-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
280 lines (234 loc) · 9.09 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
"""
Credits: Code modified from Andrej Karpathy Walkthrough:
https://www.youtube.com/watch?v=kCc8FmEb1nY
"""
import torch
import torch.nn as nn
from torch.nn import functional as F
import wandb
import matplotlib.pyplot as plt
import argparse
# hyperparameters
batch_size = 16 # how many independent sequences will we process in parallel?
block_size = 32 # what is the maximum context length for predictions?
max_iters = 5000
eval_interval = 200
learning_rate = 1e-3
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 200
n_embd = 256
n_head = 16
n_layer = 16
dropout = 0.0
"""
For shorter training time, use these parameters instead
by uncommenting the code. Otherwise, for a better model,
keep as-is (commented out).
"""
# eval_iters = 100
# n_embd = 64
# n_head = 8
# n_layer = 8
torch.manual_seed(1337)
# Load and preprocess data
with open('formatted_comments.txt', 'r', encoding='utf-8') as f:
text = f.read()
chars = sorted(list(set(text)))
vocab_size = len(chars)
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9*len(data))
train_data = data[:n]
val_data = data[n:]
# Data loading function
def get_batch(split):
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i:i+block_size] for i in ix])
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
return x.to(device), y.to(device)
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class Head(nn.Module):
""" one head of self-attention """
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B,T,C = x.shape
k = self.key(x) # (B,T,C)
q = self.query(x) # (B,T,C)
# compute attention scores ("affinities")
wei = q @ k.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
wei = F.softmax(wei, dim=-1) # (B, T, T)
wei = self.dropout(wei)
# perform the weighted aggregation of the values
v = self.value(x) # (B,T,C)
out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)
return out
class MultiHeadAttention(nn.Module):
""" multiple heads of self-attention in parallel """
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(n_embd, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedFoward(nn.Module):
""" a simple linear layer followed by a non-linearity """
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
""" Transformer block: communication followed by computation """
def __init__(self, n_embd, n_head):
# n_embd: embedding dimension, n_head: the number of heads we'd like
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedFoward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class BigramLanguageModel(nn.Module):
def __init__(self):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd)
self.lm_head = nn.Linear(n_embd, vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
tok_emb = self.token_embedding_table(idx)
pos_emb = self.position_embedding_table(torch.arange(T, device=device))
x = tok_emb + pos_emb
x = self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
idx_cond = idx[:, -block_size:]
logits, loss = self(idx_cond)
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
def train_model():
global model
print(sum(p.numel() for p in model.parameters())/1e6, 'M parameters')
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
wandb.init(project="student-language-model", config={
"batch_size": batch_size,
"block_size": block_size,
"max_iters": max_iters,
"learning_rate": learning_rate,
"n_embd": n_embd,
"n_head": n_head,
"n_layer": n_layer,
"dropout": dropout
})
train_losses = []
val_losses = []
for iter in range(max_iters):
if iter % eval_interval == 0:
losses = estimate_loss()
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
wandb.log({
"train_loss": losses['train'],
"val_loss": losses['val'],
"step": iter
})
train_losses.append(losses['train'])
val_losses.append(losses['val'])
xb, yb = get_batch('train')
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
torch.save(model.state_dict(), 'model.pth')
print("Model saved successfully.")
plt.figure(figsize=(10, 5))
plt.plot(range(0, max_iters, eval_interval), train_losses, label='Train Loss')
plt.plot(range(0, max_iters, eval_interval), val_losses, label='Validation Loss')
plt.xlabel('Iterations')
plt.ylabel('Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.savefig('loss_curve.png')
plt.close()
wandb.log({"loss_curve": wandb.Image('loss_curve.png')})
wandb.finish()
def load_and_generate(model_path, prompt="", max_new_tokens=500):
loaded_model = BigramLanguageModel().to(device)
loaded_model.load_state_dict(torch.load(model_path))
loaded_model.eval()
if prompt:
context = torch.tensor(encode(prompt), dtype=torch.long, device=device).unsqueeze(0)
else:
context = torch.zeros((1, 1), dtype=torch.long, device=device)
generated_text = decode(loaded_model.generate(context, max_new_tokens=max_new_tokens)[0].tolist())
return generated_text
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train or generate text with the language model")
parser.add_argument('--mode', type=str, choices=['train', 'generate'], required=True,
help="Choose 'train' to train the model or 'generate' to generate text")
parser.add_argument('--prompt', type=str, default="To be or not to be",
help="Prompt for text generation (only used in generate mode)")
parser.add_argument('--max_new_tokens', type=int, default=200,
help="Maximum number of new tokens to generate (only used in generate mode)")
args = parser.parse_args()
model = BigramLanguageModel().to(device)
if args.mode == 'train':
train_model()
elif args.mode == 'generate':
try:
model.load_state_dict(torch.load('model.pth'))
print("Model loaded successfully.")
except FileNotFoundError:
print("No saved model found. Training a new model...")
train_model()
generated_text = load_and_generate('model.pth', prompt=args.prompt, max_new_tokens=args.max_new_tokens)
print("Generated text:")
print(generated_text)