zxbnEyl2dd/mkt7guHsamqTsyZWHhseY2hgZM5A7itRU1fDll35B0hJJBNLmifUrUzcq1sL4iVJ5yJQX3N+OL9kTXJW/8PRwTEO7311Tl/GXMdeOkn/idl9r5M5gw10bupg5+u3zXlvMh5jS1vrTKLONTWRCkqWJWBmHHz2FUaHxkpyfLe4Ioy4UzU8STq3DMPjE/z42Mm8nfBXomldI5dfv2vOpM65GlvqqW8srO/h0PjE7DksJbqaG/O2tG3paC5ZNwxJNIeNjZyrdGVPkpLukvSKpEFJpyQ9IGlruO2XJT0haUBSv6S/l3RFuWN0bjF1ySQbWpsL6s6xHIslSIC29etobC2sJeqJs4OcHhldaVhFs35bFzXe1SNCRlyZZS/VJIqS5P3AlWbWAmwHjgLfDLc1A58kGJNvE/A08B1J3ibcVZREPEZ3c+WNK5pOpRkfnZizfldP17IaAy1V/4kzHHtx7nCaA6fOcepoX8nP7wojgqmylrtUk7InSTPbb2bnwpcCMsCucNuXzOwRMxsxswngM0APcEm543RuNeo/foajPzlGJpPh1QPHZ43tulLHBs4xOLbwc8r6pjoa5+lnGYuFLVcjcupo35wZUqqdlyQLE8lDAUnvJ5hhugVIAb+RZ9cbgVHgYJ7j3EowSzVbt+Yf1cO5atG9tZPOTe2YWTAjSIHD4BUiY7ZoGaKxpYHGeQqsrZ3nV5qNAQmk8lW31jXWFTxFVzWQSj6f5JoRyVc7M/uGmbUCGwhmpn4+dx9JFwNfBX7TzObt6GVm95jZNWZ2TVdXVylDdq7ijJwbmbNOUjBeazzOtsu2UFO3+OTGmUyGfbsPMDK48DPLre3raK2vW3CfgqQOQaa8pbqWjuZZidq5QkXautXMeoGvAN+WNDP9uKTLgO8Bd5vZn0YVnyu/dDq96MS+Lhi95uCzh5kYm/v8calisRg9O7qLOktHOpVm3+4DjA3P7uYxPD6BxXdBbGPRzuWWJ44te6kmldAFJAE0AhsBJF0NPAb8rpn9XoRxuQgM9J6dNf+hm19tfS2vu/4SausL7wLy3LHemSrH3KrH9p424om5EyovR9+x00xNpujZ0U1N1risk6k0+3r7GJ3KcKb3LIeeO1KU87mlC/pJZpa9VJOyJklJMUm3SeoOX28GvgQcBvZLuh74f8AnzOyPyhmbqwwdG9u5+I07ow5jVVhKUqtLJuhpbUISfcdOc/CZV4oWh5nx2uAwqXCqreGzI0yOT9LY2sDQmeGZ/WoSca7asoGm2hoaWxtmhsRzUVh+KdJLkqX3TmCvpBHgSYKGOW81sxTwaaAV+H1Jw1nLDRHE6SIw/UzNFVcyHp/pstLa1TJnKLyVyJjROzjERCoYrGDH67bS0t7MyLlRzpw8OycOgLqGWn9G6FaFsrZuNbMMQZLMt/0tZQzHuapUU5ssakf+eCzGGzZvmLO+vaeN9p7FS4updIZE/Pz3dTMjk8kQjy/8ZWkylebImQF2dLTPer9b3HR1q1uc/89ybhkWG1e10llmGEuV7plgJpPh6P7jTI5Pks5keG1weN4uGONTKZ5+9cSsIfP6Xu3n5WcPL3oOKUjQC8wq5hYQJ7PspZp4knRuiTKZDC88foDhs3O7YFSrdDrNS08fYujsMMcPniSTycwkxal0ht7BIVLzfLGoSya4tKeLuuT5Sq2Oje1sLWDc2GQ8zs7OduIRDlKwWvlUWYXzEYadW6JYLMb2122hoWX1jpaoWBPEVj6s3ujQGKnJFM3tTbR0BGPZTo5NImnWAOnzVcdOa66b3UI3noj7c+kyqLYS4XJ5knRuGZYz1+NaNHJulPGRcVo6mlm/rQszY8cVc6fmAhgaGCaeiJGsnT01mHOVzJOkc2U2NjmFpFlVjKtV1+aOWa8PPHWQri2ddGyY3WBncmKKQ88dIVGToGNDGz3bu4sWg5khfzC5JIKqG4N1uVb/X6lzq8zxs4Mk4jG2d6y9foKbL95IXTjHZTqdnmmhWlOb5IobLgUoekJ76elDtK1fNydhu4VU32wey+VJ0rkyu6CrffGdVqmmdY2k02nS6TQvPH6AC96wbWbOy0LmyFyOTRdtoKbOq2+XQvKSZKG8WZhzZSap4qoHRyenGBgdW3zHeUyl0/QPBy19p1v+jg2Ns/P122hoaShmmPNqbGnwZ5zLECOz7KWaeJJ0rsJYujecTqp8BsfGZxLdUo1NTnFsYBAzIxaLhcmxnqZ1jUX7MmBmTGT1pXSuXDxJOldhMqkBMlPl7YPZ09rMRd2dy3pvS30dV27ZMJMQm9Y1rqhqdXL4x7y050mmJs9PGD0wOsbzJ3qXfUw3mzDiWv5STfyZpHMV5vgrLVhmjG2XRR1JYVLpDGeGDtPZCLHkygenT9RtpnX9+Ky+km0N9VyxsWfFx3YB4f0kC+VJ0rkKs/GC9fMO4VapJtNp+kaM9saWolRNxRIddG+ZvU4StRF2mTnbd46pidSaakHrY7cWxqtbXUkc2PMyQwPDi+/o5kgkE6uqIUpDTZLLN11AItkVdSgzpianSKfTRTue2dw5OF118CTpSqJrc/tMfzlXXdIlGvw9kzGeffUkw+MTswZQn8+RF45x6kh/0c7d1t1K95blPbOtRMJ8gPMCeXWrK4lCpkhya9Nzx3vZ0tZKZ1NjUY8bi4lN61qoSwal7IVKdtsu30zMp89aULU1wFkuT5LOuaK6qKuD+hJVF3c1n0+82xaYKWQ1VVdHQVB1/R2Xy5Okc66omuoKq2bvGxphaHyCnWt4BKLKZT7iToE8STrnIlGq0qZzxeRJ0jkXiabaGppqa6IOoyp5P8nCeZJ0zrkq5LOAFMaTpHOu7E4Pj3JqaJhLNxRvXklXOMmfSRbKk6RzruyaamuQmqIOo6rFvSRZEO9I5Jwru9pkgvbGlU+jZZbGJp/BMpU7utPIuRFGh8o7q4srHi9JOuciNzk+SaImseTZQ6Q4Ft8Mqi9RZCt3pvcsiZoEDc2VE6P3kyycJ0nnXOQOPnuY7q2ddG5cep9JxStnzNj5bNm1KeoQ5uHPJAvlSdI5F7kLr9pBIhlffEdgYGSMjBkdTSuvrq1WQRcQfyZZCE+SzrnI1dQWPrDARCpFxmfkcGXiSdI5t6r0tDZHHcKaEPMBzgviSdI556rM9FRZbnGeJJ1zS5bJGKlMhppEYc8RV7vJVIpkPI6kqEMpCn8mWTjvJ+mcW7JTQ8Ps7+0ry7kGRsY4PTxalnPls/fEKfqGRyKNodhismUv1cRLks65JetubqKtoTz9/iZSKdIRN9S5bEM3NfHqKDW72TxJOueWLBYTtbHyfHysbzwLSgItZTnffOqSa+uj0qtbC7e2/uWdc2uP6kGV/1G12vpvepIsTOX/z3POVTXFO6MOoSCrqf+mgNjaaINUcmVvuCPpLkmvSBqUdErSA5K2zrPf5ySZpF8qd4zOucpjZvzk5CmGxyciiyGdyWB5EmFPazMb10VXJbw0RnwFSzWJonXr/cCVZtYCbAeOAt/M3kHSm4B3ACfLHp1zriJJoqW+jmSEDWj29/Zx4txQZOd35Vf2JGlm+83sXPhSQAbYNb1dUi1wL/CrwGS543POVa5N61qojbARzc7OdrqbGyM7f7EEs4AsfynoHNLbJR2QdFDSR+fZXivpr8LtT0ranrXtt8P1ByS9LWv9YUnPS3pW0p6lX/nSRfK/TdL7gT8haK6WAn4ja/OdwKNmtnuxjruSbgVuBdi6dU6NrXPOFVV9TeFjzFY0QbyEzyQlxYEvAf8KOAY8JelBM9uXtdt/BgbM7EJJtwCfA94n6TLgFuByYCPwXUkXm1k6fN9bzKy/dNHPFslgAmb2DTNrBTYQJMXnASRdA9wMfLzA49xjZteY2TVdXZU9XY5z5XRmZJRUujKHHRuZmGQqnV58R1cyQsRXsBTgTcBBMztkZpMEj9TenbPPu4E/D39/ALhRQcno3cA3zWzCzF4BDobHi0SkI+6YWS/wFeDbkrqBrwEfMrPKnWbcuVXgyJmzDE9U5tOKQ/1nIh9Bx61Yp6Q9WcutOds3Aa9mvT4Wrpt3HzNLAeeAjkXea8B3JP1onnOWRCV0AUkAjUA3QfH6L7OqWduAP5H0DjP79xHF59yqc9WWjVGHkNdlG7qJrZExULOdPjlALB6jrbs16lAKssISUr+ZXbPA9vn+gXObxebbZ6H3Xm9mJ8JC1SOS9pvZPy4e7vKVtSQpKSbptvACkbSZoN76MPASsBW4Mms5AXwM+HA543TOlU48Fqu4gcLP9p3L27WjEMPjE+w//hrp1OqoRhYQl5a9FOAYsCXr9WaCz/N595GUAFqBMwu918ymf54CvkUZqmGjqG59J7BX0gjwJDAKvDWsfz6WvQBpgge7pyOI0zlXYiODo4yNjEcaw9TkFK/uP8HE2PKrp2sScXZetInOje1FjKy0YmjZSwGeAi6StENSDUFDnAdz9nkQ+A/h779I0GDTwvW3hK1fdwAXAT+U1CipGUBSI3ATsHfFN2IRZa1uNbMMQZIsdP/tpYvGORe10ycGSCTj1F/QE1kMyZokV9xw6YqOUZNIsGEVTQYdjN1autK8maUk3QY8DMSB+8zsBUmfAvaY2YMEXf3ul3SQoAR5S/jeFyT9NbCPoPfDh8wsLWk98K2wFiIBfMPM/qFkFxGqhGeSzrkqtfWS3LYcbq0ws4eAh3LW3ZH1+zhBb4b53nsXcFfOukPAG4of6cI8STrnXBUqsNq06nmSdM65KiMKboBT9TxJOudcFYpF201+1fAk6ZxzVSYYu9VLkoXwrxLOOedcHl6SdM65HGZWcQMeFJeIy8tIhfAk6ZxzWU4d7WPw9DAXXrUj6lBKJqhu9SRZCK1kKKZKIqkPOFKkw3UCZZuKJULVcp1QPddaLdcJ1XOtnUCjmRVtqiNJ/xAed7n6zeztxYqnkq2ZJFlMkvYsMnjvmlAt1wnVc63Vcp1QPddaLddZqby87ZxzzuXhSdI555zLw5Pk/O6JOoAyqZbrhOq51mq5Tqiea61fO5MRAAAIqElEQVSW66xI/kzSOeecy8NLks4551weniSdc865PDxJziOcEfvPJL0kaUjSUUmfl1QXdWzFICkeXk9feH3/R9JK+kxVJEmfk/SCpEFJJyR9RdLqmTp+GSTFJD0hySRtjjqeUpD0Vkk/kDQsqV/Sl6OOqRQk9Uj6q/DvdEDSo5LKPp9itfMkOb8EQSfldwHrgBuAnwM+F2VQRfRR4N3AtcD0B+n90YVTMmngl4AOgslaNwNfizSi0vsIMBp1EKUi6WeBB4C7Cf5dNwNfjTKmEvoy0A7sAtYDe4Bva22Pl1dxvOFOgSR9CLjVzFb9NzlJR4BPmdm94esLgIPADjM7HGVspSTpXwPfMLPWqGMpBUkXA38PvBd4BthiZseijaq4JO0Gvm9mH406llKT9Bzwx2Z2T/h6F7Af6DKzahhpqCJ4SbJwNwLPRR3ESklqBbYCP5peZ2YvA4PA66OKq0zWxL/hfCTFgPuA/wacjTickpDUCLwJGJf0dFjV+piktToazeeB90rqDB/13Ar8syfI8qq6JCnp6+HzmnzLp+d5z+3Am4GPlz/iomsJf57LWX82a9uaI+m9wK8Avx51LCXy60Cvmf3fqAMpoTaCz6xfAf4jsBH4DvCQpHURxlUqjwNxoA8YBn6B4NpdGVVdkgRuA7oWWD6TvbOkjxA8w/s5Mzta3lBLYij8mVvluI6gNLnmSLoZ+Arw82b2dNTxFJukC4HfJPi/vZZN/9/9mpk9Z2aTwGeBJHBddGEVX1gz8F3gRYK/1QbgLuCfJK2PMrZqU3VJ0syGzax/gWWm0YOk/0Hw4fMzZrY3uqiLx8zOAkeBq6fXSdpJUIpcc1WRkj4A/BnwLjP7XtTxlMibCb7g7ZXUD0x/EXhO0q9FF1Zxmdk54DAwX0OKtda4oh3YAfyRmQ2a2aSZfZXgM/unog2tulRdkiyUpM8D/4UgQR6IOp4iuwf4LUk7JLUQtNp9eK012pH0YYJWkG8zs8ejjqeE/hq4ALgyXN4Zrr8J+IuogiqRLwMfkHSZpATBM9hx4Ilowyqu8Lnji8CvSWqUlJD0n4Bm4Ploo6suPunyPCRtA/4rMAn8OKvF9REzuzyywIrndwme7zwF1AKPEHSVWGu+CKSA72W3mjezpsgiKoGw9iO7BmT677rXzIajiapk7iZIFI8CdQSteN8RljLXmvcQNN45QlClfBC42cwORRpVlfEuIM4551weXt3qnHPO5eFJ0jnnnMvDk6RzzjmXhydJ55xzLg9Pks4551weniSdc865PDxJuqKRdGee8XC/m2f/28PtD+SsX2h83X+Xtd9jefapC7ffGL5+c87xPxiu/0TO+ovC9e8vx72Q1CLpC5IOSxqV9JPwnihrny5Jfyjph5ImJR0u4Nxz7muU98K51cwHE3DFdg54+zzrZpHUDdxBMHhzrt8B/jRn3QeB9xOMZ5nte8DHctZNhD+fJJhT8jrgn7O2X0fQ+T53vM/p18UanWexe/F14KcJ4j8IvAX4fUDAH4T7bALeR3AtzwLdC51wgfsa9b1wblXyJOmKLWVmPyhgv88Cfwdsyd0QTt31cvY6SfcC3zWz3A//M/nOZ2bDkp5nbgL4lwTDtb1Pkuz8iBrXAcfN7EgB8Rci772Q1EAw8fXt0/MFAo9Kuhy4hfNJ8jkzWx++527gFxc557z3tQLuhXOrkle3urKT9C+Af0swu0oh+78euAz438s43eMEiWD6WN0E45x+kWBQ90uz9r2O8o0BmiD4+5tvyrKZ6lYzyxR6wALua6XeC+cqlidJV3ThYMzZS/YzNgF/DPyemR0v8JC3EAxi/bfzbLspfJ43KunhMKFmewLoDqeTgiBJHDez/QSznlwXxtVKkIiLWr2Y716Y2SDBwOT/XdKVkpol/RuCJPelZZynkPsa6b1wbjXyJOmKrQOYylluzNr+AaCHYKDqQr0PeChMLNm+TzDZ8NsIZm3fSjDf3vasfaZLQ9dl/dwd/r47a/1PEfw9FDMxLHYvfhnYTzBI9yDwIPA7ZvbnyzhXIfc1ynvh3KrkzyRdsZ0D3pqz7gDMlFA+A3zYzMYKOZika4GdwG/lbjOzT2a9/Kew5eh+4PZwwcwOSzpOkAD+Ivz5rfA9PwA+Hv4+3YDl2QViiTH7i2VmkerQvPci9AfAtQQJ7hDBvJB3Suo3s3sXOG5uXAXd12LeC+eqhSdJV2wpM9uTZ9vHgFeB70haF65LAMnw9ZCZpXPecwvBjPR/t9iJzaxX0uNkTSgd2g1cJykJvJFgDsLp9bskdRAkhh+aWWqBU9wBZCfm/wncucD+ee9FWC38QeAmM3skXP2PkpqBuyV9bQnPI5dyX4t1L5yrCp4kXTntAq4BBubZNgDcQFb3hLDkdjPwt4WWPEO58789AfwC8DMEJcFnAMzsoKQ+4HqCEt0fLnLce4BvZ70+sYSYcl0S/swtrT0DrCOoqp2ve8x8lnJfi3UvnKsKniRdOX0C+ELOui8QVEt+krkzrv80QT/Bglq1SlpP8CF/X86mxwkSwkeAp81sImvbD4BfJZjId8HWnGZ2gpUlxmzTXSuuBh7OWv9GYAToX8KxlnJfi3IvnKsWniRd2ZjZ3tx1ks4C/Wb22DxvuQU4DTySuyGsrvws8DcECWcr8NtAhrkJ4xlgDHgH5/sfTtsN3EVQ+txN+ewJl/sk3QG8QvBM8nbgi1n9FZE03TfyYqAh6/X3zaxvife1Eu+FcxXLk6SrSJISwHuBB/I8GztN0J/wswRVk0PAY8B7zOxo9o5mNiXpKYKSae6H/+7wOPvMbL7qypIws7SkdwGfJnjW2UWQ7O8E/lfO7n+T5/VbCK55KeetuHvhXCVT1hdW55xzzmXxfpLOOedcHp4knXPOuTw8STrnnHN5eJJ0zjnn8vAk6ZxzzuXhSdI555zLw5Okc845l4cnSeeccy4PT5LOOedcHv8fp6r8hmIrnzsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plot_cmd_with_fits.plot(data_fits_file=\"M31-B09-EAST_chunk.st_with_sourceden_cut.fits\", \n", " beast_fits_file=\"M31-B09-EAST_chunk/M31-B09-EAST_chunk_stats.fits\", \n", @@ -1770,13 +2130,338 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.gridspec import GridSpec\n", + "import copy\n", + "from scipy.stats import binned_statistic, binned_statistic_2d\n", + "from astropy.table import Table, vstack\n", + "\n", + "from beast.physicsmodel.grid import SEDGrid\n", + "import beast.observationmodel.noisemodel.generic_noisemodel as noisemodel\n", + "\n", + "\n", + "def plot_completeness(\n", + " physgrid_list,\n", + " noise_model_list,\n", + " output_plot_filename,\n", + " param_list=[\"Av\", \"Rv\", \"logA\", \"f_A\", \"M_ini\", \"Z\", \"distance\"],\n", + " compl_filter=\"F475W\",\n", + "):\n", + " \"\"\"\n", + " Make visualization of the completeness\n", + " Parameters\n", + " ----------\n", + " physgrid_list : string or list of strings\n", + " Name of the physics model file. If there are multiple physics model\n", + " grids (i.e., if there are subgrids), list them all here.\n", + "\n", + " noise_model_list : string or list of strings\n", + " Name of the noise model file. If there are multiple files for\n", + " physgrid_list (because of subgrids), list the noise model file\n", + " associated with each physics model file.\n", + "\n", + " param_list : list of strings\n", + " names of the parameters to plot\n", + "\n", + " compl_filter : str\n", + " filter to use for completeness (required for toothpick model)\n", + "\n", + " output_plot_filename : string\n", + " name of the file in which to save the output plot\n", + "\n", + " \"\"\"\n", + "\n", + " n_params = len(param_list)\n", + "\n", + " # If there are subgrids, we can't read them all into memory. Therefore,\n", + " # we'll go through each one and just grab the relevant parts.\n", + " compl_table_list = []\n", + "\n", + " # make a table for each physics model + noise model\n", + " for physgrid, noise_model in zip(\n", + " np.atleast_1d(physgrid_list), np.atleast_1d(noise_model_list)\n", + " ):\n", + "\n", + " # get the physics model grid - includes priors\n", + " modelsedgrid = SEDGrid(str(physgrid))\n", + " # get list of filters\n", + " short_filters = [\n", + " filter.split(sep=\"_\")[-1].upper() for filter in modelsedgrid.filters\n", + " ]\n", + " if compl_filter.upper() not in short_filters:\n", + " raise ValueError(\"requested completeness filter not present\")\n", + " filter_k = short_filters.index(compl_filter.upper())\n", + " print(\"Completeness from {0}\".format(modelsedgrid.filters[filter_k]))\n", + "\n", + " # read in the noise model\n", + " noisegrid = noisemodel.get_noisemodelcat(str(noise_model))\n", + " # get the completeness\n", + " model_compl = noisegrid[\"completeness\"]\n", + " # close the file to save memory\n", + " #noisegrid.close()\n", + "\n", + " # put it all into a table\n", + " table_dict = {x: modelsedgrid[x] for x in param_list}\n", + " table_dict[\"compl\"] = model_compl[:, filter_k]\n", + "\n", + " # append to the list\n", + " compl_table_list.append(Table(table_dict))\n", + "\n", + " # stack all the tables into one\n", + " compl_table = vstack(compl_table_list)\n", + "\n", + " # import pdb; pdb.set_trace()\n", + "\n", + " # figure\n", + " fig = plt.figure(figsize=(4 * n_params, 4 * n_params))\n", + "\n", + " # label font sizes\n", + " label_font = 25\n", + " tick_font = 22\n", + "\n", + " # load in color map\n", + " cmap = matplotlib.cm.get_cmap(\"magma\")\n", + "\n", + " # iterate through the panels\n", + " for i, pi in enumerate(param_list):\n", + " for j, pj in enumerate(param_list[i:], i):\n", + "\n", + " print(\"plotting {0} and {1}\".format(pi, pj))\n", + "\n", + " # not along diagonal\n", + " if i != j:\n", + "\n", + " # set up subplot\n", + " plt.subplot(n_params, n_params, i + j * (n_params) + 1)\n", + " ax = plt.gca()\n", + "\n", + " # create image and labels\n", + " x_col, x_bins, x_label = setup_axis(compl_table, pi)\n", + " y_col, y_bins, y_label = setup_axis(compl_table, pj)\n", + " compl_image, _, _, _ = binned_statistic_2d(\n", + " x_col,\n", + " y_col,\n", + " compl_table[\"compl\"],\n", + " statistic=\"mean\",\n", + " bins=(x_bins, y_bins),\n", + " )\n", + "\n", + " # plot points\n", + " im = plt.imshow(\n", + " compl_image.T,\n", + " # np.random.random((4,4)),\n", + " extent=(\n", + " np.min(x_bins),\n", + " np.max(x_bins),\n", + " np.min(y_bins),\n", + " np.max(y_bins),\n", + " ),\n", + " cmap=\"magma\",\n", + " vmin=0,\n", + " vmax=1,\n", + " aspect=\"auto\",\n", + " origin=\"lower\",\n", + " )\n", + "\n", + " ax.tick_params(\n", + " axis=\"both\",\n", + " which=\"both\",\n", + " direction=\"in\",\n", + " labelsize=tick_font,\n", + " bottom=True,\n", + " top=True,\n", + " left=True,\n", + " right=True,\n", + " )\n", + "\n", + " # axis labels and ticks\n", + " if i == 0:\n", + " ax.set_ylabel(y_label, fontsize=label_font)\n", + " # ax.get_yaxis().set_label_coords(-0.35,0.5)\n", + " else:\n", + " ax.set_yticklabels([])\n", + " if j == n_params - 1:\n", + " ax.set_xlabel(x_label, fontsize=label_font)\n", + " plt.xticks(rotation=-45)\n", + " else:\n", + " ax.set_xticklabels([])\n", + "\n", + " # along diagonal\n", + " if i == j:\n", + "\n", + " # set up subplot\n", + " plt.subplot(n_params, n_params, i + j * (n_params) + 1)\n", + " ax = plt.gca()\n", + "\n", + " # create histogram and labels\n", + " x_col, x_bins, x_label = setup_axis(compl_table, pi)\n", + " compl_hist, _, _ = binned_statistic(\n", + " x_col, compl_table[\"compl\"], statistic=\"mean\", bins=x_bins,\n", + " )\n", + " # make histogram\n", + " _, _, patches = plt.hist(x_bins[:-1], x_bins, weights=compl_hist)\n", + " # color each bar by its completeness\n", + " for c, comp in enumerate(compl_hist):\n", + " patches[c].set_color(cmap(comp))\n", + " patches[c].set_linewidth = 0.1\n", + " # make a black outline so it stands out as a histogram\n", + " plt.hist(\n", + " x_bins[:-1], x_bins, weights=compl_hist, histtype=\"step\", color=\"k\"\n", + " )\n", + " # axis ranges\n", + " plt.xlim(np.min(x_bins), np.max(x_bins))\n", + " plt.ylim(0, 1.05)\n", + "\n", + " ax.tick_params(axis=\"y\", which=\"both\", length=0, labelsize=tick_font)\n", + " ax.tick_params(\n", + " axis=\"x\", which=\"both\", direction=\"in\", labelsize=tick_font\n", + " )\n", + "\n", + " # axis labels and ticks\n", + " ax.set_yticklabels([])\n", + " if i < n_params - 1:\n", + " ax.set_xticklabels([])\n", + " if i == n_params - 1:\n", + " ax.set_xlabel(x_label, fontsize=label_font)\n", + " plt.xticks(rotation=-45)\n", + "\n", + " # plt.subplots_adjust(wspace=0.05, hspace=0.05)\n", + " plt.tight_layout()\n", + "\n", + " # add a colorbar\n", + " gs = GridSpec(nrows=20, ncols=n_params)\n", + " cax = fig.add_subplot(gs[0, 2:])\n", + " cbar = plt.colorbar(im, cax=cax, orientation=\"horizontal\")\n", + " cbar.set_label(\"Completeness\", fontsize=label_font)\n", + " cbar.ax.tick_params(labelsize=tick_font)\n", + " gs.tight_layout(fig)\n", + "\n", + " fig.savefig(output_plot_filename)\n", + " plt.close(fig)\n", + "\n", + "\n", + "def setup_axis(compl_table, param):\n", + " \"\"\"\n", + " Set up the bins and labels for a parameter\n", + "\n", + " Parameters\n", + " ----------\n", + " compl_table : astropy table\n", + " table with each set of physical parameters and their completeness\n", + "\n", + " param : string\n", + " name of the parameter we're binning/labeling\n", + "\n", + " Returns\n", + " -------\n", + " col : numpy array\n", + " column to plot\n", + "\n", + " bins : numpy array\n", + " bin edges\n", + "\n", + " label : string\n", + " the axis label to use\n", + "\n", + " \"\"\"\n", + "\n", + " # mass isn't reguarly spaced, so take log and manually define bins\n", + " if \"M_\" in param:\n", + " col = np.log10(compl_table[param])\n", + " bins = np.linspace(np.min(col), np.max(col), 20)\n", + " label = \"log \" + param\n", + " # metallicity just needs to be log\n", + " elif param == \"Z\":\n", + " col = np.log10(compl_table[param])\n", + " bins = np.linspace(np.min(col), np.max(col), len(np.unique(col)) + 1)\n", + " label = \"log \" + param\n", + " # for all others, standard linear spacing is ok\n", + " else:\n", + " col = copy.copy(compl_table[param])\n", + " bins = np.linspace(np.min(col), np.max(col), len(np.unique(col)) + 1)\n", + " label = copy.copy(param)\n", + "\n", + " return col, bins, label" + ] + }, + { + "cell_type": "code", + "execution_count": 55, "metadata": { "scrolled": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Completeness from HST_WFC3_F475W\n", + "Completeness from HST_WFC3_F475W\n", + "Completeness from HST_WFC3_F475W\n", + "Completeness from HST_WFC3_F475W\n", + "Completeness from HST_WFC3_F475W\n", + "Completeness from HST_WFC3_F475W\n", + "Completeness from HST_WFC3_F475W\n", + "Completeness from HST_WFC3_F475W\n", + "Completeness from HST_WFC3_F475W\n", + "plotting Av and Av\n", + "plotting Av and Rv\n", + "plotting Av and logA\n", + "plotting Av and f_A\n", + "plotting Av and M_ini\n", + "plotting Av and Z\n", + "plotting Rv and Rv\n", + "plotting Rv and logA\n", + "plotting Rv and f_A\n", + "plotting Rv and M_ini\n", + "plotting Rv and Z\n", + "plotting logA and logA\n", + "plotting logA and f_A\n", + "plotting logA and M_ini\n", + "plotting logA and Z\n", + "plotting f_A and f_A\n", + "plotting f_A and M_ini\n", + "plotting f_A and Z\n", + "plotting M_ini and M_ini\n", + "plotting M_ini and Z\n", + "plotting Z and Z\n" + ] + }, + { + "ename": "UserWarning", + "evalue": "This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mUserWarning\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mparam_list\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Av'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Rv'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'logA'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'f_A'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'M_ini'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Z'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m#, 'distance'],\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m compl_filter='F475W',)\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36mplot_completeness\u001b[0;34m(physgrid_list, noise_model_list, output_plot_filename, param_list, compl_filter)\u001b[0m\n\u001b[1;32m 205\u001b[0m \u001b[0mcbar\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_label\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Completeness\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfontsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabel_font\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 206\u001b[0m \u001b[0mcbar\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtick_params\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabelsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtick_font\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 207\u001b[0;31m \u001b[0mgs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtight_layout\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfig\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 208\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 209\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msavefig\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutput_plot_filename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/astroconda/lib/python3.6/site-packages/matplotlib/gridspec.py\u001b[0m in \u001b[0;36mtight_layout\u001b[0;34m(self, figure, renderer, pad, h_pad, w_pad, rect)\u001b[0m\n\u001b[1;32m 334\u001b[0m figure.axes, grid_spec=self)\n\u001b[1;32m 335\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32min\u001b[0m \u001b[0msubplotspec_list\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 336\u001b[0;31m cbook._warn_external(\"This figure includes Axes that are not \"\n\u001b[0m\u001b[1;32m 337\u001b[0m \u001b[0;34m\"compatible with tight_layout, so results \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 338\u001b[0m \"might be incorrect.\")\n", + "\u001b[0;32m~/anaconda3/envs/astroconda/lib/python3.6/site-packages/matplotlib/cbook/__init__.py\u001b[0m in \u001b[0;36m_warn_external\u001b[0;34m(message, category)\u001b[0m\n\u001b[1;32m 2076\u001b[0m \u001b[0;32mbreak\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2077\u001b[0m \u001b[0mframe\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mframe\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf_back\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2078\u001b[0;31m \u001b[0mwarnings\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwarn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmessage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcategory\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstacklevel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2079\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2080\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mUserWarning\u001b[0m: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect." + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrwAAAa4CAYAAADSvXnEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeZwtd1kn/s+T3IRA9oUMsuWCgIwoAiKLyGZgAInKIojOoMggIjrqRBFQBBSURWTgp6yyqMjPARcWxwElQkAYBklERRZBQgIEEgjZyL4988epazp9e+/qe251v9+vV7+qz6lvPfVUddc9fc/nVFV1dwAAAAAAAGCqDph3AwAAAAAAALAZAi8AAAAAAAAmTeAFAAAAAADApAm8AAAAAAAAmDSBFwAAAAAAAJO2a94N7DTHHXdc7969e95tAKs4/fTTz+vum867D4CtUnVAJ73wmc1WHGFMrfBoTU+se517z12lZq1WbyP7cZXtXvzMGvbDurdrvT1saI2b3Xer9biWdWzt+HHWsfKIzf+GrWX8BrZztUNnnT1saPnVDpVVF19/l/t6P6ypxqb3w/ptdU9rW6ZXnLuRl5Cx992GtnudC+09fJ37ZS3r2HRPa3HDvvfFsVar7Ku9xo+yH1ZZ59jHc61vG5eusdoSi352W/AP33r/zVlqP2/oz8rNjF9imfn0MPLBs5Hf0dF72Ip/0MfocbMH8Dx6WOf4Jeevt++Rx69lmS35w2WTB/ime95AD3PYD6ef/pm/7u6HrqXSRgm89rHdu3fntNNOm3cbwCqq6qx59wCwtToL/xTc643evf6DdcMLA+w9fvGFA/a+kEDtNebAFefX4nWuso6956+/5urjV+75gDVs997rWO9+uOH4Na0zKy+z13Zl5e3aq+clejhg1ZqLeuqVt3vx+CXXuUrfq69j8eNFYVOvZZ214uO917nK+Fp5/uy5G1p8fB6wSo3Fh/tq85cac8Be/4QsXufi+etb5+L6yVLbufIye/2rts6el+xrtfmbHL/U+wp7j1nlZ7HK8nuP3/uN4XXXXDR/vdu51M979d+hld9k3+sVZE37euXQZfXt7hXnb2Tfr7bMeucv/Xu+Wt+r7ZfN9bT0mPXWXO33Yal9vb5l9tpPe/2bsnJPS45Zbf5ePa5vu+uAtWz3ao8XLX/A+sYv1cdqy6w6ftGO2+vxUvt+r1/s1XpYPH61de61ylWXWf/81f4x3buFvZZZ5R+mvXtY+R+lJf4cX8OL42o1N7f8ks/VyOs4YIkNX/Uf8FVqrHeda9ru1daxyfkbWsc6x6+23zZSc5V19GrjN7LOvfbTOvfLEmN63TXX+XjJ/xSsr8auAx943N5FxuWShgAAAAAAAEyawAsAAAAAAIBJE3gBAAAAAAAwaQIvAAAAAAAAJk3gBQAAAAAAwKQJvAAAAAAAAJg0gRcAAAAAAACTJvACAAAAAABg0gReAAAAAAAATJrACwAAAAAAgEkTeAEAAAAAADBpAi8AAAAAAAAmTeAFAAAAAADApAm8AAAAAAAAmDSBFwAAAAAAAJMm8AIAAAAAAGDSBF4AAAAAAABMmsALAAAAAACASRN4AQAAAAAAMGkCLwAAAAAAACZN4AUAAAAAAMCkCbwAAAAAAACYNIEXAAAAAAAAkybwAgAAAAAAYNIEXgAAAAAAAEyawAsAAAAAAIBJE3gBAAAAAAAwaQIvAAAAAAAAJk3gBQAAAAAAwKQJvAAAAAAAAJg0gRcAAAAAAACTJvACAAAAAABg0gReAAAAAAAATJrACwAAAAAAgEkTeAEAAAAAADBpAi8AAAAAAAAmTeAFAAAAAADApAm8AAAAAAAAmDSBFwAAAAAAAJMm8AIAAAAAAGDSBF4AAAAAAABMmsALAAAAAACASRN4AQAAAAAAMGkCLwAAAAAAACZN4AUAAAAAAMCkCbwAAAAAAACYNIEXAAAAAAAAkybwAgAAAAAAYNIEXgAAAAAAAEyawAsAAAAAAIBJE3gBAAAAAAAwaQIvAAAAAAAAJk3gBQAAAAAAwKQJvAAAAAAAAJg0gRcAAAAAAACTJvACAAAAAABg0gReAAAAAAAATJrACwAAAAAAgEkTeAEAAAAAADBpAi8AAAAAAAAmTeAFAAAAAADApAm8AAAAAAAAmDSBFwAAAAAAAJMm8AIAAAAAAGDSBF772Mf/8WOpqtG/dh975Lw3DQAAAAAAYC52zbuBneaqa6/LNS990uh1d538utFrAgAAAAAATIEzvAAAAAAAAJg0gRcAAAAAAACTJvACAAAAAABg0gReAAAAAAAATNqueTcAAMBcfCK55oo9D3rx3L2eWGX2KuNhmzsuyXnzbgK2AccSjMfxBONxPME4DtnqFQi8AAB2piu6++7zbgK2g6o6zfEEm+dYgvE4nmA8jicYR1WdttXrcElDAAAAAAAAJk3gBQAAAAAAwKQJvAAAdqbXzrsB2EYcTzAOxxKMx/EE43E8wTi2/FiqbncY35eqqq956ZNGr7vr5NfFzxLGU1Wnuz4zAAAAAMA0OMMLAAAAAACASRN4bRO3PuLQVNWoXyccfcS8NwsAAAAAAGBVu+bdAOP4zFMeOXrNQ178x6PXBADGV1U/muSnk9w5yYFJPp3kjUle1d3XbaDeQ5OcnOTuSQ5JckaSP0nyku6+cqy+YX80xvFUVQckuVeS70ty/yS3SXJ8kguSnJ7ktd399vG7h/3H2K9Ni2o/Oclrhoev6O6f3Uw92N9twd96ByZ5UpL/nOROSQ5N8rUk/5jZa9RfjtQ67HfGPJ6q6ugkT0vy/Ulum9l77eck+UCS3+nufxyxddgvVNW3JHloku/K7D2DOySpJI/p7j/bRN1Rjk2BFwDAhFXVK5I8NckVSf42ydVJTkzye0lOrKrHdPe166j3y0lelOTaJKdm9gb9/ZM8P8lJVXVid1826kbAfmLE4+m2ST40fH9+ktOSfHB4/mFJHlZVf5Dkie1GvGxDY782Lap9QpKXJOnM3lyBbW0L/tY7Jsm7ktwjyUWZvV59I8mthrrnJhF4sS2NeTxV1a2T/F2SWyc5L8n7hrp3SfJfkjyuqh7X3X8++obAfP10kp8fs+CYx6ZLGgIATFRVPTqzPwrPSXLn7j6pux+Z5PZJPpXkkUnW/Kn3qrp7khcmuSzJfbr7Qd39mMzepP9AZmes/Oa4WwH7h5GPp07y3szCreO7+yHd/bjuvkeSByS5NMkThi/YVsZ+bVpUu5K8PrP3Mv5onI5h/7UFf+sdkFmYdY8kr0tyi+5++PAadZ/MzkZ+2cibAfuFLXh9emFmYdf/TnLCUO+HMjvb5dczO9HkNVV10IibAfuDf0ny20l+OMntkrx/M8XGPjYFXgAA0/XMYfr07v7snie7+9zMPnWVJM8Y3txYi2dk9mn5F3X3RxbUuyTJTyS5LslTq+qoTXcO+5/Rjqfu/lx3n9jd7178ScTufn9mb5Aks0//wnYz9mvTQk/J7NO+z0xy5maahIkY+3j6ySTfndmbk0/u7ksXzuzuS7r7XzbZM+yvxj6eHjhMn7fwChjDpdeel+TyJMdm9qY9bBvd/bru/uXufmt3f26EkqMemwIvAIAJqqpbJvnOJFcl+dPF84c31c9OcrPMzsxard7BmZ2NkiRvXqLeGUk+nOTgzO5LBNvG2MfTGnxsmN5yhFqw39jKY6mqbpPkxZldfu33Nt0s7Oe26Hja8wn5F7mkLjvJFh1Pa7238XlrHAc7zlYcmwIvAIBpuusw/UR3X77MmI8uGruSb0lykyTnr/AprfXUgykZ+3hazZ5P+n5lhFqwP9mSY2m4lOEbMrs81H/1Rj07xKjHU1XdLMm3ZXZflPdV1bdX1XOr6jVV9VtV9eDNtwz7ra14fXr3MH1WVd1kz5PDa9azk9w4yTu7+6vrbRZ2kNGPzV2bbgkAgHm4zTA9a4UxX1g0di31vrDCmPXUgykZ+3ha1vCGyM8ND93EnO1mq46ln83s/nfP6O5/3UBfMEVjH093HqZnJvm1zC4hVQvmP7OqPpDk0d3tjBS2m614fXpWZm/APzzJWVX1fzM76+s7kpyQ5I8zuy8RsLzRj01neAEATNNhw/TSFcZcMkwPn0M9mJJ9+fv/ysz+s/bJJK/dZC3Y34x+LFXVNyd5QZLTk7xk463B5Ix9PB0zTG+T5FeSvCnJf0xyRJLvTfKpJPdL8tZ1dwr7v9Ffn4Zg+HuT/GGS45KclOTRSW6X5Iwk7+/ub2yoW9g5Rj82BV4AANO05xO5Y13Waex6MCX75Pe/qn4tyY8nuSjJY7t7rfd+gKkY9VhacCnDg5M8sbuvHaMuTMTYr0173gPcleRvu/vHu/vT3f2N7n5fkv+U5PIkD6yq+4+0TthfjP63XlXdMbP7sj4kyeOTfFOSo5KcmNmb979fVW8Ya32wTY1+bAq8AACmac+nBQ9bYcyeeWv5ZOHY9WBKtvz3v6pOTvIbmX1C8WHd/YmN1IH93NjH0s9ldsbJC7r7nzfTGEzQVv2tlyxxhnF3fynJXw0PT1xDPZiSUY+nqtqV2aWpb5fkUd39x919Tndf1N3vTfLgJOcm+YmqeuAm+obtbvT/h7mHFwDANJ05TE9YYcytFo1dS71bj1QPpuTMYTrW8XQDVfXfkvxOZp+cP6m7P7zeGjARZw7TsY6lRw7TBy9xxsnuPWOq6tuSXNLdJ62hJkzFmcN07L/1kuTzy4zZ8/zN1lAPpuTMYTrW8XTPJN+a5Iyl/q7r7vOr6l1JnpDkQUnet9ZGYYc5c5iO9v8wgRcAwDR9bJjeqapu3N2XLzHmuxaNXcmnM3sz/piq+ubu/twSY+6xjnowJWMfT/+uqn4myf+X5IokP9Dd7994m7Df26pj6d4rzLv58HXROurBFGzF33qXJjk0ybHLjDlumF6yzHyYqrGPpz0fElzptefCYXrMCmNgpxv9b0eXNAQAmKDu/mKSf8jsviaPWTx/+CT8LZOck2TVs0m6+6ok7xoe/ucl6t02szccr8r1l7uBbWHs42nBck9J8ntJrkzyiO4+ZZSGYT+1Ba9ND+juWuorya8Pw14xPHfUeFsC87cFx9PVSf7X8HCvSxZW1UGZXUI0SU7bWNewf9qCv/W+PEzvWFXLvf7ca5gud0Yl7Hhb8f8wgRcAwHS9YJi+qKput+fJqjo+ySuHhy/s7usWzPvZqvp0Vf3REvVemNnNYp9eVfdYsMxhSd6Q2d+Or+zuC5dYFqZu1OOpqn5yWO7KzO7t8Ndb1zrsV8Z+bYKdbOzj6QVJrkvyM1V14oJlDkzyoiTfnOTsJG8bdzNgvzDm8fThzEKvGyd5fVUdsWCZA6rqWZkFXtdkdq8v2NGq6gXDsfSCJWav+9hciUsaAgBMVHf/WVW9KslPJ/l4VZ2S5OrMPrV7RJK3Z3Z2yULHJfmWzD4htbjeR6vqGZm94fF/quq9mV2K4/5Jjk/ykSS/ukWbA3M15vFUVXdJ8pokldmneh9bVY9dYrXndfcvjbohMGdjvzbBTrYFf+v9U1X9QpKXJ/mbqvpoki8luWuS22Z2ebbHLHNJKZi0MY+n7r6qqp6Q5B1JHpXk/sPxdHmSuyS5TWbh8i8sc6l4mKyquluuD6KS2f3skuS3qurf/2/T3fdaMOabMjuWvmlxvQ0em8sSeLGsW93k0FTVuDUPOzxf+MbFo9YEgJ2su59aVR9M8jOZBVMHZnaPhjckedVaPwW1oN6Lq+qfk/xiZtfKPiTJGZndg+gl3X3lmP3D/mTE4+mozMKuJLnj8LWUs5IIvNh2xn5tgp1sC/7W+92q+nhmrz/3SnK3JF9J8tokL+juM0dsH/YrYx5P3f2eqvqOJCcn+d4kDxjqnZPkfyZ5eXf/33G3APYLRyS55xLP336jBcc8Nqu7N9oHG1BVfc1LnzR63WvOuWL0mhefedDoNY9/6xvjd44pqKrTu/vu8+4DAAAAAIDVuYcXAAAAAAAAkybwAgAAAAAAYNIEXgAAAAAAAEyawAsAAAAAAIBJE3gBAAAAAAAwaQIvAAAAAAAAJk3gBQAAAAAAwKQJvAAAAAB2mKo6taq6qp47714AAMawa94NAAAAAGylqjowyaOTnJTkXkmOT3KTJBcm+UySv0vy5u7+l7k1uU1U1V2SPCLJhd39snn3AwDsHM7wAgAAALatqrpXkk8meUuSxye5fWZh1zeSHJvkPkmekeTjVfXnVXXwvHrdJu6S5DlJfmHejQAAO4vACwAAANiWqur7k5ya5A5Jvp7kmUnu0N0Hd/exSQ5O8l1JXpjk4iSPyiwMAwBgYlzSEAAAANh2qur2Sf44yY0yO8PrId39pYVjuvvaJKclOa2qfjvJG/Z5owAAjMIZXgAAAMB29PwkRyS5IskjF4ddi3X3+d39iCQXLXy+qm5WVb9dVZ+oqkuq6tLh+xdX1X9YqlZV7a6qHr52V9UJVfX7VfWFqrqiqj5XVc+vqkMXLPNtVfXHVfXFYcxnq+pZVXXQMus4daj/3Ko6uKqeUVX/PPR3QVW9p6oett6dtmgd31xVv1tVnxq2/bLh+5dV1a2XGN9J3jg8PGHBPtjz9dwlljmyqn61qj4y9H3lsA/+ZLgc5VJ9Ld6//6GqXl5Vnx/23blV9T+r6o5r2MZHVNXbq+rLVXXV0MMHquopy+37YbnHVtW7hnVdXVUXDj+zd1bVz1TVIUss85Cq+ouq+tKwrour6oyq+puq+qWqOma1fgGA5TnDCwAAANhWhiDqh4aHb+7uz6x12e7uBXXun+TtSY4anrosSSf51uHrSVX1A939wRVK3i3J64caF2f2Xsxtk/xqkvtV1YlJ/lOSt2Z2OcWLMrvU4u2SPC/JtyV53Ar1D05ySpL7JrkmySXDuh6U5EFV9evd/dw1bv6/q6qfTPKKJHtCnyuTXJfkjsPXT1TVD3X3exYsdm6SG2cWNF6X5GuLyl6yaB33TPKOJHuCw2sz28e3zGybf7iqfrW7X7BCq3fK7My844dlM3z/w0keVlX36+5/WmL7DkvyJ0lOWvD0xUmOzGxf3jfJj1XVw7v7gkXLvj7JExdt10GZ/cxul+T7k/xVkjMXLPPsJL++YJnLklSS2wxfD87sbMNTV9hWAGAFzvACAAAAtpsH5vr3PN62kQJVdatcH3Z9Msn3dPeh3X1Ykvsl+dckRyd5R1XdYoVSr09yepI7dfeRSQ5P8nOZhTv3TfLsJG9O8pdJdnf3UZkFRr85LP/DVfWgFeo/Nck9kjwlyeHdfXSSWyf5s2H+c6rqB9a57Y9I8trh4QuT7M4syDo0s7DrT4ce/2zhmV7dfbMkPz88/GJ332zR10sWrGN3kndnFnb9WZLvTHJIdx8xPPe8zPbRbw39LOdNST6b5Lu6+9Akh2UWHn1l6PF3V1jupCT/luRHkxwx/HxukuQHk5yR5N5ZdJnLqvqezMKu65I8Pcmx3X34sO7jkjwkyR8muWrBMickec7w8KVJbjH8Lh2e2e/XfZO8Msk3VthOAGAVAi8AAABgu7nTgu8/tsEav5JZGHFBkhO7+0N7ZnT332V2BtXFSY5J8swV6pyd5OHd/clh2cu7+3eT/P/D/Gcl+fskP9LdZw1jLunuZyX5u2HMSmd4HZnkqd39mu6+Ylj+i5md4fSBYcxKZ0jdQFUdnOT3hodP6e5ndvdZfb1/7e7HJnlnZoHSyWutvchvZ7Z/39Tdj+nuf+jua4b+v9rdz07yy8PY565Q59wkD+7u04Zlr+nuU5L81DD/vlV1y0Xb+PAkj0hyTpIHdPefdPc3huWv6O53Jrl/kkuTPKKq7rJg8e8epqd094u7+/w9M7r76939N939hO7+8oJl7pnZe3Cf6e5fXDivuy/q7g9298909+kr7zIAYCUCLwAAAGC7OXbB9+cvO2oZVVVJHjs8fHV3n7N4zHBPsFcPD1cKpP5Hd1+5xPN/veD7Fy68lOISY+68Qv0v5vr7Zi3s77rM7mOWJN9aVd++Qo2FHpbkFpkFSXvVXeCPhulD1lj33w33qnrU8PCFa1jHdyx3v7Qkv9Pdly/x/Lty/VlWi7f9ScP0Td199lJFh5/v+4aHC7fxwmF606o6cNnOb2jPMocvvG8bADAu9/Bin7r5IYdn9v+Gkeve5MicfemFqw8EAABgJ9jsfzxvk9mZW8ns/ljLeU9mZyEdW1W36e7PLzHm75dZ9twF3390lTFHr9DDqcuEZcnsDK9rMnv/5+5JPr5CnT2+Z8E6v7LC/+EPHqYnrKHmYvfO9R/Cfu8a3yc4ITfcZ3t8ZKnB3X1NVX0ts/DumEWz92zjk6vqx1ZY55EL1r3HKUmuSHLXJH833M/rvcv87Pf4+yTnJfmmJB+pqlcPdf51hZ8dALBOAi/2qb+613/dkrp3PfVlW1IXAACASTpvwffHJPnycgOXcfyC75c8A2jwpUXLLBV6LHdfpmv2fLPncnorjDlohR6W7a+7r6yqr2d2T6zjlxu3yM2H6cHDcqu58RrrLrWOrHEdyezeWktZ6b5Xe+2/qjoos3ttJbNA68jFC6207u4+o6qelNnZffcevjKEa+/L7FKV71wYZHX3hVX1I8O8O+X6+4pdVFUfSPLWJG/p7qvX0AsAsAyXNAQAAAC2m08s+P6um6y11jNw5nWmztjr3XOZvnd3d63laxPruHyt6+juU8fZvCy8DOHj1rjuJyws0N1vzuysr6ckeUtml5W8aWaXwXx7kvdX1RGLljklszMHfyzJHyb5bGZh2/cneVOSj1XVLUbaRgDYkQReAAAAwHbzviTXDd8/cgPLf3XB97daYdwtF3z/tQ2sZwy3XG5GVd0o19/P7KvLjVtkz/3K1nrPr43Ys44bV9XttnA9e+nuK5JcNDzc8DZ29/nd/Zruflx33zrJ7TK7H1knuW+S5y6xzKXd/abufkJ33yGzn93TM7tE4sIzvwCADRB4AQAAANtKd5+b5M+Hhz9aVXdY67I1u6HU55OcPzx14grDHzRMv77KPZy20v1r+Ztg3TfX387itDXW+9AwvUVVfc+KI5e2J2hc6cyv/5Prz0x73AbWsVl7tvExVTXKe2Pd/bnufmZmly1MkgevYZmzu/vFSX5nrcsAAMsTeAEAAADb0bOSXJLZPab+YrXLxVXV0VX150mOHO6/9JZh1k9V1c2WGH/zJD81PPyT8dpet1sn+fHFTw5Bzq8MDz/V3R9fY72/TPKV4fuXV9Vy987as55jFj118TA9arlluvurSd4xPHzaaoHkEuvYrNcO0zskedoq6z60qg5e8PhGq9S+fJheu5llAID1E3gBAAAA2053fybJ45Ncldnl4v6xqp6+8BJ6VXVgVd21qn4jyRlJHrWgxG8luTDJMUlOqarvXrDcfZKcklmoc35ml7Kbl4uSvKqqfrKqDhn6u1VmIdwDhzG/utZiwyX/nprZGVh3S/KhqnrIotDnNlX1U1X198PYhf5lmB5RVY9dYVW/mOTrSY5I8sGqemJVHblgHcdV1aOq6i8ycqDY3e9I8rbh4Qur6lULQ7eqOriq7llVL0pyVpLjFyz+e1X11qp6dFUdv2CZw6rqKZndoytJ/veCZZ5eVe+qqsdX1S0XLHOjYR89bYllAIB12rX6EAAAAIDp6e63V9X3JvmDXH+PpRdW1VWZnf11VK7/MHBnFqxcOiz7pap6RGZnIt0ps+Dn0mHsocP0