-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathparse_config.py
executable file
·237 lines (201 loc) · 10.2 KB
/
parse_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import logging
from pathlib import Path
from functools import reduce, partial
from operator import getitem
from datetime import datetime
from logger import setup_logging
from utils import read_json, write_json
import torch
import random
class ConfigParser:
def __init__(self, config, resume=None, modification=None, run_id=None, save=True):
"""
class to parse configuration json file. Handles hyperparameters for training, initializations of modules, checkpoint saving
and logging module.
:param config: Dict containing configurations, hyperparameters for training. contents of `config.json` file for example.
:param resume: String, path to the checkpoint being loaded.
:param modification: Dict keychain:value, specifying position values to be replaced from config dict.
:param run_id: Unique Identifier for training processes. Used to save checkpoints and training log. Timestamp is being used as default
"""
# load config file and apply modification
config = self.custom_modifications(config)
self._config = _update_config(config, modification)
self.resume = resume
if save:
assert "config_path" in self.config, "config_path not in config"
# set save_dir where trained model and log will be saved.
save_dir = os.path.dirname(self.config["config_path"])
#Path(self.config['trainer']['save_dir'])
exper_name = self.config['name']
if run_id is None: # use timestamp as default run-id
run_id = datetime.now().strftime(r'%y%m%d_%H%M%S') + f"_{random.randint(0,1000):03d}"
if resume is not None and "models" in resume:
resumed_folder = os.path.dirname(resume)
self._save_dir = Path(resumed_folder)
self._log_dir = self._save_dir
else:
self._save_dir = Path(save_dir)
self._log_dir = Path(save_dir)
# make directory for saving checkpoints and log.
self.save_dir.mkdir(parents=True, exist_ok=True)
self.log_dir.mkdir(parents=True, exist_ok=True)
# save updated config file to the checkpoint dir
if not resume:
config["unique_id"] = run_id
#write_json(self.config, self.save_dir / 'config.json')
# configure logging module
setup_logging(self.log_dir)
self.log_levels = {
0: logging.WARNING,
1: logging.INFO,
2: logging.DEBUG
}
def custom_modifications(self, config_dict):
dtype = torch.float64 # default to double precision
if "dtype" in config_dict:
val = config_dict["dtype"].lower()
assert val in ["float32", "float64"], "Project can only work with either float32 or float64 dtypes."
dtype = torch.float32 if config_dict["dtype"].lower() == 'float32' else torch.float64
else:
config_dict["dtype"] = "float64"
torch.set_default_dtype(dtype)
# setup data_loader instances
for dl in ["data_loader_training", "data_loader_validation", "data_loader_test"]:
if dl not in config_dict:
continue
config_dict[dl]["args"]["normalize_data"] = config_dict["normalize_data"] if "normalize_data" in config_dict else True
config_dict[dl]["args"]["normalize_type"] = config_dict["normalize_type"] if "normalize_type" in config_dict else "standardize"
config_dict[dl]["args"]["precomputed_folder"] = config_dict["precomputed_folder"]
config_dict[dl]["args"]["obs_length"] = config_dict["obs_length"]
config_dict[dl]["args"]["pred_length"] = config_dict["pred_length"]
if "trainer" in config_dict:
config_dict[dl]["args"]["batch_size"] = config_dict["trainer"]["batch_size"]
config_dict[dl]["args"]["num_workers"] = config_dict["trainer"]["num_workers"]
config_dict[dl]["args"]["seed"] = config_dict["seed"]
config_dict[dl]["args"]["dtype"] = config_dict["dtype"]
# build model architecture, then print to console
for prefix in ["", "aux_"]: # "aux_" for auxiliary tasks
if prefix + "arch" in config_dict:
config_dict[prefix + "arch"]["args"]["n_landmarks"] = config_dict["landmarks"]
config_dict[prefix + "arch"]["args"]["n_features"] = config_dict["dims"]
config_dict[prefix + "arch"]["args"]["obs_length"] = config_dict["obs_length"]
config_dict[prefix + "arch"]["args"]["pred_length"] = config_dict["pred_length"]
if prefix + "loss" in config_dict:
config_dict[prefix + "loss"]["args"]["n_dims"] = config_dict['eval_dims']
if prefix + "metrics" in config_dict:
for met in config_dict[prefix + "metrics"]:
if "args" not in met:
met["args"] = {}
met["args"]["n_dims"] = config_dict["eval_dims"]
# for GAN training
for key, suffix in zip(["generator", "discriminator"], ["_G", "_D"]):
if key in config_dict:
config_dict[key]["args"]["n_landmarks"] = config_dict["landmarks"]
config_dict[key]["args"]["n_features"] = config_dict["dims"]
config_dict[key]["args"]["obs_length"] = config_dict["obs_length"]
config_dict[key]["args"]["pred_length"] = config_dict["pred_length"]
loss_key = "loss" + suffix
if loss_key in config_dict:
config_dict[loss_key]["args"]["n_dims"] = config_dict['eval_dims']
met_key = "metrics" + suffix
if met_key in config_dict:
for met in config_dict[met_key]:
if "args" not in met:
met["args"] = {}
met["args"]["n_dims"] = config_dict["eval_dims"]
#assert config_dict['eval_dims'] in (2, 3), "'eval_dims' must be either 2 or 3"
#config_dict["loss"] = config_dict["loss"].format(config_dict['eval_dims'])
#config_dict["metrics"] = [met.format(config_dict['eval_dims']) for met in config_dict["metrics"]]
return config_dict
@classmethod
def from_args(cls, args, options='', save=True):
"""
Initialize this class from some cli arguments. Used in train, test.
