-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
108 lines (90 loc) · 4.74 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from src.fridgeyocr import fridgeyocr
from src.fridgeyocr import gdrive_utils
import os, yaml, math, cv2, json
from PIL import Image
import numpy as np
from flask import request, render_template, jsonify, Flask
BASE_PATH=os.path.dirname(os.path.abspath(__file__))
app = Flask(__name__)
# os.environ['CUDA_VISIBLE_DEVICES'] = 'GPU-b12b544c-b6f2-084c-76c5-78589afdfe14' # " 0"
# os.environ['CUDA_VISIBLE_DEVICES'] = '6'
PRETRAINED_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'src/fridgeyocr/pretrained_weights')
os.makedirs(PRETRAINED_DIR, exist_ok=True)
## Google Drive에서 파일 ID는 파일 위치와 파일 이름만 동일하다면 계속 일정하다.
MODEL_WEIGHTS = {
"TPS_RESNET_BILSTM_CTC": '1XpujSr2yV35E-25Gs8FmxOJDgYthehg3',
"BEST_TPS_RESNET_BILSTM_CTC": '130_1LqWwJgcGOP0Oo_bj1WjBuF2H9MSl', # '1Z3dP3cp2f1P5tfcreWkzf2hAfN_J0EgI', # '1BB80X_OQCOJiLYDms77fbw28KBnVwnSY', # '1Z3dP3cp2f1P5tfcreWkzf2hAfN_J0EgI',
"CTPN": '1XF76z5iRhYxrbAiLIddJC5X5dJkmumDh'
}
def make_recognition_key(recog_cfg):
trans = recog_cfg['TRANSFORMATION'].upper()
feat = recog_cfg['FEATUREEXTRACTION'].upper()
seq = recog_cfg['SEQUENCEMODELING'].upper()
pred = recog_cfg['PREDICTION'].upper()
return f"BEST_{trans}_{feat}_{seq}_{pred}"
def run_ocr(
detection_cfg: dict,
input_image,
# image_path, ## (우선은 경로 사용) 이미지는 array의 형태로 flask 서버에서 받아올 것이다.
# detection_model_path: str, ## 사전학습된 CTPN모델 경로,
remove_white: bool, ## text detection을 수행하기 위해서 주변 테두리를 자르는 전처리 과정을 거칠 것인가
# recognition_model_path: str, ## 사전학습된 HangulNet 모델 경로
recognition_cfg: dict,
):
detection_model_path = os.path.join(PRETRAINED_DIR, detection_cfg['PRETRAINED'])
recognition_model_path = os.path.join(PRETRAINED_DIR, recognition_cfg['PRETRAINED'])
detection_id = MODEL_WEIGHTS['CTPN']
recognition_id = MODEL_WEIGHTS[make_recognition_key(recognition_cfg)]
if os.path.isfile(detection_model_path) == False:
gdrive_utils.download_model_weight_from_gdrive(detection_id, detection_model_path)
if os.path.isfile(recognition_model_path) == False:
gdrive_utils.download_model_weight_from_gdrive(recognition_id, recognition_model_path)
reader = fridgeyocr.Reader(
detect_network_pretrained = detection_model_path,
recog_network_pretrained = recognition_model_path,
gpu = True, detect_network = 'ctpn', recog_network = 'crnn'
)
answer = reader(image=input_image)
return answer
@app.route("/")
def main():
return "Hello World"
@app.route("/demo", methods=["POST", "GET"])
def demo():
if request.method == 'GET':
return render_template("demo.html")
if request.method == 'POST':
file = request.files['file']
image = Image.open(file.stream)
image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
with open(os.path.join(BASE_PATH, 'src/fridgeyocr/config/crnn_recognition.yaml'), 'r') as f:
recog_cfg = yaml.load(f, Loader=yaml.FullLoader)
with open(os.path.join(BASE_PATH, 'src/fridgeyocr/config/ctpn_detection.yaml'), 'r') as f:
detect_cfg = yaml.load(f, Loader=yaml.FullLoader)
pred_dict = run_ocr(
detection_cfg=detect_cfg, input_image=image, # image_path=image_path,
remove_white=True, recognition_cfg=recog_cfg
)
return render_template("result.html", result= pred_dict)
@app.route("/model", methods=['POST'])
def model():
if request.method == 'POST':
file = request.files['file']
image = Image.open(file.stream)
image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
# recipt_image = request.files['image'] ## flutter 서버에서 이미지 받아오기 (np array 형태라고 가정하자)
# image_path = '/home/guest/speaking_fridgey/ocr_exp_v2/text_detection/demo/sample/recipt.jpg'
# 이미지를 로컬에 저장하는 과정이 필요함 -> 근데 서버에 베포한다고 생각하면 어떻게 이미지를 로컬에 저장하는 걸까?
with open(os.path.join(BASE_PATH, 'src/fridgeyocr/config/crnn_recognition.yaml'), 'r') as f:
recog_cfg = yaml.load(f, Loader=yaml.FullLoader)
with open(os.path.join(BASE_PATH, 'src/fridgeyocr/config/ctpn_detection.yaml'), 'r') as f:
detect_cfg = yaml.load(f, Loader=yaml.FullLoader)
pred_dict = run_ocr(
detection_cfg=detect_cfg, input_image=image, # image_path=image_path,
remove_white=True, recognition_cfg=recog_cfg
)
print(pred_dict)
return jsonify(pred_dict)
if __name__ == "__main__":
app.debug=True
app.run(port='3000', host='0.0.0.0')