-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_bls.py
214 lines (177 loc) · 8.98 KB
/
train_bls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import argparse
import torch
import data_loader as module_data
import metrics.loss as module_loss
import metrics.metric as module_metric
import models as module_arch
from trainer import BehaviorDecouplerTrainer
from utils import prepare_device, read_json, add_dict_to_argparser, set_global_seed, update_config_with_arguments, compute_statistics
from parse_config import ConfigParser
import os
from datetime import datetime
import random
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
# fix random seeds for reproducibility
DEFAULT_SEED = 6
# this will be overriden in config file only when set as arguments
ARGS_CONFIGPATH = dict( # alias for CLI argument: route in config file
name=("name", ),
batch_size=("trainer", "batch_size"),
epochs=("trainer", "epochs"),
)
ARGS_TYPES = dict(
name=str,
batch_size=int,
epochs=int,
)
def main(config_dict, resume):
unique_id = datetime.now().strftime(r'%y%m%d_%H%M%S') + f"_{random.randint(0,1000):03d}"
config = ConfigParser(config_dict, resume=args.resume, run_id=unique_id)
seed = config["seed"]
set_global_seed(seed)
logger = config.get_logger('train')
if resume:
logger.info("---------------------- RESUMED ----------------------")
data_loader = config.init_obj('data_loader_training', module_data)
logger.info(f"Number of training samples: {data_loader.n_samples}")
valid_data_loader = None
if 'data_loader_validation' in config.config:
valid_data_loader = config.init_obj('data_loader_validation', module_data)
logger.info(f"Number of validation samples: {valid_data_loader.n_samples}")
elif 'validation_split' not in config['data_loader_training']['args']: # no validation set, no validation split % set => no validation at all!
logger.warning(f"Validation set was not loaded!")# Training will run for {epochs} epochs.")
pass
model = config.init_obj('arch', module_arch)
aux_model = config.init_obj('aux_arch', module_arch)
if not resume:
logger.info('Trainable parameters: {}'.format(model.get_params()))
logger.info('[Aux] Trainable parameters: {}'.format(aux_model.get_params()))
# prepare for (multi-device) GPU training
for i in range(torch.cuda.device_count()):
logger.info(f"> GPU {i} ready: {torch.cuda.get_device_name(i)}")
device, device_ids = prepare_device(config['n_gpu'])
model = model.to(device)
aux_model = aux_model.to(device)
if len(device_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=device_ids)
aux_model = torch.nn.DataParallel(aux_model, device_ids=device_ids)
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
aux_trainable_params = filter(lambda p: p.requires_grad, aux_model.parameters())
optimizer = config.init_obj('optimizer', torch.optim, trainable_params)
aux_optimizer = config.init_obj('aux_optimizer', torch.optim, aux_trainable_params)
lr_scheduler = config.init_obj('lr_scheduler', torch.optim.lr_scheduler, optimizer)
aux_lr_scheduler = config.init_obj('aux_lr_scheduler', torch.optim.lr_scheduler, aux_optimizer)
samples_epoch = config['trainer']['samples_epoch'] if 'samples_epoch' in config['trainer'] else None
valid_frequency = config['trainer']['validation_frequency']
if valid_frequency > 0:
logger.info(f"Running validation {valid_frequency} times per epoch.")
else:
logger.info(f"Validation is not activated.")
