-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathdata.py
65 lines (51 loc) · 2.72 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
import torch.utils.data as Data
# S: decoding input 的起始符
# E: decoding output 的结束符
# P:意为padding,如果当前句子短于本batch的最长句子,那么用这个符号填补缺失的单词
sentence = [
# enc_input dec_input dec_output
['ich mochte ein bier P','S i want a beer .', 'i want a beer . E'],
['ich mochte ein cola P','S i want a coke .', 'i want a coke . E'],
]
# 词典,padding用0来表示
# 源词典,本例中即德语词典
src_vocab = {'P':0, 'ich':1,'mochte':2,'ein':3,'bier':4,'cola':5}
src_vocab_size = len(src_vocab) # 6
# 目标词典,本例中即英语词典,相比源多了特殊符
tgt_vocab = {'P':0,'i':1,'want':2,'a':3,'beer':4,'coke':5,'S':6,'E':7,'.':8}
# 反向映射词典,idx —— word,原代码那个有点不好理解
idx2word = {v:k for k,v in tgt_vocab.items()}
tgt_vocab_size = len(tgt_vocab) # 9
src_len = 5 # 输入序列enc_input的最长序列长度,其实就是最长的那句话的token数,是指一个batch中最长呢还是所有输入数据最长呢
tgt_len = 6 # 输出序列dec_inut/dec_output的最长序列长度
# 构建模型输入的Tensor
def make_data(sentence):
enc_inputs, dec_inputs, dec_outputs = [], [], []
for i in range(len(sentence)):
enc_input = [src_vocab[word] for word in sentence[i][0].split()]
dec_input = [tgt_vocab[word] for word in sentence[i][1].split()]
dec_output = [tgt_vocab[word] for word in sentence[i][2].split()]
enc_inputs.append(enc_input)
dec_inputs.append(dec_input)
dec_outputs.append(dec_output)
# LongTensor是专用于存储整型的,Tensor则可以存浮点、整数、bool等多种类型
return torch.LongTensor(enc_inputs), torch.LongTensor(dec_inputs), torch.LongTensor(dec_outputs)
# 返回的形状为 enc_inputs:(2,5)、dec_inputs(2,6)、dec_outputs(2,6)
# 使用Dataset加载数据
class MyDataSet(Data.Dataset):
def __init__(self, enc_inputs, dec_inputs, dec_outputs):
super(MyDataSet, self).__init__()
self.enc_inputs = enc_inputs
self.dec_inputs = dec_inputs
self.dec_outputs = dec_outputs
def __len__(self):
# 我们前面的enc_inputs.shape = [2,5],所以这个返回的是2
return self.enc_inputs.shape[0]
# 根据idx返回的是一组 enc_input, dec_input, dec_output
def __getitem__(self, idx):
return self.enc_inputs[idx], self.dec_inputs[idx], self.dec_outputs[idx]
# 获取输入
enc_inputs, dec_inputs, dec_outputs = make_data(sentence)
# 构建DataLoader
loader = Data.DataLoader(dataset=MyDataSet(enc_inputs, dec_inputs, dec_outputs), batch_size=2, shuffle=True)