forked from FernandoDeMeer/RL_Optimal_Execution
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_async_ppo.py
307 lines (250 loc) · 10.2 KB
/
train_async_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#
# Reinforcement Learning Optimal Trade Execution
# Async PPO
#
import shutil
import copy
import os
import time
import datetime
import argparse
import math
import gym
import json
from decimal import Decimal
import numpy as np
import ray
from ray import tune
from ray.tune.registry import register_env
from ray.rllib.agents import dqn
from ray.tune.logger import pretty_print
from ray.rllib.agents.impala import impala
from ray.rllib.agents.ppo.appo import APPOTrainer
from src.data.historical_data_feed import HistoricalDataFeed
from src.core.environment.limit_orders_setup.broker import Broker
from src.core.environment.limit_orders_setup.base_env import NarrowTradeLimitEnvDiscrete
from train_ppo import train_rolling_window
from ray.rllib.models import ModelCatalog
from src.core.agent.ray_model import CustomRNNModel
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(ROOT_DIR, "data")
def init_arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--env", type=str, default="lob_env")
parser.add_argument("--num-cpus", type=int, default=38)
parser.add_argument("--agent-restore-path", type=str, default=None)
parser.add_argument(
"--framework",
choices=["tf", "torch"],
default="tf",
help="The DL framework specifier.")
parser.add_argument(
"--symbol",
choices=["btcusdt"],
default="btcusdt",
help="Market symbol.")
parser.add_argument(
"--session_id",
type=str,
default="0",
help="Session id.")
parser.add_argument(
"--nr_episodes",
type=int,
default=1000000,
help="Number of episodes to train.")
parser.add_argument(
"--no-tune",
type=bool,
default=True,
help="Run without Tune using a manual train loop instead.")
parser.add_argument(
"--stop-timesteps",
type=int,
default=10000000,
help="Number of timesteps to train.")
parser.add_argument(
"--stop-reward",
type=float,
default=0.9,
help="Reward at which we stop training.")
parser.add_argument(
"--rl_algo",
type=str,
default="APPO",
help="RL Algorithm to train the Agent with.")
return parser.parse_args()
args = init_arg_parser()
def lob_env_creator(env_config):
if env_config['train_config']['train']:
data_periods = env_config['train_config']["train_data_periods"]
else:
data_periods = env_config['train_config']["eval_data_periods"]
data_start_day = datetime.datetime(year=data_periods[0], month=data_periods[1], day=data_periods[2])
data_end_day = datetime.datetime(year=data_periods[3], month=data_periods[4], day=data_periods[5])
lob_feed = HistoricalDataFeed(data_dir=os.path.join(DATA_DIR, "market", env_config['train_config']["symbol"]),
instrument=env_config['train_config']["symbol"],
start_day=data_start_day,
end_day=data_end_day)
exclude_keys = {'train_config'}
env_config_clean = {k: env_config[k] for k in set(list(env_config.keys())) - set(exclude_keys)}
return NarrowTradeLimitEnvDiscrete(broker=Broker(lob_feed),
action_space=gym.spaces.Discrete(3),
config=env_config_clean)
def init_session_container(session_id):
if args.session_id == "0":
session_id = str(int(time.time()))
session_container_path = os.path.join("data", "sessions", session_id)
if not os.path.isdir(session_container_path):
os.makedirs(session_container_path)
return session_container_path
if __name__ == "__main__":
args = init_arg_parser()
# APPO based IMPALA CONFIG
APPO_CONFIG = impala.ImpalaTrainer.merge_trainer_configs(
impala.DEFAULT_CONFIG, # See keys in impala.py, which are also supported.
