-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy patheval_belfusion.py
577 lines (477 loc) · 28.4 KB
/
eval_belfusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
import matplotlib.pyplot as plt
import argparse
from lib2to3.pgen2.token import RARROW
from termios import N_SLIP
import torch
from utils.torch import *
from utils.util import AverageMeter
import models.diffusion as module_diffusion
import data_loader as module_data
import models as module_arch
import os
import pandas as pd
from utils import read_json, set_global_seed
from parse_config import ConfigParser
import numpy as np
from utils.visualization.generic import AnimationRenderer
from metrics.evaluation import lat_apd, get_multimodal_gt, cmd
import time
import json
from eval_baseline import BASELINES, get_stats_funcs
from metrics.fid import fid
from tqdm import tqdm
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
def get_prediction(obs, pred, model, diffusion, sample_num, pred_length, steps=None, sampler_name="ddpm", silent=False):
"""
If idces and to_store_folder != None => prediction will be loaded/stored to avoid generating it again.
"""
# right now we predict 'sample_num' times with our deterministic model
bs, obs_length, p, j, f = obs.shape
diffusion_steps = diffusion.num_timesteps
num_steps = diffusion_steps if steps is None else len(steps) # if unspecified, all denoising steps are stored
ys = torch.zeros((bs, sample_num, num_steps, pred_length, p, j, f), device=obs.device)
all_enc = torch.zeros((bs, sample_num, num_steps, 128), device=obs.device)
toenumerate = range(sample_num) if silent else tqdm(range(sample_num))
for i in toenumerate:
model_args = {
"obs": obs # for conditioning generation
}
shape = (bs, pred_length, p, j, f) # shape -> [N, Seq_length, Partic, Joints, Feat]
sampler = getattr(diffusion, SAMPLERS[sampler_name])
step_counter = 0
for s, out in enumerate(sampler(model, shape, progress=False, model_kwargs=model_args, pred=pred)):
if steps is None or s+1 in steps:
ys[:, i, step_counter, :] = out["pred_xstart"]
all_enc[:, i, step_counter] = out["pred_xstart_enc"]
step_counter += 1
return ys, all_enc
def prepare_model(config, data_loader_name, shuffle=False, augmentation=0, da_mirroring=0, da_rotations=0, drop_last=True, num_workers=None, batch_size=None, silent=False):
for i in range(torch.cuda.device_count()):
if not silent:
print(f"> GPU {i} ready: {torch.cuda.get_device_name(i)}")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.set_grad_enabled(False)
#config["arch"]["args"]["beta_schedule"] = "linear"
config[data_loader_name]["args"]["shuffle"] = shuffle
config[data_loader_name]["args"]["da_mirroring"] = da_mirroring
config[data_loader_name]["args"]["da_rotations"] = da_rotations
config[data_loader_name]["args"]["augmentation"] = augmentation
config[data_loader_name]["args"]["drop_last"] = drop_last
if batch_size is not None:
config[data_loader_name]["args"]["batch_size"] = batch_size
if num_workers is not None:
config[data_loader_name]["args"]["num_workers"] = 0
data_loader = config.init_obj(data_loader_name, module_data)
# build model architecture
model = config.init_obj('arch', module_arch)
diffusion = config.init_obj('diffusion', module_diffusion)
#print(model)
if not silent:
print('Loading checkpoint: {} ...'.format(config.resume))
if ".pth" not in config.resume: # support for models stored in ".p" format
if not silent:
print("Loading from a '.p' checkpoint. Only evaluation is supported. Only model weights will be loaded.")