"""
for opt in options:
args.add_argument(*opt.flags, default=None, type=opt.type)
if not isinstance(args, tuple):
args = args.parse_args()
if args.device is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
if args.resume is not None and args.config is None:
resume = Path(args.resume)
cfg_fname = resume.parent / 'config.json'
else:
msg_no_cfg = "Configuration file need to be specified. Add '-c config.json', for example."
assert args.config is not None, msg_no_cfg
resume = args.resume if args.resume is not None else None
cfg_fname = Path(args.config)
config = read_json(cfg_fname)
if args.config and resume:
# update new config for fine-tuning
config.update(read_json(args.config))
# parse custom cli options into dictionary
modification = {opt.target : getattr(args, _get_opt_name(opt.flags)) for opt in options}
return cls(config, resume, modification, save=save)
def init_obj(self, name, module, *args, **kwargs):
"""
Finds a function handle with the name given as 'type' in config, and returns the
instance initialized with corresponding arguments given.
`object = config.init_obj('name', module, a, b=1)`
is equivalent to
`object = module.name(a, b=1)`
"""
module_name = self[name]['type']
module_args = dict(self[name]['args'])
assert all([k not in module_args for k in kwargs]), 'Overwriting kwargs given in config file is not allowed'
module_args.update(kwargs)
return getattr(module, module_name)(*args, **module_args)
def init_ftn(self, name, module, *args, **kwargs):
"""
Finds a function handle with the name given as 'type' in config, and returns the
function with given arguments fixed with functools.partial.
`function = config.init_ftn('name', module, a, b=1)`
is equivalent to
`function = lambda *args, **kwargs: module.name(a, *args, b=1, **kwargs)`.
"""
module_name = self[name]['type']
module_args = dict(self[name]['args'])
assert all([k not in module_args for k in kwargs]), 'Overwriting kwargs given in config file is not allowed'
module_args.update(kwargs)
return partial(getattr(module, module_name), *args, **module_args)
def __getitem__(self, name):
"""Access items like ordinary dict."""
return self.config[name]
def get_logger(self, name, verbosity=2):
msg_verbosity = 'verbosity option {} is invalid. Valid options are {}.'.format(verbosity, self.log_levels.keys())
assert verbosity in self.log_levels, msg_verbosity
logger = logging.getLogger(name)
logger.setLevel(self.log_levels[verbosity])
return logger
# setting read-only attributes
@property
def config(self):
return self._config
@property
def save_dir(self):
return self._save_dir
@property
def log_dir(self):
return self._log_dir
# helper functions to update config dict with custom cli options
def _update_config(config, modification):
if modification is None:
return config
for k, v in modification.items():
if v is not None:
_set_by_path(config, k, v)
return config
def _get_opt_name(flags):
for flg in flags:
if flg.startswith('--'):
return flg.replace('--', '')
return flags[0].replace('--', '')
def _set_by_path(tree, keys, value):
"""Set a value in a nested object in tree by sequence of keys."""
keys = keys.split(';')
_get_by_path(tree, keys[:-1])[keys[-1]] = value
def _get_by_path(tree, keys):
"""Access a nested object in tree by sequence of keys."""
return reduce(getitem, keys, tree)