-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest.py
41 lines (29 loc) · 1.09 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import os
from ultralytics import YOLO
import torch.nn as nn
import torch
from spikingjelly.clock_driven.neuron import MultiStepParametricLIFNode, MultiStepLIFNode
from ultralytics.nn.modules.yolo_spikformer import MultiSpike4,MultiSpike2,MultiSpike1
fr_dict = {}
iter = 125 #the iters of an epoch
i = 0
model = YOLO('/path/to/weight/.pt')
def forward_hook_fn(module, input, output): # 计算每一层的发放率
global i
if module.name == 'model.model.2.Conv.lif1':
i = i+1
print("i:",i)
# print(output.shape)
x_shape = torch.tensor(list(output.shape))
if module.name not in fr_dict.keys():
fr_dict[module.name] = output.detach().mean() / iter
else:
fr_dict[module.name] = fr_dict[module.name] + output.detach().mean() / iter
for n, m in model.named_modules():
if isinstance(m, MultiSpike4) or isinstance(m, torch.nn.Identity):
print(n)
m.name = n
m.register_forward_hook(forward_hook_fn)
model.val(data="coco.yaml",device=[2])
print("fire:",fr_dict) #the firing rate of each layer
#测试模型