import pickle
state_dict = pickle.load(open(config.resume, "rb"))['model_dict']
else: # ".pth" format
checkpoint = torch.load(config.resume, map_location=device)
state_dict = checkpoint['state_dict']
if config['n_gpu'] > 1:
model = torch.nn.DataParallel(model)
model.load_state_dict(state_dict)
# prepare model for testing
model = model.to(device)
model.eval()
return model, diffusion, data_loader, device
def visualize(config, dataset_split, output_dir, samples=5, ncols=0, type='2d',
batch_size=None, store=False, store_idx=-1,
diffusion_stride=1, sampler_name="ddpm"):
data_loader_name = f"data_loader_{dataset_split}"
# IMPORTANT num_workers=0: problems with multiprocessing + generators
model, diffusion, data_loader, device = prepare_model(config, data_loader_name, shuffle=True, num_workers=0, batch_size=batch_size)
diff_steps = diffusion.num_timesteps
print(f'Model loaded to "{device}"! Running inference with batch_size={config[data_loader_name]["args"]["batch_size"]} for data_loader={dataset_split}.')
assert store_idx > 0 or store_idx == -1, "store_idx must be -1 (last denoising step) or > 0"
if store_idx == -1 and not store: # if we don't want any specific step, we show all steps
steps_to_show = list(range(1, diff_steps+1, diffusion_stride))
if diff_steps not in steps_to_show:
steps_to_show += [diff_steps, ] # last step always evaluated, no matter what stride used
elif store_idx == -1 and store:
steps_to_show = [diff_steps, ] # last step only needed
else:
steps_to_show = [store_idx, ]
# print info about the steps shown
if len(steps_to_show) == 1:
print(f"Loading predictions at denoising step {steps_to_show[0]}")
else:
print(f"Loading predictions at denoising steps '{steps_to_show}'. Press keys from 0 to {len(steps_to_show)-1} to change the step shown.")
def pose_generator():
while True:
for batch_idx, batch in enumerate(data_loader):
data, target, extra = batch
idces = extra["sample_idx"]
data, target = data.to(device), target.to(device)
pred_length = target.shape[1]
predictions, _ = get_prediction(data, target, model, diffusion, samples, pred_length, steps=steps_to_show, sampler_name=sampler_name)
predictions = predictions.cpu().numpy()
# predictions -> [BS, nSamples, STEPS, Seq_length, Partic, Joints, Feat]
# gt
all_x_gt = data_loader.dataset.recover_landmarks(data.cpu().numpy(), rrr=True, fill_root=True)
all_y_gt = data_loader.dataset.recover_landmarks(target.cpu().numpy(), rrr=True, fill_root=True)
for sample_idx, sample_name in enumerate(idces):
x_gt, y_gt = all_x_gt[sample_idx], all_y_gt[sample_idx]
y_pred = predictions[sample_idx]
poses = {}
for baseline in BASELINES:
poses[baseline] = BASELINES[baseline](x_gt, y_gt)
y_pred = data_loader.dataset.recover_landmarks(y_pred, rrr=True, fill_root=True)
for i in range(samples):
for diff_step in range(len(steps_to_show)):
poses[f"diff{steps_to_show[diff_step]:04d}_{i}"] = np.concatenate([x_gt, y_pred[i, diff_step]], axis=0)
yield poses, sample_name.item()
if store:
break
pose_gen = pose_generator()
baselines = list(BASELINES.keys())
ncols = ncols if ncols != 0 else len(baselines) + samples + 1
algos = []
for diff_step in range(len(steps_to_show)):
algos.append(f"diff{steps_to_show[diff_step]:04d}")
if store is not None:
# disable data augmentation here, to compare across models
data_loader.dataset.augmentation = 0
data_loader.dataset.da_mirroring = 0.0
data_loader.dataset.da_rotations = 0.0
data_loader.shuffle = False
# sample 'batch_size' idces from the dataset with seed '0' (samples choice will ALWAYS be the same)
np.random.seed(0)
data_loader.samples_to_track = np.random.choice(len(data_loader.dataset), 64, replace=False)
data_loader = data_loader.get_tracked_sampler()