wiSP6O6z98HmLOeVmV268LVJXlFVlyQ5esH853f325ZcchnDfnv8UPMuSd6d5JqquijJYUkWnrH0jkXL/ltV/W1ml4J8S1W9LtdfHvJl3f2yYdwZVfXgJH+RZHeS1yd5XVVdmOSgYT17nLKe/tfovwzrfFySpyR5yvDzvSrJkbnhh8R7wfcHJXnM8JVhf1+TG57R9sEkv7ng8QFJHjp8paouz+ysrqNz/aUfP5Xk5BG2CwB2LIEXAAAAsG1194eq6o6ZBRQnJblnZmfsHJ5ZEPPpJO9P8qbu/tdFy75/WPaXknxfZsFMZxZO/FWS3+nuc/bRpiznqszCpV9M8qNJbpvZWV+nJXlpd2/orKHufnNVvTezM7gemllgeFRmQeGnMgt13p7Zvlvsh5I8O8nDM7vk4gnD8ze4zGF3f6yqvjXJE5M8Isl3ZBYCXZXks0k+muSd2YIzn7r7siQ/UlWvGdZ/nyTflFnQ9tUkn8ws6HvbokDzeUlOz+zsuf+Y5GYLlvmnzELTP+ruhZcnfG2Ss4dlvn1Yz5FJLkjyiczuN/ea4ew6AGCDanZZavaVquprXvqk0etec874fxNdfOZBo9c8+6tHrj5oA+566svid5kxVdXp3X33efcBAACwlKo6Ncn9k/x6dz93vt0AAMyfe3gBAAAAAAAwaQIvAAAAAAAAJk3gBQAAAAAAwKQJvAAAAAAAAJi0XfNuAAAAAID16e4HzLsHAID9iTO8AAAAAAAAmDSBFwAAAAAAAJMm8AIAAAAAAGDSBF4AAAAAAABM2q55NwBjuOnBR6aqRq15/CFH5dzLLxi1JgAAAAAAMD6BF9vCq+/830av+ejTnj96TQAAAAAAYHwuaQgAAAAAAMCkCbwAAAAAAACYNIEXAAAAAAAAkybwAgAAAAAAYNIEXgAAAAAAAEyawAsAAAAAAIBJE3gBAAAAAAAwaQIvAAAAAAAAJk3gBQAAAAAAwKQJvAAAAAAAAJg0gRcAAAAAAACTJvACAAAAAABg0gReAAAAAAAATJrACwAAAAAAgEkTeAEAAAAAADBpu+bdAOyvjj7oyFTVqDWPudHR+foV549aEwAAAAAAdjqBFyzj125/8ug1T/7kc0avCQAAAAAAO51LGgIAAAAAADBpAi8AAAAAAAAmTeAFAAAAAADApAm8AAAAAAAAmDSBFwAAAAAAAJMm8AIAAAAAAGDSBF4AAAAAAABMmsALAAAAAACASRN4AQAAAAAAMGkCLwAAAAAAACZN4AUAAAAAAMCkCbwAAAAAAACYNIEXAAAAAAAAkybwAgAAAAAAYNIEXgAAAAAAAEzarnk3ADvJEQcelaoave6RBx+dC688f/S6AAAAAAAwBQIv2IeedMv/viV1X3rWc7akLgAAAAAATIFLGiQb1MUAACAASURBVAIAAAAAADBpAi8AAAAAAAAmTeAFAAAAAADApAm8AAAAAAAAmDSBFwAAAAAAAJMm8AIAAAAAAGDSBF4AAAAAAABMmsALAAAAAACASRN4AQAAAAAAMGkCLwAAAAAAACZN4AUAAAAAAMCkCbwAAAAAAACYtF3zbgDYvEMPODJVNWrNww46Ot+46vxRawIAAAAAwFYQeME2cNKxPz96zbd87TdGrwkAAAAAAFvBJQ0BAAAAAACYNIEXAAAAAAAAkybwAgAAAAAAYNIEXgAAAAAAAEyawAsAAAAAAIBJE3gBAAAAAAAwaQIvAAAAAAAAJk3gBQAAAAAAwKQJvAAAAAAAAJg0gRcAAAAAAACTJvACAAAAAABg0nbNuwFg/3RIHZGqGrXmTXYdmUuvvnDUmgAAAAAAIPAClnSvI548es1TL3rJ6DUBAAAAAMAlDQEAAAAAAJg0gRcAAAAAAACTJvACAAAAAABg0gReAAAAAAAATJrACwAAAAAAgEkTeAEAAAAAADBpAi8AAAAAAAAmTeAFAAAAAADApO2adwPAznFQHZaqGr3ujXYdniuuvnj0ugAAAAAATIPAC9hn7njUY7ak7scveOOW1AUAAAAAYBpc0hAAAAAAAIBJE3gBAAAAAAAwaQIvAAAAAAAAJk3gBQAAAAAAwKQJvAAAAAAAAJg0gRcAAAAAAACTJvACAAAAAABg0nbNuwGAzTrwgBunqubdBgAAAAAAcyLwAibvFkc+YPSaX7jgXaPXBAAAAABga7ikIQAAAAAAAJMm8AIAAAAAAGDSBF4AAAAAAABMmsALAAAAAACASRN4AQAAAAAAMGkCLwAAAAAAACZN4AUAAAAAAMCkCbwAAAAAAACYNIEXAAAAAAAAkybwAgAAAAAAYNIEXgAAAAAAAEyawAsAAAAAAIBJE3gBAAAAAAAwaQIvAAAAAAAAJk3gBQAAAAAAwKQJvAAAAAAAAJg0gRcAAAAAAACTJvACAAAAAABg0gReAAAAAAAATJrACwAAAAAAgEkTeAEAAAAAADBpAi8AAAAAAAAmTeAFAAAAAADApAm8AAAAAAAAmDSBFwAAAAAAAJMm8AIAAAAAAGDSBF6wSR++4LR5t8DWOG7eDQAAAAAAsDYCL9ikD19w+rxbYGvcdN4NAAAAAACwNgIvAAAAAAAAJq26e9497ChV9bUkZ827D0Z1XJLz5t0Eo/uW7j583k0AAAAAALA6gRcAAAAAAACT5pKGAAAAAAAATJrACwAAAAAAgEkTeAEAAAAAADBpAi8AAAAAAAAmTeAFAAAAAADApAm8AAAAAAAAmDSBFwAAAAAAAJMm8AIAAAAAAGDSBF4AAAAAAABMmsALAAAAAACASRN4AQAAAAAAMGkCLwAAAAAAACZN4AUAAAAAAMCkCbwAAAAAAACYNIEXAAAAAAAAkybwAgAAAAAAYNIEXgAAAAAAAEyawAsAAAAAAIBJE3gBAAAAAAAwaQIvAAAAAAAAJk3gBQAAAAAAwKQJvDahqm5cVb9cVR+tqgur6rKq+nxV/WlV3Wfe/QEAAAAAAOwEu+bdwFRV1W2S/E2S2yX5apL3J7kyye4kP5jkn5J8aF79AQAAAAAA7BQCrw2oqkOTvCfJNyd5XpLndffVC+Yfm+TYObUHAAAAAACwowi8NuZZmYVdf9Tdz148s7u/nuTr+7wrAAAAAACAHai6e949TEpVHZzky5mdwfWt3f2pObcEAAAAAACwoznDa/2+M7Ow64vd/amq+u4kJw3PnZPk3d394Xk2CAAAAAAAsJM4w2udqurJSV6T5L1Jvpjkx5cY9udJHt/dl+/L3gAAAAAAAHYiZ3it3zHD9H5JDkzykiSvzuyeXfdL8sokj05ycZInLl74sBsddIOM8bjDbpSbHnrjTTXUV1+3qeWXc+3VNXrNq68+cPSaV117wOg1k+Sq69a2/Zdce1kOO/Amo9Zcj6uv25rQ+uotCMOvzbWj10ySa3L1KHWu7Stz7XVXJUk6117Z3YeMUngLHHfccb179+55twGs4vTTTz+vu2867z4AAAAAtjuB1/rtSVd2JXlddz9twbx3VtWXk/x9kh+vqud39xkLF77j8UflIyf/4KgNXfOVK0ett8elXxo/nPrKV48YveZZ3zhs9JpJ8oXLDl7TuBf822vzzNs9eU1jv3jZ+OHcVy7bmsDz3CuuGr3m1/sbo9dMkvMO+PLoNT93wV9sTTo3kt27d+e0006bdxvAKqrqrHn3AAAAALATbM2pMdvbwnfsf3/xzO4+Lcnpme3bB+yjngAAAAAAAHYsgdf6nbng+88vM2bP8zfb2lYAAAAAAAAQeK3fPyz4/thlxhw3TC/Z4l7YD3zPMd857xbYGl+bdwMAAAAAAKyNwGuduvvsJB8ZHp64eH5VHZ3kbsNDN9jZAe4r8Nquzpt3AwAAAAAArI3Aa2N+c5g+u6rusufJqjokyauSHJnZfbw+PIfeAAAAAAAAdpRd825girr7L6vqJUl+KclHquojSb6e5B5Jbp7k7CQ/0t09xzYBAAAAAAB2BGd4bVB3Py3Jo5J8KMm3J/m+JJcleWmSu3b3Z+fYHgAAAAAAwI7hDK9N6O63JXnbvPsAAAAAAADYyZzhBQAAAAAAwKQJvAAAAAAAAJg0gRcAAAAAAACTJvACAAAAAABg0gReAAAAAAAATJrACwAAAAAAgEkTeAEAAAAAADBpAi8AAAAAAAAmTeAFAAAAAADApAm8AAAAAAAAmDSBFwAAAAAAAJMm8AIAAAAAAGDSBF4AAAAAAABMmsALAAAAAACASRN4AQAAAAAAMGkCLwAAAAAAACZN4AUAAAAAAMCkCbwAAAAAAACYNIEXAAAAAAAAkybwAgAAAAAAYNIEXgAAAAAAAEyawAsAAAAAAIBJE3gBAAAAAAAwaQIvAAAAAAAAJk3gBQAAAAAAwKQJvAAAAAAAAJg0gRcAAAAAAACTJvACAAAAAABg0gReAAAAAAAATJrACwAAAAAAgEkTeAEAAAAAADBpAi8AAAAAAAAmTeAFAAAAAADApAm8AAAAAAAAmDSBFwAAAAAAAJMm8AIAAAAAAGDSBF4AAAAAAABMmsALAAAAAACASRN4AQAAAAAAMGm75t0A+6/uadS8rmv8okmu3YK6127B9m9FzVnd68avWdeMXjNJOuP3CgAAAADAdDjDCwAAAAAAgEkTeAEAAAAAADBpAi8AAAAAAAAmTeAFAAAAAADApAm8Nqiq/qCqeoWvT8+7RwAAAAAAgJ1g17wb2AY+lOTflnj+K/u6EQAAAAAAgJ1I4LV5r+vuP5h3EwAAAAAAADuVSxoCAAAAAAAwaQIvAAAAAAAAJs0lDTfvgVV15ySHJTk3yQeTvKe7r5tvWwAAAAAAADuDwGvzfmyJ5z5ZVY/r7o/v824AAAAAAAB2GIHXxv1jktOT/G2Ss5IckeRuSX4zyXckOaWq7tbdZy9c6GuXXp57vvQd//74Sff+lvzkve+4z5oGlnfxlWfm4ivP3PPwuDm2AgAAAADAOgi8Nqi7X7boqUuT/FVVvSfJ+5PcK8kzk/zswkE3PfTG+cjJP7hvmgTW5Ygb7c4RN9qdJDnjgrefN99uAAAAAABYqwPm3cB2091XJXnB8PD75tkLAAAAAADATiDw2hqfHqa3mGsXAAAAAAAAO4DAa2scO0wvmWsXAAAAAAAAO4DAa2s8dph+dK5dAAAAAAAA7AACrw2oqrtU1UlVdeCi53dV1clJfm546n/s++4AAAAAAAB2ll3zbmCidid5W5Lzq+ozSb6U5PAk357k5kmuS/L07v7ruXUIAAAAAACwQwi8Nuafkrw8yT2SnJDkrkk6s+DrjUle0d2nz689AAAAAACAnUPgtQHd/fkkvzDvPgAAAAAAAHAPLwAAAAAAACZO4AUAAAAAAMCkCbwAAAAAAACYNIEXAAAAAAAAkybwAgAAAAAAYNIEXgAAAAAAAEyawAsAAAAAAIBJE3gBAAAAAAAwaQIvAAAAAAAAJk3gBQAAAAAAwKQJvAAAAAAAAJg0gRcAAAAAAACTJvACAAAAAABg0gReAAAAAAAATJrACwAAAAAAgEkTeAEAAAAAAPD/2LvvKLvO8lzgzyuNLLnhgmwgGIxNjenGhBguNjWEhBKKITchYIzpaZcSwkrANhAgYYVyMSWFGi4JBBI7vumBAKEGF1iEFoIJGOMid1uSVUbf/eOcAaGrNqM9s8+e8/utNWvP3vs773kYWWex5tHee9AUXgAAAAAAAAyawgsAAAAAAIBBU3gBAAAAAAAwaAovAAAAAAAABk3hBQAAAAAAwKApvAAAAAAAABg0hRcAAAAAAACDpvACAAAAAABg0BReAAAAAAAADJrCCwAAAAAAgEFTeAEAAAAAADBoM30HYHK1bdX5zG3pfuZs637maO4wZm7dtghDk2zNts5nbsnmzmcmybbMLspcAAAAAACGwRVeAAAAAAAADJrCCwAAAAAAgEFTeAEAAAAAADBoCi8AAAAAAAAGTeEFAAAAAADAoCm8AAAAAAAAGDSFFwAAAAAAAIOm8AIAAAAAAGDQFF4AAAAAAAAMmsILAAAAAACAQVN4AQAAAAAAMGgKLwAAAAAAAAZtWRZeVfXAvjMAAAAAAACwNJZl4ZXk01X1rap6ZVUd23cYAAAAAAAAFs9yLbyS5I5Jzkjyrar6dFU9u6oO6TsUAAAAAAAA3VquhdedkpyV5NtJKskDk7wzyWVV9aGqemxVrewzIAAAAAAAAN1YloVXa+3i1tpZrbW75Edl17VJ1iQ5Jck5SX5QVW+uqhO6eM+qem1VtfHXS7qYCQAAAAAAwJ4ty8Jre621z7fWXpDkNkmekOSvk2xOckSSX0vyhar6WlW9bKHvUVX3T/JbSVoHkQEAAAAAAJiHZV94zWmtbWmtndtae1JG5dfzk3w2o1se3i3Jaxcyt6pWJ3lvkiuSnNtNWgAAAAAAAPbWTN8B+tBau66q3p1kXUa3ObzfPox7VZLjkjwuyZM6iAcAAAAAAMA8TM0VXnOq6sSqenuSy5L8ZZLjx6fWLWDWA5K8OMkHW2vndZcSAAAAAACAvTUVV3hV1bFJnpbkV5IcO3c4yaYk5yV5f5K/n+fMNUnel+SaJL/RWVgAAAAAAADmZdkWXlV1aJKnJHl6khPnDo+3n8mo5Ppwa+36Bb7F7yW5a5JfbK1dtS9ZAQAAAAAAWLhlWXhV1UeS/HyS/fKjkuvbSf4syZ+11r6zj/MfmOQ3k5zTWvvQfF67bv3GPOCN5/5w//QT75pnn3i3fYkDdOTGTd/NjZu+O7e7ts8sAAAAAADsvWVZeCV54nh7bZIPZ1RyfbaLwVW1f5L3JLkhyQvm+/ojDtw/X3jR47uIAnTs4NVH5+DVRydJ/vva81y5CQAAAAAwEMu18Jp7Ltd5rbXNHc9+bZK7JDmttXZZx7MBAAAAAACYp2VZeLXW5nUJVVWtSvLc1trZe7H8CUm2JXlGVT1jh3Nz9yZ8flU9Jsl/tdZOn08WAAAAAAAA5mdZFl57q6pWJnlWkt9Jctske1N4JcmKJCfv5vyx469D9ykgAAAAAAAAe7Si7wBdq6oDqureVXV8VR22izVVVacm+c8k70hyuyS1N/Nba3dordXOvpK8b7zspeNj9+ngfxIAAAAAAAC7sWwKr6o6pKrel+TqJBcm+WKSdVX1V1V1m+3WPSTJV5K8K8kx48PnJnnA0iYGAAAAAACgC8viloZVNZPkn5PcLz9+pVYleXySu1TV8Ul+PcnrMyr6ZpN8KMnrWmtfXdrEAAAAAAAAdGVZFF5JnpHkhPH3H0vyjxmVXY9K8rAkP5nkj8brWpL3J3lVa+3ipY8KAAAAAABAl5ZL4XVKRkXWn7TWnrfd8TdU1R8nOT3J05Ncm+SJrbVPLkaI1tqpSU5djNkAAAAAAADs3HJ5htc9x9vX7OTcq7f7/rcXq+wCAAAAAACgH8ul8Lplkg2tte/veKK1dkmSDePdv1nSVAAAAAAAACy65VJ47Zfkxt2cvzFJWmtXLE0cAAAAAAAAlspyKbwAAAAAAACYUgovAAAAAAAABm2m7wAdulVVze5uwR7Ot9bacvp5AAAAAAAATIXlVPBU3wEAAAAAAABYesul8Dqr7wAAAAAAAAD0Y1kUXq01hRcAAAAAAMCUWtF3AAAAAAAAANgXCi8AAAAAAAAGbVnc0hAAWL6OWHN4rtp0bd8xAAAAAJhgCi8AmAJDLo1uueqQ/NE9z+w7xoI89ytn9h0BAAAAYCoovABgCly16dq8c6ClUfUdAAAAAICJp/BaBtq2RZrbup+5dbb7x8ZtaYvzq9BN27qfu3kR/qy2bFuEP6gkm7K185lbanPnM5Nka9u0KHNhR2vXHJ6rB3qV1OGrDuk7AgAAAAAsGoUXAOylqzddm7PvcWbfMRZkxmVSAAAAACxjCi8AlpSrpAAAAACArim8AFhSV2+6Nm+5+1l9x1iQlbU4txAFAAAAAPZN9w9UAgAAAAAAgCWk8AIAAAAAAGDQ3NIQYIC+dOGXUlV9x1iQw1cd2ncEAAAAAGCZUXgBDNBsm80bfnKYz8Haz7XFAAAAAEDH/NoRAAAAAACAQVN4AQAAAAAAMGgKLwAAAAAAAAZN4QUAAAAAAMCgKbwAAAAAAAAYNIUXAAAAAAAAg6bwAgAAAAAAYNAUXgAAAAAAAAyawgsAAAAAAIBBU3gBAAAAAAAwaAovAAAAAAAABk3hBQAAAAAAwKApvAAAAAAAABg0hRcAAAAAAACDpvACAAAAAABg0BReAAAAAAAADJrCCwAAAAAAgEFTeAEAAAAAADBoCi8AAAAAAAAGTeEFAAAAAADAoCm8AAAAAAAAGDSFFwAAAAAAAIOm8FqAqvq1qvpwVX29qq6uqi1Vta6q/qWqnlZV1XdGAAAAAACAaTHTd4CBelmSI5P8R5LPJlmf5OgkD0vy8CRPrqontta29RcRAAAAAABgOii8FuYXk1zUWlu//cGqunuSjyV5fJJnJHlPD9kAAAAAAACmilsaLkBr7dM7ll3j419N8rbx7iOXNhUAAAAAAMB0Unh1b+t4e3OvKQAAAAAAAKaEwqtDVXVMkueNd8/rMwsAAAAAAMC08AyvfVBVz0xycpJVSY5K8sCMSsTXtdb+us9sAAAAAAAA00LhtW8elOQZ2+1vTfKKJG/c1QvWrd+YB7zx3B/un37iXfPsE++2aAGBvXfTpu9n/ebvz+2u7TMLAAAAAAB7T+G1D1prpyc5var2T3JMkmcmOTPJU6rq51prP9jxNUccuH++8KLHL21QYK8ctPqoHLT6qCTJ96/7p6t6jgMAAAAAwF7yDK8OtNY2tta+1lp7aZKXJ7l3krN7jgUAAAAAADAVFF7de894+9iqWtVrEgAAAAAAgCmg8OredRk9y2smyeE9ZwEAAAAAAFj2FF7dOymjsuu6JJ4BBAAAAAAAsMgUXvNUVQ+uql+uqtU7OfegJO8a776rtTa7tOkAAAAAAACmz0zfAQbojhk9p+vsqrowyeVJDh4fP2685m+TvKKfeAAAAAAAANNF4TV/n0zy6iQPTnKXJA9MUhkVXx9N8oHW2jn9xQMAAAAAAJguCq95aq19J8kr+84BAAAAAADAiGd4AQAAAAAAMGgKLwAAAAAAAAbNLQ3ZpS1bVnY+8+bZ7v+Tu2nr4vS2G2e7n7l+y7buZ85u7XxmkmyoDZ3P3JTuZybJlrY4cwEAAAAAGAZXeAEAAAAAADBoCi8AAAAAAAAGTeEFAAAAAADAoCm8AAAAAAAAGDSFFwAAAAAAAIOm8AIAAAAAAGDQFF4AAAAAAAAMmsILAAAAAACAQVN4AQAAAAAAMGgKLwAAAAAAAAZN4QUAAAAAAMCgKbwAAAAAAAAYNIUXAAAAAAAAg6bwAgAAAAAAYNAUXgAAAAAAAAyawgsAAAAAAIBBU3gBAAAAAAAwaAovAAAAAAAABk3hBQAAAAAAwKApvAAAAAAAABg0hRcAAAAAAACDpvACAAAAAABg0BReAAAAAAAADJrCCwAAAAAAgEFTeAEAAAAAADBoCi8AAAAAAAAGTeEFAAAAAADAoCm8AAAAAAAAGDSFFwAAAAAAAIOm8AIAAAAAAGDQFF4AAAAAAAAMmsILAAAAAACAQVN4AQAAAAAAMGgKLwAAAAAAAAZN4QUAAAAAAMCgKbwAAAAAAAAYNIUXAAAAAAAAg6bwAgAAAAAAYNAUXgAAAAAAAAyawgsAAAAAAIBBU3jNU1WtqqqHV9UfVtXnq+qyqtpcVZdW1Ueq6iF9ZwQAAAAAAJgmM30HGKCTk/zz+PvLk1yQZH2S45I8KcmTqurVrbVX9pQPAAAAAABgqrjCa/62JflokpNaa7dprT2mtfbU1to9k/xiktkkr6iqh/aaEgAAAAAAYEoovOaptfbx1tqTW2v/tpNzH0ry3vHu05Y0GAAAAAAAwJRSeHXvovH2qF5TAAAAAAAATAmFV/fuPN5e1msKlsz515/fdwQWx9q+AzBdPn2Nz5JlymcJAAAAwBJQeHWoqm6d5NTx7kd7jMISuuD6C/qOwOI4ou8ATJfPXOOzZJnyWQIAAACwBBReHamqmSQfSHJIko+11s7rORIAAAAAAMBUqNZa3xmWhar60yTPSnJJkp9qrV2+i3U35seLxnVJrlr8hCyitfFnuFyszY+uxljZWlvTZ5jdGX+WfLPvHHTKZ8nydNfW2sF9hwAAAABY7hReHaiqtyT59SSXJzmptfatniMBAAAAAABMDbc03EdV9YcZlV3rkjxc2QUAAAAAALC0FF77oKr+IMmLklyd5JGtta/1HAkAAAAAAGDqKLwWqKpen+SlSa7NqOz6cs+RAAAAAAAAppLCawGq6tVJXpbkuozKrot6jgQAAAAAADC1qrXWd4ZBqarHJTl3vHt+kq/uYuk3WmuvX5pUAAAAAAAA02um7wADdPh2358w/tqZTyZReAEAAAAAACwyV3gBAAAAAAAwaJ7hBQAAAAAAwKApvAAAAAAAABg0hRcAAAAAAACDpvACAAAAAABg0BReAAAAAAAADJrCCwAAAAAAgEFTeAEAAAAAADBoCi8AAAAAAAAGTeEFAAAAAADAoCm8AAAAAAAAGDSFFwAAAAAAAIOm8AIAAAAAAGDQFF4AAAAAAAAMmsILAAAAAACAQZvqwquq7lpVv1FVH6iqb1TVtqpqVfXkvXjtL1XVv1XV9VV1U1WdX1UvrKqp/pkCAAAAAAAstZm+A/Ts+Ul+Y74vqqq3JXlBkpuTfCzJliQPT3J2kodX1SmttdkugwIAAAAAALBz03410n8keUOSpya5U5JP7ukFVfWkjMquy5Pcq7X2mNbaE5LcOcnXkzwhya8uWmIAAAAAAAB+TLXW+s4wMarqE0lOTnJKa+0ju1hzfpL7JXlGa+39O5w7OcknMirDbtta27aogQEAAAAAAJj6K7zmpaqOyqjs2pzkL3c831r7ZJJLk9w6yU8vbToAAAAAAIDppPCan/uOt19trW3cxZov7rAWAAAAAACARaTwmp9jxtvv7mbN93ZYCwAAAAAAwCKa6TvAwBw03q7fzZqbxtuDdzpg9aq2/XPT1h64JmsPXLNPobZtXJznsG3a3P1/HhtmV3Y+8+bZ6nxmkmya3buf66a2PqvrwL1auzlb9yXSTm3Nps5nJsls29L5zNZmO5+ZJC3d/B0YPXZv7tF7bVNrbd/+ci6ilTXTVtSP/s3CmhUHZM2KA3pMtPcW52/s8G3ctiH7L+KfYZWf/FLZOLs+G7dtSJJsbVsm9rNk7dq17Q53uEPfMYA9uOCCC65qrR3Rdw4AAIBJp/Can7nfFi74t+t3PeKQfOHXHtdRnJEbv9p9iZIk3/7u2s5nfuW6nfaA++Sr13dfoiXJf9+0d4XPx657Vx5+6LP2au33tl6zL5F26or6Tuczk+SGrT/ofObmLTd2PjNJZrd1X/pt2nLp4rRzHVlRK3LabX6n7xgLsmrA1xYvZmf0ocv/KE+99XMXbf6KARdew02evOV7Z0zsZ8kd7nCHnH/++X3HAPagqnZ3dwkAAADGBvxrx17M/bb+oN2smTu3OL/ZBwAAAAAA4McovObnv8fbo3ez5nY7rAUAAAAAAGARKbzm56Lx9u5Vtf8u1tx/h7Usc8esuW/fEVgc6/oOsDtDeV4Xe+/uB92v7wgsjon+LAEAAABYLhRe89BauyTJhUn2S3LKjuer6uQkRyW5PMnnljYdfTl2zfF9R2BxXNV3gN1ReC0/9zjohL4jsDgm+rMEAAAAYLlQeM3f68bb36+qO80drKojk7x9vPv61tq2JU8GAAAAAAAwhWb6DtCnqjo+PyqpkuS48fa1VfWSuYOttZ/e7vuPVNU7kjw/yVeq6l+SbEny8CS3SHJOkrMXOzsAAAAAAAAjU114ZVRQPWAnx++8uxe11l5QVZ9O8sIkJydZmeQbSd6d5B2u7gIAAAAAAFg6U114tdY+kaQW+NoPJvlgp4EAAAAAAACYN8/wAgAAAAAAYNAUXgAAAAAAAAyawgsAAAAAAIBBU3gBAAAAAAAwaAovAAAAAAAABk3hBQAAAAAAwKApvAAAAAAAABg0hRcAAAAAAACDpvACAAAAAABg0BReAAAAAAAADJrCCwAAAAAAgEFTeAEAAAAAADBoCi8AAAAAAAAGTeEFAAAAAADAoCm8AAAAAAAAGDSFFwAAAAAAAIOm8AIAAAAAAGDQFF4AAAAAAAAMmsILAAAAAACAQVN4AQAAAAAAMGgKLwAAAAAAAAZN4QUAAAAAAMCgKbwAAAAAAAAYNIUXAAAAAAAAg6bwAgAAAAAAYNAUXgAAAAAAAAyawgsAAAAAAIBBU3gBAAAAAAAwaAovAAAAAAAABk3hBQAAAAAAwKApvAAAAAAAABg0hRcAAAAAK51EiAAAIABJREFUAACDpvACAAAAAABg0BReAAAAAAAADJrCCwAAAAAAgEFTeAEAAAAAADBoCi8AAAAAAAAGTeEFAAAAAADAoM30HWDa1MyKrLjl/p3OXHPL6zudN+fwqzZ2PvOWG7v9354kh61e2fnMJLlmU/dzD956QOczr6nuf6ZJsmpF93O3ruj+v6kk2da2LMrcSbaiKgeuqr5jLMiqAf9Ti5XD/JEnSQYcPSuGHB4AAACAJTHgXzsCAAAAAACAwgsAAAAAAICBU3gBAAAAAAAwaAovAAAAAAAABk3hBQAAAAAAwKApvBaoqm5fVW+vqouralNVrauqv6uqR/adDQAAAAAAYJoovBagqh6Q5EtJnp+kkvxtkm8neVSSf6qq3+oxHgAAAAAAwFRReM1TVa1J8pEkhyX530nu1Fp7Ymvtp5M8Isn6JL9fVSf2GBMAAAAAAGBqKLzm7wlJjkpycZKXtNZm50601v41yRvHu7/bQzYAAAAAAICpo/Cav/uPt59orW3Zyfl/GW8fWVW3WKJMAAAAAAAAU0vhNX8HjbdX7eL83PFVSe6x+HEAAAAAAACmm8Jr/q4cb4/dxfntjx+zyFkAAAAAAACm3kzfAQbo40l+J8nPV9VRrbXv73D+edt9///d0nDdjRvzU6/5yx/un37ScXnOSXdflKDA/GydvSmz226a213bZ5Y92Ti7Pv/nsj/64f49D7pf7nXwCT0mAuZceMP5ueiGC+Z2J/qzBAAAAGC5UHjNU2vt41X1qSQnJfmnqvrVJF9McpskL03y80m2ZvSz3bbj6484eP/8+++esoSJgb01s/KgzKwc3bX05s2X7Oq2pRNh/5UH5pdv89y+YwA7cfwtTsjxtxgV0K/59hkT/VkCAAAAsFwovBbmlCQfTfI/knxsh3NvzagMu3eSa5Y4FwAAAAAAwNRReC1Aa+3KqjopySOSPDSj2xVdmeTcJBcmuW689Cv9JAQAAAAAAJgeCq8Faq21JP88/vqhcRF2UJLvJflmD9EAAAAAAACmyoq+AyxDvz3evm1cigEAAAAAALCIFF4LUFX3rKoDdji2f1W9Ncmjk3w5yZt7CQcAAAAAADBl3NJwYV6c5MlVdUGSH2R0C8MHJTkso+d2Pbq1trnHfAAAAAAAAFND4bUw5yQ5Ism9k/x0kg1Jvp7kL5K8U9kFAAAAAACwdBReC9BaOyej0gsAAAAAAICeeYYXAAAAAAAAg6bwAgAAAAAAYNAUXgAAAAAAAAyawgsAAAAAAIBBU3gBAAAAAAAwaAovAAAAAAAABk3hBQAAAAAAwKApvAAAAAAAABg0hRcAAAAAAACDpvACAAAAAABg0BReAAAAAAAADJrCCwAAAAAAgEFTeAEAAAAAADBoCi8AAAAAAAAGTeEFAAAAAADAoCm8AAAAAAAAGDSFFwAAAAAAAIOm8AIAAAAAAGDQFF4AAAAAAAAMmsILAAAAAACAQVN4AQAAAAAAMGgKLwAAAAAAAAZN4QUAAAAAAMCgKbwAAAAAAAAYNIUXAAAAAAAAg6bwAgAAAAAAYNBm+g4wdWZWpo48pNORq1dUp/Pm3O7QGzufecv/Xt/5zDtecmjnM5Pk69d1++eUJF+74eDOZ/7XDffofGaSXHrzsZ3P/MGaSzufmSRXz36n85k3b76k85ldOmBly70One07xoKsWdH6jrBgMwPOvrKGm92/zgEAAABgT/wOCQAAAAAAgEFbNoVXVR1WVb9WVRf1nQUAAAAAAIClM/hbGlbVI5M8K8njk+zXcxwAAAAAAACW2CALr6o6Oskzk5ya5HZzh5NsSfKxnmIBAAAAAADQg8EUXlW1X5InJjktycMyKrgqydaMSq4PJzmntXZtbyEBAAAAAABYchNfeFXVfTIquX45yaEZlVxzWpKjW2uX9ZENAAAAAACA/k1k4VVVh2RUcD0ryX3mDie5JMkHkrwvyTfGx69f8oAAAAAAAABMjIkqvKrqYRmVXE9Isjqjkmt9kr9K8v4kH2+ttfHavmICAAAAAAAwQSaq8EryLxndpjBJPpnRlVwfaa2t7y8SAAAAAAAAk2zSCq85b0vy2tba5X0HAQAAAAAAYLKt6DvADi7P6DaGL0zyvar626p6alWt7jkXAAAAAAAAE2rSCq+jkjw2yd+M9x+d5INJrqiqP66qB/eWDAAAAAAAgIk0UYVXa21ba+1vW2tPyKj8elmSbya5RZLTk3yiqr5dVWf1mRMAAAAAAIDJMVGF1/Zaa1e21t7QWjsuyf9I8t4kG5Ick+R3k7Tx0tOr6lb9pAQAAAAAAKBvE1t4ba+19tnW2mlJbp3kOUm+kNGzvirJm5J8v6r+tapeoPwCAAAAAACYLoMovOa01ta31v60tfbAJMcleWOSdUlWJjk5yVuTXNJjRAAAAAAAAJbYoAqv7bXWvtFae0lGz/p6UpK/S7Ito/ILAAAAAACAKTHYwmtOa21ra+2vW2uPSXJ0klcsxftW1VFV9daq+mZVbayqm6vqW1X1zqo6dikyAAAAAAAAsAwKr+211n7QWnvtYr9PVd03yVeS/GqSA5L8Y5J/SLJ/kucm+XJVPXCxcwAAAAAAALDMCq8l9LYkhyb5kyTHttZ+obX2C0mOSfLuJAcleUeP+QAAAAAAAKbGTN8BdqeqLp7nS25Ocl2Sr2Z0xdU5rbXZjjOtSXLiePeVrbUtc+daa1uq6hVJTktyr6o6oLW2ocv3BwAAAAAA4MdNdOGV5A7bfd+S1C7W7XjuARmVTl+vqlNaa1/vMNNskq0Z/ex2lqeNt+uTbOzwfQEAAAAAANiJSS+8npnRrQNfmeSwJP+W5BNJLs2obPqJJA9J8uAk1yR5VUa3aTwhyROTHJfkH6rq3q2167oINL6K62NJHpXkrKp64dxVXlW1Kslrxkvf1Vpru5oDAAAAAABANya98PpIkn9Psi3Jw1prn9jZoqo6abz2tCQnttbeXFV3SfLxJEcleWGS3+sw1wsyumXis5M8uqrOHx+/f0bF3FuSvLTD9wMAAAAAAGAXJr3wenmSuyU5ZVdlV5K01j5VVc/LqPR6WZIzW2v/WVUvTvLnSR6bDguv1trFVfXAJO9P8uiMSrU55yf51PbP9treuhs25P4ves8P95/9qPvkOY+6b1fRgH2wcfMVuXnzlXO7a/vMsic3bt2Qs/7zT364f/Itj89Dbnm/HhMBc/5x3YX5p3UXze1O9GcJAAAAwHIx6YXXk5NsTnLOXqw9N8mmJE9Jcub42HkZXR12ly5Djcuuv0pyQ5LHJ/lMRrdYfFCSP0zy0ao6o7X2qh1fe8QtDsgX3/jMLuMAHdl/v1tl//1ulSRZd8Pnr+o5zm4dPHNAzrjLs/uOAezEo444Po864vgkyS+c/3sT/VkCAAAAsFys6DvAHtw+ycbW2rY9LWytzSbZmOTo7Y5tSHJdkgO7ClRVh2ZUwB2c5Gdba3/TWru6tXZVa+3cJD87zvGKqrpzV+8LAAAAAADAzk164bU+ySFVdcc9LayqOyU5NKOyae5YZVRMXdNhpp9PckSSz7fWLt7xZGvtv5J8IaOr5x7S4fsCAAAAAACwE5NeeH1+vD27qlbtalFVzSR5a5KW5HPbnToqyaokl3WY6fbj7fW7WXPdeHt4h+8LAAAAAADATkx64fWG8fZnklxYVb9SVUdX1aqqmqmq21fV05NcMF6TJH+w3esfN95+tsNMPxhv77ezEm587H7j3e90+L4AAAAAAADsxEzfAXantfapqvrNJG9Kcvck793F0sro6q4Xtdb+bbvjRyY5N8mHOoz190k2ZHSl15uq6sWttU1JUlWrk7w5ye2SXJvkHzt8XwAAktz6gMNyxcbr9rxwAt1q/0Nz+YZr+44BAAAAy85EF15J0lp7a1VdkORVSR6aUbn1Y0uSfDzJGa21z+zw2jMWIc+VVfWCJO9K8sIkTxjnq4yu7LpNkk1JTmut7e62hwAALMAVG6/L3z/g5X3HWJBHf+F1fUcAAACAZWniC68kaa19NskjquqwJPdNckRGBdOVSS5qrS3pP5Ntrb2vqr6S5DeTPDg/up3ipRkVYW9srX1tKTMBAAAAAABMq0EUXnPGxdbH+86RJK21C5M8ve8cAAAAAAAA025F3wEAAAAAAABgXwzmCq+qOj7J/0xyQpIjM3p217okX0zy5621i3qMBwAAAAAAQE8mvvCqqgOT/EmSp84d2mHJSUleXFV/keQ5rbX1S5kPAAAAAACAfk104VVVK5Kcm+ShGRVdl2X0DK/vj5ccNT73E0l+McmRVfUzrbXWQ1wAANitI/Y7JFU7/vutYThyzWG5YuM1fccAAACAnZrowivJ05M8LMmWJC9O8vbW2rbtF4xLsecledN47a8kef8S5wQAgD162z1/ve8IC/aUC17ddwQAAADYpRV9B9iDp2X0rK6XttbO3rHsSpLW2rbW2tuTvCSjq8CevsQZAQAAAAAA6NGkF173TjKb0TO89uRPk2xNcp9FTQQAAAAAAMBEmfTC6+AkN7bWNu5p4XjNjUkOWvRUAAAAAAAATIxJL7yuSnJIVR25p4XjNYcmuXrRUwEAAAAAADAxJr3w+lxGz+U6cy/WnjVe+5nFDAQAAAAAAMBkmfTC620ZlVjPrao/q6o77bigqu5UVR9I8twkbfwaAAAAAAAApsRM3wF2p7X2iap6c5LfTPJLSX6pqi5JcmlG5dbtkhy13Uve1Fr75NInBQAAAAAAoC8TXXglSWvtRVV1cUa3NTw8ye3HX9u7OsmZrTVXdwEAAAAAAEyZiS+8kqS1dnZV/WmSRyY5IcmR41NXJjk/yT+31m7uK998tJs2Z9OnLul05oo11em8OZsub53P3HD9fp3PXLVytvOZSXLb/Td2PnNVdf8zvfWaxflr/IONB3c+87INd+18ZpJctvGYzmeel893PrNLKyo5YOW2vmMsyFBzJ8mqFUPO3v3nz1JZWcP9uU+yL134pVQtzv+HWGxH7ndI3xEAAACACTOIwitJxoXWeeMvAAD2wWybzdvvcWbfMRbkmAM39R0BAAAAmDAr+g4AAAAAAAAA+2JirvCqqnd3NKq11p7V0SwAAAAAAAAm3MQUXklOTdKSLPRhEnOvbUkUXgAAAAAAAFNikgqv92dUVgEAAAAAAMBem5jCq7V2at8ZAAAAAAAAGJ4VfQcAAAAAAACAfaHwAgAAAAAAYNAUXgAAAAAAAAyawgsAAAAAAIBBU3gBAAAAAAAwaAovAAAAAAAABk3hBQAAAAAAwKApvAAAAAAAABg0hRcAAAAAAACDpvACAAAAAABg0Gb6DgAAAEy+Q2YOSVX1HWNBDt3vsFy76Zq+YwAAALCIFF4AAMAePf/2L+o7woK9/uIz+o4AAADAInNLQwAAAAAAAAZN4QUAAAAAAMCgKbwAAAAAAAAYNIUXAAAAAAAAg6bwAgAAAAAAYNBm+g4AAACwmA5eeWiqqu8YAAAALCKFFwAAsKyd+hP/q+8IC/bWS87oOwIAAMAguKUhAAAAAAAAg6bwAgAAAAAAYNAUXgAAAAAAAAyawgsAAAAAAIBBU3jNU1U9pKraXn7dvu+8AAAAAAAAy91M3wEG6PIk79vN+Z9K8pNJvp3kkiVJBAAAAAAAMMUUXvPUWvtGklN3db6qvjr+9t2ttbYkoQAAAAAAAKaYWxp2qKpOTHJcktns/iowAAAAAAAAOqLw6tZp4+0/tNYu7TUJAAAAAADAlFB4daSqDkjy1PHuu/rMAgAAAAAAME0UXt05JcnBSa5M8n97zgIAAAAAADA1FF7dmbud4ftba1t6TQIAAAAAADBFZvoOsBxU1Z2SnDTefffu1q7bsCkP+sDf/XD/tHvdOc+6150XMR2wt7676aJ8d9NFc7tr+8yyJzdsXZ+Xf+NHd099+Nr75hFrj+8xETDnvMu/nPOu+PLc7kR/lgAAAAAsFwqvbsxd3fW51trXd7fwiANW5zNP+7kliATM19Gr75ujV983SXLeta+9quc4u3WLmQPzurs9q+8YwE489tb3zmNvfe8kyUM++4aJ/iwBAAAAWC7c0nAfVdXKJE8f775rd2sBAAAAAADonsJr3z0qyW2TrE/yoZ6zAAAAAAAATB2F176bu6fYh1prN/WaBAAAAAAAYAopvPZBVa1N8pjxrtsZAgAAAAAA9EDhtW9+Jcl+Sb7RWvts32EAAAAAAACmkcJr3zxzvH13rykAAAAAAACm2EzfAYastXavvjMAAAAAAABMO1d4AQAAAAAAMGgKLwAAAAAAAAbNLQ17UB3XjJsub90OHLvpmv06n3n5tbfofOb3bjqw85lJ8r2NqzqfeeXN1fnMq25enD//yzZs7nzmVdtu6nxmkly74upFmTvJNm9Lvr9xmB/hqwf8Ty1W1uL8fVsKK7r/+FkyA44OAAAAwBIZ8K8dAQAAAAAAQOEFAAAAAADAwCm8AAAAAAAAGDSFFwAAAAAAAIOm8AIAAAAAAGDQFF4AAAAAAAAMmsILAAAAAACAQVN4AQAAAAAAMGgKLwAAAID/x969R1la1nei//66GxRovGC3wYgCSwxMMBdD4zUjGuLJWRNHl0OYycpJlsZI4wUziWtm0IyjeFwJECcXz6CMnctJGMc1UZxJdHIyEzXK4A3pxjiGETUOIBDRBpTQF2m6+zl/1C7SVrqr67J3vfup+nzW6vX0u99n//Zv7656avf+1vu+AAB0TeAFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXBF4AAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXBF4AAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXBF4AAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXBF4AAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXBF4AAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdE3gtQxVdVxV/auqurGqvl1Ve6rq1qp6f1U9d+j+AAAAAAAA1oINQzfQq6o6PcmfJzkjyTeTXJfkwSSnJXlJks8n+eRQ/QEAAAAAAKwVAq8lqKoTknw4yVOSvC3J21prDx2y/3FJHjdQewAAAAAAAGuKwGtp3pSZsOua1tqb5+5srd2b5N4V7woAAAAAAGANcg2vRaqqY5NcNNq8YshemA6fvG/70C0wGZuGbmA+u/fvGboFxuz6+3YM3QKTMdVrCavPR3beNHQLjJ91BAAAYAEEXot3TmZOV3hHa+2LVfWcqvq1qnp3Vb21qp49dIOsrE99y4fUq9TmoRuYz64DAq/V5hMCr9VqqtcSVp+P3CPwWoWsIwAAAAvglIaL9wOj8StV9QdJXjZn/5ur6gNJfq61tndFOwMAAAAAAFiDqrU2dA9dqao3JLk8yf4k65P8RpJ/n5lrdj0vybuSPDHJ/9tae8Vh7v9AvvvIup1J7plw20zWpvg3XC025e9+i3p9a+2RQzYzn6r6TpIDh9xkLemftWT16GItGb0n+dLQfTB21pLV58zW2olDNwEAADDtBF6LVFW/kuRXR5u/21q7aM7+LUk+m6QleWpr7X+vcIsAAAAAAABrimt4Ld4Dh/z9d+bubK1tT7IjM6/t81eoJwAAAAAAgDVL4LV4tx3y91uPMGf29pMn2woAAAAAAAACr8W76ZC/P+4IczaNxl0T7gUAAAAAAGDNE3gtUmvtriQ3jDbPn7u/qh6b5EdGm9tXqi8AAAAAAIC1SuC1NL86Gt9cVT88e2NVPTLJ1UkenZnreH16gN4AAAAAAADWlGqtDd1Dl6rq7Un+RZJ9mTni694kz0jyvUnuSvKC1tpXhusQAAAAAABgbRB4LUNVvTTJ65I8PcnxSb6W5INJrmit7RyyNwAAAAAAgLVC4AUAAAAAAEDXXMMLAAAAAACArgm8AAAAAAAA6JrACwAAAAAAgK4JvAAAAAAAAOiawAsAAAAAAICuCbwAAAAAAADomsALAAAAAACArgm8AAAAAAAA6JrACwAAAAAAgK4JvAAAAAAAAOiawAsAAAAAAICuCbwAAAAAAADomsALAAAAAACArgm8AAAAAAAA6NqqD7yq6syq+udV9Z6quqWqDlZVq6qfWmbdn6mq66vq/qraVVXbq+q1VbXqX1MAAAAAAIBpsmHoBlbAq5P883EWrKp3JnlNku8k+WiSh5Kcn+SqJOdX1YWttQPjfEwAAAAAAAAOby0cjfRXSd6e5J8lOSPJdcspVlUXZCbsujvJD7bWXtRae2mSpyb5YpKXJrlkWR0DAAAAAACwYNVaG7qHFVVVH09yXpILW2vXLuH+25Ock+RlrbVr5uw7L8nHMxOGPbG1dnDZDQMAAAAAADCvtXCE19hU1SmZCbv2JXn/3P2tteuS3JXk5CTPWtnuAAAAAAAA1iaB1+I8fTTe3Frbe4Q5N86ZCwAAAAAAwAQJvBbn9NF4+zxzvjZnLgAAAAAAABO0YegGOrNxNO6eZ86u0XjiYQs84pjvumzapo2PyOYTjltWU+2hyVwq7MC+GnvNfQ+tH3/Ng5PJbR88uLDnv3v/npyw4fgFzd23wJqL8dDByVyHb/8ELkG3P/vHXjNJDoyp7oG2LwcP7kuStBx4sLX2yLEUnoANtaGtq7/72j9h/fE5YcMJA3a0cOuytq4duVC7DuzJxvULW0uWYvyrzwrqrPld+/dk1/49SZJ97aGpXUs2rNvQ1h/yu08bNxw/0a/BcTp2Xb/ryMEJf0H/7f7dedSEfh7s2d/ZN+MhDnR23eK9B/fkOwdn1pH9U7yOJMmmTZvaaaedNnQbwFHs2LHjntba5qH7AACYJIHX4sz+L3/J/2M+6/GPyQ2vf8mY2pmx/+sPjrXerL+9bfxfHnfufMzYa962azIf6ty6+5gFzfutW9+dXz794gXNvXPP+D8o+vqeA2OvmSTf3Ldn7DXvrfvGXjNJvl3fGHvN27/1p5N5YcdkXa3Lr575pqHbWJJHdPxB9foJftZ75VffnUufsrC1ZCnWV7+v+7p+P2PPxV9469SuJeuzLr919r8euo0lOf34ybz3WQkP7B//L/8c6o23/F4uP+sXJlL7pm8t7L3RNNq9v9818Ko7LpvadSRJTjvttGzfvn3oNoCjqKr5zlQDALAqOKXh4jwwGjfOM2d23wPzzAEAAAAAAGBMBF6Lc9toPHWeOU+aMxcAAAAAAIAJEngtzudG49lVdaQLb507Zy6r3LMec87QLTAZO4duYD4ndHKdHRbuuY+1lqxSU7uWbFzg9Sfpy/mbnj50C4zf1K4jAAAA00TgtQittTuS3JTk2CQXzt1fVeclOSXJ3Uk+vbLdMZRnP3bL0C0wGfcM3cB8TtgwmWvXMZwfPclaskpN7VqyUXC+Kv34ph8ZugXGb2rXEQAAgGki8DqMqrq8qm6pqssPs3v2tiur6oxD7vP4JO8abV7RWjs46T4BAAAAAABINgzdwKRV1Y/k74KoJPn+0fhrVfUvZm9srT3rkDlPSHLmaPwurbVrq+rqJK9O8oWq+kiSh5Kcn+RRSf44yVVjfRIAAAAAAAAc0aoPvDITQj3zMLc/dakFW2uvqapPJHltkvOSrE9yS5LfT3K1o7sAAAAAAABWzqoPvFprH09Si7zPy5O8/Chz3pvkvUvtCwAAAAAAgPFwDS8AAAAAAAC6JvACAAAAAACgawIvAAAAAAAAuibwAgAAAAAAoGsCLwAAAAAAALom8AIAAAAAAKBrAi8AAAAAAAC6JvACAAAAAACgawIvAAAAAAAAuibwAgAAAAAAoGsCLwAAAAAAALom8AIAAAAAAKBrAi8AAAAAAAC6JvACAAAAAACgawIvAAAAAAAAuibwAgAAAAAAoGsCLwAAAAAAALom8AIAAAAAAKBrAi8AAAAAAAC6JvACAAAAAACgawIvAAAAAAAAuibwAgAAAAAAoGsCLwAAAAAAALom8AIAAAAAAKBrAi8AAAAAAAC6JvACAAAAAACgawIvAAAAAAAAuibwAgAAAAAAoGsCLwAAAAAAALom8AIAAAAAAKBrAi8AAAAAAAC6JvACAAAAAACgawIvAAAAAAAAuibwAgAAAAAAoGsCLwAAAAAAALom8AIAAAAAAKBrAi8AAAAAAAC6JvACAAAAAACgawIvAAAAAAAAuibwAgAAAAAAoGsCLwAAAAAAALom8AIAAAAAAKBrAi8AAAAAAAC6JvACAAAAAACgawIvAAAAAAAAuibwAgAAAAAAoGsCLwAAAAAAALom8AIAAAAAAKBraybwqqqfqarrq+r+qtpVVdur6rVVtejXoKoeW1W/VlVfqKrdVfVgVd1eVf+hqn54Ev0DAAAAAABweGsi8Kqqdyb5j0m2JLk+yYeTfF+Sq5JcW1XrF1HryUn+Mskbk5yc5GNJPpTkoSQ/m+TGqrpgrE8AAAAAAACAI9owdAOTNgqfXpPk7iTPa619ZXT792QmrHppkkuSvGOBJa9I8uQk/1+SC1tre0b11iV5c5K3JHl3VX2wtfbQOJ8Lh3ewDd3BsFqbzAtwMOOvezAHx14zSVqbTN1pdvLZT8i/3P7modtYkv/n7LcO3cKa9KovXDZ0C2vSxeXrHQAAAGAlrIUjvN44Gi+dDbuSpLX2jSSvHm2+YRGnNnzBaHzbbNg1qncwyduS7E3yuCRPXVbXAAAAAAAALMiqDryq6pQk5yTZl+T9c/e31q5LcldmTk34rAWWfXCB8+5Z4DwAAAAAAACWYVUHXkmePhpvbq3tPcKcG+fMPZr/NhrfVFWSSCySAAAgAElEQVTHz95YVZWZUxoel+SDrbVvLrZZAAAAAAAAFm+1X8Pr9NF4+zxzvjZn7tG8KTPh2E8mub2qPpOZo75+KMmpSd6TmWuGAQAAAAAAsAJWe+C1cTTunmfOrtF44kIKttbuqaofS/LOJC9L8qJDdn8pyXWttQeOdP+du/fmmb/5Jw9vv/LZZ+aiZ5+1kIcGJmzXg1/Lrn13zG5uGrKXo9m5c2e2bNny8PbWrVuzdevWATsCZm3bti3btm2b3ZzatWTXgT258q/f/fD2c086Jz960pZ57gGslL/atT0379oxuzm16wgAAMA0We2BV43GNraCVWcl+WBmArKfS/KRJHszc62wtyf5nap6TmvtFYe7/+YTjssNr3/JuNoBxmjjI56cjY94cpLka9/+s6m+Dt/mzZuzffv2odsADuPQALqqpnYt2bj++Fx6xsVDtwEcxtM2bsnTNs4E0FfdcdnUriMAAADTZLVfw2v2SKuN88yZ3XfEo7JmVdWGJB9IckaSf9Jae09r7e7W2v2ttb9I8sIk30jy81X1gmX0DQAAAAAAwAKt9sDrttF46jxznjRn7nyemeT7k9zaWvv03J2ttfuS/Nlo88cX1iIAAAAAAADLsdoDr8+NxrOr6rgjzDl3ztz5PHk03j/PnG+PxpMWUA8AAAAAAIBlWtWBV2vtjiQ3JTk2yYVz91fVeUlOSXJ3kr93xNZh/M1oPKuqHnOEOc8ajbcurlsAAAAAAACWYlUHXiOXj8Yrq+qM2Rur6vFJ3jXavKK1dvCQfZdU1S1Vdc2cWp/OTOh1XJLfq6pHHXKfdVX1pswEXvszc60vAAAAAAAAJmzD0A1MWmvt2qq6Osmrk3yhqj6S5KEk5yd5VJI/TnLVnLttSnJmZo78OrTWvqp6eZI/SfJPkpxXVTcm2Zvkh5OcnuRgkl9qrX11Yk8KAAAAAACAh636wCtJWmuvqapPJHltkvOSrE9yS5LfT3L1oUd3LaDWh6vqh5K8PsmPJXn+qN7dSf5Tkne01j4z3mcAAAAAAADAkayJwCtJWmvvTfLeBc69LMll8+z/SmaOGAMAAAAAAGBga+EaXgAAAAAAAKxiAi8AAAAAAAC6JvACAAAAAACgawIvAAAAAAAAuibwAgAAAAAAoGsCLwAAAAAAALom8AIAAAAAAKBrAi8AAAAAAAC6JvACAAAAAACgawIvAAAAAAAAuibwAgAAAAAAoGsCLwAAAAAAALom8AIAAAAAAKBrAi8AAAAAAAC6JvACAAAAAACgawIvAAAAAAAAuibwAgAAAAAAoGsCLwAAAAAAALom8AIAAAAAAKBrAi8AAAAAAAC6JvACAAAAAACgawIvAAAAAAAAuibwAgAAAAAAoGsCLwAAAAAAALom8AIAAAAAAKBrAi8AAAAAAAC6JvACAAAAAACgawIvAAAAAAAAuibwAgAAAAAAoGsCLwAAAAAAALrWTeBVVZuH7gEAAAAAAIDpM9WBV834R1X1gSR3DN0PAAAAAAAA02fD0A0cTlU9JckrkrwsyROSVJI2aFMAAAAAAABMpakJvKrqkUkuTPILSf7h7M2j8aYk7xuiLwAAAAAAAKbb4IFXVZ2bmZDrp5OcOHtzZkKu9yd5X2vt1oHaAwAAAAAAYMoNEnhV1eOS/FxmTlt49uzNSe5K8sTMnL7wea21PUP0BwAAAAAAQD9WLPCqqkryE5kJuV6c5JjMhFx7k/yXJH+Y5KNJ9q9UTwAAAAAAAPRvRQKvqvq/k7w8M0dvVWaO4Lo+MyHX+1truw6ZuxItAQAAAAAAsEqs1BFeb8pMyPW/k/yHJNe01m5boccGAAAAAABgFVu3wo93S5IvJvmbFX5cAAAAAAAAVqmVCryuTbIvyU8m+U9J7q6qq6vqOSv0+AAAAAAAAKxSKxJ4tdb+aWau3/XLSW5O8pgkFye5vqq+XFVvqqpTV6IXAAAAAAAAVpcVO6Vha+2+1to7Wms/mOQZSbYleSDJGUnemuSrVXXdSvUDAAAAAADA6rDS1/BKkrTWtrfWXpXkCUlenuQTo17+YZI2mnZNVV1YVccN0SMAAAAAAAB9GCTwmtVa29tau6a1dl6Spya5IsnXk1SSl2bmel87q+p9VXXBgK0CAAAAAAAwpQYNvA7VWvtqa+1Xkjw5yT9O8sEkB5Icn+SnkvzRgO0BAAAAAAAwpTYM3cBcrbWDSf40yZ9W1eOTvCzJK5J836CNTbF2cOgOFq61o89ZdM3U+IsmOdDGX/fABJ7/wQnUTJL9Gf8X1oHaP/aaSXKwHZhIXZjrtX/1lqFbgLFpmczP5ZUwiZ/RK+Vgx713+uWSpN+vdQAAABZuao7wOpzW2jdba29vrf2DzFzf67tU1W9V1e8N0BoAAAAAAABTYqoDr0O11j51mJt/OsnLF3L/qvqZqrq+qu6vql1Vtb2qXltVS3oNqmp9VV1cVf+jqu6tqu9U1R1V9aGq+sdLqQkAAAAAAMDiTd0pDSehqt6Z5DVJvpPko0keSnJ+kquSnF9VF7a28HOiVdVJSf4syTOS3J/kk0keSPKkUd1vJPnQOJ8DAAAAAAAAh7fqA6+quiAzYdfdSZ7XWvvK6PbvSfKxJC9NckmSdyyw3rrMhFnPSPK7SX6ptbb7kP0bk5w2xqcAAAAAAADAPLo5peEyvHE0XjobdiVJa+0bSV492nzDIk5teFGS5yS5LsnWQ8OuUd1drbW/WmbPAAAAAAAALNCqDryq6pQk5yTZl+T9c/e31q5LcleSk5M8a4FlLxmNV7bW2jj6BAAAAAAAYOlW+ykNnz4ab26t7T3CnBuTPHE091PzFauqk5M8LTPXAPtYVf1AkguSPCHJvUk+1lr78DgaBwAAAAAAYGFWe+B1+mi8fZ45X5szdz4/OBpvS/JvMnO6xDpk/xur6n8kuaC1ds8i+gQAAAAAAGCJVnvgtXE07p5nzq7ReOIC6p00Gk9P8itJrklyeWZOi7glyTuTPC/J+5L82OEK7Ny9N8/8zT95ePuVzz4zFz37rAU8NDBpux68M7v33Tm7uWnIXo5m586d2bJly8PbW7duzdatWwfsCJi1bdu2bNu2bXZzateSXQf25Mqvvvvh7ec+9pz86Elb5rkHsFJu3rU9N+/eMbs5tesIAADANFntgdfs0VfjutbW7DXPNiT5aGvtZYfs+1hV/R9JvpzkBVV13ugaYd9l8wnH5YbXv2RM7QDjtPERp2TjI05Jktz57T+f6qM0N2/enO3btw/dBnAYhwbQVTW1a8nG9cfn0qdcPHQbwGGcvXFLzt44E0C/887LpnYdAQAAmCbrjj6law+Mxo3zzJnd98A8c+bWS5Jtc3e21u5M8qejzfMXUA8AAAAAAIBlmnjgVVUvHh35NITbRuOp88x50py5C6mXJLceYc7s7ScvoB4AAAAAAADLtBKnNPzjJF9P8sTZG6rqL5Lc21q7cJm16yj7Pzcaz66q41prew8z59w5c+dzS2auB3ZCkscdYc7sOfZ3HWE/AAAAAAAAY7RSpzScG0w9P8lzx1D3F5O84kg7W2t3JLkpybFJ/l64VlXnJTklyd1JPn20B2utPZTkv442/94pC6vqmCTPG226uA4AAAAAAMAKWInAa0+Sx06icGvtfa21PzzKtMtH45VVdcbsjVX1+CTvGm1e0Vo7eMi+S6rqlqq65gj1DiZ5bVWdf8h91ie5MslTktyV5L8s+gkBAAAAAACwaCsReH05ybFV9fqqOn4FHu+7tNauTXJ1Zq6p9YWq+lBV/eckX0ny/Zk55eJVc+62KcmZSZ58mHqfT/JLSR6Z5M+r6jNVdW1mnucvJ7k/yYVHOH0iAAAAAAAAY7YSgdd7MnNKw7cneaCqDoxu/56qOrCIP/uX2kBr7TVJ/q/MnN7wvCQ/keSvk1yS5ILW2oF57n64ev8uyY8l+bMkZyR5cWauh7YtyQ+31o56ekQAAAAAAADGY8MKPMZvJzk9ydYkxxxy+9zrek1Ua+29Sd67wLmXJbnsKHM+nuTjy2wLAAAAAACAZZp44DW6NtbrquqNSc5KckKSjyW5L8kFk358AAAAAAAAVreVOMIrSdJa25Vke5JUVZLsa61dt1KPDwAAAAAAwOq0YoHXHD+fZO9Ajw0AAAAAAMAqMkjg1Vr7wyEeFwAAAAAAgNVn3dANAAAAAAAAwHIIvAAAAAAAAOiawAsAAAAAAICuDXINLwAAAGD6bHrkSbn3wW8N3QYAACyawAsAAIAl+cub/jJVNXQbjNFJxzw6/+7sy4ZugzF73c2XDd0CAMDECbwAAABYkgPtQN5x9luHboMxWpc2dAsAALAkruEFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXBF4AAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXBF4AAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXBF4AAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXBF4AAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXBF4AAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXBF4AAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdG3NBF5V9TNVdX1V3V9Vu6pqe1W9tqqW/RpU1daqaqM/V42jXwAAAAAAABZmTQReVfXOJP8xyZYk1yf5cJLvS3JVkmurav0yap+a5N8maWNoFQAAAAAAgEVa9YFXVV2Q5DVJ7k7yg621F7XWXprkqUm+mOSlSS5ZYu1K8nuZeR2vGU/HAAAAAAAALMaqD7ySvHE0Xtpa+8rsja21byR59WjzDUs8teGrkpw/eozbltMkAAAAAAAAS7OqA6+qOiXJOUn2JXn/3P2tteuS3JXk5CTPWmTt05P8epJPZubUiAAAAAAAAAxgVQdeSZ4+Gm9ure09wpwb58w9qtGpDH8/yYYkv9Bac/0uAAAAAACAgWwYuoEJO3003j7PnK/NmbsQlyR5fpI3tNa+tIS+AAAAAAAAGJPVHnhtHI2755mzazSeuJCCVfWUJJcn2ZHk3y62oZ279+aZv/knD2+/8tln5qJnn7XYMsAE7Hrwzuzed+fs5qYhezmanTt3ZsuWLQ9vb926NVu3bh2wI2DWtm3bsm3bttnNqV1Ldh3Ykyu/+u6Ht5/72HPyoydtmecewEq5edf23Lx7x+zm1K4jAAAA02S1B141GsdyysFDTmV4bJJXtNYOLLbG5hOOyw2vf8k42gHGbOMjTsnGR5ySJLnz239+z8DtzGvz5s3Zvn370G0Ah3FoAF1VU7uWbFx/fC59ysVDtwEcxtkbt+TsjTMB9DvvvGxq1xEAAIBpstqv4fXAaNw4z5zZfQ/MM2fWLyZ5XpLLW2v/czmNAQAAAAAAMB6r/Qiv20bjqfPMedKcufN56Wh8YVWdN2ffabNzquppSXa11l60gJoAAAAAAAAsw2oPvD43Gs+uquNaa3sPM+fcOXMX4tnz7Pve0Z/7F1EPAAAAAACAJVrVpzRsrd2R5KbMXHPrwrn7R0dpnZLk7iSfXkC957fW6nB/krx1NO2do9seM75nAgAAAAAAwJGs6sBr5PLReGVVnTF7Y1U9Psm7RptXtNYOHrLvkqq6paquWcE+AQAAAAAAWILVfkrDtNauraqrk7w6yReq6iNJHkpyfpJHJfnjJFfNudumJGdm5sgvAAAAAAAAptiqD7ySpLX2mqr6RJLXJjkvyfoktyT5/SRXH3p0FwAAAAAAAH1ZE4FXkrTW3pvkvQuce1mSyxZZf9H3AQAAAAAAYPnWwjW8AAAAAAAAWMUEXgAAAAAAAHRN4AUAAAAAAEDXBF4AAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXBF4AAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXBF4AAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXBF4AAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXBF4AAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXBF4AAAAAAAB0TeAFAAAAAABA1wResEyf+fb2oVtgMjYN3cB8du7cOXQLjNm2bduGboHJmNq1ZNeBPUO3wAR89J6bhm6B8ZvadYSl+9R9/g+xFJ/0ui2HtQQAWPUEXrBMN3x7x9AtMBmbh25gPvfcc8/QLTBmAq9Va2rXkl37BV6rkcBrVZradYSl+9S3/B9iKT7pdVsOawkAsOoJvAAAAAAAAOhatdaG7mFNqaqdSW4fug/GalMSh9usPme21k4cuokjqaoHknxp6D4YK2vJ6jS1a4l1ZNWylqw+U7uOJNaSZfC9ujRet6Wb6rUEAGAcBF4AAAAAAAB0zSkNAQAAAAAA6JrACwAAAAAAgK4JvAAAAAAAAOiawAsAAAAAAICuCbwAAAAAAADomsALAAAAAACArgm8AAAAAAAA6JrACwAAAAAAgK4JvAAAAAAAAOiawAsAAAAAAICuCbwAAAAAAADomsALAAAAAACArgm8AAAAAAAA6JrACwAAAAAAgK4JvAAAAAAAAOiawAsAAAAAAICuCbwAAAAAAADomsALAAAAAACArgm8AAAAAAAA6JrACwAAAAAAgK4JvAAAAAAAAOiawAsAAAAAAICuCbwAAAAAAADomsALAAAAAACArgm8AAAAAAAA6JrACwAAAAAAgK4JvAAAAAAAAOiawAsAAAAAAICuCbwAAAAAAADo2oahG1hrNm16dDv1tJOHbmN1aZMpWwcPLmjeznvvz+bHPXphRQ/sX0ZHR7DvofHXTJK9+8Ze8uCeA2OvmSTf+c74l7Iv7vrmrtbaiWMvPCYbjzu2nfXEk4ZuY2nWdfy7FlUTK73z/t3Z/OgTJlZ/kr1PXMet77jlrqldSzYed2w760mbhm5jaR71vUN3MLV27tyZzZs3D90GY7Rjx46pXUeSzteSAe28f082P/r4odvozthft57fHy3Sji//zdSuJZs2bWqnnXba0G0AR7Fjx457WmveaAJTTeC1wk497eTccMO7h25jdVlgMLVYtXfPguY987xfzg3X/dbCat5333JaOnzNu74+9ppJ0m6+few192x/YOw1k+TLXx7/hyznXPfbU53KtNZy49tfNnQbS3PCcUN3sHTHTO7H5rmvujo3/vtXT6x+jj1mcrUnbV2/H0ate86lU7uWtJbc+K6Lh25jSerH3zJ0C1Nry5Yt2b59+9BtMEZVNbXrSDJaS67aOnQb3Tn3km3T+7pN8c/dc1/z7vH+7Jrub6+xWvfjb57aJ3vaaaf52QUdqKrxf1AEMGZT+4YHAAAAAAAAFkLgBQAAAAAAQNcEXrBMr3z5TwzdApOxc+gG5rPpUa75sNpc9KItQ7fAZEztWrLJtWNWpa1bp/QUaSzH1K4jibVkqS76R+cM3UKXLvpJr9syTPVaAgAwDgIvWKaLfv7/HLoFJuOeoRuYz+ZHdXwdLA5r64vOHboFJmNq15LNPqRelQReq9LUriOJtWSptgq8lmTrT/oFoWWY6rUEAGAcBF4AAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXNgzdwFpTOTEb1j9/rDX3H/j4WOt158D+ydTdu3fsJevub469Zvvi18ZeM0l2f/aBsdf8X19+/NhrJsn2+x41kbpTbf/BtG/tHrqLJanvPDR0C0u3Yf3QHSzdho5/x2V9x6/7NDtwMLl3/Gs9sMbsP5Dc+7dDd8E4rev4PQMAAGuad7IAAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXBF4AAAAAAAB0TeAFAAAAAABA1wReAAAAAAAAdE3gBQAAAAAAQNcEXgAAAAAAAHRN4AUAAAAAAEDXNgzdACzbugnltpOou2H9+GseO5lv43XHtLHXXF/jr5kkVRMpO90qybpOn/gkvg9WyoaOf09kfcev+6TWefr+mgamQ9XE3o9OnYOTeS87dXp9jwkAwJrnUw4AAAAAAAC6JvACAAAAAACgawIvAAAAAAAAuibwAgAAAAAAoGsCr0WqqmOq6vyq+o2q+kxVfb2q9lXVXVV1bVU9f+geAQAAAAAA1pINQzfQofOSfHj097uT7EiyO8n3J7kgyQVV9bbW2psH6g8AAAAAAGBNcYTX4h1M8oEkz2utPaG19qLW2j9rrf1Akp9OciDJv6mqFwzaJQAAAAAAwBoh8Fqk1tpftNZ+qrV2/WH2/VGSPxht/uyKNgYAAAAAALBGCbzG73Oj8ZRBuwAAAAAAAFgjBF7j99TR+PVBuwAAAAAAAFgjBF5jVFUnJ3n5aPMDA7YCAAAAAACwZmwYuoHVoqo2JHlPkkcn+Whr7UOHm7dz585s2bLl4e2tW7dm69atK9MkMK9P3Lc9n7xvx+zmpiF7OZqdD+zNM976Rw9vv/K8s7P1+U8bsCNg1rb/dlN+57/PnuF4eteSnX+7N+f+q2se3r7ohT+UrS/8oQE7AmZt27Yt27Ztm92c2nUksZbANNv24c/ndz78+dnNqV5LAADGoVprQ/ewKlTV7yb5hSR3JHlGa+3uw83bsmVL2759+1gfe/+Bj4+13kQdPDj2kvXgd8ZeM0nqrrvGX/NLt4695kOfvXPsNZPkjh0bx17zM3dP5v9Y//P+8Wf3v37rW3a01rYcfeYwzjllU7vhdS8euo0lWXfisUO3sHTHrh+6g6U7tuPfcVnf7wHp63/2t6d2Ldly6uPbZ994wdBtLMm6V109dAuwYqpqateRJNly6ub22Uv7XEs4gg39/tzlyNZffPXUriWT+JwEGL9pf08CkDil4VhU1TsyE3bdneT8I4VdAAAAAAAAjJ/Aa5mq6jeS/GKSnZkJu74ycEsAAAAAAABrisBrGarq15O8Psm9SV7YWvtfA7cEAAAAAACw5gi8lqiqrkjyL5N8KzNh1+ePchcAAAAAAAAmQOC1BFX1tiSXJvl2ZsKuzw3cEgAAAAAAwJq1YegGelNVL07yptHmXyd5XVUdbuotrbUrVqwxAAAAAACANUrgtXgnHfL3LaM/h3NdEoEXAAAAADBVTnvCSbn97m8N3QbAWAm8Fqm19gdJ/mDgNgAAAAAAluT2u7+Vgx9+64Lnr3vhWybYDcB4uIYXAAAAAAAAXRN4AQAAAAAA0LX/n717D7PrruvF//7OTC5N2jRJL5Ra2wAtRRQsNFqK4lEq6HNEFH6Ad+RSggi/H17wKM85P6H46EE8KOeIAoUf3vB+g6MoHo5a5X5ICwilRaE32pS2aZPmMk3msr+/P2amhpA0s3fW3muvmdfreebZWXuv/dnvTGa+s7Pfs/ZSeAEAAAAAANBpzuE1YjX7Mzd/Tdsx2lN7zc/cd3/zM5OUu3c3PrN3272Nzzxw03B661vv39T4zDsODWfJ2XO4DmXuWJuv6d0/23aKgdSZIawDI1LWT7YdYWBlbYd/x2Wyw9nHWJ3vpbfnUNsxBuIrAsZHnavp7TncdgyatJoW2YnSdgIAABq0mp7KAgAAAAAAsAIpvAAAAAAAxsS2h21JKWXZH9setqXtyABjwVsaAgAAAACMiVvv3pven/2nZe8/8Zw3DDENQHcovAAAAAAAOuqCszallP7OS3jBwzYPKQ1AexReAAAAAAAddfObX9L/nbZuaj4IQMucwwsAAAAAAIBOU3gBAAAAAADQaQovAAAAAAAAOk3hBQAAAAAAQKcpvAAAAAAAAOg0hRcAAAAAAACdpvACAAAAADpv21mnp5TS18e2s04fu1wXnLVp6JkAVqKptgMwxnq9xkeWB6abn3nvnsZnJkl23dv4yJkvHGx85u13ndH4zCT5woH1jc+8o/l//iTJ3sPzwxk8xup8Mre/th1jIFPp8L/XfDc/50mSmQ7/jkuHo4+1+ZrewQ5/PwLjoVfTOzjXdgqaNFXaTgAwsFt378v8W1/W130mf+wtQ0rz7/rNVc48bYhpAFYuLyEBAAAAAADQaQovAAAAAAAAOk3hBQAAAAAAQKcpvAAAAAAAAOg0hRcAAAAAAACdpvACAAAAAACg0xReAAAAAADLsO2MTSml9PVxwdbT2o4NsCpMjeqBSin/sPjHW2utLzzqun7UWusVzSUDAAAAADixW+/bn9n/+sK+7jOxZf2Q0gBwpJEVXkm+dfHyxmNc14960kkAAAAAAABYMUZZeF21eLn7GNcBAAAAAADAQEZWeNVav6LcOtZ1AAAAAAAA0I9RHuEFAAAAADA2Ljh9Y0opy99/86lDTAPAyVB4cXwTE42PrKdsaHxmLji/+ZlJcvqmxkeuP/eLjc/8uotubXxmklzw8Zsan/l1nz+78ZlJct2e0xqf+af3Nj6yURPrJ7LuwlPajjGQsmay7QiDm2p+XRyZLmefWP5/Plm+OpfM3N3NU6NOvePlbUcY2MSVv9F2BGhUWTuZqfO98EdHeY4BJPnXVzy7r/0nTvVyKsC46vCrXwAAAAAAADAGhVdZ8IJSyt+VUgZT4K8AACAASURBVO4spRwupcw/xMdc25kBAAAAAAAYH60eg1tKWZfkvUm+LYn3EgAAAAAAAKBvbb/p7M8meerin/8iyXuS7EriKC4AAAAAAACWpe3C6/uT1CSvq7Ve1XIWAAAAAAAAOqjtc3g9IguF1xtbzgEAAAAAAEBHtX2E1/4kk7XWAy3nAAAAAAAAoKPaPsLr40lOL6VsbTkHAAAAAAAAHdV24fWrSUqSn2w5BwAAAAAAAB3VauFVa/37JD+b5OdKKf9vKWVDm3kAAAAAAADonlbP4VVK+YfFP+5P8tokry6lXL+4fTy11nrFsLMBAAAAAADQDa0WXkm+9ajt9UkuPcF96nCiAAAAAAAA0EVtF15Xtfz4K0OvN5SxZfpA8zN33dn8zBtvanxmksx8bFfjM2/9xKbGZ3787rMbn5kkn76/+eXhlv1zjc9Mks/O3TKUueNsdn/NPf88nO/9YVt3ykzbEQY2ubabn/MkmWj7J/5JKJN+12UY5mYnct+d3Xw36frRfW1HGNhpV7adAJo1f6CX+z843XYMGuTnLgAAXdXqy1+1VoUXAAAAAPAVLti0Kbftf6gznxy1/9bThpgGgHHX4d/3BgAAAABWqtv278/eH33+svc/7fKNQ0wDwLibaDsAAAAAAAAAnAyFFwAAAAAAAJ02src0LKXctPjHz9dan37Udf2otdZHNZcMAAAAAACALhvlOby2LV4eOsZ1/agnnQQAAAAAAIAVY5SF1wsXL+8/xnUAAAAAAAAwkJEVXrXW31nOdQAAAAAAANCPibYDNKGU8lOllJ8f4eNdXEp5ZSnlXaWUG0spvVJKLaU8Z1QZAAAAAAAAWDDKtzQcpp9JcnaS143o8V6W5JUjeiwAAAAAAAAewoo4wqsFn0nyK0m+L8mFSf6p3TgAAAAAAACr10o5wmukaq3vOHK7lNJWFAAAAAAAgFVP4TVqNUmv1+jIMn2g0XkPzr3t9uZnfubzjc984MN3Nz4zST73mbMan/mR3Zsbn3nD/Y2PTJJ88cBM4zM/nesbn5kk983dPJS54+zw7FQ+f9fWtmMMZP3kfNsRBrZ2qrvZJ0ttO8LAJiea/bnJgtn5ydx5/6ltxxjI3un1bUcY2OPbDgANOzwzmS988Yy2Y9CgyYnuPmfo10SHnx8BAPCVvKUhAAAAAAAAnabwAgAAAAAAoNO8peGI7d69N5c96WUPbl955XflJVc+o8VEwJLDs/dmZvbepc0z28xyInvnpnPlJ3/vwe1nnvP4PPOcr28xEbDkT26/Pn9y+4Nv4Tq2a8ne2em84BO//+D2957zuHzvw73hHoyDq6++OldfffXS5tiuI0myZ/aBPP+6I9aShz8uz7aWwFj4s12fzl/s+szS5livJQAATVB4jdiZZ27Oxz76lrZjAMewbs0ZWbdm4RwUew98anfLcR7S5qkNecclP9J2DOAYnnfe1+Z5531tkuRr3v8bY7uWbF6zIb/9hB9qOwZwDDt27MiOHTuSJKWUsV1HkmTLmlPyu0+0lsA4es65j8tzzn1ckuSSf/zvY72WAAA0wVsaAgAAAAAA0GkKLwAAAACgL+dt3JxSSl8f523c3HZsAFYwb2kIAAAAAPTljun7c+PTXtHXfR7z/jcPKQ0ArJwjvErbAQAAAAAAAGjHSjnC61eSnNp2CAAAAAAAAEZvRRRetdY3jvLxSilPTPKbR1z12MXLXyqlvOqIXE8aZS4AAAAAAIDVaKSFVynlW5qYU2v95ybmnIRNSS47xvUXjToIAAAAAHTBw9edllKWf2aSr964cYhpAFhpRn2E1zVJ6knOqGn5yLRa6zVx3jAAAAAAWLa/ufzFfe3/iAvuG1ISAFaitoojZVEXTE02P3Pj+sZHrjljCDmTbN043fjMh+1v/jeT7l63tvGZSXLfoeY/rw+bOb/xmUlyeOpA4zP3Nj6xWROlZsPUXNsxBrJuar7tCANb29HPeZJMTpzs75u0p5TuZh9nM72S26dPaTvGQCY6/Ezy9Ge8tO0IA7vgr9/WdgTG0ESp2bh2tu0YNMjPXQAAuqqtwuvmJL+d5M+SNN8qAAAAAAAAsGqMuvB6S5LvT/KIJK9N8qokf5zknbXWj444CwAAAAAAACvAxCgfrNb68iQPT/KDSf4+ycYkVyb5UCnlhlLKz5RSzhllJgAAAAAAALptpIVXktRaZ2qtf1RrfXqSbUlek+SWJBcneX2S20op/7OU8qxSSltvuQgAAAAAAEBHjLzwOlKt9fZa6y/UWh+V5KlJfj/JTJJnZOH8XrtKKb9aSrmwzZwAAAAAAACMr1YLryPVWq+ptT4/C295uCPJx5KcmeSVi9sAAAAAAADwFcam8FpSa92f5ObFj9mW4wAAAAAAADDmxuYcWaWUbUlekORHk5yfpCSZS/LXWXh7QwAAAAAAAPgKrRZepZT1SZ6T5EVJviULJVdJckOS30rye7XWu9pLCAAAAAAAwLhrpfAqpTwpCyXX85KcloWSa1+SP0ryW7XWj7WRCwAAAAAAgO4ZaeFVSvlPSV6Y5NFZKLlqkmuSvDPJn9daD40yDwAAAAAAAN036iO8Xp+FkuuWJL+T5LdrrbeNOEOrytxsyj3NvkvjxL/d3Oi8Jb1PNj/33g/NNT5z561f1fjMJLlu7/rGZ/7r/b3GZ950aG/jM5Pk87mu8ZnTs/c0PjNJZucPDmXuODswN5mP7N7cdoyBrJ2obUcY2JoOZ58qbScYXEl3P+/jbL6W7JudbDvGQO6fm2g7wsD2335O2xEG9vy2AzCWDsxN5YN3ndF2DBo0VfzcBQCgm9p6tWBbktckubmUMt/nR/ONCQAAAAAAAJ3Vxjm8Ovw75gAAAAAAAIybURdeLxzx4wEAAAAAALDCjbTwqrX+zigfDwAAAAAAgJWvu2f8BgAAAAAAgCi8AAAAAAAA6DiFFwAAAAAAAJ2m8AIAAAAAAKDTFF4AAAAAAAB0msILAAAAAACATlN4AQAAAAAA0GkKLwAAAAAAADptqu0Aq87MbCZuv7PRkfULuxqdt+SB6w81PvPWu85qfOYXH1jb+Mwkuaf5v37uPTzT+MzdE19qfGaS9OZnG59Z02t8ZpLUOpy542y+ltw3U9qOMZA1E93MnSST3Y2eiVLbjjCwDn/ax9q+meRv7+jm18XDNrSdYHC3TUy2HWFgBx53VdsRBvbjn35N2xFWrLleyb0zfo9yJenwUzUAAFY5/zMBAAAAgFXurFO2ppSy7I9z15/WdmQA+DKO8AIAAACAVW73oT15x+OXf1T0Nz/s3iGmAYD+tVp4lVJu6vMuh5LsTXJ9kvcleXetdb7xYAAAAAAAAHRG20d4bTvizzXHP03H0bddluRFSW4opTy31nrDcOIBAAAAAAAw7touvF6YZHOSn0+yJckHklyT5I4sFFznJvnWJE9Jcl+S12XhvGPbkzw7yWOTvK+U8vW11r0jzg4AAAAAAMAYaLvw+rMk/ydJL8lTa63XHGunUsq3LO77oiSX11rfVEp5dJJ/SHJekpcn+cWRJAYAAAAAAGCsTLT8+K9O8pgkLz1e2ZUktdZ/TvJjSR6f5GcXr/vXJD+dhSPBvnvoSQEAAAAAABhLbRdez0kyk+Tdy9j3PUkOJ3neEdf9VRaODnt089EAAAAAAADogrYLr/OTPFBr7Z1ox1rrfJIHklxwxHXTSfYm2Ti0hAAAAAAAAIy1tguvg0lOL6U86kQ7llIuTLI5C6XX0nUlyWlJ7htaQgAAAAAAAMZa24XXRxcv31xKWXO8nUopU0l+PUlN8pEjbjovyZokdw4tIQAAAAAAAGOt7cLrVxYvn57kulLKj5RSLiilrCmlTJVSzi+lPD/JtYv7JMkbjrj/MxcvPzyivAAAAAAw9s5YvzWllGV/nLHm9LYjA8BJmWrzwWut/1xK+Ykkv5bka5P89nF2LVk4uuunaq0fOOL6s5O8J8kfDzNnk3r3TefQ71/X6Mwb/+WsRuct+djuE77TZN9u2Nd8x/r5fYcan5kknyufa3zmfXM3Nz5zZm5/4zOTZG7+gRPv1KeaE56ub7C5Jz4N4IpzYK6XD9/T/L/RKKwpbf+uxeAmUtqOMLDS3eid/ryPs5nMZ9fcvrZjDGR6/4a2IwxsqsNr4N0PTLYdYWA/3naAFezAXC8fvvtw2zFgIJ5jsNLdd3hPfvkxVy17/zPWrr7/WwOwsrRaeCVJrfXXSynXJnldkm9LvuIZZ03yD0leU2v90FH3fc1oUgIAAAAAADCuWi+8kqTW+uEk315K2ZLkCUnOykLxdXeST9Ra97SZDwAAAAAAgPE1FoXXksVi6x/azgEAAAAAAEB3dPckAgAAAAAAAJAxOsKrlPLEJD+QZHuSs7Nw7q57knw8yR/WWj/RYjwAAAAAAADGVOuFVyllY5K3J/m+pauO2uVbkvx0KeWPkuyotR4cZT4AAAAAAADGW6uFVyllIsl7knxbFoquO7NwDq/bF3c5b/G2c5N8f5KzSylPr7XWFuICAAAAAAAwhto+wuv5SZ6aZDbJTyf5zVpr78gdFkuxH0vya4v7/kiS3x1xTgAAAAAAAMbURMuP/8NZOFfXz9Ra33x02ZUktdZerfU3k7wqC0eBPX/EGQEAAAAAABhjbRdeX59kPgvn8DqRdySZS3LJUBMBAAAAAADQKW0XXqcl2V9rfeBEOy7usz/JqUNPBQAAAAAAQGe0XXjtTnJ6KeXsE+24uM/mJPcOPdUylVJ+sJTygVLK/aWUA6WUnaWUly+edwwAAAAAAIARmGr58T+S5NlJXpvkx0+w71VZOIfXh4acaVlKKb+RhcyHkvx9ktkkVyR5c5IrSinPrbXOf8X9Jkumtkw2muWcLfsanbfk4sNrG58509vQ+MxDc+san5kkvelHNz7zjqlNjc+8d+rWxmcmycHZexqfOTs33fjMJJnvHR7K3HG2ppScs344X/vDNlnaTjC4ydLh8B024dM+FPOZy56Jsfk9or7cWm9oO8LAptLNtTtJ1syubzvCwH7uka9rO8KKtWai5Oz1a9qOQYMmPN9Zmfa0HQAAYPjaPhLpN7JQYr20lPJ7pZQLj96hlHJhKeVdSV6apC7ep1WllP8rC2XXl5I8vtb6jFrrs5JclOSGJM9K8ooWIwIAAAAAAKwarRZetdZrkrwpC6XXDyb5XCnlllLKh0opHyyl3Jrkc0l+YPEuv1Zr/ad20n6ZVy9e/myt9d+Wrqy13pXkZYubP+etDQEAAAAAAIav9UKm1vpTSf6fLBxgX5Kcn+TyJE9O8tWL192X5P+utb6qrZxLSinnJbk0yUySPz369sVC7o4k5yR50mjTAQAAAAAArD5tn8MrSVJrfXMp5R1JnpZke5KzF2+6O8nOJO+vtR5qK99RnrB4eX2t9YHj7PPxJF+1uO+HR5IKAAAAAABglRqLwitJFgutv1r8GGePWLy89SH2ue2ofQEAAAAAABiS1t/SsINOXbw8+BD7HFi8PG3IWQAAAAAAAFa9sTnCq0PK4mUd5M67pw/lSVe/98HtKy+9KFde+ugmcgEnab53MPO9B7vsM9vMciKHetP5q91XP7j96A2X5uINl7aYCFjy2YM7c8PBa5c2x3Ytma+Hc9O+v3lwe8u6i7Jl3UUtJgKWfHLfznxq//ivI0nyQG867zniOcnFGy7NYzwngbFww8GduXG6G2vJanT62q3ZN7tn2ftvWrMl98/cN8REANB9Iyu8SinvbGhUrbW+uKFZg9i/eHnqQ+yzdNv+o284c8P6fHTHdzUeCjh5kxMbMzmxMUlyePaO3S3HeUjrJzbku8/c0XYM4Bgeu3F7Hrtxe5LkrXe8dmzXksmyLo/c9B/bjgEcwyWbtueSTQvryC/f/JqxXUeS5JSJDfkez0lgLH3Nxu35msXnJG/fNb7PSVarfbN78pJzX7vs/d++a/n7AsBqNcojvF6QhaOiygn2O56l+9YkbRZetyxeXvAQ+3z1UfsCAAAAAAAwJKMsvH43A74N4Jj5xOLl15ZSTqm1PnCMfb7hqH0BAAAAAAAYkpEVXrXWF4zqsYap1vrFUsp1SZ6Y5LlZKPIeVEr5D0nOS/KlJB8ZfUIAAAAAAIDVZaLtAB31Xxcvf7mUcuHSlaWUs5P85uLm62utvZEnAwAAAAAAWGVG+ZaGK0at9c9KKW9J8rIkny6l/O8ks0muSLIpybuTvPlY973p7rX5/l8/v9E8N/XuanTeki/VjzU+8+Bs81nn5o/1rpInb743M5S5TRtWr1pK8324Drg5e3t78pf7/7ztGAMpZbLtCECSuczkvt4X244xkP2H72g7wsCG8fOVE7v6ns+3HWHF2jO/N3++/91txwAAAFB4DarW+uOllA8meXmS/5BkMsmNSd6Z5C2O7gIAAAAAABgNhddJqLX+QZI/aDsHAAAAAADAauY9VQAAAAAAAOg0hRcAAAAAAACdpvACAAAAAACg0xReAAAAAAAAdJrCCwAAAAAAgE6bajsAAAAAAHB8p0ycnlJKX/fZMrV5SGkAYDwpvAAAAABgjD3t9Ff0fZ9vetjaISQBgPHlLQ0BAAAAAADoNIUXAAAAAAAAnabwAgAAAAAAoNOcw2vEpjOd6+qnGp25b35Xo/OWHJrZ0/jM+d7hxmfW9BqfSVKrz+s469VeZub2tx0D6LBa53Nofm/bMQYyjOcTo9Lln69dfs7lZ+bw9Op8Ds92cy0BAABWFkd4AQAAAAAA0GkKLwAAAAAAADpN4QUAAAAAAECnKbwAAAAAAADoNIUXAAAAAAAAnabwAgAAAAAAoNMUXgAAAAAAAHSawgsAAAAAAIBOU3gBAAAAAADQaQovAAAAAAAAOk3hBQAAAAAAQKdNtR1g9SmZyGSjE+d7hxudx/DU2ms7AgAkSWqq5xAtqPFcAAAAAIbBEV4AAAAAAAB0msILAAAAAACATlN4AQAAAAAA0GkKLwAAAAAAADpN4QUAAAAAAECnKbwAAAAAAADoNIUXAAAAAAAAnabwAgAAAAAAoNMUXgAAAAAAAHSawgsAAAAAAIBOU3gBAAAAAADQaQovAAAAAAAAOm2q7QCrTU0vM3W60Zm9OtfovCU180OZ2xW19tqOAA+h+hoFTk7t7jrS1dxd5/POsXV3LQEAAFYWR3gBAAAAAADQaQovAAAAAAAAOk3hBQAAAAAAQKcpvAAAAAAAAOg0hRcAAAAAAACdNtV2AAAAAADosjVrTsnc3KFl73/q5OlDTAMAq5PCCwAAAABOwtzcoWw59euXvf9zNj1riGkAYHXyloYAAAAAAAB0msILAAAAAACATlN4AQAAAAAA0GkKLwAAAAAAADptqu0AAAAAADAsU1PrMj8/M9THmChrhjofADgxhdeI9epM9s/uanTm3PwDjc5b0uvNNT6zptf4TFitX1e1rs6/N9CMmpr53uG2Ywyky+u+tZuVyNc1MGr9Flglkzll3bbhBUqyfs3pQ50PAJyYwgsAAACAzpifn8n6decve//ijB4AsCoovAAAAABoxbXXXpdSSp/3mhxKFgCg2xRefSqlbEzyvUm+YfHjCUlOSfLeWusz2swGAAAA0C0169ae19c9SnHEFgDwlRRe/bsoybvaDgEAAAAAAMAChVf/9id5Z5KdSa7NwhFeb201EQAAAAAAwCqm8OpTrfULSV68tF1KeWyLcQAAAAAAAFY9b3oMAAAAAABApym8AAAAAAAA6DSFFwAAAAAAAJ3mHF4j1qvzOfDA5x/cXju1NWvXbG0xESer15vOxMSGtmPQgF7vgfR6h5Y2H9FmlhOpdS4zc3c/uD05sTGTExtbTMTJmu8d9G+4Qsz3Dma+d3Bpc2zXklrncmjmzge3pyZPzdTkaS0mogmel6wMvd50er0HljbHdh1JPCcZlJ/7g/F5609XnpPwlW44uDNfs3F72zFo2dXv/2R2PO2StmMAdMqqKrxKKW9I8swB7npFrfWOJjJMlMmcesqFTYxiTPR6D3hhaYWYmDglExOnJEnm5u5Z33KcE1o7dXbbEWiQF3BWjiNf7D08e8cYryU169c+vO0QNMzzkpVhYmLDg/+Os3N3jfE6ssBzkv75uT8Yn7f+dOc5CUe7cfpahRd5+/s/pfAC6NOqKrySnJvk4gHut6bpIAAAAAAAADSj1FrbztBppZQXJPmtJO+ttT5jGfvfk+TWYedipM5MsrvtEDTu4lrr2L63Vyllf5LPtZ2DRllLVqaxXUusIyuWtWTlGdt1JLGWnATfq4PxeRvc2K4lXic5Jl/rJOP3dXBBrfWstkMAPJTVdoRX6/xgAJowrv9ZBbrDOgI0wVoCnCyvkwAATZloOwAAAAAAAACcDIUXAAAAAAAAneYcXgMopfxlkocvbp6V5JFJ9ubL37v+F2qt7x11NgAAAAAAgNXGObwG84QkFxx13eYklx2x7T2oAQAAAAAARsARXgAAAAAAAHSac3gBAAAAAADQaQovAAAAAAAAOk3hBQAAAAAAQKcpvAAAAAAAAOg0hRcAAAAAAACdpvACAAAAAACg0xReAAAAAAAAdJrCCwAAAAAAgE5TeAEAAAAAANBpCi8AAAAAAAA6TeEFAAAAAABApym8AAAAAAAA6DSFFwAAAAAAAJ2m8AIAAAAAAKDTFF4AAAAAAAB0msILAAAAAACATlN4AQAAAAAA0GkKLwAAAAAAADpN4QUAAAAAAECnKbwAAAAAAADoNIUXAAAAAAAAnabwAgAAAAAAoNMUXgAAAAAAAHSawgsAAAAAAIBOm2o7wGpz5sb1ddvW0xqdWWd7jc5bMjdTGp85OzvZ+MzDveZnLsxd3t//4NzBbJzauKx9Z+bryUQ6piH982cu80OYOdf4zCSZz2zjM2fn9x+otTb7zdqgdRNr61lrz2o7xkBKaf77YFSaXxX/3YH56Zw6uWGIj9Bdw/y8D9tth+4c27Vk/cTa+rD1Z7YdYyBrOryO9Opwv6L3zU1n09Rw1pLp+e5+N/Zqd79m7pkd33UkWXhOcva6bq4lbTo4N52NQ/peXckOzk9nY4PPl7q7qvXvi2P8nKSUyTpRlv/y1Diu6KX0//vkWya2HPe2Q73prJ/48q/12QF+lp061V+uNRP9PcaGyf5fNyh9fuOtW9ff6wgTG/p/jajf19XK5ACrR7/3mZrMPfumc9amZa55vQFeHJro7+vj2i98aXetdWxfiDjzzDPrtm3b2o4BPIRrr7126OuIwmvEtm09LR/7qe9pdObsHYcbnbfk/lvXND7zi3dvbnzmTQeWVzb169bp5f39//stb8srt710WfvedrD5p+a7Dg6nRLp7/mDjM3dPfKnxmUmyrzY/d9fefxzrI2Brklcs8+tu3Kzt8z9R42TNEL8qfuULb8vPPGp4/6Zj/QV9Av3+p3icvPwzrx3bT31N8p8v3NF2jIGcs775X3QYlX2zw336/fOfe3ted/FLhjL70/cP55eMRmHfTHd/9rz1jvFdR5KFteQnH9HN5yRt+rWb3za2n7eJMf65+8ab3paffmRzn7ex/uZq2Cs/O75ryUSZyvq15y17/zqEX848WWsm+39d4rtOe+5xb3vvvVfnu8748udpdx/u/7Wfp5x9Sl/7P3x9f5/bS7bu62v/JJmc6K+YeeSj7utr/w1PPLWv/ZNk/kvTfe0/cVr/r5eVLev723/rafmGV/12Pv7fXrCs/evBQ/1n2thfpolnvf7Wvh9khLZt25adO3e2HQN4CKWUoa8jY/uEBwAAAAAAAJZD4QUAAAAAAECnKbzgJF22+dK2IzAc97Qd4KE0ee4CxsOTt1hLVqixXUtOde6YFelbz3hi2xFo3tiuI0mcf3JAT/J/iIFc7vnSyRjrtYQvd9EpvtZJXvL0S9qOANA5Ci84SU/avL3tCAzH7rYDPJSNA7xHPOPtm7ZaS1aosV1LFF4r01PP9ALZCjS260iSbLSWDOTyLX7uD+LJPm8nY6zXEr7cozf4eU6yQ+EF0DeFFwAAAAAAAJ2m8AIAAAAAAKDTFF4AAAAAAAB0msILAAAAAACATlN4AQAAAAAA0GkKLwAAAAAAADpN4QUAAAAAAECnKbwAAAAAAADotBVdeJVSNpZSfqiU8qZSyodKKdOllFpK+euG5n9HKeUvSyl3llJmSil3lVI+UEp5VRPzAQAAAAAAOLGptgMM2UVJ3tX00FLKRJK3JnlJktkkH0myK8nDknxdkh9L8t+aflwAAAAAAAC+0kovvPYneWeSnUmuTfKELBRVJ+uXslB2fSzJ82qtty3dUEqZTPLEBh4DAAAAAACAZVjRhVet9QtJXry0XUp57MnOXJzxqiT3JnlGrXX3UY85n+TjJ/s4AAAAAAAALM+KPofXkLwsyWSS/+/osgsAAAAAAIDRW9FHeA3J0xcv/66Uck6SH0jy6CQPZOGtE/+i1nqorXAAAAAAAACrjcKrD6WUdUkuWtz8miTvTnLaUbt9sZTyrFrrtSMNBwAAAAAAsEp5S8P+bElSFv/8piQ3JnlyFkqvxyX5n0m+OsnflFLObCUhAAAAAADAKjO2R3iVUt6Q5JkD3PWKWusdTedZdGRBeH+Sp9Va71/c/kwp5VlJPpHk8UlenuSqowfcc/CBXPar73lw+8rLL85LLn/MkOIC/Th4eFemZ3YtbY51aX1w/mDefMvbHtz+xs2X5hs3b28xEbDkg/ftzIfue/BA77FdSw7MTecXP3/1g9tP2XppvmXrpS0mApZ89uDO3HBw/NeRJDk4N51fu/nfn5M8afOluXyL5yQwDj68Z2c+vGf815Jaezk0c/uD21OTmzI1uanFRMCSq//XJ/P2//XJpc2xXUcAloxt4ZXk3CQXD3C/NU0HOcL+I/78J0eUXUmSWmuvlHJ1kjcnuSLHKLzO2nhKPvZT3zPEiMCgNq47NxvXnZsk2bX3H3e3HOchbZzcmFdse2nbaQVkpgAAIABJREFUMYBj+Oat2/PNWxde7H35Z147tmvJqVMb8p8v3NF2DOAYHrtxex67cWEdeesd47uOJMnGqQ35yUd4TgLj6MlbtufJiwX0Kz87vmtJKRNZv/a8tmMAx7Dj6Zdkx9MvSZJMPOv1Y7uOACwZ27c0rLX+cK21DPBxyxAz7U9y7+LmzcfZben6c4aVAwAAAAAAgH83toXXGLtu8fKM49y+dHjvgRFkAQAAAAAAWPUUXv37i8XLK45z+7cvXu4cQRYAAAAAAIBVT+F1DKWUbyyl3FhKufEYN/9OktuTbC+lvPqo+z0nyQ8lmU/ym8NPCgAAAAAAwFTbAYatlPKXSR6+uHnW4uU3lVI+esRuv1Brfe8R2xuSXHysebXWB0opz03y/iS/VEr50SSfSbItyaVJapJX1lo/2dzfAgAAAAAAgONZ8YVXkickueCo6zYnueyI7bPSh1rrR0spj0/yX5J8R5JnJrk/yXuSvLHW+oHB4wIAAAAAANCPFV941Vq3DXCfa5KUE+xzc5IXD5YKAAAAAACApjiHFwAAAAAAAJ2m8AIAAAAAAKDTFF4AAAAAAAB0msILAAAAAACATlN4AQAAAAAA0GkKLwAAAAAAADpN4QUAAAAAAECnKbwAAAAAAADoNIUXAAAAAAAAnabwAgAAAAAAoNMUXgAAAAAAAHSawgsAAAAAAIBOU3gBAAAAAADQaQovAAAAAAAAOk3hBQAAAAAAQKcpvAAAAAAAAOg0hRcAAAAAAACdpvACAAAAAACg0xReAAAAAAAAdJrCCwAAAAAAgE5TeAEAAAAAANBpCi8AAAAAAAA6TeEFAAAAAABApym8AAAAAAAA6DSFFwAAAAAAAJ2m8AIAAAAAAKDTFF4AAAAAAAB0msILAAAAAACATlN4AQAAAAAA0Gml1tp2hlVl+/btdefOnW3HAE6glHJtrXV72zmOx1oC3TDOa4l1BLphnNeRxFoCXTHOa4l1BLphnNeRxFoCXTCKdcQRXgAAAAAAAHSawgsAAAAAAIBOU3gBAAAAAADQaQovAAAAAAAAOk3hBQAAAAAAQKcpvAAAAAAAAOg0hRcAAAAAAACdpvACAAAAAACg0xReAAAAAAAAdNqKLrxKKRtLKT9USnlTKeVDpZTpUkotpfz1Sc6dLKW8bHHm3lLKbCnl7lLK35ZSvrep/AAAAAAAAJzYVNsBhuyiJO9qcmApZSrJ3yb59iSHk3wwye4kj0zynUm+s5TyplrrTzb5uAAAAAAAABzbSi+89id5Z5KdSa5N8oQkbz3JmS/KQtl1W5Kn1FpvW7qhlPIdSf46yU+UUn6v1nrdST4WAAAAAAAAJ7CiC69a6xeSvHhpu5Ty2AbGftvi5VuOLLsWH+/vSin/mORpSZ6UROEFAAAAAAAwZCv6HF5DcniZ++0eagoAAAAAAACSKLwG8b7Fy5eVUs4/8obFtzT8tiS7kvzNqIMBAAAAAACsRiv6LQ2H5I+TXJHkyiT/Wkr5QJJ7kzwiyTcm+XCSF9VaD7QXEQAAAAAAYPVQePWp1lqTvKSU8tkkv5zk24+4eU+Sv8/CEV7HdM8992T79u0Pbu/YsSM7duwYUlqgH1dffXWuvvrqpc0z28xyItYSGF9dWUusIzC+urKOJNYSGGddWUusIzC+urKOACwpC/3N+CmlvCHJMwe46xW11juOM/MFSX4ryXtrrc8YMNemJH+Q5GlJfjHJu5J8KclFSV6d5PuSfCrJU2qt+4++//bt2+vOnTsHeWhghEop19Zat594z3ZYS6AbxnktsY5AN4zzOpJYS6ArxnktsY5AN4zzOpJYS6ALRrGOjPMRXucmuXiA+61pOshR3pjku5K8utb6+iOu/1SS7y+lbEny9CSvSvKaIWcBAAAAAABY9SbaDnA8tdYfrrWWAT5uGVamUspkkh9Z3Pz94+z2B4uX336c2wEAAAAAAGjQ2BZeY+rsJOsW/3z/cfbZu3i5dfhxAAAAAAAAUHj1594khxf//KTj7HP54uXNw48DAAAAAACAwusYSinfWEq5sZRy45HX11pnkvzV4ub/KKU86qj7PT3JTyxu/tHwkwIAAAAAADDVdoBhK6X8ZZKHL26etXj5TaWUjx6x2y/UWt97xPaGJBcfZ+RPJtm+ePv1pZSPJbkryYVJnrC4zx8meVcD8QEAAAAAADiBFV94ZaGEuuCo6zYnueyI7bOyTLXW20spl2ThSK7vXpy/IcmeJO9P8lu11j88qcQAAAAAAAAs24ovvGqt2wa4zzVJykPcfn+SqxY/AAAAAAAAaJFzeAEAAAAAANBpCi8AAAAAAAA6TeEFAAAAAABApym8AAAAAAAA6DSFFwAAAAAAAJ021MKrlPJVpZTzh/kYAAAAAAAArG4PWXiVUm4qpVxfSnnqgPN3JrlpwPsCAAAAAADACZ3oCK9tSR6T5H2llJ8Y8DHKgPcDAAAAAACAE1ruWxpOJXljKeV3SynrhhkIAAAAAAAA+rGcwmtPkvdk4UitH0rywVLKVw01FQAAAAAAACzTcgqvmVrrs5K8bnH7iUmuLaV88/BiAQAAAAAAwPIs9y0NU2t9bZJnJzmQ5Owkf19K+fEh5QIAAAAAAIBlWXbhlSS11vckuSzJvyVZk+TXSynvKKWsGUY4AAAAAAAAOJG+Cq8kqbXemOQbkvxNFs7r9cIk/1RKeXjD2QAAAAAAAOCE+i68kqTWuq/W+owkv7R41WVJPl5KuayxZAAAAAAAALAMAxVeS2qt/yXJc5McTHJukmtKKS9uIhgAAAAAAAAsx0kVXklSa/2LJJcn+UKSdUmuLqX8Rill8mRnAwAAAAAAwImcdOGVJLXW65NsT/J3WTiv148l+cck65uYDwAAAAAAAMfTSOGVJLXW+5P8xyRvyELp9U1JTm9qPgAAAAAAABxLY4VXktQFP5fk+5JMNzkbAAAAAAAAjmXqBLdfleRAv0NrrX9aSvlcFo72WjdIMAAAAAAAAFiOhyy8aq1XDTq41vovSb5z0PsDAAAAAADAcjT6loYAAAAAAAAwagovAAAAAAAAOk3hBQAAAAAAQKcpvAAAAAAAAOg0hRcAAAAAAACdpvACAAAAAACg0xReAAAAAAAAdJrCCwAAAAAAgE5TeAEAAAAAANBpCi8AAAAAAAA6baqfnUspN/U5/1CSvUmuT/K+JO+utc73OQMAAAAAAACOq6/CK8m2I/5ck5Tj7Hf0bZcleVGSG0opz6213tDn4wIAAAAAAMAx9Vt4vTDJ5iQ/n2RLkg8kuSbJHVkouM5N8q1JnpLkviSvy8LbJm5P8uwkj03yvlLK19da9558/A6669bMv/HKRkfO3nGo0XlL9t66rvGZt+8+vfGZtxzc2PjMJLl1ut9vjxO7Y/p4HfHgdh2ca3xmktw1O934zD1lT+Mzk2RvuWsoc8fZlz5zZ17/mNe1HWMg6ydr2xEGtqb5b+GRKR3OPpHufs2Ms7uu35U3fe1VbccYyCM3zrQdYWCzve5+M378vrVtRxjYgVnryLB0eS3h2FbTeQ+6/PxoJbnuun/J+rXnDfUxJiaa///9kdat2dz3fZ636Vl97X/3odm+H+PJZ/f3s3vr2l5f+z/1vC/1tX+S3HtgQ1/7bzvn/2fvvsMkKauGjd9nNrBLXpKICopKEBQFVEBFARN+5oCiomAA8UWiBBUJgoAIIoqoqIA568uLYhZEggqICAgrCAgqGYRdYBd293x/PNVsbe/M7HRPz3T3zP27rr56uruq+vQz1dVVz3lCa/UIs7Zp/X+98PbW6tVi5pSW32NgVmt1bDGrtXKKVdqoG5vZ+Xo/Seq2Vn8FfgD8CVgEbJ+Z5w22UERsWy37LmDrzPx0RGwA/BZ4PPA/wMfbDVqSJEmSJEmSJElqaLXx1oeAjYA9hkp2AWTm+cD7gGcAB1fP/R04gNIT7FXtBCtJkiRJkiRJkiQ1azXh9UbgYeB/R7DsWcB8YKfac2dTeodt0OL7SpIkSZIkSZIkSYNqNeG1LvBQZi5zUN/MXAg8BKxXe+5B4L/A2Ey6JEmSJEmSJEmSpEmn1YTXA8AqEfHkZS0YEU8BVqUkvRrPBbAScE+L79uWiNgwIvaLiJ9FxPURMS8i7ouIiyNi34hoe+btatvfiIj/RMT8iPhnRHw+Ih7byc8gSZIkSZIkSZKk4bWa8PpDdX9KREwbaqGImAp8Fkjg4tpLjwemAbe2+L7t+g3wKeBF1Xv+GLgMeCZwEvCHiFit1Y1GxAuBy4G31bb7IGXesisiwiEbJUmSJEmSJEmSxkmrCa9PVvcvBf4cEbtExHoRMS0ipkbEuhHxDkpS6aXVssfX1n91dX9R+yG3ZDbwbmDNzHxBZu6cmdsDGwNXA8+iJL5GLCJWAL4DzAQ+kJlbZOZbMnNj4ERgTeDbVW82SZIkSZIkSZIkjbGWEl6ZeT6wL6Xn1ibAmcANwDxgPnAjcAbw9GqV/TPz97VNrAWcBXx3VFGPPN4dMvP0zJzb9PxNlN5YADu1OLThbsDawHmZeUrTawcD/wA2B3ZsL2pJkiRJkiRJkiS1otUeXmTmZ4Ftgd9WT0XTjeq1bTPz5KZ1D8/M1zUlwbrl8up+BrB6C+u9trr/RvMLmbmQ0vurvpwkSZIkSZIkSZLG0NR2VsrMi4AXR8QsyrCAa1KSXXcAl2fmvZ0Lccw8tbp/GLinhfWeVd1fMsTrlzQtJ0mSJEmSJEmSpDHUVsKroUps/XaZC/amQ6r7n2Tm/JGsEBErA6tVD/85xGI3V/dPGkVskiRJkiRJkiRJGqFRJbz6VUTsCrwZeBD4cAurrlj7+4EhlmnMF7bSYC/e+cBDPPfTZz36+D1bbch7t9qohRAkjZU5829m7vxGzpo1uhnLsjyw8AFOuemLjz5+zqpb8JxVt+xiRJIafn/PZVxwz2WNhz17LHlg4YOceMPi48jWs7Zgm1keR6RecPXcS7n6gd4/joDHEqmXXXjPpVx0b+8fSzIX8fCCOx59PGVgBaYMrNDFiCQ1nPaTS/nSOZc2HvbscUSSGtpOeEXE5sDOwJbAWkACd1KG9Pt2Zl4+zOoj2f7xwKvbWHWHzPz3MNvdAfgiJd49MnN2K2G1Ec8S1lxhJn/c9zWj3YykMbDScuuy0nLrAvDPe396V5fDGdYKU1Zgryfu0e0wJA3iBattwQtW2wKAPa86smePJStMWZ4D1vc4IvWiTVbckk1WLEmjz/3riJ49joDHEqmXPW+1LXneauVYsvfVvXssiRhg+tS1uh2GpEHs/sot2f2V5Tgy8OLDevY4IkkNLSe8ImIF4EuUHlKwdBJoW+CAiPgOsHtmDtUTalnWATZsY71pQ70QEc8HzgKmA3tn5jda3Pac2t8rAPcNssyKgywrSZIkSZIkSZKkMdJSwisiBigJo+0oia5bKXN4/ata5PHVa+sAbwHWioiXZma2Glhmvh14e6vrDSUitgHOoSSqDs7Mz7YR0/0RcQ9lHq/1gL8OstgTqvub2gxVkiRJkiRJkiRJLWi1h9c7gO2BR4ADgFMzc1F9gSop9j7gpGrZXYCvjT7U9kXEVsDPKPNqHZqZx49ic5cDOwDPZvCE13Nqy0mSJEmSJEmSJGmMDbS4/Nspc18dmJmnNCe7ADJzUWaeCnyQ0gvsHaMPs30R8RzgF8DKwBGZ+fFRbvKs6v5tg7zXFErPNoAfj/J9JEmSJEmSJEmSNAKtJrw2AxZS5vBali8DC4BnthpUp0TEFsAvKcmuozLzyBGu95yIuDYirh3k5TOA24DtIuJ/ml47DngypXfXz9qPXJIkSZIkSZIkSSPV6pCGKwFzMvOhZS2YmQ9FxBxgxbYi64xfAasA/wXWjYgzh1jug5l5V+3x8sCGgy2YmXMj4i2UhNYpEbEbcB0lGbgxcBewczvzlkmSJEmSJEmSJKl1rSa87gLWjoi1MvOO4RaMiLWAVSm9obplVnW/KvDOYZY7gvLZRiQzfxcRzwIOo8zn9XTgduCLwJGZeWtb0UqSJEmSJEmSJKllrSa8LgZeT0kQvX8Zyx5JmcPrwtbD6ozMjDbXO48S+3DLzGaQebwkSZIkSZIkSZI0vlqdw+tzlETQHhHx9Yh4SvMCEfGUiPgGsAeQ1TqSJEmSJEmSJHXcFX/+CxEx4W9rzlit20Ut9bSWenhl5nkR8WlgX+CtwFsj4hbg35Tk1hOAx9dWOSkzf9epYCVJkiRJkiRJqluQC/ni04/odhhjbo8rj+h2CFJPa3VIQzJz/4i4gTKs4WrAutWt7m7giMy0d5ckSZIkSZIkSZLGVMsJL4DMPCUivgy8BNgSWKt66Q7gUuBXmTmvMyFKkiRJkiRJkiRJQ2sr4QVQJbTOrm6SJEmSJEmSJElSVwx0OwBJkiRJkiRJkjS81aatQkRMitur13tpt4tbfajtHl6SJEmSJEmSJGl8HL7B/t0OQeppQya8IuL0Dr1HZua7O7QtSZIkSZIkSZIkaQnD9fDaFUgg2tx2Y90ETHhJkiRJkiRJkiRpTAyX8PoaJVklSZIkSZIkSZIk9awhE16Zues4xiFJkiRJkiRJkiS1ZaDbAUiSJEmSJEmSJEmjYcJLkiRJkiRJkiRJfc2ElyRJkiRJkiRJkvqaCS9JkiRJkiRJkiT1NRNekiRJkiRJkiRJ6msmvCRJkiRJkiRJktTXTHhJkiRJkiRJkiSpr5nwkiRJkiRJkiRJUl8z4SVJkiRJkiRJkqS+ZsJLkiRJkiRJkiRJfc2ElyRJkiRJkiRJkvqaCS9JkiRJkiRJkiT1NRNekiRJkiRJkiRJ6msmvCRJkiRJkiRJktTXTHhJkiRJkiRJkiSpr5nwkiRJkiRJkiRJUl8z4SVJkiRJkiRJkqS+ZsJLkiRJkiRJkiRJfc2ElyRJkiRJkiRJkvqaCS9JkiRJkiRJkiT1NRNekiRJkiRJkiRJ6msmvCRJkiRJkiRJktTXTHhJkiRJkiRJkiSpr5nwkiRJkiRJkiRJUl8z4SVJkiRJkiRJkqS+ZsJLkiRJkiRJkiRJfc2ElyRJkiRJkiRJkvrahE54RcSGEbFfRPwsIq6PiHkRcV9EXBwR+0bE9F7YpiRJkiRJkiRJkto3tdsBjLHfAI8D5gGXApcAjwG2BrYC3hERL87Me8ZtmwFMjbY+zFAGZnR2ew3LzVzQ8W3OnNb5bS4/ZWHHtwkwc0rnvx4zp3R8k8ycOjZ56xkLpnV8m9NzRse3CTA9lh+T7fayiGTGlOx2GG2ZMdCfcQNM6+NmIlOif8u9j4u9pw0A0/u0cGdNe6TbIbTtnof7t23UwNicco6LmR0+/9ZiA/T3b7uW1s/f9VZNoo/a85JFI152IFq/Vs8c+fbLe7R2PTy1jbbP01usH1huoPUTt1avARa1eDif0sbxP1v85mWLbxGzWq8fyFvntfYeLb8DrX+Qha3ts+3INWeN+XtI0njr02qOEZsNvBtYMzNfkJk7Z+b2wMbA1cCzgJN6YJuSJEmSJEmSJElq04ROeGXmDpl5embObXr+JuB91cOdWhmGcCy2KUmSJEmSJEmSpPZN6ITXMlxe3c8AVu/hbUqSJEmSJEmSJGkYkznh9dTq/mGglTm8xnubkiRJkiRJkiRJGsZkTngdUt3/JDPn9/A2JUmSJEmSJEmSNIyp3Q6gGyJiV+DNwIPAh8dzm3fOncdzT/zfRx+/Z+uNeO82G3UiBEmjdN/8G7hv/g2Nh2t0M5ZleWDhg5x4wxcffbz1rC3YZtaWXYxIUsO5d1/GeXf/ufGwZ48lcxc+yCeuX3wced5qW/D81TyOSL3gijmX8tc5lzUe9uxxBMqx5NjrT3v08fNX24IXrLZFFyOS1HD+PZfx+3t6/1iSuYhHFtz16OOBgeWZMrB8FyOS1HDaDy7kyz+8sPGwZ48jktTQswmviDgeeHUbq+6Qmf8eZrs7AF8EEtgjM2e3GWJb21xzxRn88YDXjvYtJY2BVZZbn1WWWx+A6+79/l3LWLyrVpiyPAesv0e3w5A0iO1W34LtVi+Vve+84mM9eyxZccryHPwUjyNSL9pspS3ZbKWSgD7hpsN79jgC5Vjyoafs3u0wJA1i29W2YNsqAb37lUf27LEkYoBpU61Hl3rR7m98Hru/8XkATNnsAz17HJGkhp5NeAHrABu2sd60oV6IiOcDZwHTgb0z8xttxjam25QkSZIkSZIkSdLI9ewcXpn59syMNm43Dba9iNgGOAdYATg4Mz872hjHYpuSJEmSJEmSJElqTc8mvDopIrYCfgasBByamcf34jYlSZIkSZIkSZLUugmf8IqI5wC/AFYGjsjMj/fiNiVJkiRJkiRJktSeCZ3wiogtgF9SElNHZeaRI1zvORFxbURc26ltSpIkSZIkSZIkaWxM7XYAY+xXwCrAf4F1I+LMIZb7YGbeVXu8PLBhh7cpSZIkSZIkSZKkMTDRE16zqvtVgXcOs9wRwEiTU2OxTUmSJEmSJEmSJLVpQie8MjPaXO88YNB1292mJEmSJEmSJEmSxsaEnsNLkiRJkiRJkiRJE58JL0mSJEmSJEmSJPU1E16SJEmSJEmSJEnqaya8JEmSJEmSJEmS1NdMeEmSJEmSJEmSJKmvmfCSJEmSJEmSJElSXzPhJUmSJEmSJEmSpL5mwkuSJEmSJEmSJEl9zYSXJEmSJEmSJEmS+poJL0mSJEmSJEmSJPU1E16SJEmSJEmSJEnqaya8JEmSJEmSJEmS1NdMeEmSJEmSJEmSJKmvmfCSJEmSJEmSJElSXzPhJUmSJEmSJEmSpL5mwkuSJEmSJEmSJEl9zYSXJEmSJEmSJEmS+poJL0mSJEmSJEmSJPU1E16SJEmSJEmSJEnqaya8JEmSJEmSJEmS1NdMeEmSJEmSJEmSJKmvmfCSJEmSJEmSJElSXzPhJUmSJEmSJEmSpL5mwkuSJEmSJEmSJEl9zYSXJEmSJEmSJEmS+poJL0mSJEmSJEmSJPU1E16SJEmSJEmSJEnqaya8JEmSJEmSJEmS1NdMeEmSJEmSJEmSJKmvmfCSJEmSJEmSJElSXzPhJUmSJEmSJEmSpL5mwkuSJEmSJEmSJEl9zYSXJEmSJEmSJEmS+poJL0mSJEmSJEmSJPU1E16SJEmSJEmSJEnqaya8JEmSJEmSJEmS1NdMeEmSJEmSJEmSJKmvmfCSJEmSJEmSJElSXzPhJUmSJEmSJEmSpL5mwkuSJEmSJEmSJEl9zYSXJEmSJEmSJEmS+poJL0mSJEmSJEmSJPU1E17SKF1wz6XdDkFjY41uBzCcBxY+2O0Q1GG/u/uyboegsdGzx5K5HkcmpF/c+eduh6DO69njCHgsadfv7/F3vx3nW26j0dPHEi3pqrnWMwhOO/eqboegDjnfusNHXWRZLOG0007rdggTjgkvaZQu9KJrolqz2wEMZ+4CK5cmGitwJqyePZZ4HJmYfnnn5d0OQZ3Xs8cR8FjSrgv83W+LicJR6eljiZZ09Vz3dcGXzzPhNVH4+7XYRfdaFnUmvDrPhJckSZIkSZIkSZL6WmRmt2OYVCLiTuCf3Y5DHbUGcFe3g1DHbZiZK3U7iKFExBxgdrfjUEd5LJmYevZY4nFkwvJYMvH07HEEPJaMgt/V9lhu7evZY4n1JINyXxf03n6wXmb2bG/RHj+W9Nr/spssiyVNtvIY8+OICS9JkiRJkiRJkiT1NYc0lCRJkiRJkiRJUl8z4SVJkiRJkiRJkqS+ZsJLkiRJkiRJkiRJfc2ElzQGImLFbseg9kXEihGxcrfjkCRJk5vnJJJGwmOFJElSEZnZ7RikCSUi1gI+AdyQmUd1Ox61JiKeAJwE3AZ8LzPP73JIw4qIFYC3AVOA8zLzmi6HJGkQERFZnXRFxEBmLup2THW9Hp80GfXbOYmk7vBYIU0OXvtL0shM7XYA0kQSEWsChwCvA1aOiFUz84Auh6XWbAA8Fng9sGNEnJSZp3Q5puFsBnwYWBf4S0Scmplf7nJMkprkki2MpgA9lVDq9fjUuojYCHg78ETgT8DfMvPXXQ1KrerqOUlErASsAWxKqUi/MzNvGq/371eWW3sst1Hpt+sXtcDvhmq89pekEbCHl9QhVbLrw8CewH+A24HnAidn5n7djE2tiYitgRcDR1ZPfTYz9+liSMOKiOcAzwKOBlYETsrMD3c3Ko1Wo5eNvW36X0Q8GXgHsDkl+TAF+BFwUWae08XQgN6PT62LiM2Ac4FVq6cSuB84MTOP7lpgalk3zkkiYgDYCjgWeAqlIn0hcB1wemaeMJbv368st/ZYbp3Rb9cvWja/GxqM1/6StGwmvKQOqIYx/BAl2XUzcCDwT+Ag4C2Y9OoLTUN6BfBj4NXVy9tk5h+6FtwgmhMhEbEl8BHgNcBhVmr2j8a+V+13S/S2qZ5bHXhcZl7RrRjVuohYFdiZckE6C5gL3EOprFgPmA+ckJmHG586pWqAcx6wMXA28F1gJrAPpXX4CZl5UNcC1Ih065wkIlYH9qA04loeuIJyTnsz8CrKseH4zDxkLN6/X1lu7bHcRq/frl80Mn431Mxrf0kaORNe0ihVya5Dgd0oQwx8CDgnMx+shhM6EngTJr16XkRMycyFETEFOA7YG/gv5X/4vcy8q6sBDqHpQncTSuXmOsBrMvP3XQ1OLasqq1cGtgM2AZ5W3dYAvpSZe3cxPI1QRKwNHAa8C5gOfAP4PHA9MA/Ysnr9hcCxmfkR41MnRMT6wKXADcBzM3Nh9fwzgGOAVwB7ZuYXuxellqUb5yQR8RjgKEqPzwBOpzTiWpCZ8yLi6cDHgVcCb8nM73U6hn5kubXHcuuMfr1+0dD8bmg4XvuPr4hYLjPn18t9srIsFrMset9AtwOQJoDNKC2sVqBULt2SmQ8CZOa1lArD7wP7RITDDvSoQS4W9wfmUC4Wv93LF4v1Vp2ZeTXwGcowVs/samBapoiYFRGbRsQAdnf/AAAgAElEQVRbI+LkiPgVZZiS64DTKD1EpwMPAcsBe0XEm7sXsUaiSlp+jNIQYj7wFeADmXlxZt4JzM3Mc4EPAD8HPhgRuxifRiOKAWAB5TfgX9Xv2ozq9+GvwEeBB4C3VHOCqAd145ykOi4cC+wK3AocmJl7ZuZc4OGqZfmVVTwA21brRadj6SeWW3sst87o5+sXDc7vhpbFa//xUzVgPz0inl0fjWUysiwWsyz6gwkvaZQy81eUoQaOBl4CHBURz6u9PpuS9PoWpWJRPWaIi8V7Kf+3b2fmvV0NcOQaP7R3V/fbRMQUf4B7U5S5Fv4E/JnSu2YPSuu8b1FacW4FbEhJfP2LUon9HcocgepRETGD0rr6bZQk5UqUXr6XRsQnI2KLxoVqZl5F+e2YRplkftZkj0+ti4hVI2InyjBWPwJ2BK4GNo2IVTNzHjBQ/dZdDsym9Nxbp2tBa0jdOCepjgv7U44LNwNHZ+ZnavEsqg2jdCPwMLBVRCzH4nOPScdya4/l1hkT6PpFFb8bapHX/mPvZZTh379rcsOyqLEs+sDUbgcg9bNG99WqZc1hEXEX8Gng/oi4JTNvhpL0ioh9MvPuYTeocdcPF4tNwxZMoTTsWlS15B/IzAVVa79FEbEKpSIT4I7GUFbqLVGGKrmwevgd4HPAVZT/7f215XYEDgaeAfyQMinxJeMcrlqzHWWupJnAJcAfgDuAzYEDgC0i4pDM/BNAZl4UEe8GZlB63kz2+NSCqiX4MZTKsRmUZNb6lEqQ9YGPR8SRmXlHtfwsylwgcyhztamHdPGcZAdKj84HgRMz8ytVPAO1ITGnVH+vQ2k0+c/MnOwNuSy39lhuo9QP1y9qi98Nee3fQzLz5Ih4KvB+4JsR8fbM/FP9fzRZWBaLWRb9wYSX1IKImEk54ZgHi7uTN2TmZ6oD33uBbwM3N05GTHb1luqEMdq5WKydYAYsvR90Wn379ZPYqoXfosbfEbEuZdLaV1PG7j9vLONS+zLz9ojYl5Ig3wRYITPvq/ZFACLi9ZSJiJ9BGRb1hEayy5Op3hRlTseTgRWBc4D3ZOZttdf3pvzPd4mIKyhzMSwEfgA8kpkPT+b41Ja3A28F7gQ+k5knVpUfq1OGqtwTWC8iTqYkOXcHNgL+zuIWweqybp6TVA0wTqYkQk/IzM/Xt1v7u3H+cQDlGvLGKu7G+cikYrm1x3IbndEcK9Tb/G6owWv/3tBILmfmXhGxCNgL+MZkTG5YFotZFv0j/D9II1MNMfBe4LrM/HlETM3MBYMs9xbKkGQXANsDCz3g9YaImA48PTMvqz034ovF+gVH9XhaZj4yhvGuStmHnsDiIQumVX8vZPFwZDOBNYEXUSo5p1L2wX0z856xik/tabpw3Q84Ebge2Dszf149/zrgUOBZmOzqeY3/SURsT5nz6hJgp8z8d1UJkbWWmudRxth/bpYhbyd9fGpP1bvrSmAt4PDMPKp6vvH/XhH4FfBcYC6lJfjylDlBXpaZVzX/rmn8dPucpLaf7Aj8BDg3M1/cvO2mluZ7UeYKuQfYKjOvb/mD9znLrT2WW/tGe6xQb/O7oQav/XtPLO5RSUR8hpLcuB6YdMkNy2Ixy6I/2MNLGrmnUnpbXA/8PGtdyZuW+xtlGIKZwCIPdL2havm8M/CliDgpMw+uXjoe2JcRXCxWLameCryWUiG8dkRcBlycmT/ucLwDlC7SR7e46oXAr4HPe8Lbm6r9qNHz86SISOBTwMkRsTvlt9lkVx+p/U82p/z/fkNJKjza2rb2e3EXsDKwGWX4uUkfn9q2MiWBdTPwJViit89AZs6NiO9SKke+SZkLcBrws8y81WRX9/TCOUnTcSGA31ax1S/i6xWsb6D0EJwPHJuZ10/Gfchya4/l1p5OHCvU2/xuCLz271VZ9abN0qNn73JIHnmPnon03bQsFhttWWh8mPCSRu5mSiXhzlHmwzi8qmx4tKdXdVGyDaUC6u6JckCfCKqWc3+kXEgcGBHzKa2k9qUMAbDUxWLTxcVjgZcAJwGzapveDsiIOD4zP9TBeBdFxA8piY8ZlJPZr1CO29Mp869MBaYA91GSrA8BF1F6FY5ZzzONXlPS69MRsZAyjMm3KP/LJwPfozZnlydNfeWv9d+HphP8tar7B7sVHL0fn0bmNuAm4LGU34K6Rsvgm4GnAdfWkyAT6aKzH/XYOUljX7l8iSeX7FnwWsrwWZtQGmKcXX2OybwPWW7tsdxa0M6xQn3L78Yk5rV/7xpNcqP23V0P+HcOMkJUP7EsFutU0iuGGDlMo2fCSxqhLPPrfJjSinaviLg9M09tOjg9iTKfBsCfxj1IDSszr42IZ1BOIA8FHqa0jDwEOKv5YrFWsfQMynCW76FcZP4IOB24BlgP+CBwcETcm5nHdzDe2RGxJeVEdn1gXmZ+p1PbV3dVFzbTMvORzPxsRDwT2K16+XzKEGWzwWRXr6v9f/5aPfVy4AdVMmlGVvM+RsQhwPMp8y1daXwapYcpx4r3A+8DPlodVx79n1KSIgCPhyXGnbdyrMu6fU5SOy40vusvp/T+W9jUmOtdwP9Qeh3/Ejg5M//eiTLoR5Zbeyy39rV6rFB/8buhBq/9e9cgyY0EPsAIkhtRpjA4slr2fzPzl+MdfydZFouNsiymAK8Enh4RP83My5uX0Shlpjdv3lq4ARtTKgPnA6dSEmBbALtQLkQWUSodHtftWL0N+T98GnB39b86G1i5en7KIMs+E/ga8Ajwb+AjgyyzKfAPynCXG41BvJtSWnHeBuxWe36peL31z41qHs3q79cAf6j2yUWUXhnbNy/nrbdvlPH0/0SZL+l/ml77MGVIuQeA/arnBozP2yj/p+tVvz33AB9oem0/SqXoQ8Dm3Y7V25D/w66ekwCPofQouAN4X/XcDGA14HPVvjUf+DHwvNp6k/q3aSzKbTKU6Vjub8Csbn++MS67ER8rWtjmQO3vCb//9fKt3e+Gt4l3w2v/nr3V/weUefQadX9bDbPOBynz8y0Cbgc+2O3PYVn0RFk8kXJdvgi4GHhntz/HRLtFVdCSWhARG1GGHnsmsIBykGpMKHodsGNm3tC9CLUsEbExcAFlKKDDMvPo6vn6kEHrU1pP7gbcAByfmV+pXptKmTyWzMyI+CSwN7BDZl4wBvFuWsX7IPDhzDyzet5hqfpcROxEGZ7k2ZSKzHsoQ9VcDLwpM//TxfDUour34XxgDUoL3NuAdSkTS88Dvg6cmF1qldvr8al1EfE04FxKQvNnlLnXngS8ipIY+QxwZGY6TGWP6vY5SfX+v2VxhStVLE+kDJ10KvCdzLyyOa5htrk+sBFweWbeOsKi6CudLLem//XOlGTGF8f2E3THGO1va1LmsbkkM98zRqF33UiOFSPczhLLN/UMVpe0+t3QxOW1f++KJefXOwnYB7gFeHZm3jHMeq8AjgC2pMzRfdA4hDumLIvF2imLiHglpVfv+6unjs/MQ8Yj3snAhJfUpoh4HPAmynBBT6G0jL8EOCUz/9XN2DQyVSXh74DVgU9n5v7V81FVGO0HHAvcSqksPLN6vT6WeqOS6QzgHcBbc4yGHqhOfH9Paa3/kcw8YyzeR+MnIlaktHLaFvgO8KnMvDQi3gMsyszTuxqg2hIRGwCfBZ4OrF09fQdwAvB/3U4m9Xp8al31P/0CZaijVaqn5wKfB87MzGu6FZtGptvnJBHxFErlw2aU0QyuofQiOwK4KjPn1uNZxrbWBH5Kqcj4NXBGZn57ZCXRXzpRbk3JrlcDBwNbU+bxPGCsP0M3dHJ/q5ZbFzgNeCm1789ENNSxYgTrNSe5tgBeTRmpZBbwZ+D8zPx+56PWSI30u6GJz2v/3tWU3DgVuDkzjxtkuebj7qbAMZSh7N6fmV8Yr5jHimWxWAtlUT93X5HS8+2w6uV9MvOz4xXzRGbCS+qAiFiL0isjGwc49YfqovEq4KuZuVvt+c0pJ5gzgQMy86Tq+fqP00BW8zBRhrPcANg2M//a/D4djHdTyrjed1OGODhvrN5L46NqzXkg8OXMvKjb8agzImIWpRfV5pTv6+zMvKW7US3W6/GpdRGxBuV3aBtK0uM84O+Z+UA349LIdfucJCKWp8zx/GTKsIgLMvPBVnuPVNt6K7AhcBBlNIQTM/OIVrbRL0ZTbk3JrtdQhpfdjDLUzxMo8/TsN6YfoEs6ub9V29sA+BiwExO43GDpY8WyyqxpP3siJdF1AovndJ9HGT4PbGHedZ3+bqh/ee3fu+rJjRbXew5lZIa/AG8Ebuv377VlsdhIyqLpN/nZlN5gO1N69h6VmWeNfaQTnwkvaRQ86ZwYIuKxWQ23E2XyyKnAV4C3UlrGv6t6rV6xVP+ROgHYH/gr8ILMnDPG8W5Caf37weG6iqt/1IeScaiKiavX/7e9Hp9a53lK/+mFc5Jar7IljgkjTOA0r/M84FDgZcAxmXloq/H0i1bLbYhk1+bAlylzNL2NUgEy0ZM3be9vg2xrQ0rS601M/HJ79FhRPV4DmJ6Z/2nat+p/PxfYkzL3dABfAr4N/I2SoD6Q0tr+oMw8YVw/kJYy1P9Rk4vX/r1rFA00fg68ENg6M//S+cjGn2Wx2HBlMUiy60PAa4ErKL+9vxq/SCe2qcteRNJQPOmcGOoVS5m5MCKmU+aduA04uv5a9Xf9R+qdlMqI+4FDMnPOWFcaZ+bVEbGbvQknjlqyK0w4TFy9/r/t9fjUOs9T+k8vnJNUyYdHf48iYmtKq9sbl1Wh0fxemXlhRBwArAAcFBGXZeaPW4mnX7RabrX/2+soPeGeSRmO8rOZ+beIuJ5yvb5PRDBRkzej2d8G2dbsiDiMksyZ6OVWT3atQ5nj79kR8Z7MvLq2XGM/24YybNJrgRspw2h/rrbJOyLiv5T98F0R8ePM/Mc4fBQNob7v+3s+eXnt37vaaJQxQPldnwEsRxmadkKwLBZrIdl1COU3+S/AwY1klw0cOmOg2wFIUq+onUQ+kdLK8X7K8AGPvlZVHDV+pN4AfABYEzidMofbuFQae8I7MXliI0mC7p+T1Lb7/4CPAmdHxEbt/E5l5t+A4ygVG9tV24124up1rZZb1XL/VcBzKUOXnVWVF1nmUzwM+B4lefOlcfgIXdGJ/a2xT2XmbOAA4AeUcvvEGITcM6qeoPsCe1GS46+pnqsvszHl+PBaSu/PQxrJroiYUiu7Kynz7z2JMq+XpB7gtX/vaec8pjon24rym/8Q5dyu71kWyzZEsut1mOwaM/bwkqSl3QxcD0zLzPvg0YvJyMwF1eO3Ui4uNwf+jzKG/t1dileSJE1MXTsniTKPzK7Ay6s4ngxc2+I2Gj3MrgQeBraPiFUan2UiaqXcqpb7X6dU9OwN7B4R92Y1p2etx9LKwPOjNgTyRDOa/a25gigzb4mImyk9Iw+MiKmZeUDno+6+qifoV4A3U+ZCOWOQHqA7VbdrKfOD/LB6faC27FRgESVpvhzwmHH/MJLUB2LJYaWnANOA+ZTexTMoc+kuqP6eXt2eSWmUcAzlGPvVzLxk/KPvLMtiaU3JrQFKux6TXePMhJckLW0h8Gdgt4h4f2aeWm9VFREfAd4JrE9pBXlcZl7RnVAlSdIE1rVzksx8MCIOp1