-
Notifications
You must be signed in to change notification settings - Fork 140
/
Copy pathtest_batch.py
130 lines (104 loc) · 4.44 KB
/
test_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import math
import pyredner
import redner
pyredner.set_use_gpu(torch.cuda.is_available())
class BatchRenderFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, seed, *args):
batch_dims = args[0]
args_old_format = args[1:]
chunk_len = int(len(args_old_format)/batch_dims)
h, w = args_old_format[11]
result = torch.zeros(\
batch_dims, h, w, 9, device = pyredner.get_device(), requires_grad=True)
for k in range(0, batch_dims):
sub_args = args_old_format[k*chunk_len:(k+1)*chunk_len]
result[k, :, :, :] = pyredner.RenderFunction.forward(ctx, seed, *sub_args)
return result
@staticmethod
def backward(ctx, grad_img):
#None gradient for seed and batch_dims
ret_list = (None, None,)
batch_dims = grad_img.shape[0]
for k in range(0, batch_dims):
#[1:] cuz original backward function returns None grad for seed input, but we manage that ourselves
ret_list = ret_list + pyredner.RenderFunction.backward(ctx, grad_img[k,:,:,:])[1:]
return ret_list
batch_render = BatchRenderFunction.apply
# Load from the teapot Wavefront object file
material_map, mesh_list, light_map = pyredner.load_obj('../tutorials/teapot.obj')
# Compute shading normal
for _, mesh in mesh_list:
mesh.normals = pyredner.compute_vertex_normal(mesh.vertices, mesh.indices)
# Setup camera
cam = pyredner.Camera(position = torch.tensor([0.0, 30.0, 200.0]),
look_at = torch.tensor([0.0, 30.0, 0.0]),
up = torch.tensor([0.0, 1.0, 0.0]),
fov = torch.tensor([45.0]), # in degree
clip_near = 1e-2, # needs to > 0
resolution = (256, 256),
fisheye = False)
#
mesh = mesh_list[0][1]
shapes = [pyredner.Shape(\
vertices = mesh.vertices,
indices = mesh.indices,
uvs = mesh.uvs,
normals = mesh.normals,
material_id = 0)]
tex_path='../tutorials/teapot.png'
tex_tensor = pyredner.imread(tex_path)
if pyredner.get_use_gpu():
tex_tensor = tex_tensor.cuda(device = pyredner.get_device())
diffuse_reflectance = tex_tensor
materials = [pyredner.Material(diffuse_reflectance=diffuse_reflectance)]
# Construct the scene.
# Don't setup any light sources, only use primary visibility.
scene = pyredner.Scene(cam, shapes, materials, area_lights = [], envmap = None)
# TEST1: render (test forward function)
scene_args = pyredner.RenderFunction.serialize_scene(\
scene = scene,
num_samples = 16,
max_bounces = 0,
channels = [redner.channels.position,
redner.channels.shading_normal,
redner.channels.diffuse_reflectance])
scene_args = [2] + 2*scene_args
g_buffer = batch_render(0, *scene_args)
img1 = g_buffer[0,:,:,6:9]
pyredner.imwrite(img1.cpu(), 'results/test_multichannels/test1.png')
img2 = g_buffer[1,:,:,6:9]
pyredner.imwrite(img2.cpu(), 'results/test_multichannels/test2.png')
# TEST2: convergence (test backward function)
target = pyredner.imread('results/test_multichannels/test1.png')
if pyredner.get_use_gpu():
target = target.cuda(device = pyredner.get_device())
batch_dims = 2
diffuse_reflectance = torch.zeros(\
batch_dims, 128, 128, 3, device = pyredner.get_device(), requires_grad=True)
scenes = [scene, scene]
optimizer = torch.optim.Adam([diffuse_reflectance], lr=1e-2)
for t in range(200):
print('iteration:', t)
optimizer.zero_grad()
scene_args_batch = [batch_dims]
for k in range(0, batch_dims):
scenes[k].materials[0].diffuse_reflectance = pyredner.Texture(diffuse_reflectance[k,:,:,:])
scene_args = pyredner.RenderFunction.serialize_scene(\
scene = scenes[k],
num_samples = 16,
max_bounces = 0,
channels = [redner.channels.position,
redner.channels.shading_normal,
redner.channels.diffuse_reflectance])
scene_args_batch = scene_args_batch + scene_args
g_buffer = batch_render(t, *scene_args_batch)
img1 = g_buffer[0,:,:,6:9]
img2 = g_buffer[1,:,:,6:9]
loss = (img1 - target).pow(2).sum() + (img2 - target).pow(2).sum()
print('loss:', loss.item())
loss.backward()
optimizer.step()
pyredner.imwrite(diffuse_reflectance[0, :, :, :].cpu(), 'results/test_multichannels/testtex1.png')
pyredner.imwrite(diffuse_reflectance[1, :, :, :].cpu(), 'results/test_multichannels/testtex2.png')