{
# Whether to use V-trace weighted advantages. If false, PPO GAE
# advantages will be used instead.
"vtrace": True,
# == These two options only apply if vtrace: False ==
# Should use a critic as a baseline (otherwise don't use value
# baseline; required for using GAE).
"use_critic": True,
# If true, use the Generalized Advantage Estimator (GAE)
# with a value function, see https://arxiv.org/pdf/1506.02438.pdf.
"use_gae": True,
# GAE(lambda) parameter
"lambda": 1.0,
# == PPO surrogate loss options ==
"clip_param": 0.4,
# == PPO KL Loss options ==
"use_kl_loss": False,
"kl_coeff": 1.0,
"kl_target": 0.01,
# == IMPALA optimizer params (see documentation in impala.py) ==
"rollout_fragment_length": 50,
"train_batch_size": 500,
# "min_time_s_per_reporting": 10,
"num_gpus": 0,
"num_envs_per_worker": 1,
"num_multi_gpu_tower_stacks": 1,
"minibatch_buffer_size": 1,
"num_sgd_iter": 1,
"replay_proportion": 0.0,
"replay_buffer_num_slots": 100,
"learner_queue_size": 16,
"learner_queue_timeout": 300,
"max_sample_requests_in_flight_per_worker": 2,
"broadcast_interval": 1,
"grad_clip": 40.0,
"opt_type": "adam",
"lr": 0.0005,
"lr_schedule": None,
"decay": 0.99,
"momentum": 0.0,
"epsilon": 0.1,
"vf_loss_coeff": 0.5,
"entropy_coeff": 0.01,
"entropy_coeff_schedule": None,
# From params...
"num_workers": args.num_cpus-1,
"framework": args.framework,
"env": args.env,
# "model": {
# "custom_model": "end_to_end_model",
# "custom_model_config": {"fcn_depth": 128,
# "lstm_cells": 256},
# },
},
_allow_unknown_configs=True,
)
env_config = {'obs_config': {"lob_depth": 5,
"nr_of_lobs": 5,
"norm": True},
"train_config": {
"train": True,
"symbol": 'btcusdt',
"train_data_periods": [2021, 6, 1, 2021, 6, 20],
"eval_data_periods": [2021, 6, 12, 2021, 6, 14]
},
'trade_config': {'trade_direction': 1,
'vol_low': 100,
'vol_high': 100,
'no_slices_low': 9,
'no_slices_high': 9,
'bucket_func': lambda no_of_slices: list(np.around(np.linspace(0,1,no_of_slices+2)[1:-1],2)),
'rand_bucket_low': 0,
'rand_bucket_high': 0},
'start_config': {'hour_low': 0,
'hour_high': 22,
'minute_low': 0,
'minute_high': 59,
'second_low': 0,
'second_high': 59},
'exec_config': {'exec_times': [5],
'delete_vol': False},
'reset_config': {'reset_num_episodes': 1,},
'seed_config': {'seed': 0}}
env_config = {"env_config": env_config}
APPO_CONFIG.update(env_config)
train_rolling_window(APPO_CONFIG, args)
# # For debugging the env or other modules, set local_mode=True
# ray.init(
# local_mode=False,
# # local_mode=True,
# num_cpus=args.num_cpus + 1)
# register_env(args.env, lob_env_creator)
# ModelCatalog.register_custom_model("end_to_end_model", CustomRNNModel)
# session_container_path = init_session_container(args.session_id)
#
# with open("{}/params.txt".format(session_container_path), "w") as env_params_file:
# env_config_copy = copy.deepcopy(env_config)["env_config"]
# f__ = env_config_copy["trade_config"]["bucket_func"]
# env_config_copy["trade_config"]["bucket_func"] = f__(0)
#
# env_config_copy["nn_model"] = APPO_CONFIG["model"]
#
# env_params_file.write(json.dumps(env_config_copy,
# indent=4,
# separators=(',', ': ')))
#
# shutil.make_archive(base_dir="src",
# root_dir=os.getcwd(),
# format='zip',
# base_name=os.path.join(session_container_path, "src"))
# print("")
#
# stop = {
# "training_iteration": args.nr_episodes,
# "timesteps_total": args.stop_timesteps,
# "episode_reward_mean": args.stop_reward,
# }
#
# is_train = True
# if is_train:
#
# results = tune.run("APPO",
# config=APPO_CONFIG,
# metric="episode_reward_mean",
# mode="max",
# checkpoint_freq=10,
# stop={"training_iteration": args.nr_episodes},
# checkpoint_at_end=True,
# local_dir=session_container_path,
# restore=None if args.agent_restore_path is None else os.path.join(session_container_path,
# "APPO",
# args.agent_restore_path,),
# max_failures=-1)
# else:
# trainer = APPOTrainer(config=APPO_CONFIG)
#
# for _ in range(args.nr_episodes):
# result = trainer.train()
# print(pretty_print(result))
#
# if result["timesteps_total"] >= args.stop_timesteps or \
# result["episode_reward_mean"] >= args.stop_reward:
# break
#
# ray.shutdown()