RKfDozfzrYck0X9o2eIhlLTty9JaWS40FKS94Jq9Vyy8xzgXMj4kbgJGB6ROyfmddU2/t7ROwJ3JmZ8yZqhchIy62usY/V9r9nAdsC7wE2oVSyAUyJiFUz879jFH5XVYnR51R/317btzIitgcOrxY9oSnZtaj294KIWBXYFLgLuK4LH0WSel7t2Hk0ZY7SlSnnN9Mo5zoLgUeA5avHA8A6lEYFA5Se23tV26ifK/Udy2JJjd/WiFg5M+/PJecmNdk1jsLylKSlRcSTgfMpDQO+TqlEWh94I+WH/AHgO8AXMvOybsUpSZImtm6fkzQu2qu/W54TrEpCfKiK9wuU3mgLxmMI6G6ql1v1eAAYaPTMG2KdI4GPAPtm5inNlT/tlH+/Gcn+1lwxFBE7ANsAB1JakU+lJGy+C/wyMy8Yl+B7QKNsquTz8sC3KMNmnpiZB1bL1JNdjeWXAz4HvItyvHlJZj7SnU8hSb2rOr7OojQOaPgPpWfTypQe7QspvZwWVI8fAX4HzM7MzzS20+9JDstiaRHxeOBs4KeZeWj13FaUcxSTXePEhJckDSEinkapQNq06aVbKHMq/CYz/zXugUmSpEmlV85JqoqNdYG1gcY8QUFppRvVczMpFe1rUXrbbAw8nTK83Jsz8/eNbVUV7dMmcsV6rbXvM4H1MvOswVoxVwmxZwMXA/8CNq0nzCab5mTXII8fAzwN2JOS+F2peukc4DLgM1kb2rNR5hN9f6uLiFnAHygJwOdl5m31fa/2HZwKvA84EpgHvCkzL6qVmZVxktSkOjc7F1gF+DjwJUpyZwYlsdNI8jxC6fxebwTT972Z6iyLxSLiSZShvJcHPkYZbvwQSsMvk13jxISXJA0jItYGtgc2o/w4Xwv8LJ2vS5IkjaNeOCeJiOcD/0tJLkwb4Wr3AH+jzB3UuMBvVKQvT6loJzM/NQYh94RqqLgfAE/KzCdXzy3VeykipgF/pSQUN8nM/zS9PukqRgbpzfUkSgL1o8ATKInVucAvKcmuM6EMs1RLNjbuJ8X+1lD1rvwjcAXwfODh2vCPjTKZCrwNOBh4IvBJ4FPA/U3lvhylh+KEHpJUkloREZsAFwFzKImMb3Y5pK6xLBarEoC/p/R+u5oyzPKfgUMz8+fVMm2d003Gc8F2mPCSpDZMtFYokiSpP43nOUmVbLie0lL3FuDXlHkYplF6hkyjtOB9oLq/H/gFcHtm3lyPNyJmAm8HPgg8FfhUZn5wPD7HeIuIFSiJhPdR5lE6qHq+OSGzCaVMl6MkvG6tbaPRG2cGsBqld9OdwD2Zect4f6bxVO0rK1Pm5noD8AxKr8JrgdmU1uTX5yBzdNXKbdLsbw1VD68LgQczc8vquUeH1qySWO8E9gY2pAwBeVRmzq5tYwfKHHw7Ur7ffwHOz8zvjuuHkaQeFRGbAhdQ5q76SGaeUT3f9jDE/VrfNBZl0a+akl7/AnbNzN9WoyXQZrJr0pVju6Z2OwBJ6nX1FhSNv/vx5EOSJPW3bp+TZOaNVWXGhZSkzO8y82sjXb8p2bULZW6v1SiJi/2r1/cbi9i7KTMfiIhjgOcCe0TEjZn5+UalRa3y4s3AYyjl+0BTxUZUZX8csBHwJMocGbMj4msTtcdSlaD5OLATZaJ7KK2lfwl8Frg7M+c0KpAG+45Mtv2tZh6lRflbI+J9mfmFan9aVCVOPwbsTOkl9wPg+EayKyLWAN5LKfuG+4GtgT0j4lmZecg4fhZJ6kmZeVXVA/4C4JiIWJSZX60asrTcG6dapzH07BaUua7mjkHoHdfpsoD+7dGUmX+rlcXjgecAv63OSwaAlj9TLp5/8+vAvZm5dydjnkgGuh2AJPW6+o9rP/7QSpKkiaEXzkky8xrK3FwzgOMjYrfGaxExZaj1GhU41bByu1DmM5gFHA/sDnwb2CciThrL+Lslyxxrb6MkIY6LiGMiYpWImBUR60XEUcCh1eInZeb9tYqN9YAPAL+h9LRZUP39TWB14ISIOG6cP9K4qMrgy5TPfBOwK7BTZh6QmTdl5pxquazf15Jdk3J/A6iGHzwCuB04KiI+ExGvjYh9gd9RervNAE6l9Oz6K0BEbA6cwOJk1wnAK4D1gO2AnwAHRcQB4/hxJryIODMiMiLO7HYs/Sgidq3K76Yx2PYR1bbP6/S2NTFk5lWUoWOXA46NiD2r59tJajR+x34AXAKcFhGv6WC4Y6pTZVElherlMa3qmdw3qnPmF1CG9z4mIj5RPd92L60oc5jOAPaayOcwo2UPL0mSOiwijgAOH+Slh4G7KZOYfh/4ak6SidMlSRNHUwvej1e5hTOrhNagw63Ukg/voFS0zwI+DZyembdGxF2U69N9qu3tP44faVxk5rURsR3wY0oC5q2UYX+mUIbZA9grM3/UWCciNgDeD7wbWAH4DrAPZZi6ByLiGZSeOgdFxBWZ+e1x+0DjpGol/Wxghcy8qfH8cEP7uL8VmXl9RGwPfAvYq7o1XAkcCVyYmbcDVOV8MPB64A5gv6Z96ncRcTewObBbRPwIuMlGgZNXROwKnFF76kOZOWwCPiI+RzmuNWyXmed1Pjpp/FTnRttS5uLcKiK+kpkPj2KTv6UkSt4DvCwiTszMYzoR61gbbVnUh3Sszpu2pjS8WDEiLgAuysxvjUXsnVadw2xLmU9zx4g4s0qEtbu92yPiUGAh5RyGCd5bvS0mvCRJGlu31/5eCXhsdXspZVijl2bmvV2JTJKkNg0ybE02hq0ZZrVNgBcB6wOXAudlNU9VlQw6jDLEy74RsVJmvndsP8X4qyo+XgrsC7wQeCZlLq6/AMdl5vcay0bE+pT5ld4N3AscCxzbGA6n6sX014g4Fng1sD3w7X4d/mc4mXknpZzqzy2rhfSk39+gtDCPiJcD2wCbUebY+wdwTmbOaywXEU8E9qMku66jJLvOqV4Lyhzwi6rv/q+BtwCzMvPG8fw86nm7UYZeHVTVQ2PnMXjf+yhz+v17DLZ9V7Xtm8dg25pAquPjE4G57Sa7Gr/hmXlq9fi7wEeBoyNi5eyT4WTbLYumIR1PBt4ErF29fBclAfj+iHhGH5XF3yJiQ8p5yU0d2N7siDicMqeuSa9BmPCSJGkMZeba9ccRsS5lyKL3UiYB/wxlqB1JkvpKLel1PvDJiJifmd8ZZvlLqsqLGym9SD4YEY9k5oXV67OrJMQqwBrj8BG6IjP/GREHUYak2RS4FZjfSMZUyYUVKT3AdqNU8HwyMz9Tvd48mf1sYA7w3KpX00Pj9mF6mPvbYlUPrh9Xt0dFxLTaaAPvpSSxbgb2ycyfV8s0EqgZEVMzcwEwE5hOacwlNdwEbBAR22TmRUMs8zpKj8ubgCd26o0zc6n9u4PbPgU4ZSy2rYknM2+GpeaUXAWYnpl3Dtc7uVo/mx7/JiJuowwve1BEXJOZXx3Dj9Ax7ZRF1ahnNeBrlF5d9wOfB34G/AnYGDiIUhZ3ZuaJ4/eJ2peZNwA31J9rZb8YZHuNcxgw6bUU5/CSJGkcZebNmbk7Ze4NgJ0iYsVuxiRJUruyzNXwQmAuZeidQVVJHDLz4sz8EKUnySuAQyKiMZwfmfl34F2Z+br6ehNNZj6SmXOq8ripluyaWlUKPYvSCyyBk2vJroFay+fGnGnrUBqz/iczH5xovbva4f62tPpnq5XPI9XjNwEfql4+YJBkV+PvBVXPwx0o3/m7xvEjqPc1KuHfNcwyjdfOHNtQpO6qHTvXpAzheV5EbNlKUqO2rauBoynnBK+PiJn99Hs1krJonNNExFqUeTZfQenZvTNlqNSfZOYdmdmYg/IW4F0R8bjx/TSd0aH9YjbwYcp0GftExCc7HGbfMuElSVJ3/KK6n87ieTuIiP+LMinyjwZf7dHlnlwtl1XrekmSuiIzrwQ2y8xfNp6LiKkRMb22THOL5ZOBTwIvo0xu/mhlRy35MzDZkjdVQmEV4GRgNeAbwImw5JxV9SF/KPMyzQRurMp90l3nu78tW/2z1ZNYETGVMowhlErFHzZea16nanV/MGXf/HVVCatxEhEviojvR8S/I2J+RNwVEb+JiN1qCfCh1t02Is6u1nkoImZHxMcjYsWI2LW6prhplCGeSamQ36nqbdocwxNYnCz9wSjfq3nbQ36GiDiieu286vEOEfHTiLgzIuZFxDURcXhEzBhi20usL41U9Xu8C/BxSs+kbdvYRiOxdRFwPWWo3jX77fdquLKIqud6tcxXgZdQ5pHcPjN/lpn3N7ZRLXsNcG61nceM80cZtU7sFw2Z+Q9K79bZwAEmvYpJdyIsSVKPqLfIql+gfq26/39VpcJQ3l7d3whc2MnAJElqw1xYomJmB+BV1XNLDaVfLfdrSs+kAyNiZtMwfSOZo2lCqZXd5pR5Hi4BPlAlGpqTXY2ExW6UoejmAV/MzAWTrdwq7m9tqPaj1Snzv91CNSTcYMm/KoHxRsp8cf+kJGUbFXcaYxHxKUoF7xsp8wE/CKxK+d+dDvwyIgYdYjIiPgCcB7yS8v+eTxlO8MOUIcJW7USMmXlT9T4rVXE225VSD/k9ylxy4y4iDgR+BexIOR5MBzYCjgDOWVbiUGpF9bvy8+rhFzLzU62sX/12Nc4NVq/+nk9JLPeVocqiqQHPlykNU+4EXpSZV9d/Y7LMI9lYtvH8hCmL4TT36IuINSLiWVHmeDsU2LB66QUR8YyOBtyHPDGRJKk7XlbdJyVp1XA2ZWL66cBOw6zfSHh9vd9ad0mSJp7Gb1GVnHkc8GlKBWKj19LAIMtfSZm/akXK796kVvs9fwalIvZXmflIlGEOB0t2vQLYs1rnE5n5l8mYfHB/G7U1KT22bgSug6WTf1Wy61WUYTbXAL4L/GWwZdV5EbEXZVhOgNOAdTJzFmX+uf2ABZTE15cGWXcbyvcjKImeDTNzVWAF4E2U3hGHNa83CqdX90sMa1hV1u7atMx42ww4rrqtVZXhqsDHqte3A97Zpdg0QWXm34C1M/P9ABGxXAvrZu0Y+27gKZQ5O/tyCN5BymJK7Zzm7ZReT/8F3piZ11avL/UbExFbAq+pHj48PtF31mBlMdSyTed+q0TEKykjAJxNOY4/Fricso+8MTP/Otbx97pJdzIsSVI3RcS6EXEa5aIU4OzMvLvxembOp7R6BHjHENvYmnKyC/D1sYpVkqQ23U/pfbxJRBwLpVI8Fs/P0Lio35CSfJgDPNKNQHvUtOr+iuq+UckxUKvweBlwALAlcA7wI5i0yQf3t9G5DbgZmFnbv6Y0koZRhth8E/BRSk+Y/wVOycz7uhTvpBIRM4AyT2QAABtqSURBVIEjq4ffzsw9MvM2gMx8IDM/Dexfvf7mqiK47mOUur+/Aa/KMm8dVW/QH1B6Ys3qYMg/pHwnt40y31vDi4D1gb9nZrdGp1gVOCozP5yZdwFk5v2ZeTjVMZQyX5DUUZl5B0BEzKiu94mIlSLiMVVPnVWqvx8bEatHxDoRsXFEbB4Re0fEl4Bjq80dk5m39Guj11pZTGnqaf1CSmL+eODiatmFzetXPVlfRelJekY/D607TFlQPd/I20yNiOUj4hDK/Gb/B7y0eu03wGuB12XmGZn5r3EIveeZ8JIkaQxFxG212wOUIWDeW718LWWi0maNJNbWEfGUQV7fpbq/ODOv72zEkiSNTmbOoVTQXgm8LyL2rJ5fWL+n9E5aCbgGWOpCf7Kptda+qrrfDkp5NfXyejMl+bAd8Hvg5CzzqE1K7m+jNhf4I7BlROwBpcyqpOETKHN2HQk8jZLsOjAz/9WPvQv61EsoPfCg6sU4iFMpvRehlrCphkdvNLL7ZKOivS4zz6UcRzoiMx8CvkOpuN619tJu1f0ZnXqvNswHThjitbOq+0k/FJjGTmbOA4iIS4CrKXUD11MaHdxYu/2jev1PlB6a7642sW9mfqXaxqN1+hGxSdVDqm/UEzwR8XhKHcccyvyQC4ZZ9cXA3sB9QH3u2L7NcTSVxRJDOFb1QR+nDMt8DOU3YQ5lv9gZeE1m/j4zb25evx/3i05ZamxrSZLUUUNNovo1YI/GSW9dZl4YEf8AnkwZuvCIxmtRJmR/c20bkvpARJxJGSbnq5m5a3ejkcZeZt5SJWZ+BxwfEU8GTqL0XlqNUon+Jso8NEcNVhE72dRaa18G/BnYKSKuyMwvAlkNK/dRSsXxGpThyT6Zmb/tSsA9xP2tfZk5LyIOoyRQj4mITYE/UMrtf4ANKPOpfAE4LjNvrg+vpDHX6LF1S6N3VrMqKf5b4G215QGexeL5f343zHucB7xglHHWnQHsDrwzIo6g9Kx8AyXR3M3rl6szc+4Qr/2nuh9uDmVp1KqGBFtUD+cDfwceojTIeITFPZAXUOa6mwf8FvhblaBuDHHXaATzVOAo4LURsVlmHjhen6WDGvPp/SYzLx1qoYjYHvg8ZTjXUzLzu43X6j3cq550S9Wz9IPa//VVlOPyuym9cBcC/6L09LsiMy9qrBO1eV4n2H7RNhNe0jAiYhalpVRjjN0NMvO6LoYkqc9kZsCjrbbXpkz0fRxluMKrgE8OserXKYmuXViyNecrKBdi8ynzJ0hSR1TDft1CGQce4CWZ+esuhqQ+V82/8CLgB5Qht3Zlcc+aNSkVPG/IzCvqF+uTXWbeGRG7AOcCn4+IXSkVX6sBG1POAU4BvpmZl3Qt0B7j/ta+zLy+qkj8JvA+SqKr4XzK3FA/z8y7TXaNu7Wq+38vY7nGMFZr1Z5bs/b3fxjasrbdksz8Q0RcQzle7QA8EVgeOCczh4tjrM0Z5rVGjxLrSTWmqgYam1COrVMo1/2nUoYvXp7yG99IVD8CDDT3AKolNTYAPkGZz+o+4ICImJaZ+47X5+mQuyi93dZoPBER0zPz4erv5SjHktMpx7izMnPv2rIzKHP0vR54LvC4iPgVcEFmfmvcPkUHRMTrKQ2b/l/t6V9Shl39RWb+s7bsQGYuaj6fmUD7Rdv6trufNE7exuJkFzRNvCpJI5XFrVUr7ddRTmg/UVUuDKYxrOH6EfG82vON4Qx/kpn3jlG4kianHVmc7ILFw6dIbcvMa4CXA0dThpJbnlKx8TPgBZn5i2o5kw81Vbm9APg+pWXv8yitny+iNJ453GTX0tzf2leV3Y6UOZ2OAfYB3pKZL8rMb5rs6rqRlnt9uRji+WZjMTxlY+jC3Vhcj9LN4QylnlEdb7ejJLw+ArytSlzMBRZUiZ4FVR1CPdlV79m1AaUh7Wsoc169B/gGsHdEnDS+n2jUFlCGb3x2bVjiRrJrY8o0EF+jJLvOzszXNVaMiFWBEylzWx1IOV+aRWn08o2IOG78PkZH/IUybCOUROiumfnyzDwtM/9ZH054sHOZCbZftM2WC9LwGhU9nwU+QOmSf+hgkwlK0khl5nkR8XVKL69TIuLpzceVzLwhIi6knLDtAlxY9TpttPT5OpLUWY3zns9RLixfFxGzTK5rtKrWzEdShlZ5CnAbpSJnjj1thpaZ10XEu4AZlGHlrgMeycz7uhtZb3N/a19m3k6Zy+is+vMRMaWa18tk1/i7o7p/wjKWe3x1f+cg6wKsA9w0xLrrtB7WMn2dkjh9I2Vo0buB/xuD95H6UmZeVTVsvQA4rvp9OjMzc6jfqsYxOCI2ZHFS44/APpl5aURcTWm0v0/VPmH/8ftE7auG1v0I8ELK0LpPowyt+3hKR4SnUj7XGZn5aIO8iFiD8nu1NWV0rjMovcD+ATwJOBQ4KCLuzMwTx/Ejta2qB9oUWDszL2w8P5Lf4Ym2X4yGPbykIUTE5sAzgf8CBwE3UFo979jNuCRNGB+jDLOzMWVen8E0xrjfqerGvxPlROUu4Jwxj1DSpBERjwFeSTkuHUOZ62M5ykWm1AmLMvORzLwmM+/NzDlgT5tlycwHMvPuzLz4/7d378GyVuWdx78/OODhJrcIimAYR5FEYuUiIxFlgBlKM6I4CEGIkYvFEFMwBuLEjCZCCJrUeOEYSeLgxDnoEOQWQSzCxCAgmGRU4oxBBQq5hHDzcoCAAQV85o+1mt00vW+HfXbvvc/3U9XV/b7vWm+vfaqrz9vvs9bzVNX3DHbNmZ+3BeSEz4ka1LPZtc/cf5qekviAvjm88vNrTK3s2n+G95jp2HqpqntpKys367vOHazYkNRU1Q3Aq2irkd+f5K19/7T/VyXZiTYx7RDafYEPVK97VVU3Au8FLgB+I8nZG/YvWDhVdQvte+w24Hha0PwPgL1ov0v+85hg11W0YNc3gLcD7+pBou9U1d/SVnzdDhzbf+ssC1X17eFgV9834//DK/Vzsb4MeEnTG3yRnl+t2OGnRvY/KcmzkqxLUkl+faaTJjmht3ug55mVtBGqqm8zVYPrd5NsNqbZBbQc3tvTbkQP0hl+uqoeG9Ne0jKVZP8kFya5K8kPk3wvyZVJju03smbqu1+Sy3qfR5LclOR9SbZOcky/7rh9liG8lZb94a97fY1z+n7TGmpBuDJEi8nPm1aQz9NWR8FT6/oOO4GpVVrnDXZW1TraDWFoNVw2H+2YZD9a+tQN4f20VGMfoq0elzRiKOi1OXBmkuNnaf8d4GpaJqqfoE2OfdXQ8ZtowY0rgF9Msuu48yxFPdXjf6CVgDiDllr3jcARVXXWoF2SHWh/30tpgf1fqarPVtX3htqsqqpvAl8Afpqnpm1fcVby52J9GPCSxuiBqKP65ieHngs4eHRmQFX9kHZjGqZuSE/nLf35wh5Ik7Tx+gPa98rujLmpXFUPAJf1zf9KS28IpjOUVpQkH6bdkDqM9mPsX4DtgANpaTn+Ksk20/Q9ifbj5mBgR1qQfHfg3bRc+NvNcRiD+hqD656LgB8AP9tXvUuSpEVWVY8wFeg6MsnHBvcjkmzZrwPW9OPnV9X1I6c4lfZ7Yy/gs0le3PuuSnIocDGwQVIXV9XfVdU7++PmDfEe0krQg14HANsCW03XblC/qao+U1XvAN5JywLzuz0N3uB8NwO/Rlvtc9cGHPqCq6p7q+ovq+q9VfXRHsh6cnV7kq2APwJ+Hvg68KtV9fWRc/y4qh7vm1su2uAnZGP4XMyXAS9pvDfRbhDdUlV/Ay2PKi237irGB7UGN4j2GVxEjkryr5i6Yf3JcW0kbTz6he0gl/17etrCUYPvil/ozzdV1Zc3+OAkLYokJwIn982zgV2qanvaD96TaUWcDwQ+PqbvK2k3uUKbAf6SqtqO9kP5cGBn2ky+2cawL7An8BDwGYBqRbP/ojc5bpqukiRpA+srG87smycA9yRZBzxIu/G7GW3izNNWhlTVdcCgXstrgJuT3A88TAt23UtLtQ7ghFxpQqrqH4DnVdUaeDJV6ZPBjN6mRvp8mBbU/nf08iuDflX1j1V160pZ8ZxkEMN4XX/cAZzcV3FN1+ff0FK2Pk77vlz2/FzMjQEvabzBSovRoNQnR44/qQfGbumb063yegvtptRttOCZJL2vP+9K+wE76i95avFpg+XSCpFkC+D3+uZ5VXVCr3kxqNuzhqmbVEckefnIKU6nXc9/E3j9YPZ0VT1eVRfRVoxtP4ehDK5rLuwzyQcG3ze/YhpmSZImp6pOoU2AuRi4D9iaNlHlKtrElIMGterG9F1Du+l7OW0112paXZszgH1o9yig1S+XNCFV9V1owYyqeiLJjsDRSTYdTXGejjZZ7QFa2tKdVmrNxaG6Zq+nTQxcy1NrFo7zS8BzaTUEbxsOEi1Hfi7mLis8oCfNW5IXMhW4emFV3T507Nm0GVBbAPsOVn8NHT+Vlm7gNuBfj0bMk9wE7AH8flXNOuNakiStDEnWAkcD51TVMX3fG4BLe5OXjEv303/E3ElLdfjhqvrNvn8HWkHiAMdW1dpp3veLtNocd1TV7mOOb027ttkK2L+qrhk6tgnththutNz4fz7PP1uSJC1xSc6llXT4RFVZu1NaAnr2l78A9qqqn+z7NhkK/AzarQaupWWE2XtMWtMVoQdxng/cSFuxtU9V3TiuXVVVkjcBF9JSuh5ZVReMtl2O/FzMjSu8pKc7jnbz6NrhYBdAVf0zcMlQu1GDOl/DqQsBSPIKWrBr0E6SJG3cBiu27pyutkWfjfeFkfYAP8fUjOxrmN7Vs4zhzbRg1x3AF0fe+8fA/+qbpjWUJGmFSbIHcGjfvGKSY5H0FJsA3wB26/V+qaofD1L7DaX4G9SqehT40aKPcpH0BQWraTW5/q6qbkyy2bh2SV5DC3YB/OFKCXZ1fi7mwICXNKR/MRzdN6cLSp3Tn4/os6KfVFW3AV/qm6NpDQfbf1tVtyBJkjZ2O/Xn2YoG/9NIe4DnDL2+e4a+s517EMj61DS53AfXPQf2WqSSJGkZSXJ6khOTvGDopuhWSY6gpURcTVs1cclM55G0eHqa8TXAV4Hje93fQXBj06EVPe+ireJ5GPj+RAa7eO6iZdTaHqCqHkuy+XCDJK+nlYUAOLuq3tP3L+t0hgN+LubGgJf0VK+h1dEB+B9JavTB1KynrYFfHnOOT/XnX+5LTemzDo7o+13dJUmShs01x/hwu0yzf9S0P+6S/BTwi33zd6a57hmkCglw7BzHKUmSlo6XAR+lreZ+NMn3gX8GPg3sQruJfHhVPTa5IUoaVVV30ybPPwScnuTUfp9xM4Ak76EFNh4Hfruq7l4pgZ0ZXA/sneTtAFX1I4AkL0ryG0yliz8beEc/lmkm9i1Lfi5mt2rSA5CWmPnmqz4O+MTIvguAjwDb0YopXkQrlPgTtGWkK2kprSRJWn/f6c+7zdJuMBnnu2P6QrtZdfs0fXeZ4bzzve45JslpozniJUnSknYmbTX4K2k1QXeg3Si9GfgccFZVrZvc8Jok7wTeOc9uH6yqD26I8UhLQVXdlOQg4DLgVFq9vXV9Yto+tKDGmfRVTSspsDOqqh5J8m5gP+D9SfaipXb/GeDfA6/oTT9UVf9lqN+K+zfxczEzA15Sl+Q5wBv65mHA/56h+U8BXwb2TbLncKHEqnogyWXA4bSI+0VMpTP83FK4kJQkSUvCV/vzrkn2GFfHK8mmwAF98ytDh75GW9kVYH9g7TTvsf+4nX31+eD65BTg4zOMc1taQG034CBmvkaSJElLSFVdw8z1PpeKrYGd16OPtKJV1TeSHAj8NrAvLbDzMHB/33d5Vd0zwSEumqq6JckBtDrDxwNvHzp8FXB+VZ09kcEtMj8X08tGFuCTppXkFOBDwIPAToNlsTO0/xawJ/CBqvqtkWMH06LsjwE/DdwAPAt4Y1VdOnouSZK0siVZS6sTek5VHdP3bQHcCewInFdVR43p9+vAH/fNl1fV9UPHrgQOpF1n/MLotUuS/Zi6wXVHVe0+dOxQ4GLgx8Cus/0YSnIFLfXzhVU1LqWzpCWiB8rfQQtq70Er8A7wH6vKGj2SJC1DSbak1dzbB7gXeKCqbp3sqCYjyc7AXsDewA+A/wvcXFX39eMrKo3hTPxcPJ01vKQpg6Ltl84W7Oou7M9vTTK6WvIKWtqhzYDzaMGu7wOXL8RAJUnS8teLDp/WN49M8rH+440kWyY5iVaUGNpsxetHTnEqbZXXXsBnk7y49101FNC6f5q3H6QzvG6OM/8GKZkPSbLjHNpLmpw1tIl8P0vL6nJffzy6ECdPcsFQrb8zFuKckiRpZlX1L1W1rqour6q/r6pbN7baTANVdV9VXVlVf1hVH62qaxlK+b6xBLvAz8U4BrwkIMk+wEv75oUztR0yaLcz8LrhA1X1OC3QBfDy/vxpi8BKkqRhVXUWLb86wAnAPUnW0Vac/xFt8sxVtJQdo32vo6UjhLb66uYk99NSWVxMm+F3ej/+5I3uJM/v7WHu1z2X0Faubw68ZY59JC2yJNvQvksAfgtYXVXP7Y8rFuD8OzKVBh5abb9Nn+l5JUnS/G1MgZ3Z+G8xZWP/tzDgJTWDWc4PAn81lw5V9Q/At0b6D/vkLNuSJElU1Sm01IQX01ZhbE0rJn8VbQX6QVX10DR919DqdF1OW821mlZv6wxaWovB7L4HhrodA2xKS2d48RzHuA64sm+Ou+6RtDTsSQuUA/zpBrjh8RZa9orLgW8DwwF0SZIkaaKs4SVJkiStUEnOBY4CPlFVBqqkFS7JvwWuBqiqBU9nk+TrwM8Ab6YF104DLq6qwxb6vSRJkqT5coWXJEmStAIl2QM4tG8+41RmkpauJMckKXqwq++rocfV03ae+3vsTQt2PQhcSstgUcAbkjznmZ5fkiRJeqYMeEmSJEnLVJLTk5yY5AVJNun7tkpyBC0l4mrgRloNLkkr1yO0lKj3D+27b+ixbgHeY7BK9IKqerSqbgOupaVQ/NUFOL8kSZL0jJjSUJIkSVqmklwCHNI3H6PV/tqOqYltdwGvraobJjA8SYssyf60YPeCpjRMsiVwD/Bs4NVVdV3ffxzwZ8A3qmqvhXo/SZIkaX24wkuSJElavs4E/hT4f7SVHc+mBb2+ApwKvMxgl6QFcBjt++Xbg2BXdyFtddlLk7xiIiOTJEmSulWTHoAkSZKk9VNV1wDXTHockla8QTrDTw3vrKqHknwGOKq3+T+LPTBJkiRpwBVekiRJkiRprCQvAvYDipGAV3dOf35zT30oSZIkTYQBL0mSJEmSNJ3j+vOXqurWMcf/mlYvcBvg8EUblSRJkjTCgJckSZIkSXqaJJsCR/fNVyWp0QfwBPD83uZtY08kSZIkLQIDXpIkSZIkaZxfAnaZR/tXJ3nxhhqMJElafEnW9okuayc9Fmk2BrwkSZIkSdI4gxVbn6GlLJzp8fe97XFIkiRNUJLTxq1Mn8Pj9kmPXc/MqkkPQJIkSZIkLS1JdgYO7pvnV9XDs7S/EPh54Ogkv1NVT2zoMUqSJE3jYeC+ObbdHNi+v350wwxHi8UVXpIkSZIkadRbaZNkHwE+N4f2F/Tn59FSIUqSJE1EVX2wqp4724N23fLF3u0J4KTJjVoLwYCXJEmSJEkaNUhNeHlV/WC2xlV1K1NpDd82U1tJkqQl4lTgkP76XVX1+UkORs+cAS9JkiRJkvSkJPsCe/bNC2ZqO2LQ9uCeElGSJG0Ekuyf5MIkdyX5YZLvJbkyybFJNp2l735JLut9HklyU5L3Jdk6yTEbqrZWkkOA9/bNP6+qDy30e2jxpaomPQZJkiRJkiRJkrTEJFkLHA2cU1XHjDn+YeDkvlnAg8A2wCDQ9QXgjVX10Ji+JwEfAdJ3PQhsQaur9S3gbOBM4I6q2n1B/qD2vnsCX+7j/Bqwb1U9slDn1+S4wkuSJEmSJEmSJM1LkhOZCnadDexSVdsD2/b9jwMHAh8f0/eVwBpasOvzwEuqajtgK+BwYGemVmAt5Ji3BS6lBbu+SwvGGexaIQx4SZIkSZIkSZKkOUuyBfB7ffO8qjqhqu4FqKofVNUa4JR+/IgkLx85xem0+MQ3gddX1c297+NVdRFwGLD9Ao85wLnAHrRg3OFV9Y8L+R6aLANekiRJkiRJkiRpPg4CduivT5umzZ8A9/TXRw52JtmBtvIL4ANV9cPRjlV1FXDtgox0yu8Dr+uvT6mqaxb4/JowA16SJEmSJK1QSY5Icu88Hx+Z9LglSdKSN1ixdedgddaoqnqCVsNruD3AzzFVt2umoNPVz2SAw5IcCry7b66tqo8u1Lm1dKya9AAkSZIkSdIGswWtBsZ8bLshBiJJklaUnfrzXbO0+6eR9gDPGXp99wx9Zzv3nCR5KXAOLcj2ZeDXFuK8WnoMeEmSJEmStEJV1Vpg7YSHIUmSVq5aj3aZZv+ozHBsTpJsB1wCbA3cCxw6LoWiVgZTGkqSJEmSJEmSpPn4Tn/ebZZ2u/bn747pC7DLDH1nOjarJJsA5wEvAn4EvKmqFmTVmJYmA16SJEmSJEmSJGk+vtqfd02yx7gGSTYFDuibXxk69DWmVnbtP8N7zHRsLt4PvLa/Pqmq/uYZnk9LnAEvSZIkSZIkSZI0H58Hvt9fnzZNmxOYWqV13mBnVa0Druqbv5lk89GOSfYDXr2+g0tyOPCuvvnfq+rs9T2Xlg8DXpIkSZIkSZIkac6q6hGmAl1HJvlYkp0BkmyZ5CRgTT9+flVdP3KKU2mrvPYCPpvkxb3vqiSHAhcD96/P2JK8DPifffNLwEnrcx4tP6smPQBJkiRJkiRJkrS8VNVZSV4InExbzfWfkjwAbMNU7OEq4Pgxfa9LcgpwJvAa4ObedwvgWcANwJ/144/Oc2j/Ddiqv94LuDPJXPvuXVV3zvP9tES4wkuSJEmSJEmSJM1bVZ0CHEhbkXUfsDXwEC3QdRxwUFU9NE3fNbQ6XZfTVnOtBm4HzgD2AQZRqgfmOazVQ6+3BXaex2PTeb6XlpBU1eytJEmSJEmSJEmSFkmSc4GjgE9U1dsmPR4tfa7wkiRJkiRJkiRJS0aSPYBD++YVkxyLlg8DXpIkSZIkSZIkaVElOT3JiUlekGSTvm+rJEfQUiKuBm4ELpnkOLV8mNJQkiRJkiRJkiQtqiSXAIf0zcdotb+2Y2qhzl3Aa6vqhgkMT8vQqkkPQJIkSZIkSZIkbXTOBO4GXgk8D9iBFvS6GfgccFZVrZvc8LTcuMJLkiRJkiRJkiRJy5o1vCRJkiRJkiRJkrSsGfCSJEmSJEmSJEnSsmbAS5IkSZIkSZIkScuaAS9JkiRJkiRJkiQtawa8JEmSJEmSJEmStKz9f1gIVTxlyeWiAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ - "plot_completeness.plot_completeness(physgrid_list=file_dict[\"modelsedgrid_trim_files\"],\n", + "plot_completeness(physgrid_list=file_dict[\"modelsedgrid_trim_files\"],\n", " noise_model_list=file_dict[\"noise_trim_files\"],\n", " output_plot_filename=\"completeness_plot.pdf\",\n", " param_list=['Av', 'Rv', 'logA', 'f_A', 'M_ini', 'Z'],\n", @@ -1794,7 +2479,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ @@ -1814,7 +2499,7 @@ "metadata": {}, "outputs": [], "source": [ - "#plot_indiv_fit.plot_beast_ifit(filter=datamodel.filters, waves, stats, pdf1d_hdu, starnum=0):" + "#plot_indiv_fit.plot_beast_ifit(filter=settings.filters, waves, stats, pdf1d_hdu, starnum=0):" ] }, { diff --git a/M31_Example/datamodel.py b/M31_Example/beast_settings.txt similarity index 72% rename from M31_Example/datamodel.py rename to M31_Example/beast_settings.txt index cffea5b..cba5f5d 100644 --- a/M31_Example/datamodel.py +++ b/M31_Example/beast_settings.txt @@ -1,7 +1,6 @@ -""" -Data Model interface v2.0 -BEAST datamodel for M31 Example -""" +# """ Data Model interface v2.0 +# BEAST datamodel for M31 Example +# """ import numpy as np from astropy import units @@ -10,8 +9,8 @@ from beast.physicsmodel.stars import isochrone from beast.physicsmodel.stars import stellib from beast.physicsmodel.dust import extinction -from beast.observationmodel.observations import Observations -from beast.observationmodel.vega import Vega +#from beast.observationmodel.observations import Observations +#from beast.observationmodel.vega import Vega from beast.observationmodel.noisemodel import absflux_covmat # from extra_filters import make_integration_filter, make_top_hat_filter @@ -142,7 +141,6 @@ # astfile : string # pathname of the AST files (single camera ASTs) astfile = "./M31-B09-EAST_chunk.gst.fake.fits" -#astfile = "M31-B09-EAST_chunk.gst.fake_cut.fits" # ast_colnames : list of strings # names of columns for filters in the AST catalog (AC) @@ -223,10 +221,7 @@ ################ # Dust extinction grid definition -extLaw = extinction.Generalized_RvFALaw( - ALaw=extinction.Generalized_DustExt(curve="F20"), - BLaw=extinction.Generalized_DustExt(curve="G03_SMCBar"), -) +extLaw = extinction.Generalized_RvFALaw(ALaw=extinction.Generalized_DustExt(curve="F20"), BLaw=extinction.Generalized_DustExt(curve="G03_SMCBar")) # A(V): dust column in magnitudes # acceptable avs > 0.0 @@ -261,95 +256,3 @@ # add in the standard filters to enable output of stats and pdf1d values # for the observed fitlers (AC) add_spectral_properties_kwargs = dict(filternames=filters) - -################ -# The following code does not require user's attention (AC) -################ - - -class GenFluxCatalog(Observations): - """Generic n band filter photometry - This class implements a direct access to the Generic HST measured fluxes. - ..note:: - it does not implement uncertainties as in this model, the noise is - given through artificial star tests - """ - - def __init__(self, inputFile, filters=filters): - """ Construct the interface """ - desc = "GENERIC star: %s" % inputFile - Observations.__init__(self, inputFile, desc=desc) - self.setFilters(filters) - # some bad values smaller than expected - # in physical flux units - self.setBadValue(6e-40) - - # rate column needed as this is the *flux* column - for ik, k in enumerate(filters): - self.data.set_alias(k, obs_colnames[ik]) - - def getFlux(self, num, units=False): - """returns the absolute flux of an observation - Parameters - ---------- - num: int - index of the star in the catalog to get measurement from - units: bool - if set returns the fluxes with a unit capsule - Returns - ------- - flux: ndarray[dtype=float, ndim=1] - Measured integrated flux values throughout the filters - in erg/s/cm^2/A - """ - - # case for using '_flux' result - d = self.data[num] - - flux = ( - np.array([d[self.data.resolve_alias(ok)] for ok in self.filters]) - * self.vega_flux - ) - - if units is True: - return flux * units.erg / (units.s * units.cm * units.cm * units.angstrom) - else: - return flux - - def setFilters(self, filters): - """ set the filters and update the vega reference for the conversions - Parameters - ---------- - filters: sequence - list of filters using the internally normalized namings - """ - self.filters = filters - - # Data "rates" are normalized to Vega already, fits are not using vega - - # for optimization purpose: pre-compute - # getting vega mags, require to open and read the content of one file. - # since getObs, calls getFlux, for each star you need to do this - # expensive operation - with Vega() as v: - _, vega_flux, _ = v.getFlux(filters) - - self.vega_flux = vega_flux - - -def get_obscat(obsfile=obsfile, filters=filters, *args, **kwargs): - """ Function that generates a data catalog object with the correct - arguments - Parameters - ---------- - obsfile: str, optional (default datamodel.obsfile) - observation file - filters: sequence(str), optional, datamodel.filters - seaquence of filters of the data - returns - ------- - obs: GenFluxCatalog - observation catalog - """ - obs = GenFluxCatalog(obsfile, filters=filters) - return obs From 844f31bf58f7623a993b4653d1908d3c2a2384e3 Mon Sep 17 00:00:00 2001 From: christinawlindberg Date: Wed, 22 Jul 2020 15:31:31 -0400 Subject: [PATCH 7/7] fixed F19 and small typos in notebook --- .../M31_workflow-checkpoint.ipynb | 784 ------------------ M31_Example/M31_workflow.ipynb | 193 ++--- M31_Example/beast_settings.txt | 2 +- 3 files changed, 101 insertions(+), 878 deletions(-) delete mode 100644 M31_Example/.ipynb_checkpoints/M31_workflow-checkpoint.ipynb diff --git a/M31_Example/.ipynb_checkpoints/M31_workflow-checkpoint.ipynb b/M31_Example/.ipynb_checkpoints/M31_workflow-checkpoint.ipynb deleted file mode 100644 index 467e573..0000000 --- a/M31_Example/.ipynb_checkpoints/M31_workflow-checkpoint.ipynb +++ /dev/null @@ -1,784 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Source Density Mapping Example\n", - "\n", - "We'll be walking through a standard BEAST workflow in this example, using some M31 data as an example.\n", - "\n", - "Before we do anything though, we have to import the following packages. This seems like a lot but they are all here to make our lives easier down the line. And running them all as the first cell means that if our kernel ever crashes halfway through, we can just reimport everything at once rather than stepping through the cells individually." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: fits\n", - "Auto-detected type: fits\n" - ] - } - ], - "source": [ - "import h5py\n", - "\n", - "import numpy as np\n", - "from astropy import wcs\n", - "from astropy.io import fits\n", - "from astropy.table import Table\n", - "import tables\n", - "\n", - "import glob\n", - "import os\n", - "import types\n", - "import argparse\n", - "\n", - "import matplotlib.pyplot as plt\n", - "\n", - "from beast.tools.run import (\n", - " create_physicsmodel,\n", - " make_ast_inputs,\n", - " create_obsmodel,\n", - " run_fitting,\n", - " merge_files,\n", - " create_filenames,\n", - ")\n", - "\n", - "from beast.plotting import (plot_mag_hist, plot_ast_histogram)\n", - "from beast.tools import (\n", - " create_background_density_map,\n", - " split_ast_input_file,\n", - "# subdivide_obscat_by_source_density,\n", - "# cut_catalogs,\n", - "# split_asts_by_source_density,\n", - "# setup_batch_beast_trim,\n", - "# setup_batch_beast_fit,\n", - " )\n", - "\n", - "import importlib" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step -1. Obtain data file and convert to fits file\n", - "\n", - "Sometimes data is given to us in HDF5 file formats. While these are great for storing data in different heirarchies, it's a little hard to work with directly, so we would have to convert our HDF5 file to a FITS file.\n", - "\n", - "Thankfully, our data is already in a FITS format so we don't need to worry about this." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1a. Make magnitude histogram\n", - "\n", - "Step 1a is to make histograms of all the magnitudes of all the stars in all the different filters. This is done so that we know where the peak of the histogram is. This peak will then be used later when we make source density maps. Essentially what happens is that, for the density maps, we only count objects within a certain range, currently set to mag_cut = 15 - (peak_for_filter-0.5). So if the peak was 17.5, then the objects that would be counted would have to be in the range between 15 and 18. \n", - "\n", - "The reason we only count brighter sources is because dimmer sources tend to not be properly observed, especially as the magnitudes near the telescope limit. There will always be far more dim sources than bright sources, but if we know how many bright sources there are, then we can extrapolate as to how many dim sources there should be, and probably get a better understand from that than if we were to try and actually count all the dim sources we detect. " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "gst_file = \"./M31-B21-WEST_cutout.st.fits\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see what type of data this fits file holds by making a table." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "Table length=205331\n", - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
F160W_STF160W_GSTF475W_STF475W_GSTF336W_STF336W_GSTF814W_STF814W_GSTF275W_STF275W_GSTF110W_STF110W_GSTXYRADECCHI_GLSNR_GLSHARP_GLROUND_GLCROWD_GLF475W_COUNTF475W_SKYF475W_RATEF475W_RATERRF475W_VEGAF475W_TRANSF475W_ERRF475W_CHIF475W_SNRF475W_SHARPF475W_ROUNDF475W_CROWDF814W_COUNTF814W_SKYF814W_RATEF814W_RATERRF814W_VEGAF814W_TRANSF814W_ERRF814W_CHIF814W_SNRF814W_SHARPF814W_ROUNDF814W_CROWDF275W_COUNTF275W_SKYF275W_RATEF275W_RATERRF275W_VEGAF275W_TRANSF275W_ERRF275W_CHIF275W_SNRF275W_SHARPF275W_ROUNDF275W_CROWDF336W_COUNTF336W_SKYF336W_RATEF336W_RATERRF336W_VEGAF336W_TRANSF336W_ERRF336W_CHIF336W_SNRF336W_SHARPF336W_ROUNDF336W_CROWDF110W_COUNTF110W_SKYF110W_RATEF110W_RATERRF110W_VEGAF110W_TRANSF110W_ERRF110W_CHIF110W_SNRF110W_SHARPF110W_ROUNDF110W_CROWDF160W_COUNTF160W_SKYF160W_RATEF160W_RATERRF160W_VEGAF160W_TRANSF160W_ERRF160W_CHIF160W_SNRF160W_SHARPF160W_ROUNDF160W_CROWDEXTCHIPMAJAX_GLOBJTYPE_GLF475W_FLAGF814W_FLAGF275W_FLAGF336W_FLAGF110W_FLAGF160W_FLAG
boolboolboolboolboolboolboolboolboolboolboolboolfloat64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64int64int64int64int64int64int64int64int64int64int64
FalseFalseTrueTrueFalseFalseTrueTrueFalseFalseFalseFalse1776.9200000250678111.5400000013487411.38694615196245342.1989799610847241.741353.0-0.2540.0270000000000000030.031788000000.0119921.14.6299999999999995e-071.7699999999999999e-0915.83599999999999916.150.0041.25262.2-0.0240.0180000000000000020.0121300000000.0333344.01.57e-065.420000000000001e-0914.50914.5020.0041.85290.1-0.0120.0289999999999999980.0090000000000000010.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001951000000
FalseFalseTrueTrueFalseFalseTrueTrueFalseFalseFalseFalse1922.93000002574041116.99000000151111.40054678770081942.208853190488822.011267.2-0.3120.030.040999999999999995508000000.097384.642.9899999999999996e-071.99e-0916.31216.8130.0069999999999999991.73149.8-0.0340.0180000000000000020.0161460000000.0375732.81.77e-066.53e-0914.38214.3870.0042.04270.50.0050.0170.0180000000000000020.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001801000000
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue234.910000024985952446.620000001614211.43933556535987342.200810702923792.463920.6-0.050.0139999999999999990.073268000000.054944.231.57e-071.4300000000000002e-0917.00817.2110.012.27110.1-0.0750.0330.032354000000.096353.574.2e-071.2800000000000001e-0915.94215.9330.0031.11327.3-0.0110000000000000010.0240.0471290000.0304.814.440000000000001e-084.81e-1018.382nan0.0121.8992.2-0.0409999999999999950.0230.00612000000.02313.221.3800000000000002e-074.2999999999999996e-1017.15nan0.0031.8321.3-0.0240.0150.006999999999999999169000000.048374.125.34e-075.15e-1015.681nan0.0012.221037.7-0.0460.0370000000000000050.14800000000000002156000000.046501.097.76e-074.12e-1015.275nan0.0011.21885.2-0.04-0.0010.146011501202002
FalseFalseTrueTrueFalseFalseFalseFalseFalseFalseFalseFalse2036.7200000260377178.5000000008387811.38508565187309842.202441121370063.211512.9-0.0680.0610.01111000000.028257.256.52e-081.75e-0917.964000000000002nan0.0289999999999999983.2837.2-0.0980.0420.0030.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.0011001000000
FalseFalseTrueTrueFalseFalseTrueTrueFalseFalseFalseFalse1976.700000024361633.150000001450711.39262952080721542.205492821186892.541730.50.0040.0590000000000000040.002118000000.027629.486.94e-087.620000000000001e-1017.89618.0740.0121.3891.1-0.0289999999999999980.0130000000000000010.004146000000.046486.861.7699999999999998e-071.0400000000000001e-0916.88316.8740000000000020.0061.05170.5-0.006999999999999999-0.0390.0020.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.0011001000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1922.78000002478621120.530000001714411.40060202515979542.2088805036592414.74580.70.1360.2130.794-2088263.0906.05-1.2e-098.989999999999999e-10nannan9.9995.17-1.40.00.00.011100000.055734.841.3400000000000001e-084.79e-0919.684nan0.387999999999999967.562.8-0.8950.357000000000000041.81199999999999980.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001901000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1776.810000023902108.2600000013346711.38689773891995642.1989518565664310.46357.0-0.1090.4451.0654230000.0-2949.382.49e-091.58e-0921.5122.0819999999999970.68900000000000016.911.6-0.3110.2171.64916600000.043917.842.0099999999999998e-085.820000000000001e-0919.24419.2570.3159.93.4-0.5830.6691.1990.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001651000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1922.51000002467031113.710000001688511.40050178964176642.2088216158828517.35471.70.5730.3370.86900000000000013470000.0-2525.232.04e-096.78e-1021.726nan0.3613.333.0-1.1210.4981.466-887249.844637.52-1.1e-095.14e-09nannan9.99910.82-0.20.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001751000000
TrueTrueTrueTrueTrueTrueTrueTrueFalseFalseTrueTrue52.000000024349221384.150000001783211.42527548516140942.190061383721542.062897.6-0.0010.0180000000000000020.00211200000.05220.696.55e-091.1499999999999999e-1120.45921.0980000000000030.0021.32567.5-0.0069999999999999990.0080.071600000.024266.998.109999999999999e-089.480000000000001e-1117.72717.7550.0010.97855.6-0.010.010.0-300.943.26-1.1e-111.8800000000000002e-11nannan9.9990.74-0.60.00.00.076677.081.039e-104.2e-1122.615nan0.0511.9421.4-0.0010.0289999999999999980.052900000.024705.161.67e-071.42e-1016.945nan0.0011.321173.4-0.0010.0139999999999999990.00869200000.029082.283.43e-072.23e-1016.16nan0.0011.121537.4-0.0180000000000000020.0050.009000000000000001011301000000
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue237.32000002463772449.090000001340711.43934632215778742.200857951882575.272322.8-0.0559999999999999940.040.2857700000.05785.543.3700000000000004e-088.42e-1118.68200000000000219.0140.0032.68399.8-0.0409999999999999950.0289999999999999980.23800000000000002101000000.042804.671.1900000000000001e-071.2800000000000001e-0917.30817.3020.0121.8893.4-0.0310.0270000000000000030.287132188.391.934.53e-092.12e-1020.859nan0.0512.4121.4-0.080.160.206000000000000022060000.0930.212.36e-084.900000000000001e-1019.069000000000003nan0.0234.6848.2-0.0590000000000000040.089000000000000010.11349100000.026101.821.55e-079.4e-1017.026nan0.0069999999999999997.03164.5-0.0289999999999999980.0020.51746000000.027541.752.2899999999999997e-078.59e-1016.602999999999998nan0.0043.59266.2-0.0320.1060.6809999999999999011301220002
.....................................................................................................................................................................................................................................................................................................................
