forked from YuYang0901/S2L
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
94 lines (75 loc) · 2.77 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import argparse
import os
import yaml
from schedules import Full, S2L
from utils import get_tokenizer, smart_tokenizer_and_embedding_resize, get_model, rank0_print
## GET_SCHEDULES
def get_schedule(schedule_name):
if schedule_name == "Full":
return Full
elif schedule_name == "S2L":
return S2L
def set_default_values(args):
# set default values
if "ref_model_path" not in args:
args["ref_model_path"] = None
if "n_components" not in args:
args["n_components"] = -1
if "num_loss_ckpts" not in args:
args["num_loss_ckpts"] = -1
if "distance" not in args:
args["distance"] = 'euclidean'
if "seed" not in args:
args["seed"] = 42
return args
## RUN
def main(config_file):
# load configuration
with open(config_file, 'r') as f:
args = yaml.full_load(f)
rank0_print('Configuration loaded!')
# set default values
args = set_default_values(args)
rank0_print(yaml.dump(args, sort_keys=False, default_flow_style=False))
# makedirs
args["data_path_root"] = f"res/{args['result_dir_name']}/data"
args["output_dir_root"] = f"res/{args['result_dir_name']}/output"
os.makedirs(args["data_path_root"], exist_ok=True)
os.makedirs(args["output_dir_root"], exist_ok=True)
# Initialize model and tokenizer
model = get_model(model_name_or_path=args["model_name_or_path"], cache_dir=args["cache_dir"])
rank0_print('*** Model initialized!')
tokenizer, special_tokens_dict = get_tokenizer(
model_name_or_path=args["model_name_or_path"],
cache_dir=args["cache_dir"],
model_max_length=args["model_max_length"]
)
rank0_print('*** Tokenizer initialized!')
tokenizer, model = smart_tokenizer_and_embedding_resize(
special_tokens_dict=special_tokens_dict,
tokenizer=tokenizer,
model=model
)
rank0_print('*** Smart tokenizer and embedding resize done!')
# Initialize schedule
schedule = get_schedule(schedule_name=args["schedule_name"])(
model=model,
tokenizer=tokenizer,
args=args
)
rank0_print('*** Schedule built!')
# Initialize data
schedule.initialize_labeled_data()
schedule.save_labeled_unlabeled_data()
rank0_print(f"*** Training-Data-Size = {len(schedule.labeled_idx[schedule.labeled_idx==True])}")
# Train
schedule.train()
rank0_print("*** Training Done!")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config_file', type=str, required=True,)
parser.add_argument('--wandb_key', type=str, required=True, help="wandb login key")
args = parser.parse_args()
import wandb
wandb.login(key=args.wandb_key)
main(config_file=args.config_file)