AnimationRenderer(data_loader.dataset.skeleton, pose_gen, algos, config.config["obs_length"], config.config["pred_length"],
ncol=ncols, size=4,
output_dir=output_dir, baselines=baselines, type=type).store_all(type=store, idx=-1)
else:
AnimationRenderer(data_loader.dataset.skeleton, pose_gen, algos, config.config["obs_length"], config.config["pred_length"],
ncol=ncols, size=4,
output_dir=output_dir, baselines=baselines, type=type).run_animation()
def compute_stats(config, dataset_split, multimodal_threshold, samples=5, batch_size=None, #num_seeds=1,
silent=False, diffusion_stride=25, find_best_batch_size = False,
store_folder=None, sampler_name="ddpm", stats_mode="no_mm", metrics_at_cpu=False):
data_loader_name = f"data_loader_{dataset_split}"
if store_folder is not None:
os.makedirs(store_folder, exist_ok=True)
model, diffusion, data_loader, device = prepare_model(config, data_loader_name, shuffle=False, drop_last=False, num_workers=0, batch_size=batch_size, silent=silent)
diffusion_steps = diffusion.num_timesteps
metrics_device = device if not metrics_at_cpu else "cpu"
stats_func = get_stats_funcs(stats_mode)
stats_func["latAPD"] = lat_apd
if "MMADE" in stats_func or "MMFDE" in stats_func:
if not silent:
print(f'Model loaded to "{device}"! Running inference with batch_size={config[data_loader_name]["args"]["batch_size"]} for data_loader={dataset_split}.')
print(f"Computing multimodal GT...")
traj_gt_arr = get_multimodal_gt(data_loader, multimodal_threshold, device=metrics_device, split=dataset_split)
else:
traj_gt_arr = None
IDX_TO_CLASS = data_loader.dataset.idx_to_class
CLASS_TO_IDX = data_loader.dataset.class_to_idx
try:
classifier_for_fid = data_loader.dataset.get_classifier(metrics_device)
if not silent:
print(f"Classifier correctly loaded!")
except:
classifier_for_fid = None
# for APDE computation
mmapd_gt_path = os.path.join(data_loader.dataset.precomputed_folder, "mmapd_GT.csv")
assert os.path.exists(mmapd_gt_path), f"Cannot find mmapd_GT.csv in {data_loader.dataset.precomputed_folder}"
mmapd_gt = pd.read_csv(mmapd_gt_path, index_col=0)["gt_APD"]
mmapd_gt = mmapd_gt.replace(0, np.NaN)
if find_best_batch_size: # we find the biggest batch size that works with the given GPU resources
print("Checking how big the batch can be...")
initial_batch_size = 4096 # all test set fits to this size
found = False
while not found:
config[data_loader_name]["args"]["batch_size"] = initial_batch_size
data_loader = config.init_obj(data_loader_name, module_data)
data, target, extra = data_loader.__iter__().__next__()
idces = extra["sample_idx"]
try:
data, target = data.to(device), target.to(device)
bs, obs_length, p, j, f = data.shape
pred_length = target.shape[1]
shape = [bs, pred_length, p, j, f]
arr = torch.randn(*([diffusion_steps // diffusion_stride + 1, ] + shape), device=device, dtype=torch.float32)
for i in diffusion.p_sample_loop_progressive(model, shape, progress=False, model_kwargs={ "obs": data }):
break # only one forward step needed to check if it fits
found = True
except:
initial_batch_size //= 2
#print(f"[FAILED] Not enough memory in GPU. Trying with batch_size={initial_batch_size}...")
if not found:
raise Exception(f"GPU memory does not fit any batch size. Check what is happening!")
del data
del target
del arr
initial_batch_size = len(idces) // 4 # just to make sure that we have enough memory for metrics computation
config[data_loader_name]["args"]["batch_size"] = initial_batch_size
data_loader = config.init_obj(data_loader_name, module_data)
print(f"Found! ----> batch_size={initial_batch_size}...")
batch_size = data_loader.batch_size
if not silent:
print(f"Done! Starting evaluation...")
