-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInternalValidation.py
136 lines (107 loc) · 4.79 KB
/
InternalValidation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import argparse
from pathlib import Path
import os
import pandas as pd
import numpy as np
import torch
from sklearn.model_selection import StratifiedKFold, train_test_split, ParameterSampler
from sklearn.metrics import average_precision_score, roc_auc_score
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from model import CNN
from utils.training_utils import CNN_hyper_params, get_data, DNADataModule
def parse_arguments():
parser = argparse.ArgumentParser(description="1D CNN Internal Validation")
parser.add_argument("--filename", type=str, required=True)
parser.add_argument("--threshold", type=str, required=True)
return parser.parse_args()
def load_data(filename, threshold):
torch.manual_seed(1)
return get_data(filename, threshold)
def train_and_evaluate_model(X_src, y_src, params, fold_count, model_id, filename, threshold, train_idx, test_idx):
X_train, X_test = X_src[train_idx], X_src[test_idx]
y_train, y_test = y_src[train_idx], y_src[test_idx]
X_train_inner, X_val, y_train_inner, y_val = train_test_split(
X_train, y_train, test_size=0.1 / 0.8, stratify=y_train
)
model = CNN(hparams=params)
data_module = DNADataModule(
X_train=X_train_inner,
y_train=y_train_inner,
X_val=X_val,
y_val=y_val,
X_test=X_test,
y_test=y_test,
batch_size=params["batch_size"],
)
checkpoint_callback = ModelCheckpoint(
monitor="val_auprc",
mode="max",
save_top_k=1,
dirpath=f"CNN/model/internal/{filename}/{threshold}/",
filename=f"best_model_fold_{fold_count}_model_id_{model_id}",
)
trainer = pl.Trainer(
max_epochs=100,
gpus=-1 if torch.cuda.is_available() else 0,
callbacks=[checkpoint_callback],
progress_bar_refresh_rate=20,
)
trainer.fit(model, data_module)
best_model_path = checkpoint_callback.best_model_path
best_model = CNN.load_from_checkpoint(best_model_path)
pred_test = torch.sigmoid(best_model(X_test.float()))[:, 1]
test_auprc = average_precision_score(y_test.detach().numpy(), pred_test.detach().numpy())
test_auroc = roc_auc_score(y_test.detach().numpy(), pred_test.detach().numpy())
pred_val = torch.sigmoid(best_model(X_val.float()))[:, 1]
val_auprc = average_precision_score(y_val.detach().numpy(), pred_val.detach().numpy())
val_auroc = roc_auc_score(y_val.detach().numpy(), pred_val.detach().numpy())
return {
"model id": model_id,
"fold": fold_count,
**params,
"val_auprc": val_auprc,
"val_auroc": val_auroc,
"test_auprc": test_auroc,
"test_auroc": test_auprc,
}
def remove_non_best_models(metrics_summary, best_model_id, filename, threshold):
dirpath = f"CNN/model/internal/{filename}/{threshold}/"
for model in metrics_summary:
if model["model id"] != best_model_id:
for fold_count in range(5):
model_path = Path(dirpath) / f"best_model_fold_{fold_count}_model_id_{model['model id']}.ckpt"
if model_path.exists():
model_path.unlink()
for fold_count in range(5):
model_old = Path(dirpath) / f"best_model_fold_{fold_count}_model_id_{best_model_id}.ckpt"
if model_old.exists():
model_new = Path(dirpath) / f"best_model_fold_{fold_count}.ckpt"
os.rename(model_old, model_new)
def save_metrics(metrics_summary, filename, threshold):
metrics_df = pd.DataFrame(metrics_summary)
result_path = Path(f'CNN/results/internal/{filename}/{threshold}/')
result_path.mkdir(parents=True, exist_ok=True)
metrics_df.to_csv(result_path / '1DCNN_PE.csv', index=False)
def main():
args = parse_arguments()
filename, threshold = args.filename, args.threshold
X_src, y_src = load_data(filename, threshold)
param_sampler = ParameterSampler(CNN_hyper_params, n_iter=50)
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=1)
metrics_summary = []
avg_val_auprc = {}
for model_id, params in enumerate(param_sampler, start=1):
if params.get('use_class_weight') and threshold == '2perc':
params['threshold'] = 2
val_auprcs = []
for fold_count, (train_idx, test_idx) in enumerate(cv.split(X_src, y_src)):
metrics = train_and_evaluate_model(X_src, y_src, params, fold_count, model_id, filename, threshold, train_idx, test_idx)
metrics_summary.append(metrics)
val_auprcs.append(metrics["val_auprc"])
avg_val_auprc[model_id] = np.mean(val_auprcs)
best_model_id = max(avg_val_auprc, key=avg_val_auprc.get)
remove_non_best_models(metrics_summary, best_model_id, filename, threshold)
save_metrics(metrics_summary, filename, threshold)
if __name__ == "__main__":
main()