-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
85 lines (61 loc) · 2.91 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
import torch.nn as nn
import torchvision.models as models
from torch.nn.utils.rnn import pack_padded_sequence
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
super(EncoderCNN, self).__init__()
resnet = models.resnet50(pretrained=True)
for param in resnet.parameters():
param.requires_grad_(False)
modules = list(resnet.children())[:-1]
self.resnet = nn.Sequential(*modules)
self.embed = nn.Linear(resnet.fc.in_features, embed_size)
def forward(self, images):
features = self.resnet(images)
features = features.view(features.size(0), -1)
features = self.embed(features)
return features
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers=1):
super(DecoderRNN, self).__init__()
self.embed_size = embed_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.vocab_size = vocab_size
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
# dropout layer
# self.dropout = nn.Dropout(0.4)
# fully connected layer
self.fc1 = nn.Linear(hidden_size, vocab_size)
# embedding layer
self.embed = nn.Embedding(num_embeddings=self.vocab_size, embedding_dim=self.embed_size)
# self.softmax = nn.Softmax(dim=1)
def forward(self, features, captions):
# remove end-token from all captions
embeddings = self.embed(captions[:,:-1])
# concatenate captions embedidings and images features in one dimension array
embeddings = torch.cat((features.unsqueeze(1), embeddings), 1)
# Pass the embeddings through the LSTM layer
out, hiddens = self.lstm(embeddings)
# pass the output from LSTM layer through fully connected linear layer
outputs = self.fc1(out)
return outputs
def sample(self, inputs, states=None, max_len=20):
" accepts pre-processed image tensor (inputs) and returns predicted sentence (list of tensor ids of length max_len) "
output = []
for i in range(max_len):
# pass the inputs to the LSTM layer
out, hiddens = self.lstm(inputs, states)
# pass the output from LSTM layer through fully connected linear layer
out = self.fc1(out)
# out.shape = [32, 1, 9955]
# find the max value in the predicted vocabulary from the output tensor
_, idx = out.max(2)
print('Idx: ', idx.item())
# update inputs and states
inputs = self.embed(idx)
states = hiddens
# add the index to the output list
output.append(idx.item())
return output