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2009.35000002479052062.93000000172911.413909768802842.21756927573031.073.90.1350.5160.6822316.82983.761.36e-128.09e-1329.66630.0510.64599999999999991.071.70.23-0.0279999999999999971.0884914.44806.065.54e-121.84e-1228.14228.1390.3611.163.0-0.013000000000000001-0.69400000000000010.843103.236.584.34e-121.2900000000000002e-1128.406999999999996nan3.2390.810.30.4153.55800000000000030.091-498.594.46-5.9e-125.54e-12nannan9.9991.16-1.10.0480.3770.0852135.213186.456.730000000000001e-128.359999999999999e-1227.93nan1.3491.340.8-1.1470.0682.778-1226.116097.25-6.0999999999999995e-121.9100000000000004e-11nannan9.9991.02-0.3-0.905-0.0152.401351200202
FalseFalseFalseFalseFalseFalseTrueTrueFalseFalseFalseFalse2322.54000002598832305.430000001254511.41411736213807342.223067061144091.013.8-0.0520000000000000050.7050.103000000000000011901.62927.851.1100000000000001e-126.97e-1329.88430.4519999999999980.681.01.6-0.2530.7670.1067779.34785.928.75e-121.64e-1227.64527.6580.2040.975.30.0139999999999999990.92299999999999990.084-534.922.68-1.8e-111.24e-11nannan9.9990.91-1.40.104000000000000010.330.001-597.574.52-6.799999999999999e-124.33e-12nannan9.9990.91-1.60.2170.337999999999999970.0165373.519030.721.7e-117.429999999999999e-1226.927nan0.476000000000000031.22.30.22899999999999998-0.462999999999999971.126440.915541.832.1899999999999998e-121.53e-1129.149nan7.5970.990.1-0.317-2.5592.116011751200000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1603.04000002479072178.73000000146311.42015596275282342.2139612073953861.143.7-0.30.4831.5894940.52779.02.8900000000000004e-127.68e-1328.849nan0.2891.03.8-0.1680.2720.738-632.44575.1-7.200000000000001e-131.85e-12nannan9.9991.2-0.4-0.630.1381.4269999999999998-1258.132.47-4.5e-111.8899999999999997e-11nannan9.9991.02-2.30.00.00.0-777.329.55-9.1e-125.51e-12nannan9.9990.99-1.70.00.00.04653.813329.481.4699999999999998e-119.87e-1227.084nan0.7311.911.5-0.1510.2072.2525304.516044.932.63e-111.74e-1126.45nan0.721.021.5-0.530.22.6060000000000003011452000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1966.66000002552661904.880000001644511.41198922453343742.2157962931884751.063.7-0.1460.5420.054771.32912.52.79e-128e-1328.88428.2370.3111.093.5-0.294-0.2670.033643.54638.397.269999999999999e-131.7200000000000001e-1230.34630.2012.5691.140.4-0.1310.92799999999999990.049-165.65.51-5.2000000000000005e-121.2900000000000002e-11nannan9.9990.9-0.41.1242.3160.01293.259.291.19e-124.11e-1229.814nan3.7630.870.3-0.2071.0570.0139999999999999991447.713042.054.56e-124.450000000000001e-1228.351999999999997nan1.0580.951.0-0.011000000000000001-3.9451.06-2705.815990.34-1.2999999999999999e-111.35e-11nannan9.9990.78-1.01.111-0.981.584011651000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2359.90000002616532053.20000000211111.40988542474495142.221420435706091.063.70.1910.4860.0842665.52875.351.56e-127.650000000000001e-1329.5229.7520.5341.12.00.104000000000000010.9020.1263907.74739.954.410000000000001e-121.83e-1228.3928.3810.451.182.40.0279999999999999971.35300000000000020.285-299.811.8-1.1e-111.19e-11nannan9.9990.95-0.90.43700000000000006-2.50699999999999970.017-215.890.1-2.6000000000000002e-124.68e-12nannan9.9990.95-0.50.534-0.9320.0090000000000000010.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001851000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1595.70000002525422274.860000001389411.42169244597452342.214666008134551.073.60.0991.0910.523490.52898.232.0299999999999996e-127.380000000000001e-1329.2329.3710.393999999999999961.022.80.0512.0290.5343787.14732.574.269999999999999e-122.0399999999999998e-1228.42428.4140.521.32.10.44799999999999995-0.226999999999999980.6559999999999999-379.219.31-1.2999999999999999e-111.2999999999999999e-11nannan9.9990.98-1.0-0.792-0.3320.07400000000000001-408.475.66-4.6e-124.48e-12nannan9.9991.0-1.0-0.100999999999999990.218999999999999970.015604.013353.221.9e-125.3e-1229.301nan3.02399999999999961.010.4-3.2820.223.4492734.316155.881.3599999999999999e-111.39e-1127.168000000000003nan1.1120.891.0-0.389-0.166999999999999981.29101101000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2277.6700000262062275.090000001511311.4141542715643242.2223154572359361.113.8-0.238000000000000020.9710.19253.72986.561.49e-137.32e-1332.0732.7575.3481.110.2-0.031-0.4240.3063666.94732.644.12e-121.76e-1228.46228.5210.4651.122.3-0.5479999999999999-0.0409999999999999950.514-566.525.37-2.0000000000000002e-111.19e-11nannan9.9990.76-1.70.2284.0390.078294.874.153.39e-124.469999999999999e-1228.676nan1.4350.910.8-0.2370.69200000000000010.0279999999999999976375.019026.22.01e-115.88e-1226.741nan0.3170.93.4-0.12-0.040.8554936.515663.152.45e-111.53e-1126.526999999999997nan0.680.811.60.0850.5121.201901000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2493.05000002608361857.700000000733311.40545297020719142.221312343545061.143.50.241000000000000020.71.0312782.62969.721.6299999999999997e-121.43e-1229.471999999999998nan0.95700000000000011.281.1-0.5160.57200000000000010.667-329.34815.9-3.9e-133.2499999999999997e-12nannan9.9991.41-0.10.1930.357000000000000040.596-474.46.58-1.6e-111.33e-11nannan9.9990.91-1.20.00.00.01344.070.531.5499999999999998e-114.6e-1227.025nan0.322999999999999950.763.40.291000000000000040.5040.0260000000000000020.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.0011351000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse2301.9100000244261932.400000001521711.40869802179464942.219780892091981.053.6-0.0440000000000000041.0021.1922739.92968.811.61e-127.75e-1329.48529.5969999999999980.5241.02.1-0.283000000000000030.0191.0783201.84719.943.6200000000000003e-122.0099999999999997e-1228.60328.5930000000000040.6031.231.8-0.181000000000000021.1241.283000000000000178.94.262.81e-121.1499999999999999e-1128.878nan4.4550.890.2-0.148000000000000020.0610.012-215.386.27-2.3e-124.25e-12nannan9.9990.94-0.50.5682.6350.0870.00.00.09999.0nannan9.9990.00.00.00.00.00.00.00.09999.0nannan9.9990.00.00.00.00.001251000000
FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse1870.32000002522361975.530000001819211.4141241731325342.215294543599380.983.70.1290.6161.3473019.22948.781.77e-127.979999999999998e-1329.38199999999999829.0819999999999970.491.122.20.3970.6740.608771.54763.368.66e-131.55e-1230.15630.1019999999999971.93699999999999980.870.6-0.2090.21.0590000000000002245.022.529.1e-121.32e-1127.601999999999997nan1.5710.710.7-0.040.6910.006999999999999999-199.358.62-2.2e-124.32e-12nannan9.9990.9-0.50.1840.346000000000000030.008-1360.613188.47-4.3e-126.5700000000000005e-12nannan9.9991.15-0.70.00.00.01238.116034.66.1600000000000004e-121.54e-1128.026nan2.72300000000000030.830.40.43700000000000006-0.1021.735011351200000
" - ], - "text/plain": [ - "\n", - "F160W_ST F160W_GST F475W_ST F475W_GST ... F336W_FLAG F110W_FLAG F160W_FLAG\n", - " bool bool bool bool ... int64 int64 int64 \n", - "-------- --------- -------- --------- ... ---------- ---------- ----------\n", - " False False True True ... 0 0 0\n", - " False False True True ... 0 0 0\n", - " True True True True ... 0 0 2\n", - " False False True True ... 0 0 0\n", - " False False True True ... 0 0 0\n", - " False False False False ... 0 0 0\n", - " False False False False ... 0 0 0\n", - " False False False False ... 0 0 0\n", - " True True True True ... 0 0 0\n", - " True True True True ... 0 0 2\n", - " ... ... ... ... ... ... ... ...\n", - " False False False False ... 2 0 2\n", - " False False False False ... 0 0 0\n", - " False False False False ... 0 0 0\n", - " False False False False ... 0 0 0\n", - " False False False False ... 0 0 0\n", - " False False False False ... 0 0 0\n", - " False False False False ... 0 0 0\n", - " False False False False ... 0 0 0\n", - " False False False False ... 0 0 0\n", - " False False False False ... 0 0 0" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "hdul = fits.open(\"M31-B21-WEST_cutout.st.fits\")\n", - "Table(hdul[1].data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As we can see, there's a lot of columns and even more rows. For plotting the magnitude histograms, we're going to be interested in any column that contains the name VEGA. These are the columns with the magnitudes for each filter." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/christina/anaconda3/lib/python3.7/site-packages/beast/plotting/plot_mag_hist.py:52: RuntimeWarning: invalid value encountered in less\n", - " np.where(data_table[filt + \"_VEGA\"] < 90)\n" - ] - } - ], - "source": [ - "# this if statement just checks if there's already a histogram file\n", - "if not os.path.isfile('./data/'+field_names[0]+'.gst_maghist.pdf'):\n", - " peak_mags = plot_mag_hist.plot_mag_hist(gst_file, stars_per_bin=70, max_bins=75)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can check out the results for the histograms in the file **./*_maghist.pdf**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1b: Make source density maps" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next we'll be creating source density maps. These are maps of our data field colored such that they show how many stars/sources there are in each degree field. The standard size is 5 arc seconds squared, but because this is a small area, I'll plot every 1 arc second squared, just so that there is some resolution This decision can easily be changed by modifying the **pixsize** variable below." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# the list of fields (we only have 1 so far)\n", - "field_names = [\"M31-B21-WEST_cutout\"]\n", - "\n", - "# distance moduli and velocities\n", - "# http://adsabs.harvard.edu/abs/2013AJ....146...86T\n", - "# TODO: these values needs to be changed at some point\n", - "dist_mod = [24.36]\n", - "velocity = [-236]\n", - "\n", - "# the path+file for a reference image\n", - "#im_path = [\"14610_M33-B01_1.phot.fits.gz\"]\n", - "\n", - "# Pick the filter with the dimmest peak\n", - "ref_filter =[\"F475W\"]\n", - "\n", - "# choose a filter to use for removing artifacts\n", - "# (remove catalog sources with filter_FLAG > 99)\n", - "flag_filter = [\"F275W\"]\n", - "\n", - "# number of fields\n", - "n_field = len(field_names)\n", - "\n", - "# Need to know what the correspondence is between filter names in the\n", - "# catalog and the BEAST filter names.\n", - "#\n", - "# These will be used to automatically determine the filters present in\n", - "# each GST file and fill in the datamodel.py file. The order doesn't\n", - "# matter, as long as the order in one list matches the order in the other\n", - "# list.\n", - "#\n", - "gst_filter_names = [\"F275W\", \"F475W\", \"F336W\", \"F814W\", \"F110W\", \"F160W\"]\n", - "beast_filter_names = [\n", - " \"HST_WFC3_F275W\",\n", - " \"HST_WFC3_F475W\",\n", - " \"HST_WFC3_F336W\",\n", - " \"HST_WFC3_F814W\",\n", - " \"HST_WFC3_F110W\",\n", - " \"HST_WFC3_F160W\",\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# check to see if the file already exists\n", - "if not os.path.isfile(gst_file.replace(\".fits\", \"_source_den_image.fits\")):\n", - " # if not, run all this other code\n", - " \n", - " # - pixel size of 5 arcsec\n", - " # - use ref_filter[b] between vega mags of 15 and peak_mags[ref_filter[b]]-0.5\n", - " # since we're only working with one field, our index b is set to 0\n", - " sourceden_args = types.SimpleNamespace(\n", - " subcommand=\"sourceden\",\n", - " catfile=gst_file,\n", - " pixsize=1,\n", - " npix=None,\n", - " mag_name=ref_filter[0]+ \"_VEGA\",\n", - " mag_cut=[17, peak_mags[ref_filter[0]] - 0.5],\n", - " flag_name=flag_filter[0]+'_FLAG',\n", - " )\n", - " create_background_density_map.main_make_map(sourceden_args)\n", - "\n", - "# new file name with the source density column\n", - "gst_file_sd = gst_file.replace(\".fits\", \"_with_sourceden.fits\")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Try to view the fits images of the source density maps\n", - "\n", - "Now that we have the source density maps outputted, we can plot the image and see that the density looks like." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Filename: ./M31-B21-WEST_cutout.st_source_den_image.fits\n", - "No. Name Ver Type Cards Dimensions Format\n", - " 0 PRIMARY 1 PrimaryHDU 19 (174, 175) float64 \n", - "\n", - "(175, 174)\n" - ] - } - ], - "source": [ - "# open the fits file\n", - "hdu_list = fits.open(\"./M31-B21-WEST_cutout.st_source_den_image.fits\")\n", - "hdu_list.info()\n", - "\n", - "# extract the image data\n", - "image_data = hdu_list[0].data\n", - "\n", - "# take a look at what the image should look like\n", - "# in this case, we can see that the image is 5x6 squares\n", - "print(type(image_data))\n", - "print(image_data.shape)\n", - "\n", - "# close the fits file\n", - "hdu_list.close()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAIzCAYAAADxp0j/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9fZCk13ndd+707Hxhd7GDHXwsAZAgQICEQIIQC/wKQ4amlJCWUpLsshMpZZcqUYp2TDlxyk5s2X/YSUVVzpfkOIqVgkuKpCpZFCVTMsu0jJCmWaBpAhCMAEvAIPFlktglCGKxs9wFZnZmp+fNH+899547/czOAljsznSfX9XWNN7ufr+70fc8554ndV0HY4wxxpi9xtTl3gFjjDHGmNeCf8QYY4wxZk/iHzHGGGOM2ZP4R4wxxhhj9iT+EWOMMcaYPcn05d4BY4wxxrzxfPxPXNG9dHJ4Sbb1b46u3dt13Sfe6O34R4wxxhgzAbx0cogH733zJdnW4MhTS5diOy4nGWOMMWZPYiXGGGOMmQA6AJvYvNy7cVGxEmOMMcaYPYmVGGOMMWYi6DDsrMQYY4wxxlx2rMQYY4wxE0DviRmvps9WYowxxhizJ7ESY4wxxkwInp1kjDHGGLMLsBJjjDHGTAAdOgw7e2KMMcYYY14TKaW5lNKDKaVHU0qPp5T+h7z8N1JK/y6l9Ej+d9dO67ISY4wxxkwIu2R20hqAj3Vd93JKaR+Af5VS+qP83H/Xdd3vX+iK/CPGGGOMMZeMrus6AC/n/9yX/72mX1cuJxljjDHmYrOUUnpI/n1Sn0wpDVJKjwD4PoAvdF33QH7qF1NKR1NKv5xSmt1pI1ZijDHGmAmgAzC8dOWkE13X3b3tvnTdEMBdKaVDAP4gpfROAL8A4HsAZgDcA+CvA/gfz7cRKzHGGGOMuSx0XXcKwJcBfKLruue7njUA/w+A9+30fv+IMcYYYyaETXSX5N/5SCldnRUYpJTmAfwogG+klI7kZQnATwF4bKfjcTnJGGOMMZeSIwB+M6U0QC+mfKbrun+aUvpSSulqAAnAIwD+4k4r8o8YY4wxZgLogF0Rdtd13VEAPxws/9irXZfLScYYY4zZk1iJMcYYYyaE8Wr/aCXGGGOMMXsUKzHGGGPMBNChu5Q5MZcEKzHGGGOM2ZNYiTHGGGMmgQ4YjpcQYyXGGGOMMXsTKzHGGGPMBNDBs5OMMcYYY3YFVmKMMcaYiSBhiHS5d+KiYiXGGGOMMXsS/4gxxhhjzJ7E5SRjjDFmAugAbHqKtTHGGGPM5cdKjDHGGDMh2NhrjDHGGLMLsBJjjDHGTAAdrMQYY4wxxuwKrMQYY4wxE8JmZyXGGGOMMeayYyXGGGOMmQDsiTHGGGOM2SVYiTHGGGMmgA4JwzHTLsbraIwxxhgzMViJMcYYYyYEz04yxhhjjNkFWIkxxhhjJoBxnJ20K37EzKTZbg5XXO7dMMZcQtJUFYK7zc3LuCfGXB7OYPlE13VXX+792Mvsih8xc7gC708/crl3wxhzCZmaXyiPN1dWLuOeGHN5+GL3+9++3Puw19kVP2KMMePN1EL9wYJb3wIASKvrZdH06hoAYOO5Y5d0v4yZLBKG3XhZYcfraIwxxhgzMViJMca84aQbjpTHw/l9AICBKDHGmDeeDsDmmGkX43U0xhhjjJkYrMQYY4wxE4KnWBtjzHkY3HZLeTy8KkcnnHxl5HUpm3kBoJufBQBM33hDWbb50sn62LOXjDEB/hFjjDHGTABdN36zk/wjxhjzuhksHS6Pu2PP1yee7BWU7t23j7xn86oD5TGnW1ORAay+GGN2xj9ijDHGmAlhc8w8MeOlKxljjDFmYrASY4x5VTSlo+uv6f/K81Mnz9THh6/qH8iyJCUjQgPwQA3AH7izPr7/6OvYY2MMwAaQ46VdjNfRGGOMMWZisBJjjNkW7XnE1N1ufqYuC1J31265pjyefeb7I8+f+GD//OFHTtXtrJ4b3bYuy8bgzUefuNBdN8aMMH6zk8braIwxxhgzMViJMcYYYyaAceyd5B8xxpgRmJyrWS7IpSMtIbG0dG5xvizbt7xaHjN1txh8AVz9pedGtsftlITfLdDwq4m+G88du4AjMcaMM+P1k8wYY4wxE4OVGGOMMWZCGHbjFXbnHzHGGABbSjXX9+Wf9UM102Xm1Nq2y7SE1JSbbn0LAGBNyk2Dsxv936ePy9b7cpLmxGj7Aq5n9eZalprLpSq3JzBmcvGPGGOMMWYC6JDGLuzOP2KMmWBUfVGGc6NfDcxtmZFlVGXmJNNFzbnTx3u1ZHhk/8j6BvI4FdPwWl2Yc2kAFFPxwuOizvD5J58Jj8EYM/74R4wxxhgzIWw67M4YY4wx5vJjJcaYCYTtBLRFAA23QDXqzohJd5jLNsOPvkfeM+zXp00fZTs0CM89/3JZlo73rQjSfDX7IpeRutVqEB5eX028LGVFOTLrn3hveTzzz/945HljTI8bQBpjjDHG7BKsxBgzgZx73ztGltGEC1QFZaANHj9wJ4C2qWM33xt7VUHpVupj5PVoou/sSVFgtq5HEoKbKdhXHeqXHZdt5+3ML9T1dVlh8rRrY0bpkMYuJ8ZKjDHGGGP2JFZijDHGmAnBDSCNMbuewdLh8pgG2pU7au7K/LN96Wj9TVeWZWrynfnuD0aeLwSG25TLPVsfs0Q1JWUi3Q7Z9+A3+tdJo8iNt10/8rqh7A/3Uc2+zLcZfPnh0f02xowd/hFjjDHGTABdBwzHLCfGP2KM2eNo6m4x2IoaspGVCvY5UmYe+3Z5vP7Ot5THTM7VnkgRxbCrxl0x/hKdgr0v/92c31efzwoMDb5AazTezH2ScOfbRvZxarVmCFMZQjb4bsWGX2PGC/+IMcYYYyaChE1M2OyklNKvp5S+n1J6bMvyv5xS+mZK6fGU0v8iy38hpfR0fu7jb8ROG2OMMcZciBLzGwB+BcBvcUFK6U8A+EkAd3Zdt5ZSuiYv/yEAPw3gDgBvAvDFlNJtXdcNL/aOGzPpMHVXSzDQx1tYOVJLPgdzqWbjxEtl2b7larilCbhpuJhLVWc+XEs6B77ydP/c9fW9G2L8HZx8pX/+WF3PJjNo8nNANftGpSgAwK19qWv57dXEu5RzZNKqHPPJU/32bq2lsYZHn4iXG2P2JDv+iOm67r6U0k1bFv9XAP5u13Vr+TX85vlJAJ/Oy/9dSulpAO8D8LWLtsfGGGOMedV0sLGX3AbgwymlXwRwFsBf67rujwFcD+B+ed2xvGyElNInAXwSAOYQm/CMMS2NiTerLjS4Ko0akhWLg8dHk3Kn3n17fSzm27n8V6dDUyXZ/+zpsqz0P5JkX0357eaz6TZQRnT6dmQg1hTgqezrXfra+sjr9Pg3rx+dvq1w6vlQFChjzN7ltf6ImQawCOADAN4L4DMppZuB0DHURSvouu4eAPcAwMF0VfgaY4wxxlw83ACy5xiAz3Y9DwLYBLCUl98or7sBwHdf3y4aY4wxxozyWpWYPwTwMQBfTindBmAGwAkAnwPwj1JKv4Te2HsrgAcvxo4aM2nQuKulmJUj+8vj+YeeBdCWUH5we1+iOfTwiyPr0/IMM2GYegsAm5KqywyX5duqaXZhsa8MH3j8xHn3WxN0S26LQEPv1HzNdzmbj2tOX/hUzYmhcThpQ8qchbMZmIY1Y6Y7j9nZmEmiQ8LmLmgAmVKaA3AfgFn0v0N+v+u6v51SeiuATwO4CsDDAP5813WjNWThQqZY/w56Y+7bU0rHUko/B+DXAdycp11/GsDPZlXmcQCfAfBvAfxzAJ/yzCRjjDHGCGsAPtZ13bsB3AXgEymlDwD4nwH8ctd1twJYBvBzO63oQmYn/cw2T/25bV7/iwB+caf1GmOMMebSshs8MV3XdQBezv+5L//r0Fd4/rO8/DcB/B0Av3q+dTmx15hdhM4WYukkyayh+dVgds7xmq3C+T7NjKU8g0hnLK0t7tvyDmBwdqM8ZqbMNQ+cKsvYYuDMHUtlGXNiVKDWNgA8hk5KR3ysbQfYEkGXaYsBlqD0uEqZKJj5pLOq9LhYwprSWUxP9a0X3JLAmIvKUkrpIfnve/KEHgBASmkA4N8AeBuA/wvAMwBOdV3HD+y2s5sV/4gxxhhjJoAOwOaly4k50XXd3dvuS281uSuldAjAHwC4PXrZThvxjxhjdgHMf1HjLtNyT99dByNNRkv+q2m5mvVC2DxxPafwAsDC86O5LMO5+nWw/96v9+8VNYQm4BmZb1hyYrYjJ+gmaUi5enOvCM0/e3L0ddusLzTn5vdMyXvOZQVGc2fUDMxsmn0PfqMsY/NJKzHGXHq6rjuVUvoy+siWQyml6azGXNDs5stfHDPGGGPMJSBheIn+nXcvUro6KzBIKc0D+FEATwD4lwD+TH7ZzwL4JzsdkZUYY4wxxlxKjgD4zeyLmQLwma7r/mlK6d8C+HRK6X8C8P8B+LWdVuQfMcZcYlg6UvPpVC5/aMNFPh+VfgBg+La+zKRZLCXrJZtVAeDsR+4YWfdG0IQRmu+SSyyQdbMUM/NYXXfHMtHJagAGat4Mm0UefOh4WTY426cuqNkXLIlJ6UfzZrifbZbNaCYMWyNoCU7PH02+WiY7e6gvVc3put0o0owhl9gTs/1+dN1RAD8cLH8Wfb/FC+byH40xxhhjzGvASowxbxAlcRdopwFn823Y9FAMrFQNGrVEGOSp1UzfBaoSsfa+d5Rlr1zbf8znn5V1c52ioJx5z9XlMTWJKHF39e6by2Oac6kKAXV6NlDTfVVB4XGd1fThvB5tCsljabZ981UjywYn63FxCraqL2pYjs7pfH6sypAbRZpxZSe/yl7DSowxxhhj9iRWYowxxpgJoOvSrvDEXEz8I8aYiwxLEZrfoqm6NMMyAReoZtk2J+UKbEVLHsxeGc4N5Pm+tKKlqoPRe7OBVktRi189Vh7TVKym2RkmCEtqLstEWp45II/52iZBOL9nPiiTabpulA1DUzBQU4e1BMVzoSbmgTS+5PmN1q1pwdM75d8YY3YF4/WTzBhjjDETg5UYYy4CauKlAtMkxYriERl6qRCoAZZoryJN7I1Mrnzt7HI15JZpxaI0DLMKxBReIO43FC1bfntdtvjNXk0ZiNIESeflVO7QICz7T4VFlZjQxKtKzMF+DLb/2Xo+Z7NpWvdbp4Sfj8YAnJWawW231OeffOaC1mPMbmY4ZuWk8ToaY4wxxkwMVmKMMcaYCaADsDlmU6z9I8aYV4mWjtJCNoBKCYWps2qk1bINk2i1rLT8oT7Fd+F7tQTFnJQDkoOi61w71JtYDz384nn3l8ZXLdXwsa5PDcJE95HlqMO/92hZdo55NJITE6Em5p22Q9T4y3OmZanFoEx2Nje5nHv+5fpe2bepo0/375HE3iiHh+dMs2po2AacH2PMbsE/YowxxpiJINkTY4wxxhizG7ASY8wFwjJSuuFIWcb8k00py2icPpk5VXNSBk/3zRA1R4YZLZsv1VwWtg7Y9+A36oqkfcHawdHadmnSKOWrcDZUnk2kpRYtwUzlWT46W4qlnNIcUtb98s0HEcG2A1NyfjiDiDOXdH80J0ezXDhzSGcQcduawbOQ36+zk7QktJHLSE0JKbdekHaU5TzqPpyRppL77+23vbmyAmP2Cn0DyPHyxFiJMcYYY8yexEqMMedh+sYbymMqB1RSAGAzqylULgBgIT9uUmGl0SLVD5pMAQBUN0RpKUZcWabbufazvcKgig5Vh5U7qlpUmjReVROAhzm3JjLuAkA6T6KtjnyYhUPFpV+2hq3otlNO0FWTLhUYVWe0kSRzb6LMF83gYYqv5unodWACsSpMm4EpmesZnK37ffChet07qnHOjjF7jOGYaRfjdTTGGGOMmRisxBhjjDETQIc0dp4Y/4gxZgtT7769/oeUb1j+aMyn+W9UvtF2AUB9zNLIYKGu53zx/Nq+QMsgaTUo+bAho8Tzcz8Wnq+lI5Zlhtvku7AkpM0VaRaOmic2TSHFnMwcGc2GGeTyjxpuo3VqiYr7EbVvUOPz2sff1W9Xcmlm5RrS8KvG50Fgcua5UgOwmoVXruttwIty3BvP1QaaxphLg3/EGGOMMRPC5pi5SPwjxkw0mr7LqcMrMkV6ICN6jvyj6btzss7I2Dq9ulke0zS6Twy5NAuf+tFby7KdknipsAxnqzx85RO9wqDpvAcf6vexaS6pCcOZ5bdXE+sVh0aVEaIm3Ug5Kim+qOenmS6d399M385qyXCuKj/r0gAyMidTbdknxucDX+nN0mp21m1TgTnxwfr80ud707WqLlR+VkRNU2UIGJ2CbYy59PhHjDHGGDMBdB0wHDNPzHjpSsYYY4yZGKzEmIlE818IyxssXQBb8016g+1A8lRoyGX+iK6nLT9U2HRRM182sqlUS0h8nRp7FRqE1TTLEktjpD25fclDy0FDeRnTe3Xb3B9NzWUJRk3MK1fXsdEi+rJN03wyl87UIE1jtJ57zdap26vLpvP7tSxF46/myWhpief88COjuT16DYlmw6h5mwnM2kBz/RPvBQDM3fd4WeZEX2PeWPwjxhhjjJkQPMXamD1GpLqczn1wmqTZPNW2W6lTkddvvqM8ns+qgyb2cuQ/pVOf2csnMM8CVQ2ITKGRaVZH+5qqS5OqToOm4qHKB9epSoOqCmTpaDW2UoFZFXMt1QdVecq6xbh83R9Jsm0+xkbRCvobcd3N9uQ9Z27qDdiDta4sYyqvKlozeb91KrZOp956fAAwHfSJIrqPqrCkPD1ep2VrfyxjzKXBP2KMMcaYCaAPuxsvK+x4HY0xxhhjJgYrMWYsiUpIL37sxvJ46fNPAmhNny9/+G0AqmEWABYef748riWouk4aSJvyRa6maBmoMcjmBoiQchKbHaqRNCIFeStaLmFpSUs+NMtqc0Um+up7teTDsg4Nvsq85KnwGF+RjJm552tZhkZjLW+xxKTm22ryrfuopuOF762PrIdEZaDt0oAjI3Y5L/cfLcsGH7hzZJ1JEpa5v5otw3ygtSAnx2m+ZrcwxHh5YqzEGGOMMWZPYiXGGGOMmQA6eHaSMbuWwW23lMebx2oZKN3Qz8S54oVaimA5YF3aCjC+n20BAEDnD0Wlno2ggSLX3T1VyyXrUmJALvloOWV2uV8WlUZ0RtK6tANgqUvLRGyNoFk2zHDRMhnLMtHMJqDOtGkyanJGi+a7sAQ1e7rOTtL9LeUU2Uduc23bSH+MbJuzjrREF22PJahme3LOWB5jaRCozR61BHk6l/f0nE1J6RF5f5rGl6X5Zj2PpbGnNMV0dowxFw//iDHGGGMmgvGbneQfMWbPQwVGjanDN1XlgyNjTYPlCFlHzbOnejOsmnkVZoaoaZQjf02xLaNvUVWokDRIjgz3Q9UHPR6iWSQ0rKq5tKxP1rM/aNJYGi5KDooaaaluqNJA1SlSg/avBjk58h410vK86DmhkVjP/aaoF1TTNBOGBulpUYaKGiLnZCDXhuc3Un5UBWMGzXZpyVST9F6IKPshpmD9X4hVGWNeH/4RY4wxxkwIm56dZIwxxhhz+bESY/YUU+++HUBr5kRuA7AukfVaOqKx9YCUGFg6+cHt1di6+NU+y0NzRbScwtKBljk2c+lo34PfqMvufNvIfkeNFJXlnLNy8Nv1I0nj74kfv60sW/paLV+wpNE0V8zH2JTW5kY/5ms3HwRQTa1AW6pJuVSzef1ouWkhaHa5HSw9TYsn+uyR/Xm/h3W/8+OSoQMAt9bsndpsoMLxpF4PjsrUuHvgK0+Xx8PAiH0+VvJ5AlqTb1QeZCaOZu90x+LSpDGXg64DhmM2O2lHJSal9Osppe+nlB4LnvtrKaUupbSU/zullP5+SunplNLRlNJ73oidNsYYY4y5ECXmNwD8CoDf0oUppRsB/IcAviOL/ySAW/O/9wP41fzXmFfNYOnw6MJsGlUz58rdN4+8TBsJFvIUYaCO4hdkinVRAUQN0CnUbEJ44FuSfMtmkDfUhopUHzaO1HXr9GwqMaryHPx2/1inXdP4G6kvQJxeS9VJFRZOGddlBx7/QbMvwJZE36zoREbjc2IGpjqljRJnT9bjplG3UUayqTZqbKkJyqqSMbFX9LeyP2qg3sjraabDy71Cpo5WdYaKjx4rz7OuR1Unqi6zol5RndHrSkNvCszHQG0+6URfc6kYt9lJOx5N13X3ATgZPPXLAP57tErvTwL4ra7nfgCHUkqj7XKNMcYYY14nr+knWUrpJwAc77ru0S1PXQ/gOfnvY3lZtI5PppQeSik9dA5uYW+MMcaYV8erNvamlBYA/C0A/1H0dLAs8uSh67p7ANwDAAfTVeFrzOShJaQzuSGjZnqwBKE3DFNYmwyRwJyrpaGa71IbJb7wp3sD7cHv1DKNGoQXskG2afqXywQbYqRllstMrV415ZZS3hFzcknQ1UaS2SB64oP1vSw7KZrvMr06O/I8DakshwEACxqa+aLHylKN5rusHFnK26jpvCxBNWZWOfdRWjChwVfR5pIHvlUzVHiMeo1Z1lLjMks6ahDuAnNyZL6elnXzeuixnJPSI49Xm4oefqS/4Ct3VPF5/qFnR9aj8LUzLieZS0CH5LYDAG4B8FYAj6aUAOAGAA+nlN6HXnm5UV57A4Dvvt6dNMYYY4zZyqv+EdN13dcBlKFNSulbAO7uuu5ESulzAH4+pfRp9IbeH3Rd5zmG5rxw2jSA0pMGqCP+yMwajb7VPKoj/9Nv6UfBV3+pVjqpIFDFAYCN+Tqdlqj5lArKvuW6jCrPiph4uW1VJ4ZyDHw+UkGqLlS3zRE+ALwsU373P9sftyoEZeQv6gPVlMHZatzl+dPjV0PqcK7fX/2CYG+p/c++jK2ckT5IqtRQRYt6DGn6MFWimSClGKiqzUKglkQMA9VN1zN33+P1xdnYq8Zm8sJH63nk8QPAgXwvLH5Tpu3nfZvXlF9JZT4fw4/WiZyDLz98Qe8x5rUwcWF3KaXfAfA1AG9PKR1LKf3ceV7+zwA8C+BpAP8QwF+6KHtpjDHGGLOFHZWYrut+Zofnb5LHHYBPvf7dMsYYY8zFpAPsiTHm9RBlvwzF4HomyAbRsgxZkfIFy0mag6LlJuasqLkyaprIMo+msWqphpkhWnZIq6PJrSw7zYgbjCUt3R8twbB0pOWitYO9UKolCz1GlkZYQgLaMlJZTzbAaqrw+kfuAAAMNPlY8ktKOrEs4/VQcy1LeGyYqPsF1LweLd8U+VfWzbTk5Q/dMLI9oJaeItNslMLbmK+llMVSz1CMvSzrafNJ3itLR+s6T9xZS128NgcfGk2fiBKZ9bpq9szcU30uUNMI8gN39n/vl40bY0L8I8YYY4yZECYu7M4YY4wxZjdiJcZcEqZv7MsEmt/BTBSN2l+YqzkpLOtoM0NK+td+uUbx83ktIegsnyiKnzN2ogaGGj+vMfea9VLIpYwm5j6js6V0hhHbHxx8aG3ktbqPQC5lSVlh/RPvrc8y1yWYAZOO1/ODxf6cajYKyzNadtMZVsjlD83omcnr1KaQC3/wQP9AZpjprCMydbiW4Fiq0bYCB76Vs3OkhKRlPV4TbeXAMpLOPiqNQaVMNn287k8tLdV7ijO09N4c5pJhc0+t1fewJKjlLS1HEZYj9bpqOXI9v18zejpm2YyszZjXSTd+OTFWYowxxhizJ7ESY94wNP/ldB7ZqwGUhl1tjhc2NZSk2Ws/+ySA1sxJNWFdmj5q/gm3qYbT4VyvJtDAClTVRZUfTaxFHlWrQlCOL2hwqMe6qcoAU35lRH7gK31DwtaY279ucNstZcnaocGWZ1sjKQ2kB7RxY04l1nNbsmPE7Lxy3dXlMRURPRd48pn+r2aw5Gus6pWOjEpjx20Sa+s+jn4VqYGYKliU3qznlmqSKmN6ntn4cXjLaIrviR+/rSxjMvKypCWrwZrZRao68R7QfWyM01v2AQDmc+NQPc98Xj8/m48+MbIeY14tHSYwJ8YYY4wxZjdiJcYYY4yZEMbNE+MfMeaiUyLUpXzBDBYtO7AcoFK6lhUo86vZk+WWqO3A7DYNICn9a54Km0vOiJlzc340dl7Nniw96bqZg6LGTZpHNZ/knJqCg3h7HleUS6Mc+uJT5fGpH721X/bwiyPv0RKKlta2Hpd+nel6uO9NK4d8XTW3h+d2KKU6NamyqaI2SmRZRrdHs/Pq3TeXRWqkLg0ypX3D1ueAevxq2G7aO+TyjZYReT2j9g5Ln3+yLNMSZrkX9P7IpvSoHNncj+97R3nMe1fNyT/4iT4nhtk5gE2+xmyHf8QYY4wxE4ATe40Rphaq4Van0A7ySF1HzRy56ug6GoXqqHnfltcB1cSpy77//n6K8bWfldG1jMQ5UqdyAQCDtQ5AO7rmtlVJUNMx911H/jR2qgE4SrHV/X05MDnTxBpN6d6u0SGVjMYUuprVLVGqOE1YDcBUfjpZnxppqTCoGlTUhJNVseAa9VqrAsVj0OabVEn0ddwPPfdKlILL66Xnh/uoit/g7LA+fyxPg76hTo3mvut6eG3UaK33KZWuqImnXg8ev6pXqgIRnapd1Da595jiq1O+hzRaGzPB2NhrjDHGmD2JlRhjjDFmQnA5yUw8NO4OJGlXG/dd+UQvna9cV0sAs1n5Vlmd5YRn/ss3l2Vv/exyeUyTK3NOgGpS1dLH0tHRLA41yFK+v1LKASw3aJmCj6LSBVCThZk0DMSlHi0TEc0yYY6IbmcjSojN79FckXNiCp3K719+ey1fXPFCvz9RM8PNILNEt6clDZZgBl9+uCwrhm0pHbFMpudBTbV8XpdxP34g9wxLKE0ujcBSjpbJeC9o/s8gP68NNzXf5WxufKnnh/uuJcHoekT7po0tWaLS9Uzl497unuI6NW+GJc7B06PGbi3b7TtWy7lNA0ljJgj/iDHGGGMmgA7j13bAP2LMeaF5V427nDrNacpAOw06WkY1YFVSdTnaV/WFplegKhoz0geI29REWioRh1dHp+QCcX+kqJ8SR/mNKVaTdrNy1CT2PtWrM5u3VnWGKlGkbOh6Tr2nJuQ20435Oo7o5dyrKsU9Y7osIOqXbADp1isAACAASURBVJtqwdR83ccITQM+8K1+nZoaOx2Ys8+dJ8UYEMXrWFU+pvK50mMu6oMoH2r85bnU6eJUdKJlS18bnQaur9V7guc5ul5ToqDofbG22G/nwMn6Hqotut9qMN76OqCqLZGBfFqWUYnS86OmbGMmFf+IMcYYYyYEtx0wxhhjjNkFWIkxBZaONu+sZaKzJYtjGL6HaPYFpXo19gKjDfMokT//kcWy7E33vlAe0/Q4JVkdTP5VSX7pa/22tWwwI6ZjXHVoZH+L+fap+rr1bPrUZN+GLO9ryWv6yB2jx5X/6jlj+QEABtk0SgO07ruex8hc2myH5mYxMTPlVRN7EzNRdkhL1oTYkugrJQ2WBKPE3rPbJPZyO2pI5rWJcnsOHo9zYmjE1VIWS2tzYtiO0NIiy1+t8be/NnrdedxadtL3MN2XZUmgZupoOm/UpFLLUrMn++1oKYslL13G6z4IylMAMH1jb5LeeO5Y+LwxAIBu/GYnWYkxxhhjzJ7ESsyEM1g6XB5z6rCaNOeDtFeOujlVGGhH/kwx1ZE9R9A6Cj1xZ68CLH39bH1vMH03MvuqYTJKXNUePBzF6wiZvPzxd5XH06t9hxpNadWp2twfNQPTFKq9gZbyOVPFgkqU0o7Oe1VBe/Fw3U3/omVJN84j9Ugl0yTZSKmginNWzaxP122XHlWyj1ynGml5zvVYo6nIek9x3apE8TxHU7GBqtrpemZ4D0iC8Hq+7htH6nXTKe+8/7RP0tb9AoBTt/fX68C36tRlTR2O7qUo0Rh5nc3UeXkPj1enfHOZnmdeL70/kqQOb2bjtKZoe9q12co4th2wEmOMMcaYS0ZK6caU0r9MKT2RUno8pfTf5OV/J6V0PKX0SP73Yzuty0qMMcYYMyHsEiVmA8Bf7bru4ZTSAQD/JqX0hfzcL3dd979d6Ir8I2YCoQkQaMtALA1oqYalAU0P3cjlnW6bDI2N+V7g2wyaMKqsfu1jvey+XQIuSwxavmGJYShlHr5HG/RpCYUGSTXFcj+0wSHPRVRC0uW6jGWypjyRywnaXFJNoZphsnV/o7wQPX6FJmAtN82sMkG3lpj0eAp5mZYsmmaHuXyxKfdHMexquSQfo2beaBmR90B0TtUMzHKK3o9TQcKylht5DPvkPuQ+Nq8TWLZbub0+f+XnjvYPJOuHpa50XJuKVoM4730tqXKbamcvJTHNG1Lzcj6XG3Kv8LijjBm9p/QzybJokxb96BMj7zdmN9B13fMAns+Pz6SUngBw/fnfFeNykjHGGDMBMLH3UvwDsJRSekj+fTLap5TSTQB+GMADedHPp5SOppR+PaW0GL1H8Y8YY4wxxlxsTnRdd7f8u2frC1JK+wH8YwB/peu60wB+FcAtAO5Cr9T87zttxOWkCWJw2y0AgGWR/nX2BUtCAykX8LGWOYazozVVLQMtPN8/jmaXKCqNk0Zqz6WFMzfVGRfcX81d2f9sX5546a4q92sUP8tIOmNnLa+T+ST9es7fuJEzcDRWfjaXXTS/ZN9TuaQjpbPptXoMJf8maOyobQ72PfiN/nXSdiBqoaD7zZLQTrOFeE4Pyeu0PMjZVlomY8lo8aujWT8600j3kWUpbR3B3B4t70U090/+G5X39HXruUSlZTKFZauBXK9yfqWpaJlpJCUkPY+DYNZeOec6Wyq32dDsnCj/RSmlvOBaN58j2TeWRZsSbv68D598ZmQ9ZnLpdocnBimlfeh/wPx213WfBYCu616Q5/8hgH+603qsxBhjjDHmkpFSSgB+DcATXdf9kiw/Ii/7UwAe22ldVmLGFJp3dWS2nkeus6eq6VPVAo4aNWMlGimysaOaNXXkzxG7qhwLOQbjjBgqiwFUzJwRh774VHlMpWGhxmrUpn+ff3LkdUA1SC6oynOehoJqUtaGi4O8PFIDNCGYR71dGi5H4gNJsaVJd/lD1XR9AH1y8tlDo5kkADCX/2qODlF1htdY94fKiS7TUT4VGDXfsmFjk1Wy2u+bKhKKvra+JzeXXK3viVQHVeU2X+ofazYK9ZcoLVjVsmZ/ssISJSNH110VlNZo3K9fzx/N5vuk2SUN1prsq1k/dXt121P5XETGZ0WPkecHch7ZdJOKDGBVxuwaPgTgzwP4ekrpkbzsbwL4mZTSXei/Rr8F4C/stCL/iDHGGGMmhN3QALLrun8FhDvyz17tulxOMsYYY8yexErMGKGR4yxZqBzOXA0tEakczuVRa4BrHqhmRcr8Wio48+HaNJJlh+9+/NqybP+zvYQelVV0fzai0pIYGFm+0TIPS0JRqwFF183nNWPlwFd6o+2KHIuamA89PJqTMsOoDtnHzWxYbsoTYiQtbRDk/K3lrBwtwdGIrOdnReL0WSbT8oSWusp6mF8SmHjV7KzlNu7bK2KWns/9EfVaM8NGj1X3gRlAavxmeesHUlpkiVKv65mbamnt0MOjJTWW/6L7ef3Q6LVWovuMRmoAQC71bVcm4/u1xFTOpZQJeTzbZf3w/XpdSdtI8zxtDlDLbJ08r41cy/bY5NUtCSaSzg0gjTHGGGN2B1ZixoEP3AkA2JRFkSH32J/oraBXPVFfqVNjObVTVYOlo9X4uxWddq0jzdVsEF58qo5Si4IiZkWaHnU0q6NzqhIHJJl0NpsZdZoq93te01V1R7NKokZRnRJNOOVblQ1VEDjKH0oaLEfar1xbP0o0xappWo2d+7IJU0fKVElWrqvT3/c/2ytMaqDWfaNKsHJdVQuoxTWpwnk6+r4HqyLBkfvcfY/X14mCwP05/HuPlmWrH7kDQJtyTKbEUNrsrxhoCVWMKNlXp5gvPH4SW1H1gYm1qsBRlZuXc6+mYSbw6jXksa7r8Wej9nZp0ty2xgTwM6f3M49HlZbo/M0GJvn1YB9VGZoKpoRrwvBA1EGS8nRyKzGTy26ZYn2xsBJjjDHGmD2JlRhjjDFmIkhj54nxj5g9xGDpcHmspRyK3Cpjf//9vZQ8e7qafd/62WUAbcnmB01uSy4nibkyyi9Z+F6/7cisCQAbWTqPEnDbclL/fs050fJWWa6yeC4nqemR5YntykUsrWhJh+Uvpv0CVZ5fl1KVHiONm5otw+LHzKlaBiEq/U+v1hIeSzmaRHxlvnYbYiRmTsjaoXo99PywbEMjNVBLEFpqAM+jNDhkuU3TgKPSTyfvmX+od/ZuSgYPzbV6/bUkxGujz299DtjGxNxch5ptRIY3j5pzo6aJuoyfmyjRWLN+WEaKzgkAIK+nSZjONCbcfC603NoYcvP9vO12+J6c+XJOSl4ISlD6vdAFadsbz/UlvKYJ7HO1rGfMXsM/YowxxpgJYdw8Mf4Rswdg4qYa/RQqJzoZ9OB3egVBFYsy6jtV1ZDIAKzvoSmSU2C3Q6dqU4GJeic100bz6HIB1eCqqsyBx08AqAnAQDX7qsrDdav6oqNqKjn6nuc/0jdHvfaPJbE3KwOqtKiiUaf81vPH1+qInKqVJiNH04D1nNKQWbW2qiDo5Fs9zzT07luuV56qk5pZeR5XRbmgobeTBFxdN1Ui3cfhkd5Aq6oIpyWrYqMKE98/JaoUp2Nr/ysqVQMxcc+IaVaXF/J1VcUr6hOlKhBVED0XJVpAtreTMsKp+WrSLVPmA/OxJkiHhl1J+aXhu0kVDpbpNV4NejQNs8Iy9e7by7Kpq/rHa6riyFT/4YmXRg/WmF2Mf8QYY4wxE0AH58QYY4wxxuwKrMTsVnL2CwBQvI/SWIHWSElY5lCpnWUZNYcqUQpp1FyQJsWmQV/QwE9TXMsykbFPf7CX2K/+0nNl2UGpGkRlGR6XmjUppZ94Zz0PS3M1O6RJLebzXz+7/T7KMj230XnjfjTJv9/qMzi2y4lhWasxhdJ8KcfF0oheD33Pobx+LU/wHtHmgTxnWiajuVjf25RQcklITd4b8/2YpylB5jKSlg41/yVKmp3Jxzjz3brsRL4XBpLLovc7Sz3NOWMDRElQns7nMTLPKnoueI9HqbpaotTzw2sYPb8m53Qlf+a0LBclJ58LmoGq8Zk5M/tX4zyecjxyLjgRIKnJO7PvqVpuHUpmDN/jstKY0vWpvePEjkpMSunXU0rfTyk9Jsv+15TSN1JKR1NKf5BSOiTP/UJK6emU0jdTSh9/o3bcGGOMMZPNhZSTfgPAJ7Ys+wKAd3ZddyeAJwH8AgCklH4IwE8DuCO/5x+klAYwxhhjzGVnE+mS/LtU7FhO6rruvpTSTVuW/b/yn/cD+DP58U8C+HTXdWsA/l1K6WkA7wPwtYuyt2MKZx8BVfp+8e11lsXBb/fLdIbGeiC760waytyac0JU+t+ucR+JJPbSAFIke10nyyha5GJ5Q0s7V8z1crmWYjRWn+Ublc25nWVpTMjzc8MXaolA3xPNWNmuNLf1vU2WS96fs0HrBM2B4fFHJSRdv54fzk7Sj/5w7sr8t16jWbnGLAXpsei+FVg6kBlEvM+0tKEc+uJT/TFIs8f9934dQNsugddju9Iij6uLsmXkfj78yEzeL5kFF5SJNl+S2XYLuZWFzCpi6U3j9zXXhp8R/awEZ6y2QZDPj97vvIZNaSjP8tFlg7Oj915U/tNSFbejzTk5C2q78lbZN8lU4nb0GHidksxK01FmKT+7nGT2CBfD2PtfAPij/Ph6AM/Jc8fyshFSSp9MKT2UUnroHEZr1sYYY4wx5+N1GXtTSn8LfWDsb3NR8LLQRtR13T0A7gGAg+mqMbMabc/UQh3Zc0TbiXGTJlU2EQTqqFFHlE2GBA25sp3l2/qR2dLROgqjuVBHeE1uSx6F6WieJk5VJGgo1fwWNb2WRomiIDDt9YU/fVtZtvjk6I9XVRU42uWxAMDB7/TjxsVvVtNsSXvVUbwqMXk/Tr+lrmc4O7oP3LaaWZlLA1QFQU2hZX1yzkoOjKhYqjDQLKxqwEpuYqjXo2S+BAm4+nykDDUKS1YsXnh/HaXPnu5H6Zr2q0rDmbtHm2Fy9K5GYyoea6IMNupEvmf1+Gnu1gaFPBeREViXqwpU3hvsj6bUDjWvKP9VtShKHY5UDDXJl4RcNQ3nba5oBs0//+N+fZ94b31Z/iwArUK1dTvRfab5R6dFJWMWUPjaoBFklJMDAFNHnwbgRN9xpYPD7goppZ8F8B8D+JGuK37nYwBulJfdAOC7W99rjDHGGPN6eU0/YlJKnwDw1wH8B13XaU/3zwH4RymlXwLwJgC3Anjwde+lMcYYY14nE9gAMqX0OwA+CmAppXQMwN9GPxtpFsAXUkoAcH/XdX+x67rHU0qfAfBv0ZeZPtV13WjntgmEZaSzH7mjLFt4vI8aV7Meywlq/otyYM7dMipDT4np8ZoHerm8MbjmMgm3CwAvfqwKZ1e80EvnKmOzQeTawXrjU+7W7IvG2JsNm0MpMdAgquUbSvUqkatJk5L9dc/U95wvNl6lfS0dLX2tLzGsv+vasoztBrS0xiNocmXEXKpm6rIsaFzI41+9u2bVLIjx9cxNfRnukJQvovYPLI2sy3r02vCc6/VcC+4LlhOueaAeS7lecnynfvTW8phlJi2hlPc++sTIspnv1pJF9J4oj0ZLOnyP3kcQQzZLPWHDxdUd8mTuP1oebuT8JTUVl7KWnIt9wTHoZ4kGaz3f/Hw1ZaAc+a/XV0tdKSijsfSmhvTEY5TSkJaQokyhl/NnTl/Hc84yF9BOLCjtI6TU6ewYs5u5kNlJPxMs/rXzvP4XAfzi69kpY4wxxlx8xi3szom9byBqjuNoce2QmEbzKE6NpFGTR44qdeTKBE+gGkgj0yObBAJVOdFR39Lnn6z7mE2Gaji9Mg+6o+Re3e9mf/NIk80BAWDt4+/q/0rTv4XneyVGFYvlWyX59al+P/WcMQ1XWc7T0afFfExVCaij1Ov/8Dtl2UbQ7JEqwLoam4OGixuzoypP04TwbaMT8lbuqFNaeQxNQ8YgYTnlUbcqQ9H0XJ2izqnc0X2kJlUqG7qvTZPPrEqcVTWJio+mSWfT9EDMvGripTq2JvfPvqwYqppI1U3N6arK8LyoOlGnU6+OLGsMwrK/RFU1qnac5q3bVmUjmk6tRvRiLBdFh8qJJlUPdN/ya4di2KZKpJ8u7m+U9gvI9ZTzQwVGlxUFSs5Jl828QJ22vhZFOKzUY91cGf0cGnM58I8YY4wxZkIYt9lJbgBpjDHGmD2JlZiLjJrkNrU0sNpLyJqnwnyPpjFflqTZEA8A1t/1ZgBtOWTtLs1+yM3hJBW2mD6lRMDyjybJrh2s22H2SmQaPvCVKjmz/KOG0qbUlUsnM6eqRM6SV5PpkY91Q0pjNNwCtWSmJSSW1gYnqyS/Md8fj6bmvnLttDzf/1ZfQN0flkHU2MvrMJB8G91fpthGBt/G9JmNq4Onq/yueSB8bXT+tBTDcoGW8vQaE82j2QxM4CwHROveDh6jZpowp0jPSbQ+3Q7LdmouTYevavZrO5pGnCyXyHku5SQxyrLcryUUNfny3tQS3VIQAjFYZelVj6uaczdyGU7PBbc5La9bC8p6up4ul5tO3Fn397rjOZ34WL0/uBeN4V/KgxyN6rGy5DUl6wGzfoISEoBS/tIy9IG8nenD9fPjctLepOusxBhjjDHG7AqsxLwOop5Hy5Jiq2moVFY0iZcKgRK9jiNxnc45LUmyHJ1H06l1G0xfVeVnIeh5NJTRXh2RVfWB79f9aQyOeTqpJqAy3XfxqzX9k+rDcLaODNpR/vzIsuUP9WZpTdLlKL+Zxnt69Nzq/kzlEfaM9NjhNPDtknZ1xE84+tYEZTXxEp1iyynlkXky6vOkqblR3ys1S/Ne0HNW3iPv5Yj93DbXkMe903TgaBSkSsMgCwNqYm6msPNYnnym3y8xw2vqcun1JNPxqRpEPbxUkdCUY04tTrIdVREvlGiqN7Jhee1976jb0/3N6OSQLm9bp79TQWkUkkxkzgbq+dF0XX4/RePuKVFVFKYNq2LMmIVFOWaum9fN7B3GLSfGSowxxhhj9iRWYowxxpgJwTkxpmQsJJFXWVqJGiECtTyk5QCWCZKUNJayjK/NFWlsVaOjlqq4Hc2QYGlFy0ksF2jZSWEZSUsjg7NXjWy7NMwTaVvLLiu5/DUtplmeF5X+aWxu8kkElkb0nHE9egzrwX7vkxLBS9kErUUDrvOMpNRG+7GTAVYl/bIeMewSLb1xm1oSI3oMfI+eZzUi89pGZl+WAJQX3l8fv+13+796z0QlHy21lOaKsk7ee5qAi/nRMlDUzFDvezZInJLXNaWYvM6oYeJmUBLV863r0TLS1v1oDML5Pu3EFLt5ay3/8X7X55Gfb7aX16nnUXOYeAfouSjH+JSsh8cn+63l05KzkxOCAQB5H9WIrvdXOS7ZtyhFXL/TSDExu1Gkucz4R4wxxhgzIXh2kjHGGGPMLsBKzA6wcePLOTYfaDMvyPJtvfy8WFP8t8waGc3WYHlnNYh2j/JkNH5/Jsi20FkhZX0y0yYqI0WzanQ2B2e5aNkkyi8ZSuQ/S11anogycZjlojOJotkX0yq/55kbwyP1nEWzXbTEcPDbayP7E5U3WAbQkoWuh3upJRjCWVNAfPyatzKcu3lkvynPq4zPe+qaB+o11EaSTbT+lvVotg7P46GHR17eROTr3RHNkmI7Cd0uy0gnfvy2suzqLz03uo9SGilNBuU8c/ZWk3MjLRGYa5KiY9ZZeUFpcVkbW+asn7YslTN65D5jltIBOT+RlSDdcGTk+dVtGnaW1wXHEKHNYqP16GyysOyZ912f4We7ndkk+UH58xWVnaJZd5qFxO9KZ8iYS4l/xBhjjDETQIc0duUk/4gJ4IgCQDHrqfpCQ502QFx8sh9JbmcuLc0FxZjJEZKmyw7O9iNEHWVxFDYnHsKo+Zsa9KgW6Ou4bVUAVEGYPTUE0GaM0ISo6gzRcxKN3NXg+r0/eWM+vjpqZkKwbk8NqQvZTKzpoTTDanYKFY/B2WE9Fh2Jf+zGkX2bORUkGueRPxtKAlXFAaq5eUZHrtnYuagprPOj5zlSKjjqBQDQIKtK1Fq/nrPSkHIQqGl6r/BcqqIRnZ/S1C9IuwWqwqKqAlOS9Z7i+/U86XExB6XJJcn31OZLkjuSFY0UnEegqjedml3ze5rjD7JsVJWiyVXvKSpnjcE1K5jaIDNKd1ZDLht2RgncTYPQoCGjmorPZIVT7/GtxwdsY16+SpK882M9p8O5/PkKGmkC9XpqU1Gei+i4lHM5H0eNzcMTL428zpiLiX/EGGOMMRPCmM2wtrHXGGOMMXsTKzGZwdLh8lhzFVgymrvv8friIIOFUivLJgBw7ZfFNJslYjXaMrr8sDRjUwMxYWlouI0ETJrcjaBJIcsJKm2rgZjG38ZcmSX2KA9F0RLMFS/0srtG7Q/W2mNR1ACr2SksrRz41qjZV88FS0fHf+rNZdkSqtT+yvV9Dfjxn/8HZdm7fukvAQDmX6zbW/xmv53Dv/doWXYuiJBXU+hLf/bdAIArXqj7yDKS7iNLZ0CV6vVe4HFpPhDfo+dezxXPr0r7UVmvmIql1MASg5ZdmjLHlmMBUIyiWlFn6wQtrer5icoO3ObmnW8ry2jcXZfzHZlLh/Iefn50vyPjr8J1zjwmLRZyCUXLLpu5fKqfs3nJwin5L3KsNLprs9SmvJNpMnUyapqN8pGmghJcc6Q0XYsRmaWw9UP1nuHkgENfHM2yUbSZKu+/aOKAHn9Y0nI5aXfhBpDGGGOMMbsDKzFERg9q+tvIzQkHMkIk0VTrpaN11MxpmvpaTdmcyirHpphmDz7Uj9LUZPjCR68ZWbeaPctoWY6BZkd9HY22OvrW/aHyoQbG+TwKU/WmNAeUkZkqEcX02IzCrxhZD5UfNZw26k2guvCcakotTcdvuveFkdcBwLmDvdry4U/9hbrsrv7v0mN1v0tTPzGhNmm5WXVQhWD29MGRYyjvlRF3t1JH/vtX+/XoteFZUWWMScNXf6mOvtnAEKjprHodpo/nqcoyYu9uHVXlynOB8RuoU7n1PtzMI3ttfsjzo+dE7y8qR6pksrGhps9yH9Wkq2ZybnMgwhC3o/sTNXNsrgP/6hTrwHzL9+jrmsfcnqgl5ftAPodRmvSGmIV5j6viVc6ZGGlLU0iZ0r2pBmsafmXbZd1y/AtUbOR16pGIEpYj1S5SZcr6dki5NpeZMTPFWIkxxhhjzJ7ESowxxhgzIYybJ2Yif8QMbrulPKb0OVRZWHIlmA2iZYWVIzTCjTbZ09dpzsMwyAEpRlyRl4scLnkYC5KMSxqpOZBvWcrRpFgml7bHV0V93TcSZoyMvCpOFNUykKa4ludzOSVKrgWqyVVLLEw+VhMzz5+aXleuFtP1O3qz48nTi2XZBz/+dQDAd//orWUZ5fKosR5Q02C1zBE1Xyxpr+IF13RaltH02kRGbGavNHkgWgrM65kJzLNRkmxDNoCek+1qKY/3oZYENTmZ0PjaZN7I4wWWInR/8v2qmSfcHy27qUzc5RKUrrs8J6WRqWAfo/KNHhfvGz1+BKWzLti2fnZ53+g9wzKSvjdap+bR8POgzSVTLnFubGPu570bplLLvaffc0TLbTxXuozm3cik3eTk0CAt1yDJd+3wyWdG3m/M62Uif8QYY4wxk0g3Zp6Ysf8Ro6pLSdqV5zlS2gz6BQHV7KgqBQ18oUlVRjBDGeVOB0bJU4Eywmmax/7yD5VlVz3IMWmdCnnwodF+QTpiR96ffbKP3A7VJaBVQWjWYzIrgDpCDpSEWRlxNX2C8jqX76oj5IN5m6ffUtc9e3qz2S7QTgdlmm40hXhK9ofKWGP2nZe+Tp/OCsps/fR+8+/1fWnO/Pt1vH/jb+RrJ0qMqjJUrRo1LRid7pS0OpNHr6o6DL7cNzaiWReo96GmGO97sI7OZ88zTTqagq8m1GFgUtb7pygsogZwerMqCeU5mUqrnzmaT0MjusBkYFVD9D7lfqoKxs9ao5wF0+AbZAoymeMxBgZo/bxOnRxdrtPfB8G6EUxf1jRcTsfW9RRFR95TFJj7j5ZlqnLw86fqHu8vVeWmg6naSY3sNPKvjKYgK5GCFMUwqLI6fWOfDr7x3LGR1xnzWhn7HzHGGGOM6UvL4+aJ8ewkY4wxxuxJxlaJoXSp5b9iuBPZdyWQsRUur2Ze4ECWTc9JMz7mW6i8qqbZyCjJhosqw+7PMv7s8WpCXXixf53m0qjMXfNWJNk2SAWlCVGzOKLGdCrjD28ebfzIc6LSvp4/rnNa0nd5LjQNlzK3HouWGrgeLReUxoUicU9LqYKosfeaB/rrHZU0Fr9a95v3gpqY9RpG8Jzp/cFy0okP1pJGk6PDzBQpXwx4X8j9weNmg0IAwELdzkaQKstrpyUfvk6XDXPpqLmGmqbMMmJQYmlKOvne1cRr5eUgqZpoGYxlEC1jTB8evfeacm2+n5v9ZtPDwPitz0f3lH42ee9F6dVA3GiSaNPMangfbS4J1LJXdG9qKaY0Hw0mJQD18xeV0bRpJq9nk2y8OvrZbYzhTGqW0hiN6HruWXqMUq77AxstrZlLTAfASowxxhhjzOVnrJQYqi8AsPyh/vHiV6uJjP1J5mQEwxRbHV3qKP9lMeERjpBU0eCITVNPlcgcx9GTpstyFH/DvzxbX5dHMzQCAzVJGKhTcRWOlHQfB1H6roxYp4JRHJUINQxypKnLoh4xNOYCVSX6/p97d1nG3lLNqFlIXKcoXjS5zp6qI1f2g5mrHtQm3Zjnfk7WzXM+lPN45ob+N/2BY1V90fsnSoMlC7JtKiNXNNPXq7rDxFqd7kolRhWCaHpuq/SNfnz5HjXp8tzreqK+RI2qkM+9KgRFVZCRPThil+uvCgITqPXzFfV3mqYaoPeRKAR8v6qWkcG4HIvuj5wnmm8HOlU5MrsyVVj3RxRcaow6puU2+Z0C1OugioVOVefzUURBYxrmsQTnBPgDLQAAIABJREFUDojvhRIPoT2qaNhuErjreea50OsFxkPI/pQJEfKZ4Dlr0puDfZ1aWCiPN1dWglcYc+GM1Y8YY4wxxmzPuE2xdjnJGGOMMXuSPavE0EioSadTUjphyqtmMtBQ97Ik4M4GpliWnRQ144Wt6bOsqtkOakJcC8o7lHspuStNk8b8Xi1tRCWGJqchS8CRWbHJNhG5nMs132Xxm6+MvI5lJD33jcEvb2dtsZZLFp7PjQJP12EAz9/mNpke3B8112qmDjnxzr7kceUT4Wra/ByuJ2jIufC94FjkPJ9b7Nej15D7uCL31IHH+3PWND0Uo2RU6uN+RA0QtWwSmXOjfA5dTymXiGk2MrjqcXN5lOmyLsbNYoqVkuBQ1skvGP0spAs0eOpnYOpon6fSGI1zeUfvw30PfqN/IK9rrtf8aJ4TDadnP3JHWcRSb5O3o