-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrun.py
224 lines (194 loc) · 11.8 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Copyright (c) 2019-present, Royal Bank of Canada.
# Copyright (c) 2021 THUML @ Tsinghua University
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#####################################################################################
# Code is based on the Autoformer (https://arxiv.org/pdf/2106.13008.pdf) implementation
# from https://github.com/thuml/Autoformer by THUML @ Tsinghua University
####################################################################################
import argparse
import torch
from exp.exp_main import Exp_Main
import random
import numpy as np
def main():
fix_seed = 2021
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
parser = argparse.ArgumentParser(description='Autoformer & Transformer family for Time Series Forecasting')
# basic config
parser.add_argument('--is_training', type=int, default=1, help='status')
parser.add_argument('--use_multi_scale', action='store_true', help='using mult-scale')
parser.add_argument('--prob_forecasting', action='store_true', help='using probabilistic forecasting')
parser.add_argument('--scales', default=[16, 8, 4, 2, 1], help='scales in mult-scale')
parser.add_argument('--scale_factor', type=int, default=2, help='scale factor for upsample')
parser.add_argument('--model', type=str, required=True, default='Autoformer',
help='model name, options: [Autoformer, Informer, Transformer, Reformer, FEDformer] and their MS versions: [AutoformerMS, InformerMS, etc]')
# data loader
parser.add_argument('--data', type=str, default='custom', help='dataset type')
parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
# forecasting task
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
# supplementary config for FiLM model
parser.add_argument('--modes1', type=int, default=64, help='modes to be selected random 64')
parser.add_argument('--mode_type',type=int,default=0)
# supplementary config for FEDformer model
parser.add_argument('--version', type=str, default='Wavelets',
help='for FEDformer, there are two versions to choose, options: [Fourier, Wavelets]')
parser.add_argument('--mode_select', type=str, default='low',
help='for FEDformer, there are two mode selection method, options: [random, low]')
parser.add_argument('--modes', type=int, default=64, help='modes to be selected random 64')
parser.add_argument('--L', type=int, default=3, help='ignore level')
parser.add_argument('--base', type=str, default='legendre', help='mwt base')
parser.add_argument('--cross_activation', type=str, default='tanh',
help='mwt cross atention activation function tanh or softmax')
# supplementary config for Reformer model
parser.add_argument('--bucket_size', type=int, default=4, help='for Reformer')
parser.add_argument('--n_hashes', type=int, default=4, help='for Reformer')
parser.add_argument('--film_ours', default=True, action='store_true')
parser.add_argument('--ab', type=int, default=2, help='ablation version')
parser.add_argument('--ratio', type=float, default=0.5, help='dropout')
parser.add_argument('--film_version', type=int, default=0, help='compression')
# model define
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
parser.add_argument('--factor', type=int, default=3, help='attn factor')
parser.add_argument('--distil', action='store_false',
help='whether to use distilling in encoder, using this argument means not using distilling',
default=True)
parser.add_argument('--dropout', type=float, default=0.05, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
parser.add_argument('--do_predict', action='store_true', help='whether to predict unseen future data')
# optimization
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
parser.add_argument('--itr', type=int, default=3, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='Exp', help='exp description')
parser.add_argument('--loss', type=str, default='mse', help='loss function')
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1', help='device ids of multile gpus')
args = parser.parse_args()
if 'MS' in args.model:
args.use_multi_scale = True
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
if args.use_gpu:
args.devices = '0'
for i in range(1, torch.cuda.device_count()):
args.devices = args.devices + f',{i}'
args.use_multi_gpu = True if torch.cuda.device_count()>1 else False
if args.use_gpu and args.use_multi_gpu:
args.dvices = args.devices.replace(' ', '')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
if args.data_path=='weather.csv':
args.root_path = './dataset/weather/'
c = 21
args.enc_in = c
args.dec_in = c
args.c_out = c
if args.data_path=='synthetic':
args.root_path = ''
c = 3
args.enc_in = c
args.dec_in = c
args.c_out = c
elif args.data_path=='traffic.csv':
args.root_path = './dataset/traffic/'
c = 862
args.enc_in = c
args.dec_in = c
args.c_out = c
args.train_epochs = 3
elif args.data_path=='electricity.csv':
args.root_path = './dataset/electricity/'
c = 321
args.enc_in = c
args.dec_in = c
args.c_out = c
elif args.data_path=='exchange_rate.csv':
args.root_path = './dataset/exchange_rate/'
c = 8
args.enc_in = c
args.dec_in = c
args.c_out = c
elif args.data_path=='national_illness.csv':
args.root_path = './dataset/illness/'
c = 7
args.enc_in = c
args.dec_in = c
args.c_out = c
args.seq_len = 32
args.label_len = 16
args.scales = [8, 4, 2, 1]
print('Args in experiment:')
print(args)
if args.prob_forecasting:
assert args.loss == 'mse'
Exp = Exp_Main
if args.is_training:
for ii in range(args.itr):
setting = f'{args.data_path[:-4]}_{args.model}_{args.pred_len}_{args.loss}'
exp = Exp(args) # set experiments
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.train(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting)
if args.do_predict:
print('>>>>>>>predicting : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.predict(setting, True)
torch.cuda.empty_cache()
else:
ii = 0
setting = '{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des, ii)
exp = Exp(args) # set experiments
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting, test=1)
torch.cuda.empty_cache()
if __name__ == "__main__":
main()