es = config['trainer']['early_stop']
assert (es not in (0,-1) and valid_frequency not in (0,-1)) or es in (0,-1), logger.error(f"Combination not possible: early_stop={es} and valid_frequency={valid_frequency}")
# get function handles of loss and metrics
criterion = getattr(module_loss, config['loss']["type"])
aux_criterion = getattr(module_loss, config['aux_loss']["type"])
criterion_params = dict(config['loss']['args'])
aux_criterion_params = dict(config['aux_loss']['args'])
metrics = []
if "metrics" in config.config:
for met in config['metrics']:
assert "type" in met
fn = getattr(module_metric, met["type"])
metrics.append({
'fn': fn,
'alias': met.get('alias', fn.__name__),
'params': dict(met.get('args', {}))
})
aux_metrics = []
if "aux_metrics" in config.config:
for met in config['aux_metrics']:
assert "type" in met
fn = getattr(module_metric, met["type"])
aux_metrics.append({
'fn': fn,
'alias': met.get('alias', fn.__name__),
'params': dict(met.get('args', {}))
})
# ----------------------------------------------- TRAINING -----------------------------------------------
trainer = BehaviorDecouplerTrainer(model, criterion, criterion_params, metrics, optimizer,
config=config,
device=device,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
lr_scheduler=lr_scheduler,
validation_frequency=valid_frequency,
samples_epoch=samples_epoch,
seed=seed,
train_aux=True,
auxiliary_model=aux_model, auxiliary_criterion=aux_criterion, auxiliary_criterion_params=aux_criterion_params,
auxiliary_metrics=aux_metrics, auxiliary_optimizer=aux_optimizer, auxiliary_lr_scheduler=aux_lr_scheduler
)
last_epoch_stored = -1
logger.info(f"Starting training (epochs={config['trainer']['epochs']}, early_stop={es})...")
last_epoch_stored = trainer.train()
logger.info(f"Training finished at epoch={last_epoch_stored}!")
logger.info('=' * 80)
# ----------------------------------------------- REFINEMENT -----------------------------------------------
config.config['trainer']['epochs'] = config['trainer']['epochs'] + config['trainer']['epochs_refine']
logger.info(f"Starting refinement from {trainer.epochs} to {config.config['trainer']['epochs']}...")
refinement_lr_scheduler = config.init_obj('lr_scheduler_refinement', torch.optim.lr_scheduler, optimizer)
config.resume = os.path.join(config._save_dir, f"checkpoint-epoch{last_epoch_stored}.pth")
refiner = BehaviorDecouplerTrainer(model, criterion, criterion_params, metrics, optimizer,
config=config,
device=device,
data_loader=data_loader,
lr_scheduler=refinement_lr_scheduler,
validation_frequency=-1,
samples_epoch=samples_epoch,
seed=seed,
train_aux=False,
auxiliary_model=aux_model
)
logger.info("IMPORTANT: grad manually disabled for encoder and auxiliary decoder")
for para in aux_model.parameters():
para.requires_grad = False
for para in model.b_enc.parameters():
para.requires_grad = False
last_epoch_stored = refiner.train()
logger.info(f"Refinement finished at epoch={last_epoch_stored}!")
logger.info('=' * 80)
# ----------------------------------------------- STATS COMPUTATION -----------------------------------------------
logger.info(f"Starting stats computation...")
config.resume = os.path.join(config._save_dir, f"checkpoint-epoch{last_epoch_stored}.pth")
compute_statistics(config, "training")
print("Stats computed!")
logger.info('=' * 80)
def concat_jsons(json1, json2):
# jsons are concatenated (merged) up to 2 levels in depth.
for key in json1:
if key in json2:
for subkey in json1[key]:
json2[key][subkey] = json1[key][subkey]
else:
json2[key] = json1[key]
return json2
def create_argparser():
"""
for key in defaults_to_config.keys():
assert key in defaults, f"[code error] key '{key}' has no config path associated."
"""
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
parser.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
parser.add_argument('-s', '--seed', default=DEFAULT_SEED, type=int,
help='random seed')
add_dict_to_argparser(parser, ARGS_TYPES)
return parser
if __name__ == '__main__':
args = create_argparser().parse_args()
config_path = os.path.join(os.path.dirname(args.resume), "config.json") if args.resume else args.config
config_dict = read_json(config_path)
update_config_with_arguments(config_dict, args, ARGS_TYPES, ARGS_CONFIGPATH)
config_dict["seed"] = args.seed
config_dict["config_path"] = args.config
main(config_dict, resume=args.resume is not None)