9kp2XTclODy/uj9zG1r+aYx5OZz3qRuB9lMJDJs63Y2d0jkLYZcMdx2zXfA2sh7tIRZj2E2v3595HW6j3qt+TlsCu75Om0+us2H11x8rMQYY4wxxlx+9qwSY4wxxphXQxq7sLs99SNG48zLsm0i4CmLHgxmBe1fHc1YUXc/Z7sAtSyls4tYboqkduXMh+usAEbiN7OU8rajkpdCqTjK5wCq1K4y/8p1vTx9pcjhlJoHQVQ+UEsIhx85NfIebSswk0tV2kLgirn6/MZ8L/Dtv/frI9u4crXK/NGME4UNIDUnhbOKNNr/2ofONvsKbMm6yeUonTXC2Wtanopmb50LSmaa/0L0nJUSzXaNJPP+aNsG7nlT6svHozNA9BijUkTUXLFI/5Ixw5KFlj+j5oGpyRAZnXnH/W1aKASNRBWuZxg0M2z2O2i4GJVCm9kwLNsF3wVKE5efSyfRDKFm23L+wplqufyjx8DXRcsaoiyX4HPalNjks81ZZJrXxNKathUo7Rvk+HU9KZglxu8XzShimUiv0SAopzX3K1tCNEeUz49nLJnXyJ76EWOMMcaY18GYeWL2xI+YYuKVkS1pjLJNhsJo+mwZmchoZjZI3jz9ljqSKCMcGVFQaaBSANQRvY5qNDukvFfVlDxinV6tys+Zmxaa9QE1G0WX6bGu39wbElUZGpztn3+5MZz2ZlYdmVKRAGquiyYRE1Wn5p/tFYvDj9Rj1SaFxYAsI8AXP3YjgDa5NlKyVFVgFk40ktbRfj1ndZkqH6tB6jAVtsgIqcevpuLGfJm5+kvP5efq/TPI69R7Qd/LEb8ajmtqbD3WwcnR9zbrvMDGhSloOMn3qEKgShXv0xQYV/dJU0iqBprSqtemqECyb/wObRSA42zEKk0o5fZo9p3L8n4MJQeFalqUt6M05zFvs0ngzt8VU3IPbwTqjSoW3J9N2U4K1KvmGIKE3PW8HzNili5mcBqXt+zbQpDvMhUkHkeoKZvHqAnUC8yJCVLA1bhbFGrJj9LsqaLeRIqeqDw0alqRMRfCnvgRY4wxxpjXSecGkMYYY4wxu4Jdq8RoQ7mo2RiCpmQv5ZIFUMsWGvfOHAhdRmiEBYClr1V5lSUjllAAAFlqZQNHoMrY2kJATbpFshVJmpKtRt/TxKolBJZ5VOKlUbh/Uy/PNubboKEl16nrZlkFqHK6nguWsK58YlTO10h6PRc0Kk+vVmGdeTONiTdfwyiHQtHcHq5TywFRdkwXtJaIDJXaJmIur1PLIVEmjBI19owMwlHbiYGUsnh/rEjzQC3vhOQSRBjtrtvLn5GmMWHOsOm0jLFDy4PSXFG2U0ofQSNAoJZ6po+PNhlszK7nMcX2z49m5rCUpfcUy6y6P03LgyCen9e7ydbJpRh9b9PmgKURWU9Uvtkokf0jTwGo5V7NiiqR/kHejJYO16T8RdNs1IohKi3q63Q7PD8HvvJ0XQGvu3zX8r7QLJvSwkXLbnJt2NZBS49l/7VSxVKnmJ1dWrqIjJknxkqMMcYYY/Yku0KJSfNzmHr77QDqSExNj0x+Xb6tLlt8MjcCFNPeUPxiVCKakVswtfOF9/ZqwpH7luubpdHb2sF+mzpKpUFWjb2cdqwjKh0BccRSpisCOHDyyMh6olRdjtf1WHXdxUgXNGGcFqWB5ludsqzngudZ1RmO3DQVlVPD1Zir6ymqlZzH8n6dVpuPldcAAN507wvl8cFvj96e1QArSaGLo43n9PzwXopMkQMZzUZqmW7nhY/267nuj54Lt1P2Jx9jM9qV13H0zfsIQLl2ek5Lw9Jtpv5SCdP38P7R7VFhU8Mlp+PrOYvOn5prV7LSNxckzjbmazFpUukanKz3Ic3UOoKKlCqddjzIilF0XDOBQqb3oyqY/HxG5tJmyveW/QeAKYlmiPaX+3YuUEhUbdT74kBgaOY9p6ZzvkeVsZlV+bzn+0cH2bwmkSqnsQ4aVzD48sP9A1HCI86X/KvqSzNF/9bRpGqeqybFmUndYtjG/UfPuz/m1WBPjDHGGGPMZWfHHzEppV9PKX0/pfSYLLsqpfSFlNJT+e9iXp5SSn8/pfR0SuloSuk9b+TOG2OMMeZV0F2if5eICykn/QaAXwHwW7LsbwD4F13X/d2U0t/I//3XAfxJALfmf+8H8Kv57/nZ7GojvSBrYF+WWqdXa9mBpQ8VhZfu+Vp5vPKn+s0uYDTlVvMOrkUvq2rOySHJTVh8ctQgy9ISDbdALROd/vi7yjI19tKIqnkQlK+1vMNygJavahO5erRqqp3Lf1XGpllRz+NcPo9qOG3yIJ4fLdVQplazK6XtqLEiAKwUc3M1OdOQq1Iyz/n1f/idskzLBSxVqFma+zEMjlVNmAq3+bJcGxqjm7yZnLCsJUE959d+ub8vVIpvDNYZXmvN4FHjM8+zHhe3GZUJI0MlAMzn66SSPdep+9UY4jPMv6HZEtiSSDs/mhMTGeKj7JxOjyGXuiLTebNt+VxEDIOskrWb++u178FqJJ5e7bej53F2uX7N8XpGn6+oKWSTZSTl0S4o3ZbtSVmORu3t0r3LtdXyaD7WNmcol8K3MSlHjTjXggkRvFf0/tDP++on3tu/RyYG8POuny+Wkdoy0Fqzr0B7v6bjo2bg0rhSzcd5f5omlB+4s27HpSUj7KjEdF13H4Ctn8CfBPCb+fFvAvgpWf5bXc/9AA6llM7/7WSMMcYY8xp4rcbea7uuex4Auq57PqXEn9bXA3hOXncsLxuZK5pS+iSATwLAHBYwfPIZAAB/15/60VvLawdrvTalysZGHgGoGjCQkUKZIigjJo4GBzIK40hcR8r6nqL4iPmNo1g1XG7eef5RPPvtaI+dqGcQTZ96rMXgJ0Y/3TYVGO5r//6sWAQpo5p+uh/VsPv8Rxb79R2oKk/EkX/d3zaaZqsjN25bTZF8Xk2Ghx7uR1x6DXWdHL2uHay/tZmCrMd68KHcD0bTSpt+MOv5dfXa8LVM+wWAQ198Km9YEns1GTkfT2PIDab68z2NQVpHu/k+bKax5vc3ptBs3NzUXk6Lo6NY3cdm3zJlSrPsY7lemvYro/jISDrLkbaOrvM6w35AQqTiRL2cdJSuz5dUZtT7uZh0dT07QCVCDan8jEzJ54L7oebaqeY6jJrJqe7o1Plomnw0bVunpQ/Qj/sipW5qte6Dfn/wGuvnvUyTD0zMTTqxLOd10s8PlUe9t7id7fqeEf1cbATT5KlWls8e6veTTllvpo7f2L9n47lj59222YZdMMU6pXQj+urOdehDru/puu7/SCldBeB3AdwE4FsA/pOu65a3Ww9w8Y29ke05PGVd193Tdd3dXdfdvQ+jHzJjjDHGjCUbAP5q13W3A/gAgE+llH4I1apyK4B/kf/7vLzWHzEvsEyU/3I4cgzAjfK6GwB89zVuwxhjjDEXiw5Aly7Nv/PtRtc933Xdw/nxGQBPoK/abGdV2ZbXWk76HICfBfB3899/Ist/PqX0afSG3h+w7HShUFZdFLMi5Uw1srG8E6X4AjXHoC2x9DKl5pIsvNgbTptyksD3aGmkJMCKMXE6S5/bmTmZWNs0V2TOhUjbNMNGyaLK8ttrCYHpxE3eQ9AIbz2bDLUUpWWOs1m9vvqRut/Hfrx//I7/c1Q21nwOlcNZWtMSE/dHyw4v3dWXS3hugFaeZ5np4LfreihzT6/W60GZWqVtPe5hNkHrcVOeXhSZeiU4P9F1b8pWTEFGhfuhZZ6BnCuWybR0QmNnVOZQ9PzwXosag2oeEdF0Xh6/3sOQ5zt+lrS0ynKJmKF5n6phu9lmPj9RQ875wByrxlQte5Yka7nPXvyz7wawpaloNkNrvo02UuR10nPPa7wg5YuOybZBOQRoy56kJO0GpbXmPEsZZPPdfT7WZlAK1XIjTbrR5wOo51fvs9J8U7NacilQ7zMt+cwG+TdRcTm6x7nfTQlOyl+8V4ay32VSg9wLKT9eC8r+QL13pxZqKdiJvruSpZTSQ/Lf93Rdd8/WF6WUbgLwwwAewPZWlW3Z8UdMSul3AHw079AxAH8b/Y+Xz6SUfg7AdwD82fzyfwbgxwA8DWAFwH++0/qNMcYYc2noLp0n5kTXdXef7wUppf0A/jGAv9J13emUXn0Q344/Yrqu+5ltnvqR4LUdgE+96r0wxhhjzMSQUtqH/gfMb3dd99m8+IWU0pGswqhVZVt2RdsBhbLgpkRORxkjRHMqzkk0PuXVletqpD8zUa7941ouKBKnyMNaiiBaYqCMuxKUjqJmhECVX5c/WNUxzlTSSH/mN2gODCVyLS8sfrPKq5x1NGzi8kfzbTjzQCX7qGShs4GAuMy2Fb1elOf1nLGEsDFf180yks480GaPLLvo9aBUrbNdTtzZS9qLT0q5UWR3yup6r0SZMlGjyGhWjc7c4GwrXd/6kVEBfhCUB/V+ZplEm+NF+S66Hd5rTRPLfM6jPKI2dyTPWJJ1N5H1ucSwIeUC7q/OMBsE5zY1JY3RpqPcxyirRcdhei74vC5jmVHPI2c16swwZt4A9V4bSsmjlPc034SNPaN2CPIeLenwntPPF9sJbG6T7zJdmj2O3o9RnoruY5T/0tzXOU9l+NHRzNFmFqBkSZX1SYmJ11NLeZzVFjWcTDJ7Tb9fomyZqOS19fVb11PeI7PSeB+7rHQB7I7ZSQnArwF4ouu6X5KntrOqbMuu+xFjjDHGmLHmQwD+PICvp5Qeycv+Jra3qmzLrv0Ro8bEufyrv0mpDZri6ciEo7x2RJZH8ZIEOZVHOyuS2Dtb/cE1aVNMw6fvug1AayikiTUaFQN1JDq9Vn8Gnw1G7FEzO5reomaWQB2lNGbgPCLTERf3pzGUCm/9bD8dX9OLb/h8TnaVkStVJR09Defqe6ho6D4WhSBIJtXRoyofvIZ6XZmdoabHg3M35/fW6xFlxuj5VtPxVnQf1RTKLBdVIqjaRAZgpRnlUwWR9dB0q8camXTXb76j7k4eQQ9EyeM6GzUp3+9R8u92ybN8Xu+p8jhIS1aVR82efE9kJNV7nffSmhyLNuyksqSZJkUhEJWH6lSTOv3oE+Xh8k9/AECbkh2pADwGTSyOVAe952jeVRWsXGO5HpFpP8p8ie6zyEirx9B8R+QmjtNBY8/mvlZTbZAFVFKCr6pqK/dX7+tyHmV9TRNUfu/Itqm8qQLL7wo1Z+ux8nthn6p/XKeVmJ3ZYebQJdmFrvtX2L4T5YhV5Xy4AaQxxhhj9iS7VokxxhhjzMUl7QJPzMVk1/6IUYPWdJZVB4uj8eJN40aRiCMTcJH8cx4IUMsKmumiRrciwYsUT0Oubntwtj+Vr1w7Lcsk2jvvT5RHE5lHdT3ITSy1iZw21CvlCymh0Ox63R/VLhBR/Li2MmDLA91H7puWS+aDzBeV1SOzXhTJznXqcZ15TzVis8GmrofR52zWCAD77/16vz9iLlb5mUQlSC07RGbf6aDUEDark2vI53Xd3/4z15bHR/71WQDAWj7fQD0uNbuW0tINo1I7UM8Bje+67ab8FxxfnOkh5YlcEojKW1r64DJdT5PnlEsZTZkoMAizfKH3kRo3uZ2opKPlJG5bU1wGt91SHpd4eyl5RNed50LLN9PH673A89yUb3idTmo9evQ7S89pdL24bf28ngsypVble2w+KkPn928GZRctLW6KYTcxK0fOT1iO5L7JsW6ceKl/fS5jAVJCkm3ruhF8vnhfRMcPxM0uyzrzPpjJYdf+iDHGGGPMRaTDrpiddDHZEz9i2OhrRsxmnJbcTGmWUQFHks/9RB0BLz3Wj3Aa82hWAyI1BKijNB2lUrFQ0zBHCld/qSofOv2SqOmTZjYdmXFUqabhaN90RF6aqIkSdc0D55r933oMpJnumUf0uj2OjBtlK59nbSh4Vo15NKIujI6edPQ9nf3Vep6ovui21fS3dmgw8jpOu33h7rmyjNcaEFOxJrfmEWJr6sxKgxi/I+NrNIW4SV0O3nPNw6MNRNWcnIIR+9ZtAK36x/tvU4yrU7k5nprdNldGVUmO/Bk70FMfc98axStP/2/ViVFlZEqUKl7bZsp7/hxvyLRZKodLR0Xlked5n+q6eS81Ruz8uElLFuWIx6MNVvm5aJShrAIMRQHQL8tyLzXqRL5OK6PfU3p/aBIxpypH3y+6j/z8qPrSJEtnBU/Pc/Tdxft+XZWNl0YnDETRFfodQJP8K0FkhBp3VWGaDqbtL799NJWb94yqcgqvd9NckkrdjTX2wg0iJ4M98SPGGGOMMa+Xnfsa7TU8O8kYY4wxe5I9pcQMxbQ1891esmduCADsX63SJss7N/yDR8qysx+pGRuEpRPNU1EJnYZLlVcpq6tUGjV/Uzm0GNNExqWpODLAarItH89IP3CVvg89PGrqK0bAoFSlaIPMsKnmlv0CgNmT/bpf/FhtWL70tSohn/qJOwHE6cXnbhlNIVWpXdOLydx9j9f/yNcwSiu9YbmeezUC8jqdyWmuum+alFqaIqoZUUoVJZ9CZPVI2l65edSIrY95HfQ92jiUzDyW5XnZn2JMRS0tzD1VG+GFCahByYLnR0sWTSZMLuVoU9EoZ4nllNA0jvq50pJhyZaR/JuFI+8CsMUoK+VjliLYDBYAZgOjP9fdlASlfDMbpHHzXOx7SrJsWAoNXg+glAw7NfE+lff91noPl8+X3Nda8gFzfaSkc2C1L59GjRvng2wdoDY51XPG8/vyx99VlvF6N59xMY6HmTnMV5LzHWUUlddLGbBpRJpNw7ps6el+nY1JuSQo1+8rnVhA9DPDUrp+/06jf95lpfFmT/2IMcYYY8zrwMbe3QH7eGjTe/3lzhGZjkKIqhwcaUbTb4E4NZbLVMUY3tT/6lf1Yfnt1cC29PknAbQjDo7oo7RKVXFovlTVSUfI3A8dVZeprUFvF90eVSWgjrQbxSaPTgdixqMCw95HABpT9cL3+vPTTMvOoyudslxMhNeP7iNQR90HTo6eHx0x0sCoo3hNdqVqtajpoXnEporNVDDddTronZOC6ax6TqPE4qgf16ysmybdZtoo91WnS4tpuPR6kpH/eqDAEVXvuG29P6Lp1NGU3hkZace9c+r54XXXe/fA4/12VkUZ5TT5DZkmr8pQZPIs+6uG/qzYrMjnTM30vL/U8F5M54frMl67yJAM1KjRpt9UVjS0L1Ok2qpawOX6RVxMqjKlm8qP3veNKpW/DyIlk+cWqMfYpGSL8TmKB+BnTo+B6lbUo2ygibyHg+nrwXnWa1TOs3wvqJLJz5Ka+4u6KfvN87Nfz7eY4M14sGd/xBhjjDHmVTJmSoyNvcYYY4zZk+xZJYaJvgORkjfVUJZNjAcefwVbiXI3FuR5NW5SLlUTGWXMtYNSljrdZ6xoCUUzY05ns7CWbyjvR2a9lwLT7HbN3yir6/OR0ZJSsebAvHRXLU9wO03ZavEdI+thpoPK/VNBU0lNHV54fK3ZB6BKv1rmUJmb5bFTkuLLNGE9Z5TDNwKTLhBnX1Aa15LgynX985r/o+eRz+9bruvhvmtDySjNVMtxvEe0lFOaHQYmyyjfB6jnUrNjFr96bGS/WaLa2KEMFKUFa6mP901YftASghiWeYw0yOt2tISwnM3gV37uaH2dlJv4mdTPM1OrB7LfNBI310PLQHnfGuNvPsbtSiwRZZ1S3iuNG4Prpec7Mjk3htwgsZef7TM31c9ClFMVGd47uaeYkNt8djXRl001JcW3fNdK8vF6zmaKypZ6zzTlttXRBG6esyjXR++pyPjbkD9rJ378trKI5e6o/DvRWIkxxhhjjLn87FklxhhjjDGvgg5jF3a353/EaHYMRC6nhKiNEumyZ2Q20DrcSdOMLf/VWUeUYkvMNmpZQctOc5pZkCP9dd2M6lfpe/3QVSPrjma2aNmKUfzKQt7HsFwikv1B1HIRZV6V/k/kWHHNgSmy+TZlIMIZWUCbvbJ1PVF+DVAl+NlglpOWaihfq0S+LrOFShlEZriUcoHE7vMab3dcfF7laV5vlnH648n7K6UGvV56vQln0emsM+7vdu/l8Wq7Cc0b2Yqu58xNo60qtITAcsHgyw/XbbOcEJRwpySLRXNZZoLcGpaG9NzyntQsJ50xyGuis8A4y/A7H6/3/9t+t79G25U614NGiqV9QVCCje5rRctEPEYtmXJ2n84g03I1WwwcPF7vwxQ0QCT6PaT34b6ybLSsqd8f3HbUIBeo35cz27RtIOX8yT0eZcw0246W5TLqtMxYYrltKN/dUQlJy8yH8m2qJXxeh2ZmnNy7QzeLHAv2/I8YY4wxxlwYacw8MWP1I0aTIJlBoaM5GiCjJFk146lSMzg5O/I8819mReU4EOR76Hqolsw/VA2F80z9FCViLm9HFZuyDt2eqCULeQQUGVv3BZkUbJgItCMyjtxUveLIJsqb0ZFiM1rLozg12WlDS8KRdGN21mZ1bBQouT40AK7fPDpC1ms9G+S7NIbKkWfr/bO2zfmJcnSoZGhmB5snqsExyiHaDPJE9J4p2xYFhY0SAWDxyWzSlFHz8E3bGy51NMt7pjGUymi4pOq++/a6At7jMvqm4jEQ82iT7hxkE5UsJLlnuqxU6HlqG22ONmrl8bx1WY29/f7odVNlbZDPuabKcj8acymNv7JM4X0a5QM1+52PS5fpdmhej0zFqmwMnu4VBM2BUUPuVKDeFGVNrkdkAF6NFA9NIuZ+68SJIJclavYZXYcZ/a7kfaPHmtW/2RtHU6x1O6p+lkwpbaq62p+Lg/Kd2zR05fHcX5Vps/cYqx8xxhhjjDkPY6bEeHaSMcYYY/YkY6XEMM8AkKaBYqhjrgLNdECV8TVrQxkETf+YP/D0p2pR4trZvrngYC3+mUsDsZYYKO2q4TTKmODzjGsHWglYJfayLMvKeqyUVQfbNevbRjoHWiPk9/50Xya65gExeGo0fpbil05W6ZYmPDVSR3Hmaj6dy3+j1gitGbp/j7YQ0GIcJW+9hix50HAN1HKKXo8mYyIo8fGc6Xq6wMTc7FtgquRxaXYKSwxNGejx0fwTlflplBxKfD/vKS2r1LYLcduBCN0OiUqLCqV/Pa6t+w9Ug7Dmt0R5M2FrBF325DMAgLOfeG9ZthCUFnU7zCDRz9ELP/N2AMCb7n2h7o+UPHj+ouulRJ9nXcbr3jQ4PDQaxc8y0nZloLlsIE6aCZO/+6LvFz2WyGgeGXang7YdWnaaDYy9ChsxDpYOn/d1w4++p9+elKWaUnAuN21KqbMY4rXUWb7PYpNyuQdkf2z23XtYiTHGGGPMnmSslBiFqoz+SqMqMZyt8+Q5EtKpps/9xLXl8ZVPrDavA6q58q2/piOPfsT+/L83V5a8+fOjCkKjWOQRkpo1Vd0gZ27q84S1gWGovsiIq6SiSlNIjhS3S4DlSGtqVczAwYidhlJN1NTGhBxBqyZFBSZqpKn7XRQ01Om2OlKsI0lpMsjRVTDteju4zdNv0enb/WMdcUZN9hTuz4ZM1WaTuXVRA9SwGilwNKSuqEE4m7d16rMqLBxVNiPkLc8BOpW9HivvQ1WFdGRfmkuKMbyaXeu1ZjNQnYIfqSU69ZvXVRUm7m9z3dQMOzdqxaYRuxO1lUZkPd+q+PAYdDvRsR65L79Hp5PLe3j+zoqxd/6hZ0fWXQy3aqAWhWkzUG8iZSQ0auftAXUiQ6PeBCpy+R6S7Ubpvc33VL5MUdL5gUCBVcWuUVafyrnogcoTTRxQmmP4QJ/uvLnN8+VY8mezidTQ5ORA3WJUgKr648a4zU6yEmOMMcaYPcnYKjHGGGOM2YITe/cYT1VD6sJ8L8U3zQGDRm7zL1a9jdK/ypVLR7Ox9z+tbSPf+k966XvwvuW67b9Xtz0MGqZRSr02kP5V4i0NJ2+JTZiU7NWsOMxSqR5rZDxUwynyY82j0XIU4fOzKouL1EwZmwnBQM10UMmex6CJmguo5RKWGzR3hMejycgsBWqGRmmoCAAL/X5uimmP5sEoGVnlbDUV817SPBWeUz1PXLdK+1rKmWGTPTlnLKfMPhOYI8WsGaWn6n2BwABb96Fuj+dR7wktT2xmWf2c3nOrkrGRKanMoaGy7u+6ZO+U3B8p1aiJl+h1j0o+5b1qvs7rbBoGBs8rPAeRqXjtnXHSLo9rXq4Hyyh6jViObLJKgnylOSnxskyrqv8w76N+L2hTUZ6fJm8mlyv1M85lLFEDbSPJYv6W8xyVpfgeLSnrPUC0ZFjKfvIeHqOuu1wPOY/NNc7lWuSyElDLXwNZN83iTWlRzj0/503GEx9kg7jZ/bicZIwxxpg9ydgrMWrQihJZS6KomBo5hRoAVo6MKjE0jL3pvjpW4nqu+Xt15Mp+OEAdqesolX2S1KTLkZKaPiN0iiTXMxNMgdVEURoGdfSko2uOuPbf+/WyjOdP0zM5llkJTI0AsO+p/lgPiYLAEXRjGMyjK1UxdDRclsk5K8mtMpWdCoOqDzqKpUKzb1kMl/l66hR0GmkbxUsGdB5fAAAgAElEQVSmllMR2Qx6PalZWkfLJOorEykRpwNj72qQTgzU0XekujT3R2TwDBQN7XnEqbqRcqgmXb5OVZ5GLQj2m+qWGmAjr2GTJp0VU6awAqgKlaorWQ2IpnTrdvQzMJ3P/YuSME2jsqpyOoqPVLvp46PXuCTIitIUTdXW6e9lH+U9VCX0fOo553qiadCN8pyP4UpVfoJkZIX3QBckBOtxbTBuQLbXwOskik1ZpyjmHFmriV3hFO0UbUf2J5oEEH0ONf2c+zNgnzDUaftjQQeH3RljjDHG7AbGXokxxhhjTGbMlJiJ+hHD0ojK1CyJnHhnLXPc8IVqBJteDdJg8/vV9FkakIk0uW85yFWQ5pNsCnnlE6NN75p29Xl7mnegWS4XSmkspyZKbbyWS1ibmkXCXA2RmVkSa0x7UTaGbJvHNVQjMQ3JYuBTQybLX5Ecrlk/W/cLANZvvkOOazRTh2WkxribaUoIgVlRibIoyLZlKa47KKc0+5Pl90HQUBGo5QItjURlKZpKtYTEa6R5IZr22gUlM5a15h8aTT7W/ZoJ5HvNeSlNGKXsVJJ/JU+lKW/RTC33a8k9Csoceu71885ylB5fyu/RrJuo7NA0SmQmjDxf9ldya7g9LUHq9dqcz+tsrk0+vudqg8PpXM6NyoCA3M+yjKXbpE0hg8aN+rmZChrQRnI9P4d6nvg57YLt9a/tl+t3G0tVSczyvAf0c6/Xc+XD/fdTVAbSz2HJnJL7Omq0qcfPbWrJlOUrp/nuTibqR4wxxhgzyYxb2N1k/ogRE9lgsTf53vi5+su7GSmcRw1opv7m3jnsEQS0fYL4WFWHK4NRz3oeSZx+c700B7/Tj2Kj1Fegmhgb4yFHzaqWlORWMQQG/YCa6Zer/QhIe0tRTVLD27QYf4taEozwdPr2/nv7adCnfqJOleRUbKCOOqOp5ZqwzNGgpqfquSoqkOwPDZfNVNw8ut7cIe1Xzz0VhPlgZKtppTr9uxyLqDPh88GUZh2Jl2mlqhblc6FTejmin3qpXlccHp2yO9WMmtfz3zrSnufUXzk/VO/U5K2mWipCqjBRiRgEKlek6G1HNPLfidBgHRBGL+hnKasuat6PVL1IqdL/h5SkYjn3PJfzmrDM1Ga5/qqmlHTnQEHTY+ZjVSSmApPvYBulphxX/p6Kvl/0u+LMDVXHufFztQ/VyP6I6sSIAo1JmBGFjtEO+lngPTXD6dcAzuX1aCp3iQRA3DNrihMQ9PzkCSED91jalUzmjxhjjDFmEhkzJcazk4wxxhizJ5lIJUazY9jWPWkOiki/lMMXEDRqi1Jzz8anlLK7SrNRngil+IXaB7HIy1EZA6jlFi1PrOWyluagsvywXaYJDZBaBuM2NdWTkvOqNDiENK1jtk5UQpiVYziX83p0ewq3ree5mktrLs1KloW1eWRjTmY5Sc93kOYZJY6qCZOlDs3w4bXR9bDMMTg5miui79dGeWHCbi4hDMVQOqslFhp7pVywFiX25mTTqSBXo8nWkVJEeSwZLCx56fGzHKJFDC1VRE0zo+acUdklMier8bfk/0jZYZg/20MpbyFIpVai5oHn8rojIzWAYt4tOTCQxF7JOpo9mZuhqjFezg/vFb2GM/lzqo0/mRK9KaVwJlHrtrXsnfK5WtGSKcs/9x+tx5rLLkA1XR/7WDXIvvnzfQq5lvem8yFGmUEHPn1/WTar3xFcJue0fH7U2Jyv52bQ7BSQHB1N8c2f3aGUZbmdqyXmZVPM4vy+0ATu4z/1ZgDA9X/4nbLsdC4ZqpEYe7mcZCXGGGOMMebyM5FKjDHGGDNppM6zkyYClY0bCTHDksYgKMWcuLOWi655oErx5wIZm675K14YLU8s31pn8Sx9/SyAtlwURaSrTM9ZPi9+7MayjNvR/dbSAMtNUYlB4/nZJuCVa3U91eHPmVpNdgpnM0gZiPurJZsNKbFotghh2ebMh6vUzO1tbhNTTlTGZskjamDXlO1O1sf87DdNGA8xL2O0JBbNFAGq5N/M6AnyKc5+pM+6aUpeQmlOKsuidhVaPtxKM4PsaC2NaNYJiUpeRGdi6YyV6WA2EI9RZfy1fH8NpNSin72oeWnZHymrDG4YLe9tl4lS9icos/I8avmqaXlwHnSmGfexaYop5SbmEIVZJXoNcilHz1k0K2sjKFW15yJfD2me2MwYfLY/3iP/+mxZVsq6+lnh+uTcs/SoMxWngm3rPnL2p5aq2BamKfMFLTr0s8L7Vb8jy/+rpUys569sT2Y/XvvHo581tmFpZpV5ptKu4XWVk1JK/21K6fGU0mMppd9JKc2llN6aUnogpfRUSul3U0rxN7kxxhhjLi1dujT/LhGvWYlJKV0P4L8G8ENd162mlD4D4KcB/BiAX+667tMppf8bwM8B+NWLsrdvIJpTMHXV7eXxMEiV5UhTR08crSw+qZkMdQR4+q5+NHDw2/X5xd/8Wr9u+VXPUcPc86NZLjrCmz29WR4zm0YNshw1aQoplQHNhqEJF6jmSR2ZUL1YkPdwhHdwG0WnjJCD0ZMm4HL0peqLqgEzVFZkPZs0MK7W4+doTvNt9FwMgwaIZTR81WgDTFUc9FwURKkpCpTs41pgON0no2qO7qMmhTpSjPJ/9HGkutC8HDVejFKXm/wjSTZdz8c4mK/XJko45bLtGi5GCbPRyIkG2cj0u922y/WS1525Y6lfX5DmquvR61WygkRNKupF1KwQkqNzgU0aG2OqHGP5bMu2aQhv1E9mAsl6ouvQmLPZNPN4ve95b+o9LulBRZnch2tGlimRkZjbU/WqJBKjJgerEtWkh2eKmrJNWjaVnIEqUfl66Lnlfv//7b1vlF1Xmd757Lql+mdJrrJkZLXlYGxsxzFtaC8Dpr1gOUAHE3oBmTRrwfTqeDLMeCYr3dM9SaYxnTXT82E+kJlMGjKTkDgNgZ5hoDsOBK+Gxg24PTAsMAgDBrfANmrAkuW/kiyZKlWpbu35cPa797PrvFclqUpV98/zW8urrs6955y99zn3+uz3ffbzegU3m7Y1Y/r0zVN52579KQLFkb/02iuuCWCwRb5DwHqFveMApkMI42i+C0cAvBHAPen9jwN45zrPIYQQQoiNIG7Sf5vEeT/ExBgPA/jnAH6G5uHlBQDfBnA8xmhTxEMALvf2DyHcGULYH0LYfxpn56IphBBCCGGsJ500B+AdAF4G4DiA/wDgrc5H3WeyGOPdAO4GgJ3hkr7SS3P4NBcbozCu52nRvbrtIcJhTE7rZK69uvW55RQi9sSYLHTldMr2g20x2pITNjah7cRx/6Exh2kdH5Tl6fK8uzNFgzk9UxVes5QQpVC6KXTLKZ9cvoCt72mfHGJ3fC5+fl0JpVt/Jo8XcbHno+P5SgSnACZv88TAlU273SsU+s7j54hjARI0k5jRUj1cZDCnaByvFqCkqzgFZUk/Ln9hHj9eWqUqiEdh/m2H2umhbkrvVX47ucRCOQ779QSnRMe25HXCBScXzGr/YNvLBijXZGyB7PlzKrQc20TnXsmLiup6NfdNVaQzvV+Js8mjJaZr61ryU2po4gvfal6QkJbHuZu9d8q9a/4w253yINwer18skLXyGbzN7ude191Sa3wdciqY0jeWWqnS8DPpu83fe+de4fIWXafsieszRe9be9lnKfeB00mp3ctOCQEA6CYBcU4hwfcMKr9t5Th8jaeQ5Ad0f7AXmbiwrGd10psB/FWM8VkACCF8GsAvA5gNIYynaMw+AE+uv5lCCCGEWC9aYl34GYBbQggzABYAvAnAfgB/AeDXAHwKwB0APrveRm42vGRu+33pyZxmjd7TuodXuJBnUiYG5giLzch4BmOzJ3aAZXiWu3qfasaVjs0zuJ37y4zLHFK5eODYQiNg40iLzch4KXI1g07LLr1Cdxd7s8ceS4A9AbWNHy9LN/fRCZrtMt71stnuQlrGDPji1Gr8Uh+qIoI221vDiXktMaNdQ16CbjNpXtpbLX9vHaVEm7iQplew1Oa/3NZxbpcTibDrVEUaUnumaIbLERbbn0XOOXLELrUpmtarQGMWiz5W7rPteGnap0TY3IKLvEzaGXtrW6CI1or1m2bXvJzYomjBWeY8TdcaSbS/xCJ4igLZ+FX9tnawO3NaTsxtYBGrjTNH8owZJ+LH37nILrZJ0OzZA3DB17FXNtGHcZTl1LbkmSPZi1cV24Od+5vtbC1g9ztHGO33pyrwSNfNW1qe32eHbWsr/75QlMgibxzRsXuJ+2+/Q7xtxnG/XmaLB3JEFheW9WhiHkQj4H0IwPfTse4G8D4A/yiE8DiAXQA+sgHtFEIIIcR6GTJh77rM7mKMvw/g91dtPgjgNes5rhBCCCHEWsix9yzhcK+95nSRpYQqV1NKMeTChZR2sWJ+XniUw8IcfjV6CSCNRUdo7KWYAoXaTRTJWMqI0xwWuuU0GLd3yglFex41FuYdc8LdgO/bYqkl7v9SKmBXpRDoOBYi5nSKtZBFzsuOHwSngSzF4vnocMi6CE5LX3ccJb+RJNTlEHlu+3Q7ZcHpEA5949FGPOgVyvMcbjmlY2F1TrVx+N6uuzemPPb5ulIb6iKEaXzZaTb1h1MIuf2VJw7fR03bVhwhaIcdedM9yWPGaZeu48sy9ZWjrX3GUhfMPRaohb+WeuUCl/Y+n8/SsJyqrNIkh9vX3d6vviu2D/XVcyJmgXBOYfNY5KKhdJzq2iT/G/q9s+veSQsRAOS0zQr7+qRjs1jXczzn3xK7n6t7M7WH2+j5u3hp6MonJu1fLTogB2Fv8YOXzrRtvRy4vd+NmMaKU3B9wRCWHVABSCGEEEIMJIrErIEtlatEfWnW5LnU8pP8+GF+qm+e1vf8UZnZ/uzFOQDA85/dk7d10wSRl/3ZeXo5Rtpsmh0+TRzHUZzuVDNLqZYf85LddBybZQIlOsMznOPXNxENTzwKlDHw3Fo5smEzoUkWMNJyYpv3eMtlvaXRfL6qFsvV7X57AkcPz0HWF42Wc89f2swNdj/8c3gs5WW15f7xHGmtbaf2lmvIM+1tSVwJFmmm2WK1DDzNSLsULVmr33Y/e47F3H9jnu89Cl7ZOMdqufAl1TkA5OvOIlMWCBvjdF29aJNFPBad+kVAmbXN9HAqztvSX+4rRx08h+EcoaRIhM38vWgqAEybkJS25UgDiaVNDO19z4DyW8M/6DmiQwsVxtL4VpNxp//8G2C/JdW5LXJE0RK7xvw7VS1vXrBobLu+U3UNUr84ultFnp1onLWtijCl41RL/uk8XiTci4rbtudfVaKpu77b+phbyykvO0cfLbtWJEYIIYQQYutRJEYIIYQYFYYsEqOHmLOEvWMsRNhxQo+e2BcoYeV/sOf+vO03fvpeAMA4ZV323d98jgu9nSk9AxQRJovovFC7tYePUzsML7WO42FOu55gEChF+Nhx09I70Snq1ku4mgvqscNpen+lKtjZnJt9azjgbH1kd1E4njLmmTJBIWk+5vxlTTh87muU/srOv2WfPQ80KYjnXlfuhUvvL6FmTwTuiZht/13fLSk2D26jwYLdruMC7Ql33fQf3R8mhvWuO4vCPeFz5RacricLm60IKN/3nFq0tI1X9NATY/YSeY+dQUxfkc69Qukt0PhUAuvEqZQyYvGopYZ6CXu72fG4tCenxEhUbP2p+v94+77wXGyrArO5L+V76I3p9vu+n7dF83163vGCYpGypcbo/vC+u5UA1kk3GpwG4lSoHbNK9Vo60isgys7Z7CNzJldm2se+K+y6Xi0SSIJuTyAd+dzfO9Bum1g3eogRQgghRgStThJCCCGE6AMUiTkPTGU+5llzUwppcba8nj7YhBf/q+/9vbxt12eatNR7/sfP5W2f/2ATcuUwpIXLX7i+hDA7i+Vx2tI2HBa11IjnJ+OFjwHysiEfBwvPcsqiKpTnYKmFytPD8aewlAeHgDnUnFcVUbrAUiIrlA6yUpicQuDVIOYFY1bpADB22PEGcVIW3NfuVFMcr15xYaul2tb3HH7m9IWlGzgNUq3USVgaiVed2aoYADklMHG4vVqoSheka8cpCyvoOeH46QClgCSvQLOyF5wGWnCKivKYWcie74XxMxQUrPxAKDVi4+ylIrzyHpyKgrP6JFKBS155aFjqwyv/AaCUAaDVLp4VvZUl4HuGj2npuioFlY7NCS8blyrN7Fjxc8pwgQqnGnad+DjVPuk3YMJL29E9Zb81VVFVr12cWkrH8TxfGG9mXaUZUzu8Ypdc8sCuYbUSj/uQ7oHTlLZDes3pWE6petu8gq723ebfkvErmhINVVpbrBtFYoQQQggxkCgSsx6oONypVEiQZ6SdU2V4D/xu4wnz4Vf8X3nbH/9OU53hg3/+1rzt2mvaM3KbZV18oLznzWA4WmIzBRPZAr5gl9/PnjDzbedenpl44jmeFVnUpXLiXWhHXex99leINCu2c/JMu/PAQwDKrAYos1ye4XEEyvq446tFZLjszLTtfByxmOZifTaL9cSK1NcsZu0hWD52XTM72/05mtmnz/Ls2Wbn3cmQtx1/8zX59eyXHmsd23NB9pxkMxSx4OPMPNXMsDmi9fM946ndj5bPOUUzK/F2On6XhJBnEsRXzq0k5vScbT0xdPbJ4WjA0bYA1vOg4eiMebSMk1iTvVN2fHWhOh+/rqIT6dzz9D1jwbt9tvJEOTyd9qEoTxpnjl5VESgTl9LY2z4rjvi28iMiP5qZo5e0jm0RZ76nsli89LT+DbDPOUJ9Hh/73lQu4ulauwU5e2C/fdtAvxXpe8rfqer3Ge17IEcRnUimF3kHfEGzfde8yOGWI02MEEIIIcTWo4cYIYQQQgwkSietA7aRNjEsi9qWKBx89f/d2MV/6P/4z/I2E2z+tYViJW/W1pfe/0TrfOxNwCJDC8VWxfzMn4L8O0ysyWmpnfvbpQwsNQaQZwWFl+08nNIKa3hxmMdEVdTO9qUUUmXjnsLKk0fJTyQJeldIrOeJa5lKDLtqH6+UA1v785hbio6vsR2HQ/9ZGE0haUshAeXaLjuh9qqNaRwvJnsJFi66IWsLaVMbn3vbtQBWC42b0DgXYfQEjCw47Zxqjsn9L8fz7fAXnRILBo+twSLLysMondPzP+KUjpt2ckoQeAUOuYglp1iMKg1kx2dRdbre1fc0naeX95KlZTjNYcdhn5ScZqVx9lK8Y2uUZbD0zdJsea/DRS4dgbmNKWch7H7lvi6m3zP2mEFVbLbt5+MJli39w6lK77vN6b9tTsrLxL68UIGxa1h5CtlfL3VE8oEujdmYk8K00hMr/SbiVQFIIYQQQoj+QJGYDYIdfY0Zem2zPRbSji80i4N5pjCVZg/eEuHFuRLFYImYzcQr4WGa+bGAz5x2q9L0dJxTznJZm9nzrM9mO6dZcEvHsdkVRw14lrsaFt5VBQ5NpEezsPm9zWxnpq0nrcS13lJd2xegona8xDoFNCYdgSLgz2xtdmaCSKDMADnqxJE1u07WBj42C5JXnGXpHN3xZsgWdeDrZRGY7qM/ztvMdXqb40zK+1dL652ikCaE7FZjU+45m+V6Y8dLsW1WzNeN79Oxh9O40HHs2LwPR11Wfw4gETkJe/OM/hKKxCRRqbecHijf5y7NtMe9CFWOjJVvLEcvbJy9woXcRvse10LRM0eg7LPHbi0i+Nkkdq2sFxxxdxXpTb9tbFFg5+vQ78vMkRQ5o3uKx8zGkrd5YmCL/nlFKIFy/82nyDJQRO7R+35wdJcLVqa//BtpeIL/4Cw64GNWztApkreCPkSRGCGEEEKIrUeRGCGEEGJUGLJIjB5iNhgL06/GQpYsDrRQPYfALYx74rUlLDqXUiws0q1CxA8923o/e2iw42wKFbNgrkoNpDQSh6xzeNoR1nliTe7XxELpgwn32A9jbGFHqz2MVxzOwsrcf/M06Tri4+Y8Tfh6+30k1tzVTm944W4OP5+8srm2czQ+XtrBxo/Fzpy2sj7wPuZNM8Xuog4sjrTihC+8vbgXm8Mup1g8kaKl91hQyWk0uy9Y6Gnn9u4pTyDNx+FU6Hjq6zSlMbI7M6UxOpTKMl8Xbq+lXDk10nZPqsfe67cJ2Tmta2PLP5BVaslecCHRNAae4JbvI2/85smV2YSxnL6wdK1XzJLby6Jruw4X3/twaWMax8qXhvqYXXW52KP1ke5N+83y7g/XQRkAUnrVS2d7vlf8e+alliZ+wMU5rRBr+X5YGqzjuPQC5Z6qvu8pBTVGXln2OU8gDqAUn6R9eNGH8AkhfBTArwJ4Jsb4irTtfwbwXwN4Nn3s92KMnz/TcZROEkIIIUaAgGZ10mb8dxZ8DMDtzvY/iDG+Kv13xgcYQJGYDYefwHkmZTNVb5bCsyKbcbzkwTJLtVkKzxh4mfTTtzXHnHu0zEJyXSKaHVgblh1xJFBmbiwqtmWeY+yeacsiybmWxXPWL295Mi/ZXX08ANUyxiwQpG3LaSbNNX2svRzR4ZlkdlOeLsJNE9xV7rzO0mjGxIMrjlCQRcM7Uo2hqn4PHXPZERJmQTP11YvydLg8DwkoDb6/DLselTDTWSLrLa/1RKin59rX2osqAeWasBDdIiMcNTCn3sUeS6yzGy6JxadXvdcLvjftnmUhvkWEqpo/6XvDURyONnlRO4OjCvwdMXhGb2PKUUKb+XO/vN8AjjrYvVItdU9jtUCWCRa1qr4r7Ohr4+uIc3nsJw63+2L3ghdpAsp94dVm85xt+d6zRRAAjT0tgy91tqjmk4mv+ftG4m2LOrF4Pds5OHWiqiX/TsRHnBsxxq+EEK5c73EUiRFCCCFGhbhJ/wG7Qwj76b87z7KFvxlCeDiE8NEQwtxaH9ZDjBBCCCE2mudijDfTf3efxT4fBnA1gFcBOALgf19rB6WTLiAcsu7s3gXAL1a3PF2eJT1nz1wkjTwplm5/dX592Z81HiScBsoiTUoDWZjWC4Ez7BSaQ9v0vgnzZtjjwSl616U0mYXNq6KQjnCXw9jZf4G2WXg+OoXuKnEttddC6FVqJKUvprkQoB2T0kBV0UR7TSkfC9XzdTM/lu5tN5XzOULjqhBeCk9Hao8Vvav8SRxhoqW5uL0snrR+n3hpSTWYdwy3i9Oalt5ayxnarh2nAzpHSdCcrvGZ3FoB5KKhXADSc3IOTmHHFacAJqc+mJOvb9IJ2+8j4WY6ZpWKmXE8X+h962/lSp1eeykkL93KdNkt2CniudZssxrLhBWDrFK4dm/TOPJ9aOkfvudyKstJo3LqyPq40sOJesbS2fS+N45nEpDzMblAZLAxd4qPcuFGryjtBH3fTSDNztFG9V3oNyfes6XPHXtjjE/b6xDCvwPwp2vto0iMEEIIIbacEAKXFv87AH6w1j6KxAghhBCjQp9EYkIInwRwGxrtzCEAvw/gthDCq9C08icA/pu1jqOHmE3CUktdXpmQQufje29w9zGefeMVAIDdnyshcF5dYGF+3ualaiwE3Ktwo73PoW0L93K42vxkelnEW6Daa09FCuO++PpyPrYXz/vwiqUU5q9WB6T+eysc+LO8uiD7hTgrrE738IOw4yzT+FjapVrlg6ub95y0AR+np5+GtdFZkcJEp/BcSOFyr5wElz6wa8fh9QnHq4OvsVfewjxNOA3G2LhwKN4j3z972ytpmOo+SumAatVQCvPzSizuoxUD5VREXoFEK5FsdRKvyouUdrCUCKdL8goqZ3VbcApFAiU92KEip156y+CyJVVh08eSNxFdBy+FZ/1acn6HAGBs+qVpX0oxpdU7vAJv5jMPNu2+9urWOaoVfzQ+di95nkJemrnbo+SD3VOc1rQVc3XKtNW06jvn3ZOe/41do2V5v2woMcb3OJs/cq7H0UOMEEIIMSr0SSRmo9BDzCZTCeGSYHVxtpRPXE4zLXartBk0+5M896oym9v9uUcBAPNUSNGiJTxTtJnZ+GEq8EizPRN2el4uPDMzIdWL7DJKTsR5Rrqw2NrGEYvuVNNvnlGy6M+iJM+/65V5267vJk8Pmrl50SKe2VmkhsfCokDH33xN3mTeMx0nIgGUGTv7U4w7/hxZPOl4TQB+dMKLJo0t2DiSaJoFp46LssHXxkTHld+MRaCcgoH82Spql/rP96YJsRc4EkcRFG+2myNe5M/huTazR8updG+70Rn6nEUGunwNyTNozHFqdkn9ij0iKHYveUUYq4KDtn+Pe8EExJVgOfWnW/kDNeezyBdQC97tHuFIjX0nqyKL6XxVAUOOojnttajE5I8p+plcfAO7e6f7fsb57gGlqKJXYNX77s7v5WK55fvFBWoNu892ooy993vG92OOVpNYfsKiQFQsVfQ3EvYKIYQQYiBRJEYIIYQYEfp5ifX5oIeYTabyjkkhWyvgCPiiTziphrkflXC5eShk63r4BQW98CqnKjw/lW5KE/CxTQi4HSWczakBz4rewuGTTqj5JAl7q1RFwjxNuA8sQrUwde3BU8LPnm/HQkpPcPkGz2uDQ/8mQGbxse3DwuaJZHPOYsQqpJ/Gqgqhp89yuYTT6R7g9NY4izXNW8YRpG4/2O4LY+kL9hbyUjo2tgAwPt32TrF0CacQ+Jh239QC6XTP0T3jjT2XN7B7lsP8brHVlMrhlN+Y45XEREdcupTato3SE3yNc7vIU8k8gzjlZfe2CWGBWnRs8HfFqETnVuCRUj9LNH52h3j3ZkX6zalKI9BvQD6P47fCqUf7fek83r73gnOfACWVzh5P+V5gr5Z0DSvhstMe/t3YnsT/81wYN/knscfMipdSJZRGGjz0ECOEEEKMCorEiI3Cnvq9ZYqMzdK9yAbgu6Z6orXphXZhOZ4B2fJCXopsr6vCc0kcyOJJT8DJAuLV7eI+TNJs31vyzLNGixZ4UQzuF0eGtqUxYBdOOw63p+sUZuRIlQkl+dwrPUTAq9vA0RRe0pqPk49Q0DsAACAASURBVJZts0jNohdVIUBndj1G2kqLMLH40WbafA1tmTQLsj04gmL3H0dnzDKAhaIc6bPohbcknkXuNnuvlvLT+zYT5+/KmQo/9oq+5GXpjriUv1/cH8OzNWBnX08Qb+MbqN11BKVdsDOLhkkgbO3lZd4dul8tIrZIS6fnL2v6OvtQWwDuidwBKiRJ2yx6PH5FiXJ4Amv7fvHYeZG86Dhic+QnF66khQp8vuhEaiwKdvG9D5fj7GoL+lW4cfjQQ4wQQggxCpTijEODVicJIYQQYiBRJKYPqIr67bKQffGOMXFtLwfc7E9BIdnsF8EOn8kvhFMgJ8knxYRw0Sn0xqF7e79KaTni0uC4uFZFGFPYuXKrdUR/J68v++z4RhMuHkcJbXuunywgPvGWX2z2pfDzipOqsv4cv+nSvG2W+phD+iwOTftXYk7H64dTfXC8SlbsBXl/5AkTORavOG7KLKTN/kCUlrNUTeXgmnxkOOV1gr2Hvt5OD9r4dOkaruXEi3TvcprIUgwd+lguTsrCb6dQoIefBqSURo80rGH3JKdRbcyrQoA0VtZv9m46U3vG+d50xozb616vVe8B/jXmY3dOmYcRpSPT/cppHk7KWaqHfwMsDcTpNhP2zlAb7fvM7sQTC+WeyqJ19rdJn2Xx7ZKzACE6RRz59y67iNP34/nrmuvA9/LAFm7cQIZtdZIiMUIIIYQYSBSJ6QNWqCaHCQUrYWZ2B20LFIEiiuMox+SxRsRZieycGeKOn5Rz56XavPQwHZuXl+ZlszTj4plUFpCSKNZmlTxTtGXkE1ynxWmjRYgAINryVJrZ5ppQNNvnCEMWr9LMzd732sPn45mvvc9RMoNrxFjEq5fw1KJWXL/G2rHs1Ith8ahXR2l6/8FWe3mWahMvbg87vxq7n/TrH+Vjp2vIwuSVNKs+7UQpAF8Aateb7QbGUvSOXWgrkXfqjzcj7zxehKLW/0VnbJm1augspgiMV9OK96+X9bcF9nZP9vru2rhVImYHi7ZxdGLMCU55ta7cpdbM0fb4sSO29ZWv+0SKeHjHrpY+k3A81yuj7wr/bhgWcfaWnQMAnMiruVvztl1pmX1XNY9qFIkRQgghhNh6FIkRQgghRoRh08ToIabPsBD7GAnrnr6teT33KKWYSIRo4TQOi3th3jM51wIlVO0Je72ia7wvM+2cZ2W+7buxLQn9zOMBACa+8K38eun2VzfHo30srTXNqSynwOOEk8rikH52FSahXycdh/sPFik6IX9LCXmFAMd6OJdGRwxqKaZj15V0mhW7ZNYsbGlCy6PtfU9TigXm6eF41gBlzFg0bEzvJxF3+luNDfXb0oNVCsG2sefLobZbcIX1xxs73mapKkr5VSL41C8vTVQVkkzfL8/fht/30lv83fOE8ew9ZPdp9Z2z45B78/TBVJiQvWE8MTAXrEzbvFRfh/bltGa+jpSOzClpSvV5aU3rP/sas3De83PKxyHxekwLAlh8zHji7JXvHWj+unuIYWZd6aQQwmwI4Z4Qwg9DCAdCCK8LIVwSQvhiCOGx9HduoxorhBBCiHUQN+m/TWK9kZgPAfhCjPHXQggTAGYA/B6AL8cYPxBCuAvAXQDet87zjBw2swCAl6ARs/KMinkxLZfdQbOwcLgtHuXljgYv2/aWKhvdqSIaXpxrZlcmYAXq2ZVFaFiEaDMyrmljS7CrKM8tN+aXngOqiYqrJZlWx4WXjfaoo9Q63u5d5Ti29NeZ6fE5veW+oYfIOZ+HjmnXi+vcmHCVoy82Y2dxsedUzOS+OkJSjk6Y4DZ6S7q53VQzy2bxXu0b7jNH/Ioovbe7LkCOxdQn17HWmbH3qgOUP1dFQZp7jWvk8D2Qz+fUsuIfS4vaVNfarg210USlVb0kJ0q24tX3cYStvcYn13piIX8aF/4u2P1jvw/AqqXl6dqeJGsGE4GPOdYAlbVC2pe/C2MUgbX9WVRtkZ8lWspu9xnfr55bMgu6xehy3pGYEMJOAG8A8BEAiDEuxRiPA3gHgI+nj30cwDvX20ghhBBCrJPNisJsYiRmPemkqwA8C+DfhxC+E0L4wxDCRQD2xBiPAED6205iAwgh3BlC2B9C2H8abb2FEEIIIcSZWE86aRzATQB+K8b4YAjhQ2hSR2dFjPFuAHcDwM5wyZDppTcWSy3Nv/uWvG3yeAm15rQEpR1yyJVCxeYjwyFnFi56aSQO/RqeDwqH9C0NVB3PUlUckk7n5kKRlSjScfM0KhFv+lv5czzvpHzIQdjGgpMcNi4sMmUHUDtnVaTQEYhaO3oVl7TrVYfim2NWqZHDbVdYHtMzpckYOyb7yWTo2OwFZOkmvn/snqqKgWYRcxlJ9glh12LDE5jnu9nxLAForNjt1Xxi6FLbda0KBjoFNDvTRVRs14b7ZWM2TvdrLZbf0dont4vus/F0j7Pg1BN2e4VPg5MaW7iqtIdTLIspRcnXy3NGzmm5Nc5dpYrTmHMfctvoHsy/Lz1EzPZ9598fr+isjTPfr157uyrgKLC+SMwhAIdijA+mf9+D5qHm6RDCXgBIf9fwJRdCCCHEhSZs4n+bxXk/xMQYnwLwRAjhurTpTQD+EsC9AO5I2+4A8Nl1tVAIIYQQwmG9q5N+C8An0sqkgwD+PpoHoz8JIbwXwM8AvGud5xAJtsNnHwcLtXP43VIanA7Kan/2jXDsxRkL87o+H7SNC9x5Vuu5SCUd2wslM1Z4jkP2+ZyUdhhL6Z8446/esvA+p8562cnz56vzrdp/9TZesTOfQv6c0jhTAUOA/G9oH281lGfF7q344rbayrJOtaqoeX+J7oVqlVgaX05FWCpj2vPpoDQYr7oyjt1aCnZevNBOl1gKL/S6hnZv0z6eFX8uzMjpRE5B2f50/3TSa/7+WPqTU34r01QSIo053ysLZyhcWKUBHY+WifaQVdfQvkt8jfg4XtrOvu91KY/2d9fjudeV34K5H6XCn7T6z4rScl8tTWSr74C6vEXXWYHm/b54KHW0gQyZeGNdDzExxu8CuNl5603rOa4QQgghxFrIsXeAqArmkTjQPCZ4hmMzP/ZasFkTz4BP3FxEs1Y0kiMjZ5oheZEJgIraeZ4d5BthMzdPUAz0iDrYC3Y4TVEedhD2HIZZQOx5ddgxeebK/beZb6RZvs0uOVpi52ZBqVf0z/x2gBK9qApAptn+sbcX75yqYGeaGVfi03QeFidbPIyjEyHtU4u86Xo5RUWnvvIIAODkW34xb9t+sDkfi0O5+KLdSxcfKJEvz9nW8Nx3AeTr1a1ccxsPG/YlMRH0ilNIEyjXdtxx4vXudW5PFY10rrsJbb1ijxw1YaG6OSYHuoZLzvcni4856rbL76Mx5WzL7aL7g6NJdg/s/Gn7+8OO4J5PznM3Nm3c8wB9jgt6pvGrfje8eyC1bUWFGy8Iw1Z2QAUghRBCCDGQKBIjhBBCjApDFonRQ8ygwtbmybKbhXcWimbhXQ67k8DTKx3AaYXsp0JC2FLIrR02B8hvhba9mLxDWIDoHYdTOTl0zsLM1AcWYVr6gn0lKhv8M4kGWexqvjSUDmH/E0s3VUXtUhtjDzGwwWkZS7HMHClpOwvPV+mr1O/Zh54t27hQYkppcFrGUlUd8rcJKdXDaQP0SAWuhq+7WcPv+GpJaVi6hctbMF4KoVjfU5mMlBpZdnxygHI9q9SQ3e+XtMtpVJ5BND6lDMJka9ta9x5b8XviZTumV+yR78f5veXe3XHUSieUfcyK3/OT4fZUY+WUd7C0HRfxzN8RElB7qU4u6On5NHm85MGU8uNxPENKC6DvEpVZEeJc0EOMEEIIMSooEiP6ARa9dR54qHlBxRPz53i2lmasaxXjY0x8uu1Ye3bJUYHTVMDNWzLNER8jixUpqjQ2TVGQNDuPvBTXxLfUr1xEjqIBLFjNIl6K3lgkZ54cUDspWtJryXdxKS3ntpkxt8eiANUyX4rE2OyUC3p618YVwNJM/Nh1zfhd9HRpry3R5qjBDJqZdOXMmv6enqNifDTO7Aybj51m8Twzt754ok+Gl6BbFJGFqRbF8NxjAT+ik0ecRdpJOM7L7V+8qrTXokgsArdopRUSBYBOjm5SEUKKIlp762XQE+l8O1v7cGRo+wK5UltBSo5eOI69Y/nzZdtzry1juueBn7feN8FyVTzx5e17ge9Du47zND68f+7rfPsa2/0aeoiYzYahcpr+xsOt4whxLughRgghhBgFolYnCSGEEEL0BYrEDBGeh8TYwyUU7DlmjjmOvezia94x7vl2sWdHSWmcvHKmOd7OUkHDwt3dR39c9n/l9QDqVBQLCs3zg8PduV2UvrA0Ee/LWOrIK5jIDrlGFdpfo+CipetYVN1Jn6uKR9L4WMifx9nEl1XhwgXz0Wn3CQB2f73tw2PwdbPrzWJo8wdigWpV2DJ53VQiZUdA6xUpdAWpnDLc1U5V5bQMp/wcF+iqQOThhdb5OH1qsGsskriZUyR2XattC+1ju32l1Iml5lj4jJwmnKTPkUtyOmY1zqmP7jhS/1/yIBXdTOnD8YVSptHSf1UBUfuNIJE3f5csBcULAmxblW471W6bfQP4PquKaqb0qvxfthhFYoQQQgghth5FYoYInuFYFGCMZtd5Rk5LV1lwWZZGlxmXzdJ4my0X5hkcz7jMVbaztx1B6d52U3md/lZC2qq+TzNLneCluGmWx862NkNkl15uz0Kq88LYLPXk60u0xKISYwu+8HnJEf56586C5R4Rryz4pdmwRWAqoajN4qkNHMma/zuvBVALTk1AytfGq2WVowVcL4iiJbZ8m2f+Z4oMVJO7x0royKIuK/S2F9GysWUh7fJ0mWNlgex0+56qxidFxKroAkfEkqCVhat2Ho5imBswH6daqpyuFwtcre0sGvYifZUI2lmW7Tlwe/YInoCY97G2VY7YJpan9iw/cSi/tt+LymbBqetl7eXIl1fDbUVLp/sOaWKEEEIIIfoAPcQIIYQQYiBROmlIMQHfqTfckLdZymNsDbEiu8saXKzQPF84vO7hecOwA6x5kXAKgRM52YXUKQrIYXOv0B2LJy11dPzN15R90jG5jStOKN3EzkBJA3DRzO0HTzT7Ou6pDItmg6UQyGcnp/8W2u6pPD4dujYm3mUPEkuz8TZjzZQFOyebUNnxhKlEzE6hSL7G5kTLx7aUGaeVLJW5jVJaL1KhSTs3j2P20WHPoHTuypGXPFEs1cHuzobnf8PH4ZRh9nepxNtNCmr+MnLfTalFvif4e2Ni4udeV+6zS+9/otXX1ecFfPdrvndN3B+dsefjjF+xL782F2Ce3VoayS2M6gipOT0l+hClk4QQQgghth5FYoQQQogRYdiEvXqIGVJspdLUVx4pG69pF+lbq/ibrYaYeLJssjQQr1bgcPjcj5pQs1f0kMPq3goQDn2b9wV7nljwesWx+a+gdJKlozqL5dtrqQj2+RhLqYan3npF3rbzZ2UlkqVqKg8WW/lBoX+vkGblX2LeMr9Q/HEsZTRN49NNq0LcIp5AvjacnrDP8jjaudnnw1Ijp2jlFvukWHu8VU65zAUAXHt1s61XqQanYKelGzppX4DuPSoXYKk67gOzcnnbb8YrqRFoRY/dAZGul63y4fPla0ers8acY3MxR/OjmaU+PPe2awEAl95f7lG+njamu7/e/g5UqV5npZqXRuxwiQ5nFVh+j+57XmHVcVKdVixynFfOmYcRfa4r/xexBeghRgghhBgFIoZOE6OHmCGnKhSZZsU882LxpPmkVA6fKdLAYtYciaBZ6s6flqiLCT9PvLTMBHd/vRFcsjiQBaAGCw7tPN4sv/LDcLw2tn3zh/m1iWZd92GapVsxyD0PlFkxR5gsqtUlh2GbSY857rJeEUWgRDw6TqFEZir1h6MlHce9mP1UsqCZPmeiWRZA2+d4X56dW7Rg2Yl2cATF7oEOvV9FQ9K9FNmxNzk1c9HMLJp2fHuAEnXh6INdd76nLHpRRQHpPHbfPP+qct1NSFuJuNP1XCaxLwuazWmX22geLMduLUJZOzaPo9cHvlc8bxkvusfHtH55AuvKgZocvPM2clBecaJNFslkB+Xuc8+3PifEVqCHGCGEEGJUGLJIjFYnCSGEEGIgUSRmhLA0EhcmrMSTKQ3CIsrTKcTuiSzZV4NTQxbS3vXd461t7Hkyk8LqHBb3PFY8OH1jqS72fGH/DhNfcujf81PJ3iGXtFMNABBTmYBKiGwpGC5cmEL+LOCsCkmmfSpfkuTrw6F9S8FML/h+PJZi4HSb9YdTGnOpvZwusevFgm1ujx2HZzm2f5dTFm7LClk0iyIqN7EvlxCwtArfZ5Xo2vFtyf137hm+H4/fdGl+PfvQswCK+BwgwbYjMOf7o0r/OcUw7ftz8YFy7pzyolQU/+iWa9jN2yyl6vnEcGrIE/Za6hCAm+pbSqnQKpVLKdwsxOYUU7oPlyXcHXgChm91kiIxQgghhBhIFIkZIUzk6zmYAmXWyE+2NoNcccSRL1xfZuSz1dLpthDXZn62bBoos8cxx3GXj8OzWIuqcElHm73zLJWxYocsGs37LpCT7kJbKNohjaUtO33yva/K237hkz9q+sJF9JJwlceMlwNbfzgqNeW0+3SaNfPsmoWd2bGWjm1jakU4eZvnlswi0sqJNy/zLbP04obbjr/wdWUnWYuOVYLThbQ0nMSsJnbmY7NTc7W0PGGuwx1n2TlfQ46MlP6Q2NVxA7ZimAvkeM1L0G0yy8vbF2eb6zn7pcfyNo5u5XbTeUxgXRWsvNycrMv1sHuAt409X66dba3cgLOjcRlTOw/fr+zYa2PeVeHG4UWRGCGEEEKIrUeRGCGEEGJECHG4QjF6iBlB2OOBQ8kGp4lmnmrSF56I0ESSQB2+55C3YSE/TjXYMSvBKaVL7Dicntrx1SbMz6kGS9t4beTPsvDX0hZcKNKSP56PB4DseLz3K8fyJkvHLd3+6rzNRJqVs+0tN5bzpNQA+5eYX4+lvgA/fcMiVUuTeOm4Skjs+OhYasQrcMksO2kwz9+Hr2t1/dN9wS7QS69oxpELKlobezkIm19L5ficXnuFG/lzlU/Kqn0BEtJSesZSeSzO9gopciHJtoNPgVOC7FGz+3OPAgDmb74qb7Nzchvt2lWpxZn2GVkg7Dn22rbK64dShitKI4kBQw8xQgghxCggx14xbPQS+Bk2O+dZnbeklaMXY0m4WDnNOrN4EyHybJYjLJ5A2N7nY5s4tVdUwYSULFK12fniXImG2CzXE15y29lddSJFU1yX1STwBYBAY2YiWI66zODyqn+rz21UIlUTtNJyX+vXaWcsOBJjfexVt8rwojxeTSy+/kskLrUxXaBIg42VJ8TmyIfXjmrsUySHz2394jZy9CI6gmVbyn2anJitXxzRql130/7OUmtuo9efnT8t57b9Oerkwe01Vubbjs/sVG21jMZmZvI2W2LtfU6IQUTCXiGEEEIMJIrECCGEECPCsJnd6SFGZCy1NPsQu6K2UwyWDmF31cpbJfnQeN4nnseIJ9IF/LRVFlSSN4gJOz1hKlBSAtwXS0HseLztwlp5ozgeJJw68txVzaWWxa6gfhnc73K8Imy2IoR87Gp8UnvYo8XEy+yqa2k7z0HYazfgF8vM4+s4LPPY8nmsP1xo0pxkx5x7wRMk9zrOdHJgXna8WNaC+x0ON9epEiynNvLvPaetPLqP/hgAMMNC2ZzKLNeVBd3e94FTYUZOddK+XS9lSPfUuBWxpJSxic1XztgTIQYHPcQIIYQQo8KQRWKkiRFCCCHEQKJIjGhh9vpAKRbJq1QsjcSh7aVZSiekkDanJ/JKHFrN4a1S8bwxqhD6VBNqZ9+RXBxwob1aAyi+JPUqFTt2SY2UIoMlxH96rl00sfbEadpTedlYSqdHv8ZnbYUMpRhS2opX8djqGx57K7sAANvTdk7r5eNRe3isjJV0jbgNvFrKI6+GYQ8eJx3C12veCkByYcd07qqURfrba8wsbccpOruuXL7BxuzES8v9uJvSRHb86j5zxsKO3Wv1lqV8+P3ubTc1x36Syxw0x+Tv1Nh0KYZpq+zYM6dXWrQ5Xul/h75LuWSIU2hUCGbYNDGKxAghhBBiIFEkRrRYId+IXCySZn02K+Yn4M7RtpvpDqdoX1UIMEUIlshXY5qKU8IRvto+7NJqgstIbWSvDvOhWXBcUT0fFM+DBihRB3ak5SiAMeZ8jj/FrqqGOf/yjNz296JgQPGR4TaY8LUSXaex4uPkwoM0c4dTDLRyCL73YQDAsetKtMQ8Tzjyw+eZOVKfDygRsbGHS+THPFq8qBFQri1HULIwmI5t9+vuo23/FoCuCUV87P6pCkDaeSmaEWh7cVOebG3zPF2wr3jndCkCZfchR4HyuVlUn4TGXkFJoIy5iYuF6IkiMUIIIYQQW48iMUIIIcQoEIdPE6OHGHFGrFhkx7FXZxt2TiFYyoh9NywVw6JF8/eoUjaUQsohdgq/W9qF0wqeF0dVuC8JUjlVY+kNFvtaGon39Qpbch/Mg8UrkcDb2MtlfKFx6ahEsead4qS3mEApum2PpUKSSXwNABPNYSqB50q6TiyktbQN/555KTou8mmW9Va0EEBOM3JfvCKO7Gligu/tKALX1ccD/PIGPD5WSHHuRyQATvdHr9/p3G+6z8xHpbOwq5xvuhmL42++Jm+b/dJj+XVMxSK5CKOdm9NSdh04xTT2MJUYSEVFqzSrk5ay70pVnJRSXVzUVYhRQg8xQgghxKigSIwYRVgwaAXleHa9VqFAE59OOM61/Ln5y8qM3qIAHHU5cXMzI925vwiALQrA0Y5q2XGa7VYOwCnC4kUNPIEnUKI2LLi0fY7dWopn7vhJKrxHY7LjkfZyYcaEq54AliNMz73t2vx699ebqEw1O09t4z5Yv3mcx1PUwMYT8Jdqe0UauQ0XPd1ESFiszJE1GxeOYkymc3PBTu98nli4Wga9s5Ha8rLzyanmmCwQrsSwzhJrWxoNOp+9P+ssxQZKhIWjkV2nyKlHIJFvfKxpJ0fTjLrgZBKv073XJSdeIUYVPcQIIYQQI0DA8Gli1r06KYTQCSF8J4Twp+nfLwshPBhCeCyE8MchhLYblhBCCCFGlhDCR0MIz4QQfkDbLgkhfDE9P3wxhDC31nE2IhLz2wAOADB71n8G4A9ijJ8KIfwbAO8F8OENOI/oYzgN4nm5LM41aSQTngKU5iBPl7mvlRC5V3zSHFv5vReub9IkM0+VVAO3x85tTroMi3g9OO1gnikXH2gLli2FxHiOtEBJJ5koGChpqYnK7bVdXHLXd2kAE8++8Yr82vNtWXJcYe2YPCbsCTP7pSZV5aUJJ0+UfpkHz8nXl3RI51RJCVkaiT16LPXEourgOBZzisrzK9rzrfa1y67Ll5851ck+QvkeeIw8apJgN5B3DsOpntVwutDuU3bsZTGwOWKzp5ClvDhNuKzUkdgoYt+EYj4G4P8E8Ee07S4AX44xfiCEcFf69/vOdJB1RWJCCPsAvA3AH6Z/BwBvBHBP+sjHAbxzPecQQgghxHARY/wKgNWl4d+B5rkBOMvnh/VGYj4I4HcB2FRxF4DjMUabBh4C4FpMhhDuBHAnAExhZp3NEJuJOfqyeJJn4tvSLLieAZu7bLnlxq0eziNUq8lZnlqJGdP+XRKpWgTGm9kDRUjKjC00ERSO2HRS5KSaAdOM24u2mDCY+2BiWY5ysKjW4hgcBfLExF6dn0r4mkSuHJ3JtXpoyfOUE4nwHGI5kuXVm7JxGZ8tESSLVNiycWBVVMFxmM0ib26Ds4SfnYitPYxFm7hul/Wa7z23r3S9TGA8QYJbL1rG18uOb1FAwL8/7DhdEu7y+Nh3aJzuUYu6tBftCzFQ7A4h7Kd/3x1jvHuNffbEGI8AQIzxSAihrf5fxXk/xIQQfhXAMzHGb4cQbrPNzkfd2FXqzN0AsDNc0jfxLSGEEGJY2URh73Mxxpsv9EnWE4m5FcDbQwh/G8AUGk3MBwHMhhDGUzRmH4An199MIYQQQgw5T4cQ9qYozF4AvUu6J877ISbG+H4A7weAFIn5JzHGXw8h/AcAvwbgUwDuAPDZ8z2H6G/YJXTHIyUdYH4tO75aCvxNWsFBcrvNaaKjLFYtaRVLsbCXC4tTcztSeL4S0pKw82wnHpxGMjhVYf4nnNKxtASLaz3xLQtts1vwN39Y2rurSVuxC6ulGDil1aECmZZi4TG11Aifz/pViVHTWFXeOYTnUbOSXGqnD5YxsfN56Rk+d3eqbLO2VY7Ftu9sSSGxW7AJcb3rX6XlUr/4Xjh5fTv1yONjfa1SdelWqFKdz5f748W3/GJ1PADAN5oCmXF3cf710nI85tnl9/n2vSfEhhPR72Z396J5bvgAzvL54UIUgHwfgH8UQngcjUbmIxfgHEIIIYQYUEIInwTwdQDXhRAOhRDei+bh5VdCCI8B+JX07zOyIWZ3McYHADyQXh8E8JqNOK4QQgghNo6wsvZnNoMY43t6vPWmczmOHHvFhsA+GNvTa16RYf4nvNLIVux0ybODLestvM8hfYPt8nlljOGtTuH0ha184iIIlr6qCiVS+iK3l1bNjC00+1x6/xN5m61o4b5wCsH25vE5nVJinGKyVAPb6u84euZCnB425mut2GHs/aowob3g9F96n9tQFflM23nMPFt+O8/k8eINw9fL7oFqpVq6P/h6VSujEuzrY5+tShUcaxf2tHZ3Hi99PZ0KYAIlVco+MvO3v7pqK1CnkTwsjWQr/oQQ54YeYoQQQohRob81MeeMHmLEhsAzyfErmqJ/wRGhenC0g51UzbF1jDxUTOTrOc3OPFVm8VWkIUUOTpEb7FT6++JVO/O2xZ2NRMwKK/K+ANBJXiYsALWZfaAIgQlN2bm1EuemqMzYw0X4PJ6EvcfefmPeBe2LkgAAHVhJREFUZsLW7fd9P2+L15RxNHEqR1jcYo+pHTy2NuYcIfIiEewFZF4u7MRskQaOhnjeKotXFi+oqem2R4+duyoKSQ66iykKwhEduz9YpGuvK/EsXYdTqW3m/AwAx65rrudFU20H5RUSiHsRJPb3MfdiUHTG/IpYBC+E2Dj0ECOEEEKMCCoAKYQQQgjRBygSIzYcr1jdtmNNWJ49XyzVwKkIFsNmWEia9ufUSPYTOdr2ZwHqooKGJ2yd+1GTgmBB6elXnDl9Y8fhlIW9ZvExpy8M84YBSlqCC2BmcSlKmoMnUSZONWFqc4B2iYVsq09pO68ooutHQ+UAnntdcxwbJ6DY7rOnC8hbx66tZ8nPaSBrIwthT73hhvza7pXJJMgGisiX74Wc0qF2c79sDNgTyMrk8piY4JZneZ6XC99HVnQyUBuVRhJ9RUQ/FYDcEBSJEUIIIcRAokiM2BRsSfMyCWk9qkKJaVY+RkJJzzU3F0rscRzbx5yEgRJt4QiJF51gMaftw7NvO/f44baTLB+7KlKYnF27t91UjmNFEad50Xd93tWYuNmLRLCQ2vpgAmigLDvmCBJQxtT25/6bEzELcs2xlttoglugjOkYRScs6sRjwq67HiaQnaeomkVVOHrntdsroFkVGk1t5Cjh9EIT/VqhfrF4O0f9KPpn96kXiRSiX5AmRgghhBCiD1AkRgghhBgVhiwSo4cYsSmYKHL7QQrjpxRDFaZ3PFhWXMFp+ZyJNLl44jYnBbNzf/GtKU6y5StgQln2oOG0laUdOC1lKSNOT6w4KaHKdTj56ICErR52Pk5fcZrMRK6cTjn+5mua81FhQkv1sPjW0kjs6XLir5Wx2PNAk74xMS8A7P7cowCAbSjbrK+cLmJxsSegtm1TX3mkbNu3t/W5LNIFslCX006W1hqnlJilICunYUoteSlD64PnzsxCY07bzSy004dKIwmx+SidJIQQQoiBRJEYsSmYo2+Hl6Ra5IQiKF0W9qY6QtVSZHJQzcexSA5FdFikuTjbiGa5ho7NyDkSs/3gCQC12HVptpx7Ku0zeaztkMuMp6hE5T7rOPYyi3NpKfIjpY0WBWEHYY4MWL9ZVGt95P5302uOYtixL3q6RIMu+7NS/8muze6vlzaaaJadfc0B12pIrcaiF3YNAIoIkftwN0VDeGyic60ZGwuup2QC4ImFssSao2kmJv75nnLdLcLEy7LzfUiuwdOHS4RpWUunxQASIGGvEEIIIURfoEiMEEIIMQrEOHRmd3qIEZtK99Ef59ed3bsAAIF8YFiEGVIaidMy+X0Sz1r659it+/K2xZ0hv7Y0CYtYTWjboeOY++zc14pIdXm6BCtNvNpxhLucsjC/Fe4LC03HUvqHUyfjKc3Bx5k8sVL1D6hTR5aq8Zx4OXVkwlXrH1Bcd1noys62HlYMcpE8aExUzG3k8Zm/rC0qzr4+nFazQpqO8zFArsN8f6T3K6fh9LeXsNdGj8XQ5ujMY2b7dKmwKebbrsNCiK1FDzFCCCHEiDBsmhg9xIgtI84nYWYPAadFbbbR8uU64tFgs/TJ48Up9uJ7y/Ldxdf8dQB+XSYW9i5PNtEbjth0J0tEx7bzcSwyUjnypsiI11aA3IspgmBRABbk2vJtjkRxvSGLJvFx7Nhct8mEyFy/yKuNxAI5WwbNkZ/uy5tjcmTDlpubKHo1s196DEDtIOwtg/ZEukx5v7QnHkrL1p0IEouPeSxs+Twfx6u3xBFDIUT/oocYIYQQYlQYskiMVicJIYQQYiBRJEZsGeYdg+8dyNu4KCLS6zHyRjExKLunmvPrNvIdYQ+SnIo4VFxzuze+vDkepWd2JksQ82wB6hSMpZ480ajnJMueLievnMmvF+ea9AanYLJomNxuPS8bfr2U0lt8bkst8bGtPZ4HCzvqstNw1/qQvHoAoJNcdbn/XOTSa2MnpWh4nO08VvQSANpS6Trl82IqHMpuygtvuAFA7ezrpSa9VJf5yQDIaSSlkMQoMGyaGEVihBBCCDGQKBIjhBBCjAIRwMpwhWL0ECP6Ck5fPP+uVwIA5rhQotnTnyorkax4YJfSIVYUEqiLMxqWWmEvEuRUTDtFApCnClnRW1qqOnZqL6dnPJ8UxvNosVTPBKV8uL22DxdfHFv1HreH0zO5cCOdb+zhx8s/rF+UlrOfPk6T5T7SmCCtBgPK6iWv+Gblb5P64Hn5AMBkSm/x2NkqMU4h2Zjx5yo/mqPHm/dfXlYs4RsPQwgxmOghRgghhBgVhisQo4cY0V+skCvqzp8mvxUSipqQdoz9Quh13kZFJcNC4z1iQlCgzPL5cxa9We5RrNGKJk4mkSngC1vzPmnW336/2c4RBDv3EkUiLOrCkaQqcpTgPpj7LHvZeJEfiypxFCfuK+ee39tEPmaO0D4pUvPiW34xb8tFM2nfysvmMw8BAJZvubG0J11P/pwXieJ+22fZYdjrVycJdsdIxB24gGjyJlL0RYjhQA8xQgghxIig1UlCCCGEEH2AIjGibzGR7wqJZy2FwMJdI1BapbK5N7EwecuUVAWlaii14nHR001Kw3xpVrctnzv5qGyjNBf7kljBSxYir6R0Sl3SYLK1byRrfINFqmcqrcCpmHw8GrNI6Rv2YzFOpjSSlTEASpkEFuF2uAnXXp36UDZ2vNICKcU21aMEhZV1mHLEx3wvLKex4DTgCqWWVlTEUYihQg8xQgghxKgQhyufpIcY0bfYrDkXKwRw8vXN7HsGbSEoRxrmLytRkLkk7GRn23wOJxriRSwA