if diffusion_stride != -1:
steps_to_evaluate = list(range(1, diffusion_steps+1, diffusion_stride))
if diffusion_steps not in steps_to_evaluate:
steps_to_evaluate += [diffusion_steps, ] # last step always evaluated, no matter what stride used
else:
steps_to_evaluate = [diffusion_steps, ] # only final result
stats_names = list(stats_func.keys())
stats_meter = {x:
{
str(i): AverageMeter() for i in steps_to_evaluate
}
for x in stats_names}
histogram_data = {str(i): [] for i in steps_to_evaluate}
all_gt_activations = {str(i): [] for i in steps_to_evaluate} # for FID. We need to compute the activations of the GT
all_pred_activations = {str(i): [] for i in steps_to_evaluate} # for FID. We need to compute the activations of the predictions
all_pred_classes = {str(i): [] for i in steps_to_evaluate}
all_gt_classes = {str(i): [] for i in steps_to_evaluate}
all_obs_classes = {str(i): [] for i in steps_to_evaluate}
all_results = np.zeros((len(data_loader.dataset), 2 + len(stats_names), len(steps_to_evaluate)))
column_names = ['id', 'class_gt']
for n in stats_names:
for i in range(len(steps_to_evaluate)):
column_names.append(f"{n}_{steps_to_evaluate[i]}")
counter = 0
batches_toenumerate = enumerate(data_loader) if not silent else enumerate(tqdm(data_loader))
for nbatch, batch in batches_toenumerate:
data, target, extra = batch
idces = extra["sample_idx"]
data, target = data.to(device), target.to(device)
pred_length = target.shape[1]
f, t = nbatch * batch_size, min(all_results.shape[0], (nbatch + 1) * batch_size)
all_results[f:t, 0] = idces.numpy()[..., None]
#for i in range(num_seeds):
if not silent:
print(f"Generating {samples} samples for batch {nbatch+1}/{len(data_loader)} (batch_size={batch_size})")
pred, lat_pred = get_prediction(data, target, model, diffusion, samples, pred_length, silent=silent,
steps=steps_to_evaluate, sampler_name=sampler_name) # [batch_size, n_samples, seq_length, num_part, num_joints, features]
lat_pred = lat_pred.to('cpu')
# predictions -> [BS, nSamples, STEPS, Seq_length, Partic, Joints, Feat]
pred = data_loader.dataset.recover_landmarks(pred, rrr=False) # do not recover root, only denormalize if needed
pred_flat = pred[:, :, :, :, 0] # we squeeze the participants' axis
# gt
target = data_loader.dataset.recover_landmarks(target, rrr=False)
# all_gt -> [batch_size, seq_length, num_part, num_joints, features]
if metrics_at_cpu:
if not silent:
print(f"Moving data to CPU... And computing metrics for {len(steps_to_evaluate)} denoising steps.")
data, pred, target = data.cpu(), pred.cpu(), target.cpu()
elif not silent:
print(f"Computing metrics for {len(steps_to_evaluate)} denoising steps at GPU...")
