Train VGG-like and ResNet-like auto-encoder on image dataset like ImageNet
$imagenet-autoencoder
|──figs # result images
|── *.jpg
|──models
|──builder.py # build autoencoder models
|──resnet.py # resnet-like autoencoder
|──vgg.py # vgg-like autoencoder
|──run
|──eval.sh # command to evaluate single checkpoint
|──evalall.sh # command to evaluate all checkpoints in specific folder
|──train.sh # command to train auto-encoder
|──tools
|──decode.py # decode random latent code to images
|──encode.py # encode single image to latent code
|──generate_list.py # generate image list for training
|──reconstrust.py # reconstruct the images to see difference
|──dataloader.py # dataset and dataloader
|──eval.py # evaluate checkpoints
|──train.py # train models
|──utils.py # other utility function
|──requirements.txt
|──Autoencoder.md
- Clone the project
git clone https://github.com/Horizon2333/imagenet-autoencoder
cd imagenet-autoencoder
- Install dependencies
pip install -r requirements.txt
Your dataset should looks like:
$your_dataset_path
|──class1
|──xxxx.jpg
|──...
|──class2
|──xxxx.jpg
|──...
|──...
|──classN
|──xxxx.jpg
|──...
The you can use tools/generate_list.py
to generate list of training samples. Here we do not use torchvision.datasets.ImageFolder
because it is very slow when dataset is pretty large. You can run
python tools/generate_list.py --name {name your dataset such as caltech256} --path {path to your dataset}
Then two files will be generated under list
folder, one *_list.txt
save every image path and its class(here no use); one *_name.txt
save index of every class and its class name.
For training
bash run/train.sh {model architecture such as vgg16} {you dataset name}
# For example
bash run/train.sh vgg16 caltech256
For evaluating single checkpoint:
bash run/eval.sh {model architecture} {checkpoint path} {dataset name}
# For example
bash run/eval.sh vgg16 results/caltech256-vgg16/099.pth caltech101
For evaluating all checkpoints under specific folder:
bash run/evalall.sh {model architecture} {checkpoints path} {dataset name}
# For example
bash run/evalall.sh vgg16 results/caltech256-vgg16/ caltech101
When all checkpoints are evaluated, a scatter diagram figs/evalall.jpg
will be generated to show the evaluate loss trend.
For model architecture, now we support vgg11,vgg13,vgg16,vgg19
and resnet18, resnet34, resnet50, resnet101, resnet152
.
We provide several tools to better visualize the auto-encoder results.
reconstruct.py
Reconstruct images from original one. This code will sample 64 of them and save the comparison results to figs/reconstruction.jpg
.
python tools/reconstruct.py --arch {model architecture} --resume {checkpoint path} --val_list {*_list.txt of your dataset}
# For example
python tools/reconstruct.py --arch vgg16 --resume results/caltech256-vgg16/099.pth --val_list caltech101_list.txt
encode.py
and decode.py
Encode image to latent code or decode latent code to images.
encode.py
can transfer single image to latent code.
python tools/encode.py --arch {model architecture} --resume {checkpoint path} --img_path {image path}
# For example
python tools/encode.py --arch vgg16 --resume results/caltech256-vgg16/099.pth --img_path figs/reconstruction.jpg
decode.py
can transform 128 random latent code to images.
python tools/decode.py --arch {model architecture} --resume {checkpoint path}
# For example
python tools/decode.py --arch vgg16 --resume results/caltech256-vgg16/099.pth
The decoded results will be save as figs/generation.jpg
Dataset | VGG11 | VGG13 | VGG16 | VGG19 | ResNet18 | ResNet34 | ResNet50 | ResNet101 | ResNet152 |
---|---|---|---|---|---|---|---|---|---|
Caltech256 | link | link | link | link | link | link | link | link | link |
Objects365 | link | link | link | link | |||||
ImageNet | link |
Note that the size of Objects365 dataset is about half of ImageNet dataset(128 million images, much larger than Caltech256), so the performance may be comparable.