4Od7kiCVlhDzcuPVPPPaEjXZ80BZJm0/IVw00hMa54KEFH1hEbO1k113DU/0Gpyl2hzZeeF6cuJ9qvls5V6cojPs2GtjyoUbWXzsLW/3sMgZF27kY+Yl9bTk27tO2eVY7rtCjAR6iBFCCCFGBAl7hRBCCCH6AEViRN/Tfe75/HrmyOWt93NahtIzFx94Ib82F1gWn1qag0Wh9rkO+dJwYcJL738CQO1pYukoTnmNJS+SPUfbni+8PwuEzaNlgXxiLFVTeblwOslxuTW4r+ZEzGkgTtvkfZ4q6aaJHzQOvJUDjyMqNmqH3LI9jw+lsjxfn+wq3ENobO97AmlmhYqJCiFWETF0ZneKxAghhBBiIFEkRgwWyWl1/Ip9eVN3qlmWa26+ALBAy6mPXdNEAxZnyz5zXzsEoJ75T+8/2ByPliyfniuzfathxMt3j990KQBgZqoITk0Ma262QB2JyYJUEqnC6iQdbzvycqSFa0ZZe6zdQHEBZkFtFrtShMmiQRyJqkS1KerC47g42wFQ14HK52htqbEaSkC9RDv3JUV+zHEY8MeCWX7i0BpnFUIwAUAYstVJisQIIYQQYiBRJEYIIYQYFVa2ugEbix5ixEDCqQST8y5eXdxeORUx91jz13xegOJB0nWKPVrxQwDY8dXiEGtCUk5B7fhJ20G4k47JHjReyLMW7LZdbG3/5emyN/fLBLKnyZ3Y0jJLzrZtKONjnjAXkwPuafK/MdgBeCqdzxMpc4qNse0zzjYukGnt5b52TlHhz9QHFnkLIYQeYoQQQogRQZoYIYQQQog+QJEYMfBYeodX15y4uawwmjnSvM+pGPNM6U518jb2h8mfo7RMPv4Z/FIYtsWvVgulNBJvs1VQ3AdL1XAxRl7ls+ORJi3DXja2OolXakWnqOLsl5oc28IbbsjbvNVA7OmS02PPlxRTN6XwxuhzvKLLxYp4UlrK2rvtGJ2PPF/KmiwhxHkjn5hCCOGKEMJfhBAOhBAeCSH8dtp+SQjhiyGEx9LfuY1rrhBCCCFEw3oiMcsA/nGM8aEQwg4A3w4hfBHAfwHgyzHGD4QQ7gJwF4D3rb+pQviY2HPsldfnbRy9ePq2Jlpw2Z89kbd1kpCWXWwtGjD54xIh4IjORNqHoxMs6M3tSREdfq9y+U2vWUBs0SL2hDFRLZ+P+2XbWSDsnc9g8S1HmDy84pLmurvkFMDkNixetTO/7k4GALW3TPGeKW0cSwJjK/ophLgQxKGrYn3ekZgY45EY40Pp9UkABwBcDuAdAD6ePvZxAO9cbyOFEEIIIVazIZqYEMKVAH4JwIMA9sQYjwDNg04IoZ2Qb/a5E8CdADBVLcAUQgghxIVg2KpYr/shJoSwHcB/BPA7McYTIYSz2i/GeDeAuwFgZ7hkyIZVbAUsBO1ce3V+Pfdokx5iIW3+XCosCJQihkuzJc0xvlCcoSwNwgJYSw2xiNfEuexbY2kXxoS5fG72ZfEKJbKw11JQHE5ddtrjCYktdcZlBSp/nNS2Kt2WvFo6VOzROHZru6RD04d22o7LJBhdpZGEEOfBupZYhxC2oXmA+USM8dNp89MhhL3p/b0A2uVyhRBCCCHWyXlHYkITcvkIgAMxxn9Bb90L4A4AH0h/P7uuFgpxPpAb7GRayuu54na5wGOKTkw/fjhv44KEU0deBLBKxJqiLSzitW0cfeF9LCLC0YkMRTksmsLOvxwZ8rB2VFGgx5oIygq7E1sxSyooyRESK4LJkaqTr385gFpcbBGkyePlOF7Ea9s3f1j2UdRFiK1jyIS960kn3QrgNwB8P4Tw3bTt99A8vPxJCOG9AH4G4F3ra6IQQgghRJvzfoiJMf5/aCp7e7zpfI8rhBBCiAtABIIKQArR/3ChwPEr9rXeN4Hs5LEigM0iVxK7crrFnGg7lN4xx1/2k7GUz8ThIgeL5PJr3iuTnGJ6vu03g2vaXi5eyocLUpo7b5XK2pUKUvKBUrptkos5vrz0wTxlupTe2rm/SbOxB42lvDgFx8T5ph3yfxFCXAj0ECOEEEKMCtLECDFYLD+RlvzecmPetv2+7wMAwr693i4FEgh7NYhmkpDWi070Oo5FUPCNH+dtnd27mnPMt8XAvIRwhdqQXXWnizj5ZHLLtagJUEdqMikytHLoSDkeCXItUrX94Im8zaJNtrQbKFGlamySkBhQBEYIcWHRQ4wQQggxKgxXIGZ9PjFCCCGEEFuFIjFiZLAigwCwcmPjebI0W7xjTMRrYl0AlcjXfGK4KKKlatgnxnxSOM1TFXY0cW5KITFhpuxjaTAWJnseNSw05jRSJqWOOiy+TdtM9AsAi3Ps2Nt4wbCjr21jf5tOSpOtkJBaCNG/hCHTxCgSI4QQQoiBRJEYIYQQYlQYskiMHmLEyMArZXJq6Q035G1msW8FHIG6VIEVZOQUy5Rt27s9b5t5pKz4MdjfhVcgZZInDKeqxlM6ilcXdcnLxcoksJdL9pshj5mQ/Gp4BZGdh/1tvBVNE3RsO49KCAgh+gU9xAghhBCjQMQq18vBRw8xYiSxqIyJdQGKWPAHKQoSkhiWIy0m4uXjWDSEPWiWuCBjimSwqBZJsOsVT+TaHizONeFw5/HiQbOQIkvTB9sOwBzlCcmpl4s5MtnxmCI/Fr2S94sQol/QQ4wQQggxAgRErU4SQgghhOgHFIkRI83K9w7k12OvvB5ASSsBq8SwaTtb/1tRSBPZAgCS10v30VJWYNv09fn1KUv5kNg3t4GyQCYqZnExp5a8cgITxxfTPhNlY2ovp5OsTILnbwMA42i8aZa/8XB5v3U2IYTYWvQQI4QQQowKQ5ZO0kOMEIks7OUl0FTMEEmou0IOubYcm6MleRk0iWLD0Z/n1zkCk4TCQFm2ba7BQHEOZpFuteQ7CYgrgXDiFC35tuhMhyIxWaRL+6xYoUwo6iKEuLCEEH4C4CSALoDlGOPN53McPcQIIYQQo0J/RWL+ZozRXyJ5lkjYK4QQQoiBRJEYIRLmjdKhwozskGt0KDWUOVq8Wqx85MkbdudtM/TR8eTRcuymS/O2iw80wuCquKTnEEx+NNmVl4pCmo/MNKWqDD7OTGpDJQ6W/4sQw83mmt3tDiHsp3/fHWO8e1Vr/jyEEAH821XvnTV6iBFCCCHERvPcGjqXW2OMT4YQXgLgiyGEH8YYv3KuJ9FDjBCryG61QCXOteXIlbjWWeZsEY/tB0+4x7d9Zr/0WNmWlkHz0mgTEJswF6gjNVbLqMoJpwgM11OydvOS7mXuoxBiZOgXs7sY45Pp7zMhhM8AeA2Ac36IkSZGCCGEEJtGCOGiEMIOew3gbwH4wfkcS5EYIYQQYlToj0jMHgCfCSEAzXPI/xNj/ML5HEgPMUKcCXKsXb7lRgDAySuLTHfua02qx4o+AkV86xVcBACkwo2VEy+5BBsmEIYj0gVKmoiddu2cYwun8zZrmwo3CiH6gRjjQQCv3Ihj6SFGCCGEGAliv0RiNgw9xAhxlljkYzYtYwZKHaVAAt+lVE9pkpY+swA4pEgMR2dWkktwSHWXgLpuk/HC9Rfn1zNPNVGXqm6THY9qQgkhxLCihxghhBBiFIgYukiMVicJIYQQYiBRJEaIs2Q5FUjsXHv1GT838YOmaOQKpYNOz5XXlv5hL5exJL61VBMAxFR88tQbbsjbJo+XApF2Hi5YKfGuEOKMDFl1V0VihBBCCDGQ6CFGCCGEEAOJ0klCnCPdR3+cX49fsQ9AnTpifxgPW5XUOUob06qk+Rv25k1TRxr/l+mD5YOcgrI0klJIQoizpV/KDmwUisQIIYQQYiBRJEaIdWBi37Hni4tv2NUUgORijuzlsnj1S1rbFm6+CgAw88iRvI0dfTPkIDxk+jwhxGagSIwQQgghxNajSIwQQggxCkQAK8MVidFDjBAbAItrzdellyC3O9WUdlz6hVJCwD7LKSQWEAshhGijhxghhBBiJFABSCHEGkzvPwgAOPn6l+dt3cmQX88+9Gzz4ujxvM2KPapwoxBCnD16iBFCCCFGhSGLxGh1khBCCCEGEkVihNhgus89DwCYOXK5/76JfEnsy/4vQghxwVAk5uwIIdweQvhRCOHxEMJdF+o8QgghhBhNLkgkJoTQAfCvAPwKgEMAvhVCuDfG+JcX4nxC9CPjh4+621eeb7ar5pEQYlMZQp+YCxWJeQ2Ax2OMB2OMSwA+BeAdF+hcQgghhBhBLpQm5nIAT9C/DwF4LX8ghHAngDsBYAozEEIIIcSFJAJxuKquXaiHmOBsq2JYMca7AdwNACGEZ78U7/k5gOcuUHu2gt0Ynv6oL+fDzzblLLo2/ckw9QUYrv70U19eutUNGHQu1EPMIQBX0L/3AXiy14djjJeGEPbHGG++QO3ZdIapP+pL/zJM/VFf+pdh6s8w9UVcuIeYbwG4JoTwMgCHAbwbwH9+gc4lhBBCiLNhyJZYX5CHmBjjcgjhNwHcB6AD4KMxxkcuxLmEEEIIMZpcMLO7GOPnAXz+HHa5+0K1ZYsYpv6oL/3LMPVHfelfhqk/w9SXc2MIl1iHOGShJSGEEEK0uXhiT/zly96zKef6whMf+vZmaI9UdkAIIYQYFYYscKECkEIIIYQYSPriIWaQ6yyFEK4IIfxFCOFACOGREMJvp+2XhBC+GEJ4LP2d2+q2ni0hhE4I4TshhD9N/35ZCOHB1Jc/DiFMbHUbz5YQwmwI4Z4Qwg/TNXrdoF6bEMJ/n+6xH4QQPhlCmBqkaxNC+GgI4ZkQwg9om3stQsO/TL8JD4cQbtq6lrfp0Zf/Ld1nD4cQPhNCmKX33p/68qMQwlu2ptU+Xl/ovX8SQoghhN3p3319XYDe/Qkh/FYa/0dCCP8rbe/ba3NBiHFz/tsktvwhhuosvRXA3wDwnhDC39jaVp0TywD+cYzxegC3APiHqf13AfhyjPEaAF9O/x4UfhvAAfr3PwPwB6kvxwC8d0tadX58CMAXYox/HcAr0fRr4K5NCOFyAP8dgJtjjK9As+rv3Risa/MxALev2tbrWrwVwDXpvzsBfHiT2ni2fAztvnwRwCtijDcCeBTA+wEg/R68G8ANaZ9/nX73+oWPod0XhBCuQFP/jm0b+/26AE5/Qgh/E03pmxtjjDcA+Odpe79fG7EGW/4QgwGvsxRjPBJjfCi9Ponmf5KXo+nDx9PHPg7gnVvTwnMjhLAPwNsA/GH6dwDwRgD3pI8MUl92AngDgI8AQIxxKcZ4HAN6bdBo2KZDCOMAZgAcwQBdmxjjVwCsrorZ61q8A8AfxYZvAJgNIezdnJaujdeXGOOfxxiX0z+/gcbkE2j68qkY42KM8a8API7md68v6HFdAOAPAPwuarf1vr4uQM/+/AMAH4gxLqbPPJO29/W12Xg2KQozSpEY+HWWLt+itqyLEMKVAH4JwIMA9sQYjwDNgw6Al2xdy86JD6L54bICG7sAHKcf50G6PlcBeBbAv0/psT8MIVyEAbw2McbDaGaPP0Pz8PICgG9jcK+N0etaDPrvwn8J4M/S64HrSwjh7QAOxxi/t+qtgetL4loAr0+p1/83hPDqtH1Q+yMS/fAQs2adpUEghLAdwH8E8DsxxhNb3Z7zIYTwqwCeiTF+mzc7Hx2U6zMO4CYAH44x/hKAn2MAUkceSSvyDgAvA/ALAC5CE9pfzaBcm7UY2PsuhPBP0aSZP2GbnI/1bV9CCDMA/imA/8l729nWt30hxgHMoUn5/w8A/iRFmQe1P+dHBLCysjn/bRL98BBzTnWW+pEQwjY0DzCfiDF+Om1+2sKs6e8zvfbvI24F8PYQwk/QpPXeiCYyM5tSGMBgXZ9DAA7FGB9M/74HzUPNIF6bNwP4qxjjszHG0wA+DeCXMbjXxuh1LQbydyGEcAeAXwXw67GYcA1aX65G87D8vfRbsA/AQyGEyzB4fTEOAfh0SoN9E02keTcGtz8i0Q8PMbnOUlpZ8W4A925xm86a9DT/EQAHYoz/gt66F8Ad6fUdAD672W07V2KM748x7osxXonmOtwfY/x1AH8B4NfSxwaiLwAQY3wKwBMhhOvSpjcB+EsM4LVBk0a6JYQwk+4568tAXhui17W4F8DfS6thbgHwgqWd+pUQwu0A3gfg7THGeXrrXgDvDiFMhqae3DUAvrkVbTwbYozfjzG+JMZ4ZfotOATgpvR9GrjrkvhPaCZlCCFcC2ACTSXrgbo2G8KQaWK23OxuCOos3QrgNwB8P4Tw3bTt9wB8AE3I8r1o/gf0ri1q30bwPgCfCiH8LwC+gySUHRB+C8An0gPyQQB/H83D+0BdmxjjgyGEewA8hCZV8R009umfw4BcmxDCJwHcBmB3COEQgN9H7+/J5wH8bTRCy3k0161v6NGX9wOYBPDF5jkT34gx/rcxxkdCCH+C5qFzGcA/jDF2t6blbby+xBh73Ud9fV2AntfmowA+mpZdLwG4I0XK+vraiLVR2QEhhBBiBLh420viL1/ydzflXF945t9sStmBfkgnCSGEEEKcM3qIEUIIIcRAsuWaGCGEEEJsBhFYGS4JiSIxQgghhBhIFIkRQgghRoEIxLh5RnSbgSIxQgghhBhIFIkRQgghRgVpYoQQQgghth5FYoQQQohRYcgMbhWJEUIIIcRAokiMEEIIMQrECKxodZIQQgghxJajSIwQQggxKkgTI4QQQgix9SgSI4QQQowIUZoYIYQQQoitR5EYIYQQYiSI0sQIIYQQQvQDeogRQgghxECidJIQQggxCkSoAKQQQgghRD+gSIwQQggxKkQtsRZCCCGE2HIUiRFCCCFGgAggShMjhBBCCLH1KBIjhBBCjAIxShMjhBBCCNEPKBIjhBBCjAjSxAghhBBCrIMQwu0hhB+FEB4PIdx1vsdRJEYIIYQYFfpAExNC6AD4VwB+BcAhAN8KIdwbY/zLcz2WIjFCCCGE2ExeA+DxGOPBGOMSgE8BeMf5HEiRGCGEEGIEOIlj930p3rN7k043FULYT/++O8Z4d3p9OYAn6L1DAF57PifRQ4wQQggxAsQYb9/qNiSCs+28FMdKJwkhhBBiMzkE4Ar69z4AT57PgfQQI4QQQojN5FsArgkhvCyEMAHg3QDuPZ8DKZ0khBBCiE0jxrgcQvhNAPcB6AD4aIzxkfM5VohxuIxvhBBCCDEaKJ0khBBCiIFEDzFCCCGEGEj0ECOEEEKIgUQPMUIIIYQYSPQQI4QQQoiBRA8xQgghhBhI9BAjhBBCiIHk/wdoor836IY0zgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot the extracted image data\n", - "fig = plt.figure(0, [10,10])\n", - "im = plt.imshow(image_data, origin=\"lower\")\n", - "plt.colorbar(im)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 0. Make datamodel file\n", - "\n", - "Once we have our FITS file ready to go, we can start making actual progress. Zeroth step is to create a data model we'll be applying to our FITS data.\n", - "\n", - "A data model file really only needs to be set up once for every field, so this can either be done manually with the datamodel.py file, or automatically within the beast production wrapper code. We've opened up the datamodel.py file in an editor and changed the following fields manually to match our data: \n", - "\n", - "* project = \"M31-B21-WEST_cutout\"\n", - "* surveyname = \"PHAT-M31\"\n", - "* filters and base filters\n", - "* make sure ast_with_positions is set to True\n", - "* ast_density_table = sourd density map (like './M31-B21-WEST_cutout.st_sourceden_map.hd5')\n", - "* ast_N_bins = 26\n", - "* ast_reference_image = fits image (like \"./M31-B21-WEST_cutout.st.fits\")\n", - "* astfile = \"data/M31-B21_WEST_cutout.gst.fake.fits\"\n", - "\n", - "\n", - "This file is also where you specify the parameters and resolution of your physics model which will become relevant in Step 2.\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: fits\n", - "Auto-detected type: fits\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import datamodel\n", - "\n", - "importlib.reload(datamodel)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2: Create physics model\n", - "\n", - "Our goal is to eventually run a bunch of **ASTs** (Artificial Star Tests) in the field shown, but before we can do that, we need to generate the fake stars to use.\n", - "\n", - "In order to generate a diverse and representative sample of fake stars to use for our ASTs, we need to set up a N-dimensional model of possible stellar parameters, so that we can easily and randomly select stars from the model.\n", - "\n", - "This model is called a **physics model**, and we will be using the parameters set in the datamodel.py file to create this N-dimensional grid.\n", - "\n", - "*As a quick note, the resolution on the stellar parameters (the step size, often specified as the third input e.g. logt = [6.0, 10.13, 1.0], where 1.0 is the step size) is the main factor driving how long this physics grid will take to set up. If things take a very long time to run, consider making the step size larger for testing's sake.*\n", - "\n", - "Sometimes we are able to have access to high-performance computing resources, meaning we can split the physics model into subgrids and run them in parallel, cutting a lot of the computation time. While we're like not running this notebook in parallel here, we've still specified a number of subgrids in the datamodel.py file. \n", - "\n", - "We can check how many subgrids are set up." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "datamodel.n_subgrid" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So we can now see that we've asked for 1 grid in the datamodel.py file.\n", - "\n", - "If we've already generated a physics model, we certainly don't want to run it again, so the following code checks to make sure all the subgrids for the physics model are present." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "# see which subgrid files already exist\n", - "gs_str = \"\"\n", - "if datamodel.n_subgrid > 1:\n", - " gs_str = \"sub*\"\n", - "\n", - "# searches to see if files already exist\n", - "sed_files = glob.glob(\n", - " \"./{0}_beast/{0}_beast_seds.grid{1}.hd5\".format(field_names[0], gs_str)\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: fits\n", - "Auto-detected type: fits\n", - "Auto-detected type: csv\n", - "Auto-detected type: hd5\n", - "Auto-detected type: hd5\n" - ] - } - ], - "source": [ - "# only make the physics model they don't already exist\n", - "if len(sed_files) < datamodel.n_subgrid:\n", - " # directly create physics model grids\n", - " create_physicsmodel.create_physicsmodel(nprocs=1, nsubs=datamodel.n_subgrid)\n", - " \n", - " # create grids with script/is parallelizable/writes out scripts that you can submit to a cue\n", - " # we won't be parallelizing the code here in this notebook\n", - " #create_physicsmodel.split_create_physicsmodel(nprocs=1, nsubs=datamodel.n_subgrid)\n", - " #print('\\n**** go run physics model code for '+field_names[0]+'! ****')\n", - " # continue\n" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "# list of SED files\n", - "model_grid_files = sorted(\n", - " glob.glob(\n", - " \"./{0}_beast/{0}_beast_seds.grid{1}.hd5\".format(field_names[0], gs_str)\n", - " )\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Hopefully a lot of spectral grids and SED grids should have started generating. In the end you should have a new folder titled your project name, with a bunch of SED and spectral subgrids." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3. Create ASTs!\n", - "\n", - "Now that we have our physics model generated, we can start to generate some ASTs.\n", - "\n", - "First thing's first, we're gonna check that there isn't already a file of ASTs present in the folder we're working in." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "# only create an AST input list if the ASTs don't already exist\n", - "ast_input_file = (\n", - " \"./\" + field_names[0] + \"_beast/\" + field_names[0] + \"_beast_inputAST.txt\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we can create the ASTs if they don't already exist." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "creating artificial stars\n", - "\n", - "Auto-detected type: fits\n", - "Auto-detected type: fits\n", - "Auto-detected type: fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/christina/anaconda3/lib/python3.7/site-packages/beast/tools/run/make_ast_inputs.py:58: RuntimeWarning: invalid value encountered in less\n", - " (keep,) = np.where(obsdata[sfiltername] < 99.0)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reading existing AST SEDs\n", - "Assigning positions to artifical stars\n", - "Auto-detected type: fits\n", - "Auto-detected type: fits\n", - "removing 94106 stars from ./M31-B21-WEST_cutout.st.fits\n", - "1 repeats of each model in each map bin\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "3066.00 models per map bin: 0%| | 0/22 [00:00Table length=24528\n", - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
zerosonesXYHST_WFC3_F475WHST_WFC3_F275WHST_WFC3_F336WHST_WFC3_F814WHST_WFC3_F110WHST_WFC3_F160W
int64int64float64float64float64float64float64float64float64float64
0111.4003642.1861930.202235.4751533.6134326.0746224.4300823.05891
0111.4227942.2267230.202235.4751533.6134326.0746224.4300823.05891
0111.3987542.2229930.202235.4751533.6134326.0746224.4300823.05891
0111.3797342.2235430.202235.4751533.6134326.0746224.4300823.05891
0111.4199742.1938530.202235.4751533.6134326.0746224.4300823.05891
0111.3874942.212130.202235.4751533.6134326.0746224.4300823.05891
0111.4348142.1874830.202235.4751533.6134326.0746224.4300823.05891
0111.4423542.1912630.202235.4751533.6134326.0746224.4300823.05891
0111.3936942.2235224.4048527.1274725.5855222.3766621.6178120.91429
0111.4355142.2132624.4048527.1274725.5855222.3766621.6178120.91429
..............................
0111.3864342.1991949.5234150.5926552.472541.6730538.2988936.17306
0111.386442.1992649.5234150.5926552.472541.6730538.2988936.17306
0111.4005142.2092149.4414150.5106552.390541.5910538.2168936.09106
0111.3864742.1990249.4414150.5106552.390541.5910538.2168936.09106
0111.3866242.1986549.4414150.5106552.390541.5910538.2168936.09106
0111.3867342.1992649.4414150.5106552.390541.5910538.2168936.09106
0111.4004542.2091449.4414150.5106552.390541.5910538.2168936.09106
0111.3864442.1992949.4414150.5106552.390541.5910538.2168936.09106
0111.386742.1991149.4414150.5106552.390541.5910538.2168936.09106
0111.3864842.1992749.4414150.5106552.390541.5910538.2168936.09106
" - ], - "text/plain": [ - "\n", - "zeros ones X Y ... HST_WFC3_F814W HST_WFC3_F110W HST_WFC3_F160W\n", - "int64 int64 float64 float64 ... float64 float64 float64 \n", - "----- ----- -------- -------- ... -------------- -------------- --------------\n", - " 0 1 11.40036 42.18619 ... 26.07462 24.43008 23.05891\n", - " 0 1 11.42279 42.22672 ... 26.07462 24.43008 23.05891\n", - " 0 1 11.39875 42.22299 ... 26.07462 24.43008 23.05891\n", - " 0 1 11.37973 42.22354 ... 26.07462 24.43008 23.05891\n", - " 0 1 11.41997 42.19385 ... 26.07462 24.43008 23.05891\n", - " 0 1 11.38749 42.2121 ... 26.07462 24.43008 23.05891\n", - " 0 1 11.43481 42.18748 ... 26.07462 24.43008 23.05891\n", - " 0 1 11.44235 42.19126 ... 26.07462 24.43008 23.05891\n", - " 0 1 11.39369 42.22352 ... 22.37666 21.61781 20.91429\n", - " 0 1 11.43551 42.21326 ... 22.37666 21.61781 20.91429\n", - " ... ... ... ... ... ... ... ...\n", - " 0 1 11.38643 42.19919 ... 41.67305 38.29889 36.17306\n", - " 0 1 11.3864 42.19926 ... 41.67305 38.29889 36.17306\n", - " 0 1 11.40051 42.20921 ... 41.59105 38.21689 36.09106\n", - " 0 1 11.38647 42.19902 ... 41.59105 38.21689 36.09106\n", - " 0 1 11.38662 42.19865 ... 41.59105 38.21689 36.09106\n", - " 0 1 11.38673 42.19926 ... 41.59105 38.21689 36.09106\n", - " 0 1 11.40045 42.20914 ... 41.59105 38.21689 36.09106\n", - " 0 1 11.38644 42.19929 ... 41.59105 38.21689 36.09106\n", - " 0 1 11.3867 42.19911 ... 41.59105 38.21689 36.09106\n", - " 0 1 11.38648 42.19927 ... 41.59105 38.21689 36.09106" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Table.read(\"./M31-B21-WEST_cutout/M31-B21-WEST_cutout_inputAST.txt\", format=\"ascii\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Check to see how the SEDs and the ASTs compare\n", - "\n", - "The histogram that is produced should have both the SED distribution and the AST distribution plotted on it. The thing we want to test for is whether the AST distribution fully samples the SED range." - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Auto-detected type: hd5\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/christina/anaconda3/lib/python3.7/site-packages/beast/plotting/plot_ast_histogram.py:73: MatplotlibDeprecationWarning: \n", - "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", - " label='ASTs'\n", - "/home/christina/anaconda3/lib/python3.7/site-packages/beast/plotting/plot_ast_histogram.py:84: MatplotlibDeprecationWarning: \n", - "The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.\n", - " label='Model grid'\n" - ] - } - ], - "source": [ - "plot_ast_histogram.plot_ast(ast_file=\"./M31-B21-WEST_cutout/M31-B21-WEST_cutout_inputAST.txt\", sed_grid_file=\"./M31-B21-WEST_cutout/M31-B21-WEST_cutout_seds.grid.hd5\")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/M31_Example/M31_workflow.ipynb b/M31_Example/M31_workflow.ipynb index f92b8e8..02219b9 100644 --- a/M31_Example/M31_workflow.ipynb +++ b/M31_Example/M31_workflow.ipynb @@ -22,25 +22,25 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2020-06-29 11:52:42-- https://www.dropbox.com/sh/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama?dl=1\n", + "--2020-07-22 14:25:15-- https://www.dropbox.com/sh/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama?dl=1\n", "Resolving www.dropbox.com (www.dropbox.com)... 162.125.6.1, 2620:100:601c:1::a27d:601\n", "Connecting to www.dropbox.com (www.dropbox.com)|162.125.6.1|:443... connected.\n", "HTTP request sent, awaiting response... 301 Moved Permanently\n", "Location: /sh/dl/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama [following]\n", - "--2020-06-29 11:52:42-- https://www.dropbox.com/sh/dl/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama\n", + "--2020-07-22 14:25:16-- https://www.dropbox.com/sh/dl/91aefrp9gzdc9z0/AAC9Gc4KIRIB520g6a0uLLama\n", "Reusing existing connection to www.dropbox.com:443.\n", "HTTP request sent, awaiting response... 302 Found\n", - "Location: https://uc8f7a9a016f30b7dc6908902a90.dl.dropboxusercontent.com/zip_download_get/Ad8YyXJOnfV4C9nmUSzo2W4ib4LyIWi0CZQyn7r0Hj6h5Hr5C0ukGZootVmfnuSAa--G_WzwSq9Tgj0oyf5OC8FA4kkUyQq8TvNQ2657jZ2QaQ?dl=1 [following]\n", - "--2020-06-29 11:52:43-- https://uc8f7a9a016f30b7dc6908902a90.dl.dropboxusercontent.com/zip_download_get/Ad8YyXJOnfV4C9nmUSzo2W4ib4LyIWi0CZQyn7r0Hj6h5Hr5C0ukGZootVmfnuSAa--G_WzwSq9Tgj0oyf5OC8FA4kkUyQq8TvNQ2657jZ2QaQ?dl=1\n", - "Resolving uc8f7a9a016f30b7dc6908902a90.dl.dropboxusercontent.com (uc8f7a9a016f30b7dc6908902a90.dl.dropboxusercontent.com)... 162.125.6.15, 2620:100:601c:15::a27d:60f\n", - "Connecting to uc8f7a9a016f30b7dc6908902a90.dl.dropboxusercontent.com (uc8f7a9a016f30b7dc6908902a90.dl.dropboxusercontent.com)|162.125.6.15|:443... connected.\n", + "Location: https://uc20972010ed0ad7747238852bd6.dl.dropboxusercontent.com/zip_download_get/AfYgH9KXJFEWG0Q8aXDzK9uIGQj1iE7RMLI5gedC795gMN0yZyokRmXfMnab1uTmHJlHLoRGrdkqLQD-sjJUnBUbg1IlqFS59C4M9r6MU-7FWA?dl=1 [following]\n", + "--2020-07-22 14:25:16-- https://uc20972010ed0ad7747238852bd6.dl.dropboxusercontent.com/zip_download_get/AfYgH9KXJFEWG0Q8aXDzK9uIGQj1iE7RMLI5gedC795gMN0yZyokRmXfMnab1uTmHJlHLoRGrdkqLQD-sjJUnBUbg1IlqFS59C4M9r6MU-7FWA?dl=1\n", + "Resolving uc20972010ed0ad7747238852bd6.dl.dropboxusercontent.com (uc20972010ed0ad7747238852bd6.dl.dropboxusercontent.com)... 162.125.6.15, 2620:100:601c:15::a27d:60f\n", + "Connecting to uc20972010ed0ad7747238852bd6.dl.dropboxusercontent.com (uc20972010ed0ad7747238852bd6.dl.dropboxusercontent.com)|162.125.6.15|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", "Length: 57364410 (55M) [application/zip]\n", "Saving to: ‘data.zip’\n", "\n", - "data.zip 100%[===================>] 54.71M 7.62MB/s in 6.7s \n", + "data.zip 100%[===================>] 54.71M 9.57MB/s in 5.5s \n", "\n", - "2020-06-29 11:52:50 (8.13 MB/s) - ‘data.zip’ saved [57364410/57364410]\n", + "2020-07-22 14:25:23 (9.92 MB/s) - ‘data.zip’ saved [57364410/57364410]\n", "\n" ] } @@ -195,7 +195,7 @@ "data": { "text/html": [ "Table length=50507\n", - "
\n", + "
\n", "\n", "\n", "\n", @@ -470,7 +470,7 @@ { "data": { "text/plain": [ - "Text(0.5, 1.0, 'Density of Sources per 5 arcsec^2')" + "Text(0.5, 1.0, 'Density of Sources per 15 arcsec^2')" ] }, "execution_count": 12, @@ -479,7 +479,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAIuCAYAAABEs/foAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3debhkVXnv8e/PphmUSW0UZLBNwBEVtMUx9yKiolEwV1QIDiBKNBr1qhkkBgPe5KpJNCYYDYqKxjjhBAY1GEUhhqFBZkRbBeGCMg+tCHT3e//Y+2ilPKdOVXdX1TlV38/z7OdU1V6197ur4Jy337X2WqkqJEmS9Gv3GHcAkiRJC40JkiRJUhcTJEmSpC4mSJIkSV1MkCRJkrqYIEmSJHXZZNwBSJKkxeWZT71X3XjT2pGc69wL7/xaVe03kpN1MEGSJEkDufGmtZz9tV1Gcq4lO/xg2UhO1MUuNkmSpC5WkCRJ0kAKWMe6cYcxVFaQJEmSulhBkiRJAyrWlhUkSZKkqWIFSZIkDaQZg1TjDmOorCBJkiR1sYIkSZIG5l1skiRJU8YKkiRJGkhRrC3HIEmSJE0VK0iSJGlg3sUmSZI0ZUyQJEmSutjFJkmSBlLAWrvYJEmSposVJEmSNDAHaUuSJE0ZK0iSJGkgBU4UKUmSNG2sIEmSpIFN9lK1VpAkSdIilmTzJGcnuSDJJUmOnqPdC5Nc2rb51/mOawVJkiQNpKiFNA/SncA+VbU6yVLgjCRfqaozZxok2Q14C/Dkqro5yf3mO6gJkiRJWrSqqoDV7dOl7dadvb0SeF9V3dy+57r5jmuCJEmSBlOwdsEUkCDJEuBcYFeaROisriYPbtv9J7AE+Muq+mqvYzoGSZIkLWTLkqzs2I7oblBVa6tqD2AnYK8ku3c12QTYDdgbOBj4UJJte53UCpIkSRpIMdK72G6oqhX9NKyqW5KcBuwHXNyx62rgzKq6G/hxkstpEqZz5jqWFSRJkrRoJdluphqUZAtgX+B7Xc2+CDy1bbOMpsvtR72OawVJkiQNKKwl4w5ixg7ACe04pHsAn6mqLyc5BlhZVScBXwOekeRSYC3wx1V1Y6+DmiBJkqRFq6ouBPac5fWjOh4X8MZ264tdbJIkSV1MkKQ+JPmddlDfKM71kCTfTXJ7kteN4pxaXJI8P8kfJ7EXQGNRwLoazTYuJkhaVJJckeSONnm4Jcl3krwqyVD/W66q06vqIV1x7Duk0/0JcFpVbVVV/9C9M8kjkvx7kpvbz+DcJM8eUiyLWpK9k6xLsrpje9m449oQSV4EfAg4BPhwknTt/9skP2j/H/lekpeOJVBpkfNfH1qMnltVX0+yDfA/gfcCjwcOG29YG80DgU/12H8y8H7gOe3zx8HGHy2ZZJOqWrOxjzssPeK9pqp2GuH5hqZNyv8eeDrwfeAU4F3AH3c0+znw3Hb/44CvJllVVd8ZZayafAtokPZQWEHSolVVt7Z3J7wIeNnMxGBJNmv/Ff2TJD9L8oH21s+ZisLVSd6U5Lok1yb5VWKV5NntYoa3J/l/Sd7c+b728ceBXYCT24rEnyT5tyR/1BlfkguTPG+22JPs3y6YeEuS05I8rH39GzS3oh7bHvvBXe9bBjwI+GBV3dVu/1lVZ3S0eWWSVUluSnJSkge0ry9PUp3dMu25X9E+PjTJfyZ5T5KbgL/sON5l7WdyaZLHtK8/IMnnklyf5Med3YFJ9mondLut/Q7ePcfnMPN9HJnkhrYyd0jH/n6+yz9N8lPgI7OdYxBJ3pvkqjbuc5P8Tse+v0xyYpJ/SXIbcGiSJW3sP2w/n3OT7JzGe9r/xm5t/1uY97/Pdv8BSc5vY/hhkv3a11cA/ww8s6pWVtVtwDOBx8z8dwpQVW+rqu9V1bp2NuHTgSdu6GcjTRsTJC16VXU2zSRgM3/M3kkzx8UeNNPO7wgc1fGW7YFt2tcPB96X5N7tvuOBP6iqrYDdgW/Mcr6XAD+hqWRtWVXvAk4AXjzTJsmj2+Of0v3+Nun5JPAGYLu2zclJNq2qfWj+oL22Pfb3u95+I7AK+Jckz0ty/65j7wP8X+CFNLe+XknvalS3x9PMDXI/4K+SvIAmUXopsDWwP3Bjmi7Nk4EL2ut8GvCGJM9sj/Ne4L1VtTXw28Bnepxze2BZe5yXAcclmenO7Oe7vA9N1e03Ztdt3a9NRH7cJi336hHLOe257gP8K/DZJJt37D8AOBHYFvgEzR0xBwPPpvl8Xg78AngG8D/a2LelSeJnbime85qS7AV8jKYitG17jCsA2qTot9s7dmhf+3lVPa2q/na2i2kTr8cBl/S4ZmlgRVNBGsU2LiZImhTXAPdJEppFCf93Vd1UVbcDfw0c1NH2buCYqrq7qk6hWeTwIR37Hp5k66q6uarO6/P8XwJ2S7NiNMBLgE9X1V2ztH0R8G9VdWo7q+vfAlsAT5rvJO2tqk+l+aP5d8C1Sb7dcd5DgA9X1XlVdSfN6tVPTLK8z+u4pqr+sarWVNUdwCuAd1XVOdVYVVVX0vzR3a6qjmmrWD8CPsivP+e7gV2TLKuq1Z2ras/hL6rqzqr6FvBvwAv7/C7XAW9r33vHLMf9Hk0isgOwD/BYYNZqFkBV/UtV3dhe/98Bm/Hr/zYA/quqvthWZ2Y+n7dW1eXt53NBO7fK3cBWwEOBVNVlVXVtH9d0OM33d2p7jv9XVd0T3g3iAzRJ7Nc24BjSVDJB0qTYEbiJpiJzT+DctvvqFuCr7eszbuwaO/ILYMv28fNpqgFXJvlWkr66Jtpk5DPAi9vqysHAx+do/gCays7Me9cBV7XX0M+5rq6q11bVb9NUTn5OU3WY7diraSoXfR27jaPTzsAPZ2n3QOABM59x+zkfCcxUtA6nqZJ8L8k5SZ4zyzFm3FxVP+94fmV7Hf18l9dX1S/nOnBV/bSqLm2TjR/TDIA/cK72abpeL2u7xW6hqTQu62jS1+dTVd8AjgXeB/wsyXFJtu7jmub6vAeW5G9oqqAvbBNraaNaVxnJNi4mSFr0kjyOJgE4A7gBuAN4RFVt227bVNWWPQ/SaislB9B0MX2RubuGZvuDcwJNBedpwC+q6r/meO81NAnGTPyh+cP4//qJsSveq2j+CM8szNh97HsB922PPZOE3LPjENt3H7Lr+VU0XWTdrgJ+3PEZb9vedffsNq4fVNXBNJ/jO4ETe3Rt3btr3y7tdfTzXQ76h7+YY0B7O97oT2m6J+9dVdsCt3a17/fzoar+oaoeCzyCJln84z6uac7jDSLJ0cCzgGe0Y5UkDcgESYtWkq3bysSngH+pqovaaswHgfckuV/bbseOsTG9jrdpkkOSbNN2fd1GMyX9bH4G/FbnC21CtI6m62uu6hE0SdfvJnlakqXAm4A7gXnvMkpy7yRHJ9k1yT3SDNp+OTDThfWvwGFJ9kiyGU33zVlVdUVVXU+TKL24HVz8cub/Y/wh4M1JHtsOPN41yQOBs4Hb2gHSW7TH271NVkny4iTbtd/HLe2x5vosAY5uP//fobk777Mb8l12fF57J9mljX1n4B003aGz2QpYA1wPbJLkKJpxRb18CHh7kt3aczwqyX2TPC7J49vv9+fAL4G1fVzT8TTf39Pa73fHJA/t93rb470F+H3g6TXPUgrS+nIMkrQwnZzkdpp/bf85zZiSzlv8/5RmIPOZae42+jr/fRxJLy8Brmjf9yo6Bl53+b/AW9tukjd3vP4x4JHAv8x1gqq6vD3uP9JUFJ5LM+B7tvFK3e4CltNc0200q1XfCRzaHvs/gL8APgdcS5MAdY7ZeSVNJeNGmspGz6Ssqj4L/BVN4nU7TVXtPlW1to17D+DH7XV8iKZLCpqVtC9JsppmwPZBPbrCfgrcTFM1+gTwqo5xNxvyXQI8BvgvmiTlOzSf11yTb34N+ArN7fFX0iQ13V1q3d5Nk/D+O833cTzNeLKtaRKhm9tj3Ugz1qznNVVzw8FhwHtoqlffoqMi2Ke/pqnC/SC/nvvpyAGPIU292DUtbTxpJuU7oqqeMu5YFoMke9NU/zb6PEWShudhj9qsPvblHUZyrr0eeOW5VbViJCfrYAVJ2kiS3BP4Q+C4ccciSdowY0uQkmye5OwkF6SZMO/oWdocmmYSuvPb7RXjiFWaTzuG5HqasUn/OuZwJGnoJv0utnEuNXInsE9VrW4HMp6R5CuzzJfy6ap67Rjik/pWVV8Dek1AqFlU1WmA3WuSFpyxJUjtvByr26dL280BUZIkLXAzd7FNsrGOQWpvDT4fuA44tZp1g7o9P806Rie2t+lKkiQN1Ti72GhvFd4jybbAF5LsXlUXdzQ5GfhkVd2Z5FU0E/Ht032cJEfQrsN0j82XPnaLne8zgug1DA/d4pb5G2lBuqt6TXOkhe6Ki7YadwjaALdz8w1Vtd38LdWvsSZIM6rqliSn0cydcnHH652TnH2QZkbe2d5/HO2dQ1s+ePva430vHV6wGqpvP/IL4w5B6+nqNavnb6QF6/BdnJliMft6nXjl/K02prC2JvtG+HHexbZdWzmaWXF6X5qFJTvbdE6ysD9w2egilCRJ02qcFaQdgBOSLKFJ1D5TVV9OcgywsqpOAl6XZH+a6f9vop0tWJIkjU8B6yZ8KsVx3sV2IbDnLK8f1fH4LcBbRhmXJEnSghiDJEmSFhdv85ckSZoyVpAkSdJAqryLTZIkaepYQZIkSQNb5xgkSZKk6WIFSZIkDaRZrHayayyTfXWSJEnrwQqSJEkakHexSZIkTR0rSJIkaSDTsBbbZF+dJEnSejBBkiRJ6mIXmyRJGtjacqJISZKkqWIFSZIkDaSIE0VKkiRNGytIkiRpYOucKFKSJGm6WEGSJEkDcbFaSZKkKWQFSZIkDaSI8yBJkiRNGytIkiRpYC5WK0mSNGWsIEmSpIFUwVrnQZIkSZouVpAkSdKAwjq8i02SJGmqmCBJkiR1sYtNkiQNpHCQtiRJ0tSxgiRJkgbmYrWSJElTxgqSJEkaSBHWuVitJEnSdLGCJEmSBuYYJEmSpCljBUmSJA2kgHXOgyRJkjRdrCBJkqQBhbUuVitJkjRdrCBJkqSBOAZJkiRpCllBkiRJA3MMkiRJ0pSxgiRJkgZSFccgDUuSzZOcneSCJJckOXqWNpsl+XSSVUnOSrJ89JFKkqRpM870705gn6p6NLAHsF+SJ3S1ORy4uap2Bd4DvHPEMUqSpCk0ti62qipgdft0abtVV7MDgL9sH58IHJsk7XslSdKYrLWLbXiSLElyPnAdcGpVndXVZEfgKoCqWgPcCtx3tFFKkqRpM9ZB2lW1FtgjybbAF5LsXlUXdzSZ7R7C36geJTkCOAJgs/ttPZRYJUlSo4B13uY/fFV1C3AasF/XrquBnQGSbAJsA9w0y/uPq6oVVbVik222GHK0kiRp0o2tgpRkO+DuqrolyRbAvvzmIOyTgJcB/wUcCHzD8UeSJI1bJn4M0ji72HYATkiyhKaS9Zmq+nKSY4CVVXUScDzw8SSraCpHB40vXEmSNC3GeRfbhcCes7x+VMfjXwIvGGVckiSpt2axWscgSZIkTRWXGpEkSQNbO+E1lsm+OkmSpPVgBUmSJA2kiGOQJEmSpo0VJEmSNLB1E15jmeyrkyRJWg9WkCRJ0kCqYK1jkCRJkqaLCZIkSVIXu9gkSdLAvM1fkiRpylhBkiRJA2kmipzsGstkX50kSdJ6sIIkSZIGthbHIEmSJE0VK0iSJGkghXexSZIkTR0rSJIkaUDexSZJkrRgJdk8ydlJLkhySZKje7Q9MEklWTHfca0gSZKkga1bOHex3QnsU1WrkywFzkjylao6s7NRkq2A1wFn9XNQK0iSJGnRqsbq9unSdqtZmr4deBfwy36Oa4IkSZIGUgVrKyPZ+pFkSZLzgeuAU6vqrK79ewI7V9WX+71GEyRJkrSQLUuysmM7ortBVa2tqj2AnYC9kuw+sy/JPYD3AG8a5KSOQZIkSQMb4V1sN1TVvIOqAarqliSnAfsBF7cvbwXsDpyWBGB74KQk+1fVyrmOZQVJkiQtWkm2S7Jt+3gLYF/gezP7q+rWqlpWVcurajlwJtAzOQITJEmStLjtAHwzyYXAOTRjkL6c5Jgk+6/vQe1ikyRJAymyYJYaqaoLgT1nef2oOdrv3c9xrSBJkiR1sYIkSZIGtoAmihwKK0iSJEldrCBJkqSBFCyYMUjDYgVJkiSpixUkSZI0sBFOFDkWk311kiRJ68EKkiRJGkwtnHmQhsUKkiRJUhcrSJIkaSCF8yBJkiRNHStIkiRpYI5BkiRJmjJWkCRJ0kCcSVuSJGkKmSBJkiR1sYtNkiQNzC42SZKkKTO2BCnJzkm+meSyJJckef0sbfZOcmuS89vtqHHEKkmSfq1olhoZxTYu4+xiWwO8qarOS7IVcG6SU6vq0q52p1fVc8YQnyRJmlJjS5Cq6lrg2vbx7UkuA3YEuhMkSZK0wLjUyAgkWQ7sCZw1y+4nJrkgyVeSPGKkgUmSpKk09rvYkmwJfA54Q1Xd1rX7POCBVbU6ybOBLwK7zXKMI4AjALbeYQueuv33hxy1huW0OxZEzq71cNipbxx3CNoQH1o37gi0IQ4/cbTnK+9iG6okS2mSo09U1ee791fVbVW1un18CrA0ybJZ2h1XVSuqasW97r3p0OOWJEmTbWwVpCQBjgcuq6p3z9Fme+BnVVVJ9qJJ6G4cYZiSJKnLNCw1Ms4uticDLwEuSnJ++9qRwC4AVfUB4EDg1UnWAHcAB1VVjSNYSZI0PcZ5F9sZ0HsIfFUdCxw7mogkSVK/Jr2C5IhYSZKkLmO/i02SJC0uMzNpTzIrSJIkSV2sIEmSpIGVFSRJkqTpYoIkSZLUxS42SZI0MBerlSRJmjJWkCRJ0kDKxWolSZKmjxUkSZI0MG/zlyRJmjJWkCRJ0oBcakSSJGnqWEGSJEkDcwySJEnSlLGCJEmSBlI4D5IkSdLUsYIkSZIGU81s2pPMCpIkSVIXK0iSJGlg63AMkiRJ0lQxQZIkSepiF5skSRpI4USRkiRJU8cKkiRJGpCL1UqSJE0dK0iSJGlgThQpSZI0ZawgSZKkgXkXmyRJ0pSxgiRJkgZSZQVJkiRp6lhBkiRJA3MeJEmSpCljBUmSJA3MeZAkSZKmjBUkSZI0MO9ikyRJmjImSJIkSV3sYpMkSQMpYhebJEnStLGCJEmSBjbhd/lbQZIkSepmBUmSJA3GxWolSZKmjxUkSZI0uAkfhDS2ClKSnZN8M8llSS5J8vpZ2iTJPyRZleTCJI8ZR6ySJGm6jLOCtAZ4U1Wdl2Qr4Nwkp1bVpR1tngXs1m6PB97f/pQkSWPkGKQhqaprq+q89vHtwGXAjl3NDgA+Vo0zgW2T7DDiUCVJ0pRZEGOQkiwH9gTO6tq1I3BVx/Or29euHUlgkiRpVuUYpOFKsiXwOeANVXVb9+5Z3vIbX0mSI5KsTLLy5zffNYwwJUnSFBlrBSnJUprk6BNV9flZmlwN7NzxfCfgmu5GVXUccBzAAx6x7YTntJIkjVfhGKShSRLgeOCyqnr3HM1OAl7a3s32BODWqrJ7TZIkDdU4K0hPBl4CXJTk/Pa1I4FdAKrqA8ApwLOBVcAvgMPGEKckSepUwIRXkMaWIFXVGcw+xqizTQGvGU1EkiRJjb4SpCT3Bh4A3AFcUVXrhhqVJEnSGM2ZICXZhqZ6czCwKXA9sDlw/yRnAv9UVd8cSZSSJGlBmfTb/HtVkE4EPgb8TlXd0rkjyWOBlyT5rao6fpgBSpIkjdqcCVJVPb3HvnOBc4cSkSRJWvgmvII0523+SZ6Z5MBZXj8kyZzJkyRJ0mLXq4vtaOC5s7z+H8AXgFOHEpEkSVrgMtUTRd6zqq7vfrGqfgrca3ghSZIkjVevCtLmSTapqjWdL7bLg2wx3LAkSdKCNq1jkIDPAx9M8qtqUfv4A+0+SZKkidQrQXor8DPgyiTnJjkXuIJmPqS3jiA2SZK0EFWzWO0otnHpdZv/GuDPkhwN7Nq+vKqq7hhJZJIkSWPS6zb/PwFoE6KHVtVFM8lRkr8eUXySJGkhqhFtY9Kri+2gjsdv6dq33xBikSRJWhB63cWWOR7P9lySJE2VyU4FelWQao7Hsz2XJEmaGL0qSI9OchtNirhF+5j2+eZDj0ySJC1cC6RUkmRz4NvAZjR5zYlV9bauNm8EXgGsobkb/+VVdWWv4/a6i23JhgYtSZI0ZHcC+1TV6nYy6zOSfKWqzuxo811gRVX9IsmrgXcBL+p10F4VJACSPBJ4aPv00qq6ZP3ilyRJ2riqqoDV7dOl7VZdbb7Z8fRM4MXzHXfOBCnJNsCXgF2AC2i61h6Z5CfAAVV121zvlSRJE26BdLEBJFkCnEszb+P7quqsHs0PB74y3zF7DdJ+O7AS2LWqfq+qngfsBpwD/FXfUUuSJK2/ZUlWdmxHdDeoqrVVtQewE7BXkt1nO1CSFwMrgL+Z76S9utj2BR5VVes6AliX5EjgovkOLEmSJlQBo1sG5IaqWtFPw6q6JclpNPM1Xty5L8m+wJ8D/7Oq7pzvWL0qSHe1y410n3wNzYAoSZKksUqyXZJt28db0BR4vtfVZk/gn4H9q+q6fo7bq4K0eXvA2SaJ3KzfwCVJ0uSphTMGaQfghHYc0j2Az1TVl5McA6ysqpNoutS2BD6bBOAnVbV/r4P2SpCuBd49x76fDhq9JEnSxlZVFwJ7zvL6UR2P9x30uL3mQXrqoAeTJElTYuFUkIai1xgkSZKkqTTvRJGSJEm/YXR3sY2FFSRJkqQu8yZIST6X5HeTmExJkiQAUqPZxqWfpOf9wO8DP0jyjiQPne8NkiRJi9m8CVJVfb2qDgEeA1wBnJrkO0kOa1fNlSRJ06RGuI1JX91mSe4LHAq8Avgu8F6ahOnUoUUmSZI0JvPexZbk88BDgY8Dz62qa9tdn06ycpjBSZKkhSgTfxdbP7f5H1tV35htR7+Lx0mSJC0mcyZISf7XbI9nVNXnhxWUJEnSOPWqID23x74CTJAkSZpWE77USK+12A4bZSCSJEkLRa8utjf2emNVvXvjhyNJkhaFaa0gAVuNLApJkqQFpFcX29GjDESSJC0iU1xBAiDJ5sDhwCOAzWder6qXDzEuSZKkselnJu2PA9sDzwS+BewE3D7MoCRJ0gJWNBNFjmIbk34SpF2r6i+An1fVCcDvAo8cbliSJEnj089M2ne3P29JsjvwU2D50CKSJEkLXqZ9DBJwXJJ7A38BnARsCRw11KgkSZLGaN4Eqao+1D78FvBbww1HkiQtCtNeQUqyGfB8mm61X7WvqmOGF5YkSdL49DNI+0vAAcAa4Ocd2wZL8uEk1yW5eI79eye5Ncn57WbXniRJGrp+xiDtVFX7Den8HwWOBT7Wo83pVfWcIZ1fkiTpN/RTQfpOkqHc1l9V3wZuGsaxJUnS8KRGs41LPwnSU4Bzk1ye5MIkFyW5cNiBdXhikguSfCXJI0Z4XkmSNKX66WJ71tCjmNt5wAOranWSZwNfBHbrbpTkCOAIgM222JZvHfmk0UapjeYT+/zOuEPQetpk7fhmvNWGe/sBnx13CNoAh4zjpGOc5XoU5qwgJdm6fXj7HNvQVdVtVbW6fXwKsDTJslnaHVdVK6pqxdJN7zWK0CRJ0gTrVUH6V+A5wLk0sx10porFCOZESrI98LOqqiR70SR0Nw77vJIkabrNmSDN3DlWVQ8a1smTfBLYG1iW5GrgbcDS9rwfAA4EXp1kDXAHcFBVTfjUVJIkLXCFE0UmecwsL98KXFlVazbk5FV18Dz7j6WZBkCSJGlk+hmk/U/AY4ALabrZHglcANw3yauq6t+HGJ8kSVqIJryC1M9t/lcAe7aDoB8L7AFcDOwLvGuIsUmSJI1FPxWkh1bVJTNPqurSJHtW1Y+Syb7FT5IkzW6ckziOQj8J0uVJ3g98qn3+IuD77SK2dw8tMkmSpDHpJ0E6FPhD4A00Y5DOAN5Mkxw9dWiRSZKkhWvaK0hVdQfwd+3WbfVGj0iSJGnM5kyQknymql6Y5CJmyROr6lFDjUySJC1cU1xBen378zmjCESSJGmh6DWT9rVJlgDHV9W+I4xJkiQtYKnJv4ut5zxIVbUW+EWSbUYUjyRJ0tj1cxfbL4GLkpwK/Hzmxap63dCikiRJC1tN9lyI/SRI/9ZukiRJU6Gf2/xPSLIp8OD2pcurygkiJUmaZhM+BmneBCnJ3sAJNGuyBdg5ycuq6tvDDU2SJGk8+uli+zvgGVV1OUCSBwOfBB47zMAkSZLGpZ8EaelMcgRQVd9PsnSIMUmSpAVu0m/z7ydBWpnkeODj7fNDgHOHF5IkSdJ49ZMgvRp4DfA6mjFI3wb+aZhBSZKkBW7aK0hVdSfw7naTJEmaeHPOpJ3k5CTPnW28UZLfSnJMkpcPNzxJkrTg1K+XGxn2Ni69KkivBN4I/H2Sm4Drgc2BBwGrgGOr6kvDD1GSJGm0ei1W+1PgT4A/SbIc2AG4A/h+Vf1iJNFJkqSFadrHIAFU1RU0E0VKkiRNvL4SJEmSpP9mwitIcw7SliRJmlZWkCRJ0sCmdibtJBcxewEtQFXVo4YWlSRJ0hj1qiA9Z2RRSJIkLSC9bvO/cuZxkgcCu1XV15Ns0et9kiRJi928g7STvBI4Efjn9qWdgC8OMyhJkrTA1Yi2MennLrbXAE8GbgOoqh8A9xtmUJIkSePUT4J0Z1XdNfMkySZM/OwHkiRpmvUzluhbSY4EtkjydOAPgZOHG5YkSVqwxryQ7Cj0U0H6M5qFai8C/gA4BXjrMIOSJEkap34qSMuq6oPAB2deSPIQ4PKhRSVJkhY2K0icnuSFM0+SvAn4wvBCkiRJGq9+Kkh7A8cleQFwf+AyYK9hBiVJkha4aa8gVdW1wFeBJwLLgY9V1eohxyVJkjQ281aQkpwKXAvsTjNJ5IeTfLuq3jzs4CRJ0sITvIsN4H1V9dKquqWqLgaeBNw65LgkSZLGZt4KUlV9sev5GuDtQ4tIkiQtfBNeQZozQUpyRlU9Jcnt/PePIUBV1dZDj06SJGkM5kyQquop7c+tRheOJEla8KZgJu1eFaTNgf9U03sAABUwSURBVFcBuwIXAh9uu9ckSZImWq8xSCcAdwOnA88GHgG8fhRBSZKkBW5aK0jAw6vqkQBJjgfOHk1IkiRJ49UrQbp75kFVrUkygnAkSdKiMOEVpF7zID06yW3tdjvwqJnHSW7bGCdP8uEk1yW5eI79SfIPSVYluTDJYzbGeSVJknqZM0GqqiVVtXW7bVVVm3Q83li3+H8U2K/H/mcBu7XbEcD7N9J5JUmS5tTPYrVDU1XfTrK8R5MDaNZ+K+DMJNsm2aFdH06SJI3JpN/m389SI+O0I3BVx/Or29ckSZKGZqwVpD7MNjL8N3LWJEfQdMGx2RbbDjsmSZJkBWmsrgZ27ni+E3BNd6OqOq6qVlTViqWb3mtkwUmSpMm00BOkk4CXtnezPQG41fFHkiSNWY1wG5OxdrEl+SSwN7AsydXA24ClAFX1AeAUmlm8VwG/AA4bT6SSJGmajPsutoPn2V/Aa0YUjiRJ6pN3sUmSJE2ZhX4XmyRJWoisIEmSJE0XK0iSJGlgjkGSJEmaMlaQJEnS4KwgSZIkTRcrSJIkaTBjnuV6FKwgSZIkdTFBkiRJi1aSzZOcneSCJJckOXqWNpsl+XSSVUnOSrJ8vuOaIEmSpIFkhFsf7gT2qapHA3sA+7UL3Hc6HLi5qnYF3gO8c76DmiBJkqRFqxqr26dL2617hNQBwAnt4xOBpyXpmX+ZIEmSpMHViLY+JFmS5HzgOuDUqjqrq8mOwFUAVbUGuBW4b69jmiBJkqSFbFmSlR3bEd0NqmptVe0B7ATslWT3riazVYt6pl/e5i9JkgY2wqVGbqiqFf00rKpbkpwG7Adc3LHramBn4OokmwDbADf1OpYVJEmStGgl2S7Jtu3jLYB9ge91NTsJeFn7+EDgG1VlBUmSJG1kC2eiyB2AE5IsoSn8fKaqvpzkGGBlVZ0EHA98PMkqmsrRQfMd1ARJkiQtWlV1IbDnLK8f1fH4l8ALBjmuCZIkSRrcwqkgDYVjkCRJkrpYQZIkSYOpkd7FNhZWkCRJkrpYQZIkSYOzgiRJkjRdrCBJkqSBOQZJkiRpypggSZIkdbGLTZIkDc4uNkmSpOliBUmSJA3MQdqSJElTxgqSJEkaTOEYJEmSpGljBUmSJA3OCpIkSdJ0sYIkSZIGEryLTZIkaepYQZIkSYOzgiRJkjRdrCBJkqSBpSa7hGQFSZIkqYsVJEmSNBhn0pYkSZo+JkiSJEld7GKTJEkDc6JISZKkKWMFSZIkDc4K0vAk2S/J5UlWJfmzWfYfmuT6JOe32yvGEackSZouY6sgJVkCvA94OnA1cE6Sk6rq0q6mn66q1448QEmSNCfHIA3PXsCqqvpRVd0FfAo4YIzxSJIkAeMdg7QjcFXH86uBx8/S7vlJ/gfwfeB/V9VVs7T5lUpYu5ljzxerTW/yu1usXnPIyeMOQRtg2yW/GHcIWmysIA1NZnmt++M+GVheVY8Cvg6cMOuBkiOSrEyy8u47V2/kMCVJ0rQZZ4J0NbBzx/OdgGs6G1TVjVV1Z/v0g8BjZztQVR1XVSuqasXSzbYcSrCSJKlVzRikUWzjMs4E6RxgtyQPSrIpcBBwUmeDJDt0PN0fuGyE8UmSpCk1tjFIVbUmyWuBrwFLgA9X1SVJjgFWVtVJwOuS7A+sAW4CDh1XvJIkqcOEj0Ea60SRVXUKcErXa0d1PH4L8JZRxyVJkqabM2lLkqSBBOdBkiRJmjpWkCRJ0uBqsktIVpAkSZK6mCBJkiR1sYtNkiQNzEHakiRJU8YKkiRJGkwx8RNFWkGSJEnqYgVJkiQNLOvGHcFwWUGSJEnqYgVJkiQNzjFIkiRJ08UKkiRJGpjzIEmSJE0ZK0iSJGkwhYvVSpIkTRsrSJIkaWCOQZIkSZoyVpAkSdLgrCBJkiRNFxMkSZKkLnaxSZKkgQQHaUuSJE0dK0iSJGkwVU4UKUmSNG2sIEmSpIE5BkmSJGnKWEGSJEmDs4IkSZI0XawgSZKkgTkGSZIkacpYQZIkSYMpYN1kl5CsIEmSJHWxgiRJkgY32QUkK0iSJEndrCBJkqSBeRebJEnSlDFBkiRJ6mIXmyRJGlxNdh+bFSRJkqQuVpAkSdLAHKQtSZI0ZawgSZKkwRROFClJkjRtrCBJkqSBBIh3sQ1Pkv2SXJ5kVZI/m2X/Zkk+3e4/K8ny0UcpSZKmzdgSpCRLgPcBzwIeDhyc5OFdzQ4Hbq6qXYH3AO8cbZSSJGlW60a0jck4K0h7Aauq6kdVdRfwKeCArjYHACe0j08EnpYkI4xRkiRNoXGOQdoRuKrj+dXA4+dqU1VrktwK3Be4YSQRSpKkWU36GKRxJkizVYK6P+1+2pDkCOAIgE232HbDI5MkSVNtnF1sVwM7dzzfCbhmrjZJNgG2AW7qPlBVHVdVK6pqxdLNthxSuJIkCfj1PEij2MZknAnSOcBuSR6UZFPgIOCkrjYnAS9rHx8IfKNqwmt6kiRp7MbWxdaOKXot8DVgCfDhqrokyTHAyqo6CTge+HiSVTSVo4PGFa8kSZpRMOH1irFOFFlVpwCndL12VMfjXwIvGHVckiRpujmTtiRJGlgmu4DkWmySJEndTJAkSZK62MUmSZIGN+GDtK0gSZIkdTFBkiRJgynIutFs80myc5JvJrksySVJXj9Lm22SnJzkgrbNYfMd1y42SZK0mK0B3lRV5yXZCjg3yalVdWlHm9cAl1bVc5NsB1ye5BNVdddcBzVBkiRJg1sgY5Cq6lrg2vbx7Ukuo1nsvjNBKmCrJAG2pJl8ek2v45ogSZKkiZBkObAncFbXrmNpli+7BtgKeFFV9ezAcwySJEka3OgWq12WZGXHdsRs4STZEvgc8Iaquq1r9zOB84EHAHsAxybZutflWUGSJEkL2Q1VtaJXgyRLaZKjT1TV52dpchjwjnbB+1VJfgw8FDh7rmOaIEmSpIFlgYxBascVHQ9cVlXvnqPZT4CnAacnuT/wEOBHvY5rgiRJkhazJwMvAS5Kcn772pHALgBV9QHg7cBHk1wEBPjTqrqh10FNkCRJ0uAWSAWpqs6gSXp6tbkGeMYgx3WQtiRJUhcrSJIkaTAF9DHL9WJmBUmSJKmLFSRJkjSQUAvmLrZhsYIkSZLUxQRJkiSpi11skiRpcHaxSZIkTRcrSJIkaXBWkCRJkqaLFSRJkjQYJ4qUJEmaPlaQJEnSwJwoUpIkacpYQZIkSYOzgiRJkjRdrCBJkqQBlRUkSZKkaWMFSZIkDaawgiRJkjRtrCBJkqTBOZO2JEnSdDFBkiRJ6mIXmyRJGphLjUiSJE0ZK0iSJGlwVpAkSZKmixUkSZI0mALWWUGSJEmaKlaQJEnSgFysVpIkaepYQZIkSYOzgiRJkjRdxlJBSnIf4NPAcuAK4IVVdfMs7dYCF7VPf1JV+48qRkmS1IMVpKH4M+A/qmo34D/a57O5o6r2aDeTI0mSNBLjGoN0ALB3+/gE4DTgT8cUiyRJGoTzIA3N/avqWoD25/3maLd5kpVJzkzyvNGFJ0mSptnQKkhJvg5sP8uuPx/gMLtU1TVJfgv4RpKLquqHs5zrCOCI9umd3/ncH188eMSLxjLghnEHMURe3yL1uv8DTPD1MdnXBl7fYveQ0Z6uoNaN9pQjNrQEqar2nWtfkp8l2aGqrk2yA3DdHMe4pv35oySnAXsCv5EgVdVxwHHtsVdW1YqNcAkLkte3uHl9i9ckXxt4fYtdkpXjjmHSjKuL7STgZe3jlwFf6m6Q5N5JNmsfLwOeDFw6sgglSdLUGleC9A7g6Ul+ADy9fU6SFUk+1LZ5GLAyyQXAN4F3VJUJkiRJC0HVaLYxGctdbFV1I/C0WV5fCbyiffwd4JHrcfjjNiy6Bc/rW9y8vsVrkq8NvL7FbtKvb+RSEz7RkyRJ2ri22fT+9aTtDx7Jub561XvPHcf4MZcakSRJ6rLoE6Qk90lyapIftD/vPUe7tUnOb7eTRh3noJLsl+TyJKuS/MZM40k2S/Lpdv9ZSZaPPsr118f1HZrk+o7v7BXjiHN9JPlwkuuSzDrdRBr/0F77hUkeM+oYN0Qf17d3kls7vrujRh3j+kqyc5JvJrksySVJXj9Lm0X7/fV5fYv5+9s8ydlJLmiv7+hZ2iza3519Xt/ofndO+BikRZ8gMYHLliRZArwPeBbwcODgJA/vanY4cHNV7Qq8B3jnaKNcf31eH8CnO76zD82yf6H6KLBfj/3PAnZrtyOA948gpo3po/S+PoDTO767Y0YQ08ayBnhTVT0MeALwmln+21zM318/1weL9/u7E9inqh4N7AHsl+QJXW0W7e9O+rs+WLy/OxeUSUiQDqBZroT25yTMuL0XsKqqflRVdwGfornOTp3XfSLwtCQZYYwbop/rW7Sq6tvATT2aHAB8rBpnAtu284EtCn1c36JVVddW1Xnt49uBy4Adu5ot2u+vz+tbtNrvZHX7dGm7dZcgFu3vzj6vb5QBWUFa4CZx2ZIdgas6nl/Nb/4S+1WbqloD3ArcdyTRbbh+rg/g+W0XxolJdh5NaCPR7/UvZk9suwG+kuQR4w5mfbRdL3sCZ3Xtmojvr8f1wSL+/pIsSXI+zQTEp1bVnN/fIvzd2c/1weT+7hypRZEgJfl6kotn2QapOuzSjoL/feDvk/z2kMLdGGb710x3Gt1Pm4Wqn9hPBpZX1aOAr/Prf/FNgsX83fXjPOCBbTfAPwJfHHM8A0uyJfA54A1VdVv37lnesqi+v3mub1F/f1W1tqr2AHYC9kqye1eTRf399XF9I/rdOaLqkRWk3qpq36rafZbtS8DPZsrb6XPZEuA0mn85LVRXA51Z/07ANXO1SbIJsA2Lp9tj3uurqhur6s726QeBx44otlHo5/tdtKrqtplugKo6BViaZjb8RSHJUprk4RNV9flZmizq72++61vs39+MqrqF5nd993i5xfy781fmur4J/905UosiQZrHJC5bcg6wW5IHJdkUOIjmOjt1XveBwDdq8UxqNe/1dY3p2J9mrMSkOAl4aXs31BOAW2e6iSdBku1nxnQk2Yvm98yN442qP23cxwOXVdW752i2aL+/fq5vkX9/2yXZtn28BbAv8L2uZov2d2c/1zey350FrFs3mm1MxjKT9kb2DuAzSQ4HfgK8AJplS4BXVdUraJYt+eck62j+Z1/Qy5ZU1ZokrwW+BiwBPlxVlyQ5BlhZVSfR/JL7eJJVNP/6OWh8EQ+mz+t7XZL9ae66uQk4dGwBDyjJJ4G9gWVJrgbeRjOYkqr6AHAK8GxgFfAL4LDxRLp++ri+A4FXJ1kD3AEctFj+ANH84+klwEXtOA+AI4FdYCK+v36ubzF/fzsAJ7R3yt4D+ExVfXlSfnfS3/Ut2t+dC40zaUuSpIFss/R+9aT7HjiSc331Z+93Jm1JkqSFYBK62CRJ0qhNeA+UFSRJkqQuJkiSJEld7GKTJEkDKlhnF5ukEUmytl2B++Ikn01yz/b176zn8ZYnuXiOfTsk+fKAx3tAkhP7aHfKzHwtg0ryl0ne3D7+aJK+b5VJclqSy9tlMs5JskfX/j2TVJJndry2aZJvt5MGShJggiQtNHe0K3DvDtwFvAqgqp40hHO9kWam3b4k2aSqrqmqeROWqnp2O9PvOBzSLpPxT8DfdO07GDij/QlAu2DyfwAvGlmE0mJXULVuJNu4mCBJC9fpwK4ASVa3P3+vXZswbQXo++3Mx0uS/E1bNbkwyR/0cfznA19tj7t5ko8kuSjJd5M8tX390LaSdTLw750VqST3TPKZ9nyfTnJWO0ErSa5Isqxtf1mSDya5JMm/tzMAk+SVbbwXJPncTLVsNkmeluQLHc+fnmS2ZUA6/Rcdi8i2s0MfSDNx3jOSbN7R9ovAIX18ZpKmhAmStAC13T3PAi7qfL2qvgD8FHgNTfXnbVX1U+BwmiUvHgc8Dnhlkgf1OP6DgJs71mx6TXv8R9JUV07oSCCeCLysqvbpOswftsd4FPB25l7zaTfgfVX1COAWmsQM4PNV9bi22nNZew1z+QbwsCTbtc8PAz7Soz00a1R1LrT6ZODHVfVDmjWsnt2x72Kaz01Sv9bVaLYxsc9dWli26FgC4nSaZRG6/RHNH/Qzq+qT7WvPAB7VMV5nG5rE5PtznGcH4PqO50+hWbmdqvpekiuBB7f7Tq2q2RbzfArw3vY9Fye5cI5z/biqZq7pXGB5+3j3JP8H2BbYkmbpmVlVVSX5OPDiJB+hSdpeOkfzTyS5F80yNo/peP1g4FPt40/RLLnx+fb4a5PclWSrqrp9rjgkTQ8TJGlhuaOq9pinzY7AOuD+Se5RTSd9gD+qqv+WZCRZPtd5gM4upvQ438/neL3Xezrd2fF4LbBF+/ijwPOq6oIkh9Ks79bLR4CTgV8Cn62qNXO0OwS4gGadxvcB/6tdu+r5wP5J/ryN/b5dCdFm7bEl9cOJIiUtFG3X20eA36fplnpju+trNAuMLm3bPbitoszl+/y6kgPwbdoxOEkeTLN46eXzhHMG8ML2PQ8HHjnItQBbAde2Mc87/qeqrgGuAd5Kk1z1ant32+4JSR5Gs+r5BVW1c1Utr6oHAp8DntfGf1/g+vZ9kmQFSVpkjgROr6rT2664c5L8G/AhmoTnvHYw8vW0f/xnU1U/T/LDJLtW1SqaO74+kOQimlXAD62qO5tDzemfaMYqXQh8F7gQuHWAa/kL4CzgSpqxVlv18Z5PANtV1aXzNayqO5L8HfBmmu62L3Q1+RzwauDjwFOBU/oPXZpyVbBufHeYjUJqwktkkmaX5PeAx1bVW9fz/UuApVX1yyS/TXOr/IPb2+aHIsmxwHeraraxWRty3M8Db6mq+apmkoBtliyrJ265/0jO9bXbPnJuVa0Yyck6WEGSplRVfaHtWlpf9wS+2XaRBXj1kJOjc2nGQ71pIx93U+CLJkfSgCa8wGKCJE2xqvrQBrz3dmBk/6qrqrmmEdjQ494FfGwYx5a0eJkgSZKkgdWEj0HyLjZJkqQuVpAkSdKAauLHIFlBkiRJ6mKCJEmS1MUuNkmSNJhirAvJjoIVJEmSpC5WkCRJ0uDK2/wlSZKmihUkSZI0kALKMUiSJEnTxQqSJEkaTJVjkCRJkqaNFSRJkjQwxyBJkiRNGStIkiRpcI5BkiRJmi6pmuw+REmStHEl+SqwbESnu6Gq9hvRuX7FBEmSJKmLXWySJEldTJAkSZK6mCBJkiR1MUGSJEnqYoIkSZLU5f8Dq5+vTGAVxVcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAIuCAYAAABEs/foAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3debhkVXnv8e/PpoFWEBRQkKmNgBMqaEuckouIikbBRFQIDuBANBr1qnGKwYA3N5pBbxJQg6KicUABtTGowSgCMQwNMiPaURACKjO0ItDd7/1j7yNlcYaqpqvqnKrv53n2c6pqr9r73VVwztvvWnutVBWSJEm6231GHYAkSdJ8Y4IkSZLUxQRJkiSpiwmSJElSFxMkSZKkLiZIkiRJXTYYdQCSJGlhefbT71c33LhmKOc698I7vllV+wzlZB1MkCRJUl9uuHENZ39zh6Gca9E2P9pyKCfqYhebJElSFytIkiSpLwWsZe2owxgoK0iSJEldrCBJkqQ+FWvKCpIkSdJEsYIkSZL60oxBqlGHMVBWkCRJkrpYQZIkSX3zLjZJkqQJYwVJkiT1pSjWlGOQJEmSJooVJEmS1DfvYpMkSZowJkiSJEld7GKTJEl9KWCNXWySJEmTxQqSJEnqm4O0JUmSJowVJEmS1JcCJ4qUJEmaNFaQJElS38Z7qVorSJIkaQFLsnGSs5NckOSSJIfP0O7FSS5t23xuruNaQZIkSX0paj7Ng3QHsFdVrUqyGDgjyder6sypBkl2Bt4FPLWqbkryoLkOaoIkSZIWrKoqYFX7dHG7dWdvrwGOqqqb2vf8Yq7jmiBJkqT+FKyZNwUkSLIIOBfYiSYROquryS5tu/8EFgF/VVXfmO2YjkGSJEnz2ZZJVnRsh3Y3qKo1VbUbsB2wR5Jdu5psAOwM7AkcCHw8yeazndQKkiRJ6ksx1LvYrq+qZb00rKqbk5wK7ANc3LHrauDMqroL+EmSy2kSpnNmOpYVJEmStGAl2WqqGpRkCbA38IOuZl8Bnt622ZKmy+3Hsx3XCpIkSepTWENGHcSUbYBj23FI9wG+WFVfS3IEsKKqlgPfBJ6V5FJgDfDnVXXDbAc1QZIkSQtWVV0I7D7N64d1PC7gLe3WE7vYJEmSupggSdNI8nvtIL5hnOvhSb6f5LYkbxzGOTU+2lmE353kuaOORZOjgLU1nG1UTJA0ryW5IsntbfJwc5LvJXltkoH+t1tVp1fVw7vi2HtAp3s7cGpVbVpV/9S9M8mjk/x7kpvaz+Bc/xhOL8k2SZYnuSZJJVnatf9TSe5MsqpjWzSaaO+9NvbjgD8EPp9kn679uyT5apLrktyY5JtJHj7twST9FhMkLQTPr6pNgR2B9wPvAI4ZbUjr1Y7AJbPsPwk4BXgw8CDgjcCt6zuIJAtqTOIM8a4FvgG8cJa3/m1VbdKxrRlQLMNwNLAR8PvAvsAnk+zRsX9zYDnwcJr/fs4GvjrsIDWe1rQDtQe9jYoJkhaMqrqlvRvhJcArpiYCS7JRkr9P8tMkP0/y0fZWT5LsmeTqJG9N8osk1yY5ZOqYSZ7bLl54W5L/SfK2zve1jz8D7ACc1FYc3p7k35L8WWd8SS5M8oLpYk+yb7tA4s1JTk3yyPb1b9Pcenpke+xdut63JfBQ4GNVdWe7/WdVndHR5jVJVrYVguVJHtK+vrStomzQ0fbUJK9uHx+c5D+TfCjJjcBfdRzvsvYzuTTJ49vXH5LkhLYa8ZPO7sAke7QTuN3afgcfnOFzmPo+3p3k+rYyd1DH/l6+y3ck+Rnwye7jV9XPq+rDzDK3Sa+SPCzJt5Pc0Mb62XRMLNfG/o4kFwK/TLJBku2TnNh+RjckObJtu1OS7ya5pT3WcR3HeUSSU9rv7/IkL+7YtyTJPyS5sn3vGR2fx98AWwL7VdXtVfVd4I+Az01Viarq7Ko6pqpubOd/+RDw8CRb3NvPRxp3JkhacKrqbJpJv36vfekDNHNa7EYzzfy2wGEdb9ka2Kx9/VXAUUke0O47BviTtkK1K/Dtac73MuCnNJWsTarqb4FjgZdOtUnyuPb4J3e/v016Pg+8GdiqbXNSkg2rai/gdOAN7bF/2PX2G4CVwL8meUGSB3cdey/gb4AX09zqeiXwhek+txn8Ls1cIA8C/jrJi2gSpZcD96epStyQpkvzJOCC9jqfAbw5ybPb4/wj8I9VdX/gYcAXZznn1jR/2LcFXgEcnbu7fXr5Lh9IU3W7x2y6PfrTNhk5N8lslabQfLYPAR4JbE+bRHY4EPgDmkpNAV+j+Q6WtrFPfRfvA/4deADNTL//DJDkfjTVwc/RfAcHAh9O8uj2fX8PPAF4Cs11v512fr6qeldV7VdVd0wFU1X/VVU7VdVM4+d+H/jZXLc3S3MprCBJ89U1wAOThGYRwv/d/iv5NuD/Agd0tL0LOKKq7qqqk2kWNXx4x75HJbl/Vd1UVef1eP6vAjunWSEa4GXAcVV15zRtXwL8W1Wd0v4r/u+BJTR/9GbV3pr6dOAK4B+Aa5Oc1nHeg4BPVNV57R/KdwFPTtfYm1lcU1X/XFWrq+p24NU0XVDnVGNlVV0JPBHYqqqOaKtYPwY+xt2f813ATkm2rKpVnatoz+Avq+qOturxb8CLe/wu1wLvbd97e4/X2OmfaGbPfRDwl8Cnkjx1uobttZ/Snus64IPA/+o+XlVd1cayB00y9edV9cuq+nVHpe8umqTuIV2vPw+4oqo+2X4H5wEnAPu3SekrgTdV1f+0Syl8rzMh6keS7YCj6OM2Z2mSmSBpodoWuJGmInNf4Ny2++pmmjEoW3W0vaGqVnc8/xWwSfv4hcBzgSvbLpAn93Ly9o/UF4GXtn/IDgQ+M0Pzh9BUFabeuxa4qr2GXs51dVW9oaoeRvNH9pfAp2c49iqaqlNPx27j6LQ98N/TtNsReMjUZ9x+zu+mGdcCTWVuF+AHSc5J8rxZznlTVf2y4/mV7XX08l1eV1W/7vHa7qFNJG9ok5GTgc/SdEvdQ5IHJflCmq7XW4F/pal8der8/LYHruz6b23K22kqUmen6Wp9Zfv6jsDvdn2uB3F3lW1jpv8++pJkK5oK1oer6vP39ngSwNrKULZRWVCDMiWAJE+kSQDOAK4HbgceXVX/0++xquocYL8ki4E30CQ920/XdJrXjqVJis4AflVV/zXDaa4BHtMRf9pzrEu8VyU5iqbLburYO3Yc+37AFu2xp5KQ+3L3oO6tuw/Z9fwqmi6yblcBP6mqnafZR1X9CDiwTRb/CDg+yRZdidCUByS5X8e+HWjWTOrlu1zfN/0WzFjD/5t2/2Or6oY048uOnCWeq4AdkmzQnSRV1c9oqmMkeRrwrSSnte/5blU9s/vk7Wf5a5rv44K+r+zu4zyAJjlaXlV/va7HkSaNFSQtGEnu31YmvgD8a1Vd1FZjPgZ8KMmD2nbbdoyNme14GyY5KMlmbdfXrTRT0E/n58DvdL7QJkRrabq+ZqoeQZN0/UGSZ7SJ2FuBO4Dv9RDjA5Ic3g7yvU+aQduvBKa6sD4HHJJktyQb0XRJnVVVV7TdQv9DU+Va1FYtpkt+On0ceFuSJ6SxU5Idae5+urUdlLykPd6ubbJKkpcm2ar9Pm5ujzXb3WGHt5//79F0M33p3nyXXZ/ZxjR3dgFs1D6f2rd/kk3az/JZNOPIls9wqE1pumNvTrIt8OdznPps4Frg/Unul2Z+oqe2531R28UFcBNTQziaMUu7JHlZksXt9sQkj2w/j08AH0wzQH5Rkie333Ovn8X9aZZY+M+qemev75Pm4hgkaX44KcltNP/a/guasSCHdOx/B81A5jPbrpBvcfcYo7m8DLiifd9r6Rh43eVvgPe03SBv63j90zTVoX+d6QTtgNmX0gzMvR54Ps2A7+nGK3W7k2bA77doEriLaZKrg9tj/wfNWJoTaP44P4zfHrPzGpo/7DcAj2aOpKyqvgT8NU3idRvNAo8PrOZW+OfTDJ7+SXsdH6cZ/A7NytmXJFlFM2D7gFm6wn5GkyRcQ9PF9dqqmlpY8t58l1Nup0lsoFmwsnOs0ptoksabgb8DXlNVp85wnMOBxwO30IyTOnG2k3Z8RjvRDOq/mmb8GTRjuM5qP5/lNOOKftKOs3oWzXd2Dc1n8wHuTvDeBlxEc1feje2+fn5v/2F77kPy23M/7dDHMaSJlGYMqKR1keTlwKFV9bRRx7IQJNmTpvq33VxtJc1fj3zsRvXpr20zlHPtseOV51bVsqGcrIMVJGkdJbkv8Kc0k/VJksbIyBKktn/+7CQXtHd1HD5Nm4PTTLh2fru9ehSxSt3acTHX0YxN+tyIw5GkofMutsG5A9irqla1A1fPSPL1aeZPOa6q3jCC+KQZVdU3gfuNOo6Fph3vY/eapHlvZAlSOwHe1EDKxe3mgChJkua5qbvYxtlIxyC1t62eD/wCOKWqzpqm2QvTrHF1fJLp5qeRJElar0Y6UWR7W+xuaRaA/HKSXavq4o4mJwGfr6o7kryWZmK+vbqPk+RQ2nWZ7rPx4ics2f6BQ4heg/CIJTfP3Ujz0p0127RHmu+uuGjTUYege+E2brq+qraau6V6NS9m0q6qm5OcSjOXysUdr3cuqPgxmjlApnv/0bR3Em2yy9a121EvH1ywGqjTHvPlUYegdXT16lVzN9K89aodnKliIftWHX/l3K3Wp7CmxvtG+FHexbZVWzkiyRJgb5pJ3TrbdE6ysC9w2fAilCRJk2qUFaRtgGOTLKJJ1L5YVV9LcgSwoqqWA29Msi+wmmYW2YNHFq0kSQKaQdprx3wqxVHexXYhsPs0rx/W8fhdwLuGGZckSdK8GIMkSZIWFm/zlyRJmjBWkCRJUl+qvItNkiRp4lhBkiRJfVvrGCRJkqTJYgVJkiT1pVmsdrxrLON9dZIkSevACpIkSeqTd7FJkiRNHCtIkiSpL5OwFtt4X50kSdI6MEGSJEnqYhebJEnq25pyokhJkqSJYgVJkiT1pYgTRUqSJE0aK0iSJKlva50oUpIkabJYQZIkSX1xsVpJkqQJZAVJkiT1pYjzIEmSJE0aK0iSJKlvLlYrSZI0YawgSZKkvlTBGudBkiRJmixWkCRJUp/CWryLTZIkaaKYIEmSJHWxi02SJPWlcJC2JEnSxLGCJEmS+uZitZIkSRPGCpIkSepLEda6WK0kSdJksYIkSZL65hgkSZKkCWMFSZIk9aWAtc6DJEmSNFmsIEmSpD6FNS5WK0mSNFmsIEmSpL44BkmSJGkCWUGSJEl9cwySJEnShLGCJEmS+lIVxyANSpKNk5yd5IIklyQ5fJo2GyU5LsnKJGclWTr8SCVJ0qQZZfp3B7BXVT0O2A3YJ8mTutq8CripqnYCPgR8YMgxSpKkCTSyLraqKmBV+3Rxu1VXs/2Av2ofHw8cmSTteyVJ0oissYttcJIsSnI+8AvglKo6q6vJtsBVAFW1GrgF2GK4UUqSpEkz0kHaVbUG2C3J5sCXk+xaVRd3NJnuHsJ7VI+SHAocCrDRg+4/kFglSVKjgLXe5j94VXUzcCqwT9euq4HtAZJsAGwG3DjN+4+uqmVVtWyDzZYMOFpJkjTuRlZBSrIVcFdV3ZxkCbA39xyEvRx4BfBfwP7Atx1/JEnSqGXsxyCNsottG+DYJItoKllfrKqvJTkCWFFVy4FjgM8kWUlTOTpgdOFKkqRJMcq72C4Edp/m9cM6Hv8aeNEw45IkSbNrFqt1DJIkSdJEcakRSZLUtzVjXmMZ76uTJElaB1aQJElSX4o4BkmSJGnSWEGSJEl9WzvmNZbxvjpJkqR1YAVJkiT1pQrWOAZJkiRpspggSZIkdbGLTZIk9c3b/CVJkiaMFSRJktSXZqLI8a6xjPfVSZIkrQMrSJIkqW9rcAySJEnSRLGCJEmS+lJ4F5skSdLEsYIkSZL65F1skiRJ81aSjZOcneSCJJckOXyWtvsnqSTL5jquFSRJktS3tfPnLrY7gL2qalWSxcAZSb5eVWd2NkqyKfBG4KxeDmoFSZIkLVjVWNU+XdxuNU3T9wF/C/y6l+OaIEmSpL5UwZrKULZeJFmU5HzgF8ApVXVW1/7dge2r6mu9XqMJkiRJms+2TLKiYzu0u0FVramq3YDtgD2S7Dq1L8l9gA8Bb+3npI5BkiRJfRviXWzXV9Wcg6oBqurmJKcC+wAXty9vCuwKnJoEYGtgeZJ9q2rFTMeygiRJkhasJFsl2bx9vATYG/jB1P6quqWqtqyqpVW1FDgTmDU5AhMkSZK0sG0DfCfJhcA5NGOQvpbkiCT7rutB7WKTJEl9KTJvlhqpqguB3ad5/bAZ2u/Zy3GtIEmSJHWxgiRJkvo2jyaKHAgrSJIkSV2sIEmSpL4UzJsxSINiBUmSJKmLFSRJktS3IU4UORLjfXWSJEnrwAqSJEnqT82feZAGxQqSJElSFytIkiSpL4XzIEmSJE0cK0iSJKlvjkGSJEmaMFaQJElSX5xJW5IkaQKZIEmSJHWxi02SJPXNLjZJkqQJM7IEKcn2Sb6T5LIklyR50zRt9kxyS5Lz2+2wUcQqSZLuVjRLjQxjG5VRdrGtBt5aVecl2RQ4N8kpVXVpV7vTq+p5I4hPkiRNqJElSFV1LXBt+/i2JJcB2wLdCZIkSZpnXGpkCJIsBXYHzppm95OTXJDk60kePdTAJEnSRBr5XWxJNgFOAN5cVbd27T4P2LGqViV5LvAVYOdpjnEocCjA/bdZwtO3/uGAo9agnHr7vMjZtQ4OOeUtow5B98bH1446At0brzp+uOcr72IbqCSLaZKjz1bVid37q+rWqlrVPj4ZWJxky2naHV1Vy6pq2f0esOHA45YkSeNtZBWkJAGOAS6rqg/O0GZr4OdVVUn2oEnobhhimJIkqcskLDUyyi62pwIvAy5Kcn772ruBHQCq6qPA/sDrkqwGbgcOqKoaRbCSJGlyjPIutjNg9iHwVXUkcORwIpIkSb0a9wqSI2IlSZK6jPwuNkmStLBMzaQ9zqwgSZIkdbGCJEmS+lZWkCRJkiaLCZIkSVIXu9gkSVLfXKxWkiRpwlhBkiRJfSkXq5UkSZo8VpAkSVLfvM1fkiRpwlhBkiRJfXKpEUmSpIljBUmSJPXNMUiSJEkTxgqSJEnqS+E8SJIkSRPHCpIkSepPNbNpjzMrSJIkSV2sIEmSpL6txTFIkiRJE8UESZIkqYtdbJIkqS+FE0VKkiRNHCtIkiSpTy5WK0mSNHGsIEmSpL45UaQkSdKEsYIkSZL65l1skiRJE8YKkiRJ6kuVFSRJkqSJYwVJkiT1zXmQJEmSJowVJEmS1DfnQZIkSZowVpAkSVLfvItNkiRpwpggSZIkdbGLTZIk9aWIXWySJEmTxgqSJEnq25jf5W8FSZIkqZsVJEmS1B8Xq5UkSZo8VpAkSVL/xnwQ0sgqSEm2T/KdJJcluSTJm6ZpkyT/lGRlkguTPH4UsUqSpMkyygrSauCtVXVekk2Bc5OcUlWXdrR5DrBzu/0u8JH2pyRJGiHHIA1IVV1bVee1j28DLgO27Wq2H/DpapwJbJ5kmyGHKkmSJsy8GIOUZCmwO3BW165tgas6nl/dvnbtUAKTJEnTKscgDVaSTYATgDdX1a3du6d5yz2+kiSHJlmRZMUvb7pzEGFKkqQJMtIKUpLFNMnRZ6vqxGmaXA1s3/F8O+Ca7kZVdTRwNMBDHr35mOe0kiSNVuEYpIFJEuAY4LKq+uAMzZYDL2/vZnsScEtV2b0mSZIGapQVpKcCLwMuSnJ++9q7gR0AquqjwMnAc4GVwK+AQ0YQpyRJ6lTAmFeQRpYgVdUZTD/GqLNNAa8fTkSSJEmNnhKkJA8AHgLcDlxRVWsHGpUkSdIIzZggJdmMpnpzILAhcB2wMfDgJGcCH66q7wwlSkmSNK+M+23+s1WQjgc+DfxeVd3cuSPJE4CXJfmdqjpmkAFKkiQN24wJUlU9c5Z95wLnDiQiSZI0/415BWnG2/yTPDvJ/tO8flCSGZMnSZKkhW62LrbDgedP8/p/AF8GThlIRJIkaZ7LRE8Ued+quq77xar6GXC/wYUkSZI0WrNVkDZOskFVre58sV0eZMlgw5IkSfPapI5BAk4EPpbkN9Wi9vFH232SJEljabYE6T3Az4Erk5yb5FzgCpr5kN4zhNgkSdJ8VM1itcPYRmW22/xXA+9McjiwU/vyyqq6fSiRSZIkjchst/m/HaBNiB5RVRdNJUdJ/u+Q4pMkSfNRDWkbkdm62A7oePyurn37DCAWSZKkeWG2u9gyw+PpnkuSpIky3qnAbBWkmuHxdM8lSZLGxmwVpMcluZUmRVzSPqZ9vvHAI5MkSfPXPCmVJNkYOA3YiCavOb6q3tvV5i3Aq4HVNHfjv7KqrpztuLPdxbbo3gYtSZI0YHcAe1XVqnYy6zOSfL2qzuxo831gWVX9KsnrgL8FXjLbQWerIAGQ5DHAI9qnl1bVJesWvyRJ0vpVVQWsap8ubrfqavOdjqdnAi+d67gzJkhJNgO+CuwAXEDTtfaYJD8F9quqW2d6ryRJGnPzpIsNIMki4FyaeRuPqqqzZmn+KuDrcx1ztkHa7wNWADtV1R9W1QuAnYFzgL/uOWpJkqR1t2WSFR3bod0NqmpNVe0GbAfskWTX6Q6U5KXAMuDv5jrpbF1sewOPraq1HQGsTfJu4KK5DixJksZUAcNbBuT6qlrWS8OqujnJqTTzNV7cuS/J3sBfAP+rqu6Y61izVZDubJcb6T75apoBUZIkSSOVZKskm7ePl9AUeH7Q1WZ34F+AfavqF70cd7YK0sbtAaebJHKjXgOXJEnjp+bPGKRtgGPbcUj3Ab5YVV9LcgSwoqqW03SpbQJ8KQnAT6tq39kOOluCdC3wwRn2/azf6CVJkta3qroQ2H2a1w/reLx3v8edbR6kp/d7MEmSNCHmTwVpIGYbgyRJkjSR5pwoUpIk6R6GdxfbSFhBkiRJ6jJngpTkhCR/kMRkSpIkAZAazjYqvSQ9HwH+GPhRkvcnecRcb5AkSVrI5kyQqupbVXUQ8HjgCuCUJN9Lcki7aq4kSZokNcRtRHrqNkuyBXAw8Grg+8A/0iRMpwwsMkmSpBGZ8y62JCcCjwA+Azy/qq5tdx2XZMUgg5MkSfNRxv4utl5u8z+yqr493Y5eF4+TJElaSGZMkJL80XSPp1TViYMKSpIkaZRmqyA9f5Z9BZggSZI0qcZ8qZHZ1mI7ZJiBSJIkzRezdbG9ZbY3VtUH1384kiRpQZjUChKw6dCikCRJmkdm62I7fJiBSJKkBWSCK0gAJNkYeBXwaGDjqder6pUDjEuSJGlkeplJ+zPA1sCzge8C2wG3DTIoSZI0jxXNRJHD2EaklwRpp6r6S+CXVXUs8AfAYwYbliRJ0uj0MpP2Xe3Pm5PsCvwMWDqwiCRJ0ryXSR+DBByd5AHAXwLLgU2AwwYalSRJ0gjNmSBV1cfbh98Ffmew4UiSpAVh0itISTYCXkjTrfab9lV1xODCkiRJGp1eBml/FdgPWA38smO715J8Iskvklw8w/49k9yS5Px2s2tPkiQNXC9jkLarqn0GdP5PAUcCn56lzelV9bwBnV+SJOkeeqkgfS/JQG7rr6rTgBsHcWxJkjQ4qeFso9JLgvQ04Nwklye5MMlFSS4cdGAdnpzkgiRfT/LoIZ5XkiRNqF662J4z8Chmdh6wY1WtSvJc4CvAzt2NkhwKHAqw0ZLN+e67nzLcKLXefHav3xt1CFpHG6wZ3Yy3uvfet9+XRh2C7oWDRnHSEc5yPQwzVpCS3L99eNsM28BV1a1Vtap9fDKwOMmW07Q7uqqWVdWyxRvebxihSZKkMTZbBelzwPOAc2lmO+hMFYshzImUZGvg51VVSfagSehuGPR5JUnSZJsxQZq6c6yqHjqokyf5PLAnsGWSq4H3Aovb834U2B94XZLVwO3AAVU15lNTSZI0zxVOFJnk8dO8fAtwZVWtvjcnr6oD59h/JM00AJIkSUPTyyDtDwOPBy6k6WZ7DHABsEWS11bVvw8wPkmSNB+NeQWpl9v8rwB2bwdBPwHYDbgY2Bv42wHGJkmSNBK9VJAeUVWXTD2pqkuT7F5VP07G+xY/SZI0vVFO4jgMvSRIlyf5CPCF9vlLgB+2i9jeNbDIJEmSRqSXBOlg4E+BN9OMQToDeBtNcvT0gUUmSZLmr0mvIFXV7cA/tFu3Ves9IkmSpBGbMUFK8sWqenGSi5gmT6yqxw40MkmSNH9NcAXpTe3P5w0jEEmSpPlitpm0r02yCDimqvYeYkySJGkeS43/XWyzzoNUVWuAXyXZbEjxSJIkjVwvd7H9GrgoySnAL6derKo3DiwqSZI0v9V4z4XYS4L0b+0mSZI0EXq5zf/YJBsCu7QvXV5VThApSdIkG/MxSHMmSEn2BI6lWZMtwPZJXlFVpw02NEmSpNHopYvtH4BnVdXlAEl2AT4PPGGQgUmSJI1KLwnS4qnkCKCqfphk8QBjkiRJ89y43+bfS4K0IskxwGfa5wcB5w4uJEmSpNHqJUF6HfB64I00Y5BOAz48yKAkSdI8N+kVpKq6A/hgu0mSJI29GWfSTnJSkudPN94oye8kOSLJKwcbniRJmnfq7uVGBr2NymwVpNcAbwH+X5IbgeuAjYGHAiuBI6vqq4MPUZIkabhmW6z2Z8DbgbcnWQpsA9wO/LCqfjWU6CRJ0vw06WOQAKrqCpqJIiVJksZeTwmSJEnSbxnzCtKMg7QlSZImlRUkSZLUt4mdSTvJRUxfQAtQVfXYgUUlSZI0QrNVkJ43tCgkSZLmkdlu879y6nGSHYGdq+pbSZbM9j5JkqSFbs5B2kleAxwP/Ev70nbAVwYZlCRJmudqSNuI9HIX2+uBpwK3AlTVj4AHDTIoSZKkUeolQbqjqu6cepJkA8Z+9gNJkjTJehlL9N0k7waWJHkm8KfASYMNS5IkzVsjXkh2GHqpIL2TZqHai4A/AU4G3jPIoCRJkkaplwrSllX1MeBjUy8keThw+cCikiRJ85sVJE5P8uKpJ0neCnx5cCFJkiSNVi8VpD2Bo5O8CHgwcBmwxyCDkiRJ89ykV5Cq6lrgG8CTgaXAp6tq1SQwmgQAABWxSURBVIDjkiRJGpk5K0hJTgGuBXalmSTyE0lOq6q3DTo4SZI0/wTvYgM4qqpeXlU3V9XFwFOAWwYclyRJ0sjMWUGqqq90PV8NvG9gEUmSpPlvzCtIMyZISc6oqqcluY3f/hgCVFXdf+DRSZIkjcCMCVJVPa39uenwwpEkSfPeBMykPVsFaWPgtcBOwIXAJ9ruNUmSpLE22xikY4G7gNOB5wKPBt40jKAkSdI8N6kVJOBRVfUYgCTHAGcPJyRJkqTRmi1BumvqQVWtTjKEcCRJ0oIw5hWk2eZBelySW9vtNuCxU4+T3Lo+Tp7kE0l+keTiGfYnyT8lWZnkwiSPXx/nlSRJms2MCVJVLaqq+7fbplW1Qcfj9XWL/6eAfWbZ/xxg53Y7FPjIejqvJEnSjHpZrHZgquq0JEtnabIfzdpvBZyZZPMk27Trw0mSpBEZ99v8e1lqZJS2Ba7qeH51+5okSdLAjLSC1IPpRobfI2dNcihNFxwbLdl80DFJkiQrSCN1NbB9x/PtgGu6G1XV0VW1rKqWLd7wfkMLTpIkjaf5niAtB17e3s32JOAWxx9JkjRiNcRtREbaxZbk88CewJZJrgbeCywGqKqPAifTzOK9EvgVcMhoIpUkSZNk1HexHTjH/gJeP6RwJElSj7yLTZIkacLM97vYJEnSfGQFSZIkabJYQZIkSX1zDJIkSdKEsYIkSZL6ZwVJkiRpslhBkiRJ/RnxLNfDYAVJkiSpiwmSJElasJJsnOTsJBckuSTJ4dO02SjJcUlWJjkrydK5jmuCJEmS+pIhbj24A9irqh4H7Abs0y5w3+lVwE1VtRPwIeADcx3UBEmSJC1Y1VjVPl3cbt0jpPYDjm0fHw88I8ms+ZcJkiRJ6l8NaetBkkVJzgd+AZxSVWd1NdkWuAqgqlYDtwBbzHZMEyRJkjSfbZlkRcd2aHeDqlpTVbsB2wF7JNm1q8l01aJZ0y9v85ckSX0b4lIj11fVsl4aVtXNSU4F9gEu7th1NbA9cHWSDYDNgBtnO5YVJEmStGAl2SrJ5u3jJcDewA+6mi0HXtE+3h/4dlVZQZIkSevZ/Jkochvg2CSLaAo/X6yqryU5AlhRVcuBY4DPJFlJUzk6YK6DmiBJkqQFq6ouBHaf5vXDOh7/GnhRP8c1QZIkSf2bPxWkgXAMkiRJUhcrSJIkqT811LvYRsIKkiRJUhcrSJIkqX9WkCRJkiaLFSRJktQ3xyBJkiRNGBMkSZKkLnaxSZKk/tnFJkmSNFmsIEmSpL45SFuSJGnCWEGSJEn9KRyDJEmSNGmsIEmSpP5ZQZIkSZosVpAkSVJfgnexSZIkTRwrSJIkqX9WkCRJkiaLFSRJktS31HiXkKwgSZIkdbGCJEmS+uNM2pIkSZPHBEmSJKmLXWySJKlvThQpSZI0YawgSZKk/llBGpwk+yS5PMnKJO+cZv/BSa5Lcn67vXoUcUqSpMkysgpSkkXAUcAzgauBc5Isr6pLu5oeV1VvGHqAkiRpRo5BGpw9gJVV9eOquhP4ArDfCOORJEkCRjsGaVvgqo7nVwO/O027Fyb5feCHwP+uqqumafMblbBmI8eeL1Qb3uh3t1C9/qCTRh2C7oXNF/1q1CFoobGCNDCZ5rXuj/skYGlVPRb4FnDstAdKDk2yIsmKu+5YtZ7DlCRJk2aUCdLVwPYdz7cDrulsUFU3VNUd7dOPAU+Y7kBVdXRVLauqZYs32mQgwUqSpFY1Y5CGsY3KKBOkc4Cdkzw0yYbAAcDyzgZJtul4ui9w2RDjkyRJE2pkY5CqanWSNwDfBBYBn6iqS5IcAayoquXAG5PsC6wGbgQOHlW8kiSpw5iPQRrpRJFVdTJwctdrh3U8fhfwrmHHJUmSJpszaUuSpL4E50GSJEmaOFaQJElS/2q8S0hWkCRJkrqYIEmSJHWxi02SJPXNQdqSJEkTxgqSJEnqTzH2E0VaQZIkSepiBUmSJPUta0cdwWBZQZIkSepiBUmSJPXPMUiSJEmTxQqSJEnqm/MgSZIkTRgrSJIkqT+Fi9VKkiRNGitIkiSpb45BkiRJmjBWkCRJUv+sIEmSJE0WEyRJkqQudrFJkqS+BAdpS5IkTRwrSJIkqT9VThQpSZI0aawgSZKkvjkGSZIkacJYQZIkSf2zgiRJkjRZrCBJkqS+OQZJkiRpwlhBkiRJ/Slg7XiXkKwgSZIkdbGCJEmS+jfeBSQrSJIkSd2sIEmSpL55F5skSdKEMUGSJEnqYhebJEnqX413H5sVJEmSpC5WkCRJUt8cpC1JkjRhrCBJkqT+FE4UKUmSNGmsIEmSpL4EiHexDU6SfZJcnmRlkndOs3+jJMe1+89KsnT4UUqSpEkzsgQpySLgKOA5wKOAA5M8qqvZq4Cbqmon4EPAB4YbpSRJmtbaIW0jMsoK0h7Ayqr6cVXdCXwB2K+rzX7Ase3j44FnJMkQY5QkSRNolGOQtgWu6nh+NfC7M7WpqtVJbgG2AK4fSoSSJGla4z4GaZQJ0nSVoO5Pu5c2JDkUOBRgwyWb3/vIJEnSRBtlF9vVwPYdz7cDrpmpTZINgM2AG7sPVFVHV9Wyqlq2eKNNBhSuJEkC7p4HaRjbiIwyQToH2DnJQ5NsCBwALO9qsxx4Rft4f+DbVWNe05MkSSM3si62dkzRG4BvAouAT1TVJUmOAFZU1XLgGOAzSVbSVI4OGFW8kiRpSsGY1ytGOlFkVZ0MnNz12mEdj38NvGjYcUmSpMnmTNqSJKlvGe8CkmuxSZIkdTNBkiRJ6mIXmyRJ6t+YD9K2giRJktTFBEmSJPWnIGuHs80lyfZJvpPksiSXJHnTNG02S3JSkgvaNofMdVy72CRJ0kK2GnhrVZ2XZFPg3CSnVNWlHW1eD1xaVc9PshVweZLPVtWdMx3UBEmSJPVvnoxBqqprgWvbx7cluYxmsfvOBKmATZME2IRm8unVsx3XBEmSJI2FJEuB3YGzunYdSbN82TXApsBLqmrWDjzHIEmSpP4Nb7HaLZOs6NgOnS6cJJsAJwBvrqpbu3Y/GzgfeAiwG3BkkvvPdnlWkCRJ0nx2fVUtm61BksU0ydFnq+rEaZocAry/XfB+ZZKfAI8Azp7pmCZIkiSpb5knY5DacUXHAJdV1QdnaPZT4BnA6UkeDDwc+PFsxzVBkiRJC9lTgZcBFyU5v33t3cAOAFX1UeB9wKeSXAQEeEdVXT/bQU2QJElS/+ZJBamqzqBJemZrcw3wrH6O6yBtSZKkLlaQJElSfwroYZbrhcwKkiRJUhcrSJIkqS+h5s1dbINiBUmSJKmLCZIkSVIXu9gkSVL/7GKTJEmaLFaQJElS/6wgSZIkTRYrSJIkqT9OFClJkjR5rCBJkqS+OVGkJEnShLGCJEmS+mcFSZIkabJYQZIkSX0qK0iSJEmTxgqSJEnqT2EFSZIkadJYQZIkSf1zJm1JkqTJYoIkSZLUxS42SZLUN5cakSRJmjBWkCRJUv+sIEmSJE0WK0iSJKk/Bay1giRJkjRRrCBJkqQ+uVitJEnSxLGCJEmS+mcFSZIkabKMpIKU5IHAccBS4ArgxVV10zTt1gAXtU9/WlX7DitGSZI0CytIA/FO4D+qamfgP9rn07m9qnZrN5MjSZI0FKMag7QfsGf7+FjgVOAdI4pFkiT1w3mQBubBVXUtQPvzQTO02zjJiiRnJnnB8MKTJEmTbGAVpCTfAraeZtdf9HGYHarqmiS/A3w7yUVV9d/TnOtQ4ND26R3fO+HPL+4/4gVjS+D6UQcxQF7fAvXG/wOM8fUx3tcGXt9C9/Dhnq6g1g73lEM2sASpqvaeaV+SnyfZpqquTbIN8IsZjnFN+/PHSU4FdgfukSBV1dHA0e2xV1TVsvVwCfOS17eweX0L1zhfG3h9C12SFaOOYdyMqottOfCK9vErgK92N0jygCQbtY+3BJ4KXDq0CCVJ0sQaVYL0fuCZSX4EPLN9TpJlST7etnkksCLJBcB3gPdXlQmSJEnzQdVwthEZyV1sVXUD8IxpXl8BvLp9/D3gMetw+KPvXXTznte3sHl9C9c4Xxt4fQvduF/f0KXGfKInSZK0fm224YPrKVsfOJRzfeOqfzx3FOPHXGpEkiSpy4JPkJI8MMkpSX7U/nzADO3WJDm/3ZYPO85+JdknyeVJVia5x0zjSTZKcly7/6wkS4cf5brr4foOTnJdx3f26lHEuS6SfCLJL5JMO91EGv/UXvuFSR4/7BjvjR6ub88kt3R8d4cNO8Z1lWT7JN9JclmSS5K8aZo2C/b76/H6FvL3t3GSs5Nc0F7f4dO0WbC/O3u8vuH97hzzMUgLPkFiDJctSbIIOAp4DvAo4MAkj+pq9irgpqraCfgQ8IHhRrnuerw+gOM6vrOPT7N/vvoUsM8s+58D7NxuhwIfGUJM69OnmP36AE7v+O6OGEJM68tq4K1V9UjgScDrp/lvcyF/f71cHyzc7+8OYK+qehywG7BPkid1tVmwvzvp7fpg4f7unFfGIUHaj2a5Etqf4zDj9h7Ayqr6cVXdCXyB5jo7dV738cAzkmSIMd4bvVzfglVVpwE3ztJkP+DT1TgT2LydD2xB6OH6Fqyquraqzmsf3wZcBmzb1WzBfn89Xt+C1X4nq9qni9utuwSxYH939nh9wwzICtI8N47LlmwLXNXx/Gru+UvsN22qajVwC7DFUKK793q5PoAXtl0YxyfZfjihDUWv17+QPbntBvh6kkePOph10Xa97A6c1bVrLL6/Wa4PFvD3l2RRkvNpJiA+papm/P4W4O/OXq4Pxvd351AtiAQpybeSXDzN1k/VYYd2FPwfA/8vycMGFO76MN2/ZrrT6F7azFe9xH4SsLSqHgt8i7v/xTcOFvJ314vzgB3bboB/Br4y4nj6lmQT4ATgzVV1a/fuad6yoL6/Oa5vQX9/VbWmqnYDtgP2SLJrV5MF/f31cH1D+t05pOqRFaTZVdXeVbXrNNtXgZ9PlbfT47IlwKk0/3Kar64GOrP+7YBrZmqTZANgMxZOt8ec11dVN1TVHe3TjwFPGFJsw9DL97tgVdWtU90AVXUysDjNbPgLQpLFNMnDZ6vqxGmaLOjvb67rW+jf35Squpnmd333eLmF/LvzN2a6vjH/3TlUCyJBmsM4LltyDrBzkocm2RA4gOY6O3Ve9/7At2vhTGo15/V1jenYl2asxLhYDry8vRvqScAtU93E4yDJ1lNjOpLsQfN75obRRtWbNu5jgMuq6oMzNFuw318v17fAv7+tkmzePl4C7A38oKvZgv3d2cv1De13ZwFr1w5nG5GRzKS9nr0f+GKSVwE/BV4EzbIlwGur6tU0y5b8S5K1NP+zz+tlS6pqdZI3AN8EFgGfqKpLkhwBrKiq5TS/5D6TZCXNv34OGF3E/enx+t6YZF+au25uBA4eWcB9SvJ5YE9gyyRXA++lGUxJVX0UOBl4LrAS+BVwyGgiXTc9XN/+wOuSrAZuBw5YKH+AaP7x9DLgonacB8C7gR1gLL6/Xq5vIX9/2wDHtnfK3gf4YlV9bVx+d9Lb9S3Y353zjTNpS5Kkvmy2+EH1lC32H8q5vvHzjziTtiRJ0nwwDl1skiRp2Ma8B8oKkiRJUhcTJEmSpC52sUmSpD4VrLWLTdKQJFnTrsB9cZIvJblv+/r31vF4S5NcPMO+bZJ8rc/jPSTJ8T20O3lqvpZ+JfmrJG9rH38qSc+3yiQ5Ncnl7TIZ5yTZrWv/7kkqybM7XtswyWntpIGSBJggSfPN7e0K3LsCdwKvBaiqpwzgXG+hmWm3J0k2qKprqmrOhKWqntvO9DsKB7XLZHwY+LuufQcCZ7Q/AWgXTP4P4CVDi1Ba6Aqq1g5lGxUTJGn+Oh3YCSDJqvbnH7ZrE6atAP2wnfl4UZK/a6smFyb5kx6O/0LgG+1xN07yySQXJfl+kqe3rx/cVrJOAv69syKV5L5Jvtie77gkZ7UTtJLkiiRbtu0vS/KxJJck+fd2BmCSvKaN94IkJ0xVy6aT5BlJvtzx/JlJplsGpNN/0bGIbDs79P40E+c9K8nGHW2/AhzUw2cmaUKYIEnzUNvd8xzgos7Xq+rLwM+A19NUf95bVT8DXkWz5MUTgScCr0ny0FmO/1Dgpo41m17fHv8xNNWVYzsSiCcDr6iqvboO86ftMR4LvI+Z13zaGTiqqh4N3EyTmAGcWFVPbKs9l7XXMJNvA49MslX7/BDgk7O0h2aNqs6FVp8K/KSq/ptmDavnduy7mOZzk9SrtTWcbUTsc5fmlyUdS0CcTrMsQrc/o/mDfmZVfb597VnAYzvG62xGk5j8cIbzbANc1/H8aTQrt1NVP0hyJbBLu++UqppuMc+nAf/YvufiJBfOcK6fVNXUNZ0LLG0f75rk/wCbA5vQLD0zraqqJJ8BXprkkzRJ28tnaP7ZJPejWcbm8R2vHwh8oX38BZolN05sj78myZ1JNq2q22aKQ9LkMEGS5pfbq2q3OdpsC6wFHpzkPtV00gf4s6r6rSQjydKZzgN0djFllvP9cobXZ3tPpzs6Hq8BlrSPPwW8oKouSHIwzfpus/kkcBLwa+BLVbV6hnYHARfQrNN4FPBH7dpVLwT2TfIXbexbdCVEG7XHltQLJ4qUNF+0XW+fBP6YplvqLe2ub9IsMLq4bbdLW0WZyQ+5u5IDcBrtGJwku9AsXnr5HOGcAby4fc+jgMf0cy3ApsC1bcxzjv+pqmuAa4D30CRXs7W9q233pCSPpFn1/IKq2r6qllbVjsAJwAva+LcArmvfJ0lWkKQF5t3A6VV1etsVd06SfwM+TpPwnNcORr6O9o//dKrql0n+O8lOVbWS5o6vjya5iGYV8IOr6o7mUDP6MM1YpQuB7wMXArf0cS1/CZwFXEkz1mrTHt7zWWCrqrp0roZVdXuSfwDeRtPd9uWuJicArwM+AzwdOLn30KUJVwVrR3eH2TCkxrxEJml6Sf4QeEJVvWcd378IWFxVv07yMJpb5Xdpb5sfiCRHAt+vqunGZt2b454IvKuq5qqaSQI2W7RlPXmTfYdyrm/e+slzq2rZUE7WwQqSNKGq6stt19K6ui/wnbaLLMDrBpwcnUszHuqt6/m4GwJfMTmS+jTmBRYTJGmCVdXH78V7bwOG9q+6qpppGoF7e9w7gU8P4tiSFi4TJEmS1Lca8zFI3sUmSZLUxQqSJEnqU439GCQrSJIkSV1MkCRJkrrYxSZJkvpTjHQh2WGwgiRJktTFCpIkSepfeZu/JEnSRLGCJEmS+lJAOQZJkiRpslhBkiRJ/alyDJIkSdKksYIkSZL65hgkSZKkCWMFSZIk9c8xSJIkSZMlVePdhyhJktavJN8AthzS6a6vqn2GdK7fMEGSJEnqYhebJElSFxMkSZKkLiZIkiRJXUyQJEmSupggSZIkdfn/RhK7KN7nMlgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -513,28 +513,41 @@ "Go ahead and open the beast_settings.txt file in a text editor and ensure that the following variables match:\n", "\n", "* **project** : the same as the field_name variable we noted earlier\n", - " * *project = \"M31-B09-EAST_chunk\" *\n", + " * *project = \"M31-B09-EAST_chunk\"*\n", + " \n", + " \n", "* **surveyname** : the overall name for the survey (this variable isn't actually important for the code)\n", " * *surveyname = \"PHAT-M31\"*\n", + " \n", + " \n", "* **filters** : the full filter names from the photometric catalog, also the names that show up in our magnitude histograms so you can add them from there\n", " * *filters = [\"HST_WFC3_F475W\", \"HST_WFC3_F275W\", \"HST_WFC3_F336W\", \"HST_WFC3_F814W\", \"HST_WFC3_F110W\", \"HST_WFC3_F160W\",]*\n", " \n", + " \n", "* **base filters** : shortened versions of the filter names\n", " * *basefilters = [\"F475W\", \"F275W\", \"F336W\", \"F814W\", \"F110W\", \"F160W\"]*\n", - "* **obsfile** : the name of the photometric catalog (now including the source density information\n", - " * *obsfile = \"./M31-B09-EAST_chunk.st_with_sourceden_cut.fits\"*\n", " \n", - "* **ast_with_positions** : make sure is set to *True* if you have the locations included in your obsfile\n", + " \n", + "* **obsfile** : the name of the photometric catalog (now including the source density information)\n", + " * *obsfile = \"./M31-B09-EAST_chunk.st_with_sourceden.fits\"*\n", + " \n", + " \n", + "* **ast_with_positions** : make sure is set to *True* if you have the locations (RA/Dec) included in your obsfile (which we do in this case)\n", + " * *ast_with_positions = True*\n", + "\n", "\n", "* **ast_density_table** : the source density map created in step 1b \n", " * *ast_density_table = './M31-B09-EAST_chunk.st_sourceden_map.hd5'*\n", " \n", + " \n", "* **ast_reference_image** : the original photometric FITS catalog which is required if you use the ast_with_positions as true \n", " * *ast_reference_image = \"./M31-B09-EAST_chunk_F475W_drz.chip1.fits\"*\n", " \n", - "* **astfile** : the file of ASTs we will be creating in step 3, but since ASTs normally have to be processed by a specialist, we have already included a finished AST file for us to use in this example\n", + " \n", + "* **astfile** : since ASTs normally have to be processed by a specialist, we have already included a finished AST file for us to use in this example\n", " * *astfile = \"M31-B09_EAST_chunk.gst.fake.fits\"*\n", " \n", + " \n", "* **n_subgrid** : the number of subgrids to use for generating the physics model later on (with 1 meaning no subgrids)\n", " * *n_subgrid = 1*" ] @@ -643,27 +656,13 @@ "output_type": "stream", "text": [ "Interrogating http://stev.oapd.inaf.it...\n", - "Downloading data...http://stev.oapd.inaf.it/tmp/output811629177144.dat\n", + "Downloading data...http://stev.oapd.inaf.it/tmp/output231553786740.dat\n", "Interrogating http://stev.oapd.inaf.it...\n", - "Downloading data...http://stev.oapd.inaf.it/tmp/output419376870923.dat\n", + "Downloading data...http://stev.oapd.inaf.it/tmp/output717945759025.dat\n", "Interrogating http://stev.oapd.inaf.it...\n", - "Downloading data...http://stev.oapd.inaf.it/tmp/output1858548567.dat\n", + "Downloading data...http://stev.oapd.inaf.it/tmp/output189489548401.dat\n", "Interrogating http://stev.oapd.inaf.it...\n", - "Downloading data...http://stev.oapd.inaf.it/tmp/output692968232630.dat\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "Spectral grid: 0%| | 0/809 [00:00Table length=33968\n", - "
F814W_STF814W_GSTF475W_STF475W_GSTF275W_STF275W_GSTF160W_STF160W_GSTF336W_STF336W_GSTF110W_STF110W_GSTXYRADECCHI_GLSNR_GLSHARP_GLROUND_GLCROWD_GLF475W_COUNTF475W_SKYF475W_RATEF475W_RATERRF475W_VEGAF475W_TRANSF475W_ERRF475W_CHIF475W_SNRF475W_SHARPF475W_ROUNDF475W_CROWDF814W_COUNTF814W_SKYF814W_RATEF814W_RATERRF814W_VEGAF814W_TRANSF814W_ERRF814W_CHIF814W_SNRF814W_SHARPF814W_ROUNDF814W_CROWDF275W_COUNTF275W_SKYF275W_RATEF275W_RATERRF275W_VEGAF275W_TRANSF275W_ERRF275W_CHIF275W_SNRF275W_SHARPF275W_ROUNDF275W_CROWDF336W_COUNTF336W_SKYF336W_RATEF336W_RATERRF336W_VEGAF336W_TRANSF336W_ERRF336W_CHIF336W_SNRF336W_SHARPF336W_ROUNDF336W_CROWDF110W_COUNTF110W_SKYF110W_RATEF110W_RATERRF110W_VEGAF110W_TRANSF110W_ERRF110W_CHIF110W_SNRF110W_SHARPF110W_ROUNDF110W_CROWDF160W_COUNTF160W_SKYF160W_RATEF160W_RATERRF160W_VEGAF160W_TRANSF160W_ERRF160W_CHIF160W_SNRF160W_SHARPF160W_ROUNDF160W_CROWDEXTCHIPMAJAX_GLOBJTYPE_GLF475W_FLAGF814W_FLAGF275W_FLAGF336W_FLAGF110W_FLAGF160W_FLAG
boolboolboolboolboolboolboolboolboolboolboolboolfloat64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64int64int64int64int64int64int64int64int64int64int64
TrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrue869.890000004669244.4099999948323311.13183257065668641.6034194385187354.032917.0-0.030.020.251233000000.087358.199.039999999999999e-081.3800000000000002e-0917.6117.7210.0172.4865.40.0050.0380.175198000000.0102360.61.59e-071.27e-0916.99616.9860.0090000000000000011.77124.80.010.0490.226999999999999985970000.02256.981.25e-071.16e-0917.255nan0.012.92107.7-0.0380.0180000000000000020.08623800000.07534.451.69e-076.92e-1016.932000000000002nan0.0042.63243.9-0.0310.0590000000000000040.08479700000.088039.231.6e-072.58e-1016.992nan0.0022.23619.1-0.0040.10.3556000000.093657.591.8e-072.53e-1016.864nan0.0021.51708.8-0.0180000000000000020.0270000000000000030.396011651220000
\n", + "Table length=33847\n", + "
\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "
zerosonesXYHST_WFC3_F475WHST_WFC3_F275WHST_WFC3_F336WHST_WFC3_F814WHST_WFC3_F110WHST_WFC3_F160W
int64int64float64float64float64float64float64float64float64float64
01663.14762894.9895836.6106839.2402941.3219629.8613127.9373627.04435
01675.9487890.476336.6106839.2402941.3219629.8613127.9373627.04435
01642.28707879.2176736.6106839.2402941.3219629.8613127.9373627.04435
01655.02475896.6846136.6106839.2402941.3219629.8613127.9373627.04435
01645.63688874.8138236.6106839.2402941.3219629.8613127.9373627.04435
01652.1251886.0333436.6106839.2402941.3219629.8613127.9373627.04435
01658.93547880.4626636.6106839.2402941.3219629.8613127.9373627.04435
01683.34413890.2141636.6106839.2402941.3219629.8613127.9373627.04435
01649.58683884.9416136.6106839.2402941.3219629.8613127.9373627.04435
01707.4655897.4222736.6106839.2402941.3219629.8613127.9373627.04435
01686.75304890.5038436.8924839.768338.8103632.062729.6677828.00124
01700.64395897.3934936.8924839.768338.8103632.062729.6677828.00124
01676.10245888.1720236.8924839.768338.8103632.062729.6677828.00124
01654.08922880.7518436.8924839.768338.8103632.062729.6677828.00124
01650.63909877.0159636.8924839.768338.8103632.062729.6677828.00124
01636.60122880.4326736.8924839.768338.8103632.062729.6677828.00124
01692.06356895.3759636.8924839.768338.8103632.062729.6677828.00124
01691.03737896.2165836.8924839.768338.8103632.062729.6677828.00124
01644.01532875.4892536.8924839.768338.8103632.062729.6677828.00124
01658.72265882.267236.8924839.768338.8103632.062729.6677828.00124
..............................
01799.57084605.5483349.6972751.0966352.8078242.1812338.7650936.56966
01877.04096455.25649.6972751.0966352.8078242.1812338.7650936.56966
01761.19982576.6923949.6972751.0966352.8078242.1812338.7650936.56966
01875.24854432.810849.6972751.0966352.8078242.1812338.7650936.56966
01751.82087587.5889349.6972751.0966352.8078242.1812338.7650936.56966
01896.56195408.1435149.6972751.0966352.8078242.1812338.7650936.56966
01864.99763575.6968649.6972751.0966352.8078242.1812338.7650936.56966
01885.36288567.1046849.6972751.0966352.8078242.1812338.7650936.56966
01868.10955534.2148249.6972751.0966352.8078242.1812338.7650936.56966
01898.05332340.2285249.6972751.0966352.8078242.1812338.7650936.56966
01823.07723563.0198649.0670250.4272652.1293741.5182838.1022835.92042
01866.76615485.8823949.0670250.4272652.1293741.5182838.1022835.92042
01790.09471496.6008749.0670250.4272652.1293741.5182838.1022835.92042
01861.6476541.3570749.0670250.4272652.1293741.5182838.1022835.92042
01828.85124454.5343549.0670250.4272652.1293741.5182838.1022835.92042
01850.04582481.8032649.0670250.4272652.1293741.5182838.1022835.92042
01882.59711524.5895249.0670250.4272652.1293741.5182838.1022835.92042
01875.17219614.7377949.0670250.4272652.1293741.5182838.1022835.92042
01865.94871602.1021949.0670250.4272652.1293741.5182838.1022835.92042
01880.61692631.6494349.0670250.4272652.1293741.5182838.1022835.92042
" ], "text/plain": [ - "\n", + "
\n", "zeros ones X Y ... HST_WFC3_F814W HST_WFC3_F110W HST_WFC3_F160W\n", "int64 int64 float64 float64 ... float64 float64 float64 \n", "----- ----- --------- --------- ... -------------- -------------- --------------\n", - " 0 1 663.14762 894.98958 ... 29.86131 27.93736 27.04435\n", - " 0 1 675.9487 890.4763 ... 29.86131 27.93736 27.04435\n", - " 0 1 642.28707 879.21767 ... 29.86131 27.93736 27.04435\n", - " 0 1 655.02475 896.68461 ... 29.86131 27.93736 27.04435\n", - " 0 1 645.63688 874.81382 ... 29.86131 27.93736 27.04435\n", - " 0 1 652.1251 886.03334 ... 29.86131 27.93736 27.04435\n", - " 0 1 658.93547 880.46266 ... 29.86131 27.93736 27.04435\n", - " 0 1 683.34413 890.21416 ... 29.86131 27.93736 27.04435\n", - " 0 1 649.58683 884.94161 ... 29.86131 27.93736 27.04435\n", - " 0 1 707.4655 897.42227 ... 29.86131 27.93736 27.04435\n", + " 0 1 686.75304 890.50384 ... 32.0627 29.66778 28.00124\n", + " 0 1 700.64395 897.39349 ... 32.0627 29.66778 28.00124\n", + " 0 1 676.10245 888.17202 ... 32.0627 29.66778 28.00124\n", + " 0 1 654.08922 880.75184 ... 32.0627 29.66778 28.00124\n", + " 0 1 650.63909 877.01596 ... 32.0627 29.66778 28.00124\n", + " 0 1 636.60122 880.43267 ... 32.0627 29.66778 28.00124\n", + " 0 1 692.06356 895.37596 ... 32.0627 29.66778 28.00124\n", + " 0 1 691.03737 896.21658 ... 32.0627 29.66778 28.00124\n", + " 0 1 644.01532 875.48925 ... 32.0627 29.66778 28.00124\n", + " 0 1 658.72265 882.2672 ... 32.0627 29.66778 28.00124\n", " ... ... ... ... ... ... ... ...\n", - " 0 1 799.57084 605.54833 ... 42.18123 38.76509 36.56966\n", - " 0 1 877.04096 455.256 ... 42.18123 38.76509 36.56966\n", - " 0 1 761.19982 576.69239 ... 42.18123 38.76509 36.56966\n", - " 0 1 875.24854 432.8108 ... 42.18123 38.76509 36.56966\n", - " 0 1 751.82087 587.58893 ... 42.18123 38.76509 36.56966\n", - " 0 1 896.56195 408.14351 ... 42.18123 38.76509 36.56966\n", - " 0 1 864.99763 575.69686 ... 42.18123 38.76509 36.56966\n", - " 0 1 885.36288 567.10468 ... 42.18123 38.76509 36.56966\n", - " 0 1 868.10955 534.21482 ... 42.18123 38.76509 36.56966\n", - " 0 1 898.05332 340.22852 ... 42.18123 38.76509 36.56966" + " 0 1 823.07723 563.01986 ... 41.51828 38.10228 35.92042\n", + " 0 1 866.76615 485.88239 ... 41.51828 38.10228 35.92042\n", + " 0 1 790.09471 496.60087 ... 41.51828 38.10228 35.92042\n", + " 0 1 861.6476 541.35707 ... 41.51828 38.10228 35.92042\n", + " 0 1 828.85124 454.53435 ... 41.51828 38.10228 35.92042\n", + " 0 1 850.04582 481.80326 ... 41.51828 38.10228 35.92042\n", + " 0 1 882.59711 524.58952 ... 41.51828 38.10228 35.92042\n", + " 0 1 875.17219 614.73779 ... 41.51828 38.10228 35.92042\n", + " 0 1 865.94871 602.10219 ... 41.51828 38.10228 35.92042\n", + " 0 1 880.61692 631.64943 ... 41.51828 38.10228 35.92042" ] }, - "execution_count": 20, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -942,7 +949,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ diff --git a/M31_Example/beast_settings.txt b/M31_Example/beast_settings.txt index cba5f5d..2f89fae 100644 --- a/M31_Example/beast_settings.txt +++ b/M31_Example/beast_settings.txt @@ -221,7 +221,7 @@ osl = stellib.Tlusty() + stellib.Kurucz() ################ # Dust extinction grid definition -extLaw = extinction.Generalized_RvFALaw(ALaw=extinction.Generalized_DustExt(curve="F20"), BLaw=extinction.Generalized_DustExt(curve="G03_SMCBar")) +extLaw = extinction.Generalized_RvFALaw(ALaw=extinction.Generalized_DustExt(curve="F19"), BLaw=extinction.Generalized_DustExt(curve="G03_SMCBar")) # A(V): dust column in magnitudes # acceptable avs > 0.0