steps_toenumerate = tqdm(range(len(steps_to_evaluate))) if not silent else range(len(steps_to_evaluate))
for step in steps_toenumerate:
for k, stats in enumerate(stats_names):
# pred has shape (batch_size, num_samples, diff_steps, seq_length, num_joints, features)
mm_traj = traj_gt_arr[counter: counter + target.shape[0]] if traj_gt_arr is not None else None
values = stats_func[stats](target, pred[:, :, step], mm_traj, lat_pred[:, :, step]).cpu().numpy()
for i in range(values.shape[0]):
stats_meter[stats][str(steps_to_evaluate[step])].update(values[i]) # individual update for each batch element
all_results[nbatch * batch_size + i, k+2, step] = values[i] if not isinstance(values[i], np.ndarray) else values[i].mean()
# pred_flat -> [batch_size, samples, steps, seq_length, n_features])
# we append the motion (L2 distance between pose at t-1 and t) of the predictions for the CMD computation
motion = (torch.linalg.norm(pred_flat[:, :, step, 1:] - pred_flat[:, :, step, :-1], axis=-1)).mean(axis=1).mean(axis=-1)
histogram_data[str(steps_to_evaluate[step])].append(motion.cpu().detach().numpy())
classes = np.array([CLASS_TO_IDX[c] for c in extra["metadata"][data_loader.dataset.metadata_class_idx]])
all_obs_classes[str(steps_to_evaluate[step])].append(classes)
if classifier_for_fid is not None:
# ----------------------------- Computing features for FID -----------------------------
# pred -> [batch_size, samples, steps, seq_length, n_part, n_joints, n_features])
pred_step_ = pred.reshape(list(pred.shape[:-2]) + [-1, ])[:, :, step, :, 0, :] # [batch_size, samples, seq_length, n_features])
pred_step_ = pred_step_.reshape([-1, ] + list(pred_step_.shape[-2:])) # [batch_size * samples, seq_length, n_features])
pred_step_ = pred_step_.permute(0, 2, 1) # [batch_size * samples, n_features, seq_length])
# same for target: but no need for step + no need to join batch_size + samples
target_step_ = target.reshape(list(target.shape[:-2]) + [-1, ])[..., 0, :] # [batch_size, samples, seq_length, n_features])
target_step_ = target_step_.permute(0, 2, 1) # [batch_size * samples, n_features, seq_length])
pred_activations = classifier_for_fid.get_fid_features(motion_sequence=pred_step_).cpu().data.numpy()
gt_activations = classifier_for_fid.get_fid_features(motion_sequence=target_step_).cpu().data.numpy()
all_gt_activations[str(steps_to_evaluate[step])].append(gt_activations)
all_pred_activations[str(steps_to_evaluate[step])].append(pred_activations)
pred_classes = classifier_for_fid(motion_sequence=pred_step_.float()).cpu().data.numpy().argmax(axis=1)
# recover the batch size and samples dimension
pred_classes = pred_classes.reshape([pred.shape[0], samples])
gt_classes = classifier_for_fid(motion_sequence=target_step_.float()).cpu().data.numpy().argmax(axis=1)
# append to the list
all_pred_classes[str(steps_to_evaluate[step])].append(pred_classes)
all_gt_classes[str(steps_to_evaluate[step])].append(gt_classes)
counter += target.shape[0]
if not silent:
print('-' * 80)
for stats in stats_meter:
s = stats_meter[stats][str(diffusion_steps)]
if not isinstance(s.val, np.ndarray):
print(f'{counter-batch_size}-{counter:04d} {stats}: {s.val:.4f}({s.avg:.4f})')
else:
print(f'{counter-batch_size}-{counter:04d} {stats}: {s.val.mean():.4f}({s.avg.mean():.4f})')
#break
results = {}
results["steps"] = steps_to_evaluate
# ----------------------------- Computing FID -----------------------------
for step in steps_to_evaluate:
if classifier_for_fid is not None:
step = str(step)
if "FID" not in results:
results["FID"] = []
results["FID"].append(fid(np.concatenate(all_gt_activations[step], axis=0), np.concatenate(all_pred_activations[step], axis=0)))
step_obs_classes = np.concatenate(all_obs_classes[step], axis=0)
# ----------------------------- Computing CMD -----------------------------
try:
results[f"CMD"] = [0] * len(steps_to_evaluate)
motion_datas = {}
for step_idx, step in enumerate(steps_to_evaluate):
step = str(step)
step_obs_classes = np.concatenate(all_obs_classes[step], axis=0)
motion_data = np.concatenate(histogram_data[step], axis=0)
motion_data_mean = motion_data.mean(axis=0)
motion_datas[step] = motion_data_mean
motion_per_class = np.zeros((len(IDX_TO_CLASS), motion_data.shape[1]))
# CMD weighted by class
for i, (name, class_val_ref) in enumerate(zip(IDX_TO_CLASS, data_loader.dataset.mean_motion_per_class)):
mask = step_obs_classes == i
if mask.sum() == 0:
continue
motion_data_mean = motion_data[mask].mean(axis=0)
motion_per_class[i] = motion_data_mean
results["CMD"][step_idx] += cmd(motion_data_mean, class_val_ref) * (mask.sum() / step_obs_classes.shape[0])
except Exception as e:
print(f"Error computing motion: {e}")
print("Motion computation failed. Probably due to missing motion mean in dataset class.")
# ----------------------------- Averaging scores for each step evaluated -----------------------------
for stats in stats_meter:
if not isinstance(stats_meter[stats][str(steps_to_evaluate[0])].val, np.ndarray):
results[stats] = [stats_meter[stats][str(step)].avg for step in steps_to_evaluate]
else:
results[stats] = [[float(val) for val in stats_meter[stats][str(step)].avg] for step in steps_to_evaluate] # to json serializable
results[stats + "_avg"] = [float(stats_meter[stats][str(step)].avg.mean()) for step in steps_to_evaluate]
# ----------------------------- Storing sequent-wise results + APDE -----------------------------
all_results = all_results.reshape(all_results.shape[0], -1)
idces = [0, len(steps_to_evaluate)] + [i for i in range(2 * len(steps_to_evaluate), all_results.shape[1])]
all_results = all_results[:,idces].astype(np.float32) # we remove duplicate idces
df = pd.DataFrame(all_results, columns=column_names)
sw_path = os.path.join(store_folder, f"results_{samples}_{diffusion_stride}.csv")
assert len(mmapd_gt) == len(df), f"mmapd_gt and df have different length: {len(mmapd_gt)} vs {len(df)}"
# APDE computation
all_apdes = []
for i in range(len(steps_to_evaluate)):
apd_n = f"APD_{steps_to_evaluate[i]}"
apde_n = f"APDE_{steps_to_evaluate[i]}"
df[apde_n] = abs(df[apd_n] - mmapd_gt)
all_apdes.append(np.mean(df[apde_n]))
results["APDE"] = all_apdes
# store sequent-wise results
df.to_csv(sw_path, index=False)
# ----------------------------- Printing results -----------------------------
print('=' * 80)
for stats in results:
print(f'Total {stats}: {results[stats][-1]:.4f}')
print('=' * 80)
# ----------------------------- Storing overall results -----------------------------
# x-axis -> diffusion steps, y-axis -> stat
if len(steps_to_evaluate) > 1:
# plot results
steps = results["steps"]
for stat in results:
if stat.lower() == "steps":
continue
stat_name = f"test_{samples}_{stat}"
if isinstance(results[stat][0], list):
continue # skip non-scalar stats
ys = [results[stat][i] for i, step in enumerate(steps)]
plt.plot(steps, ys, label=stat_name)
plt.title(stat_name)
plt.savefig(os.path.join(store_folder, f"{stat_name}.png"))
plt.clf()
# write results as json in plots folder
ov_path = os.path.join(store_folder, f"results_{samples}.json")
with open(ov_path, "w") as f:
json.dump(results, f, indent=4)
print(f"Sequence-wise results saved to {sw_path}")
print(f"Overall results saved to {ov_path}")
print('=' * 80)
return results
SAMPLERS = {
"ddpm": "p_sample_loop_progressive",
"ddim": "ddim_sample_loop_progressive"
}
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--cfg', required=True)
parser.add_argument('-m', '--mode', default='vis', type=str, help='vis: visualize results\ngen: generate and store all visualizations for a single batch\nstats: launch numeric evaluation')
parser.add_argument('-stats_mode', '--stats_mode', type=str, default="no_mm")
parser.add_argument('-b', '--batch_size', type=int, default=32)
parser.add_argument('--multimodal_threshold', type=float, default=0.5)
parser.add_argument('-cpu', '--cpu', action='store_true')
parser.add_argument('-s', '--samples', type=int, default=-1)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('-o', '--output_folder', type=str, default="./out")
parser.add_argument('--ncols', type=int, default=0)
parser.add_argument('-d', '--data', default='test')
parser.add_argument('-t', '--type', default='3d') # 2d or 3d
parser.add_argument('--dstride', type=int, default=-1)
parser.add_argument('-i', '--iter', type=int, default=None)
parser.add_argument('-e', '--ema', action='store_true')
parser.add_argument('-sampler', '--sampler', default='ddim', help=f"options={list(SAMPLERS.keys())}")
parser.add_argument('-store_idx', '--store_idx', type=int, default=-1) # index of diffusion step to be stored
parser.add_argument('--silent', action='store_true')
args = parser.parse_args()
assert args.sampler in SAMPLERS, f"options for sampling={list(SAMPLERS.keys())}"
"""setup"""
np.random.seed(args.seed)
torch.manual_seed(args.seed)
set_global_seed(args.seed)
output_folder = args.output_folder
os.makedirs(output_folder, exist_ok=True)
# build the config/checkpoint path
ext = ".pth"
if args.ema:
ext = "_ema" + ext
iter = "best" if args.iter is None else args.iter
config_path = args.cfg
checkpoint_path = os.path.join(args.cfg, f"model_best{ext}" if iter == "best" else f"checkpoint-epoch{iter}{ext}")
checkpoint_folder = os.path.join(args.cfg, str(iter))
if not os.path.exists(checkpoint_path):
raise Exception(f"Checkpoint not found in: %s" % checkpoint_path)
exp_folder = "/".join(checkpoint_path.split("/")[:-1])
config_path = os.path.join(exp_folder, "config.json")
exp_name, exp_id, checkpoint = checkpoint_path.split("/")[-3:]
dataset_name = checkpoint_path.split("/")[-4]
dataset_split = args.data
print(f"> Dataset: '{dataset_name}'")
print(f"> Exp name: '{exp_name}'")
print(f"> Exp ID: '{exp_id}'")
print(f"> Checkpoint: '{checkpoint}'")
# read config json
config = read_json(config_path)
configparser = ConfigParser(config, resume=os.path.join(exp_folder, checkpoint), save=False)
if args.mode == 'vis' or args.mode == 'gen':
store = 'gif' if args.mode == 'gen' else None # --> generate and store random generated sequences of a single batch.
if store:
print("Generating random sequences and storing them as 'gif'...")
num_samples = args.samples if args.samples != -1 else 5
output_folder = os.path.join(output_folder, '%s' % dataset_name, "%s_%s" % (exp_name, exp_id), str(iter), f"{dataset_split}_{'ema_' if args.ema else ''}{args.sampler}")
os.makedirs(output_folder, exist_ok=True)
visualize(configparser, args.data, output_folder,
samples=num_samples, ncols=args.ncols, type=args.type, diffusion_stride=args.dstride,
batch_size=args.batch_size, store=store, store_idx=args.store_idx, sampler_name=args.sampler)
elif args.mode == 'stats':
print(f"[WARNING] Remember: batch_size has an effect over the randomness of results. Keep batch_size fixed for comparisons, or implement several runs with different seeds to reduce stochasticity.")
num_samples = args.samples if args.samples != -1 else 50
stats_folder = os.path.join(exp_folder, str(iter), f"eval_{'ema_' if args.ema else ''}{args.sampler}")
os.makedirs(stats_folder, exist_ok=True)
t0 = time.time()
compute_stats(configparser, args.data, args.multimodal_threshold, samples=num_samples, batch_size=args.batch_size,
diffusion_stride=args.dstride, silent=args.silent, find_best_batch_size=False, store_folder=stats_folder, sampler_name=args.sampler,
stats_mode=args.stats_mode, metrics_at_cpu=args.cpu)
tim = int(time.time() - t0)
print(f"[INFO] Evaluation took {tim // 60}min, {tim % 60}s.")
else:
raise NotImplementedError()